zil.c revision 320496
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
85SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
86    &zfs_nocacheflush, 0, "Disable cache flush");
87boolean_t zfs_trim_enabled = B_TRUE;
88SYSCTL_DECL(_vfs_zfs_trim);
89TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
90SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
91    "Enable ZFS TRIM");
92
93/*
94 * Limit SLOG write size per commit executed with synchronous priority.
95 * Any writes above that executed with lower (asynchronous) priority to
96 * limit potential SLOG device abuse by single active ZIL writer.
97 */
98uint64_t zil_slog_limit = 768 * 1024;
99SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_limit, CTLFLAG_RWTUN,
100    &zil_slog_limit, 0, "Maximal SLOG commit size with sync priority");
101
102static kmem_cache_t *zil_lwb_cache;
103
104#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
105    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
106
107
108/*
109 * ziltest is by and large an ugly hack, but very useful in
110 * checking replay without tedious work.
111 * When running ziltest we want to keep all itx's and so maintain
112 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
113 * We subtract TXG_CONCURRENT_STATES to allow for common code.
114 */
115#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
116
117static int
118zil_bp_compare(const void *x1, const void *x2)
119{
120	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
121	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
122
123	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
124		return (-1);
125	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
126		return (1);
127
128	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
129		return (-1);
130	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
131		return (1);
132
133	return (0);
134}
135
136static void
137zil_bp_tree_init(zilog_t *zilog)
138{
139	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
140	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
141}
142
143static void
144zil_bp_tree_fini(zilog_t *zilog)
145{
146	avl_tree_t *t = &zilog->zl_bp_tree;
147	zil_bp_node_t *zn;
148	void *cookie = NULL;
149
150	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
151		kmem_free(zn, sizeof (zil_bp_node_t));
152
153	avl_destroy(t);
154}
155
156int
157zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
158{
159	avl_tree_t *t = &zilog->zl_bp_tree;
160	const dva_t *dva;
161	zil_bp_node_t *zn;
162	avl_index_t where;
163
164	if (BP_IS_EMBEDDED(bp))
165		return (0);
166
167	dva = BP_IDENTITY(bp);
168
169	if (avl_find(t, dva, &where) != NULL)
170		return (SET_ERROR(EEXIST));
171
172	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
173	zn->zn_dva = *dva;
174	avl_insert(t, zn, where);
175
176	return (0);
177}
178
179static zil_header_t *
180zil_header_in_syncing_context(zilog_t *zilog)
181{
182	return ((zil_header_t *)zilog->zl_header);
183}
184
185static void
186zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
187{
188	zio_cksum_t *zc = &bp->blk_cksum;
189
190	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
191	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
192	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
193	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
194}
195
196/*
197 * Read a log block and make sure it's valid.
198 */
199static int
200zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
201    char **end)
202{
203	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
204	arc_flags_t aflags = ARC_FLAG_WAIT;
205	arc_buf_t *abuf = NULL;
206	zbookmark_phys_t zb;
207	int error;
208
209	if (zilog->zl_header->zh_claim_txg == 0)
210		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
211
212	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
213		zio_flags |= ZIO_FLAG_SPECULATIVE;
214
215	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
216	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
217
218	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
219	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
220
221	if (error == 0) {
222		zio_cksum_t cksum = bp->blk_cksum;
223
224		/*
225		 * Validate the checksummed log block.
226		 *
227		 * Sequence numbers should be... sequential.  The checksum
228		 * verifier for the next block should be bp's checksum plus 1.
229		 *
230		 * Also check the log chain linkage and size used.
231		 */
232		cksum.zc_word[ZIL_ZC_SEQ]++;
233
234		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
235			zil_chain_t *zilc = abuf->b_data;
236			char *lr = (char *)(zilc + 1);
237			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
238
239			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
240			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
241				error = SET_ERROR(ECKSUM);
242			} else {
243				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
244				bcopy(lr, dst, len);
245				*end = (char *)dst + len;
246				*nbp = zilc->zc_next_blk;
247			}
248		} else {
249			char *lr = abuf->b_data;
250			uint64_t size = BP_GET_LSIZE(bp);
251			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
252
253			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
254			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
255			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
256				error = SET_ERROR(ECKSUM);
257			} else {
258				ASSERT3U(zilc->zc_nused, <=,
259				    SPA_OLD_MAXBLOCKSIZE);
260				bcopy(lr, dst, zilc->zc_nused);
261				*end = (char *)dst + zilc->zc_nused;
262				*nbp = zilc->zc_next_blk;
263			}
264		}
265
266		arc_buf_destroy(abuf, &abuf);
267	}
268
269	return (error);
270}
271
272/*
273 * Read a TX_WRITE log data block.
274 */
275static int
276zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
277{
278	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
279	const blkptr_t *bp = &lr->lr_blkptr;
280	arc_flags_t aflags = ARC_FLAG_WAIT;
281	arc_buf_t *abuf = NULL;
282	zbookmark_phys_t zb;
283	int error;
284
285	if (BP_IS_HOLE(bp)) {
286		if (wbuf != NULL)
287			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
288		return (0);
289	}
290
291	if (zilog->zl_header->zh_claim_txg == 0)
292		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
293
294	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
295	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
296
297	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
298	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
299
300	if (error == 0) {
301		if (wbuf != NULL)
302			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
303		arc_buf_destroy(abuf, &abuf);
304	}
305
306	return (error);
307}
308
309/*
310 * Parse the intent log, and call parse_func for each valid record within.
311 */
312int
313zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
314    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
315{
316	const zil_header_t *zh = zilog->zl_header;
317	boolean_t claimed = !!zh->zh_claim_txg;
318	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
319	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
320	uint64_t max_blk_seq = 0;
321	uint64_t max_lr_seq = 0;
322	uint64_t blk_count = 0;
323	uint64_t lr_count = 0;
324	blkptr_t blk, next_blk;
325	char *lrbuf, *lrp;
326	int error = 0;
327
328	/*
329	 * Old logs didn't record the maximum zh_claim_lr_seq.
330	 */
331	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
332		claim_lr_seq = UINT64_MAX;
333
334	/*
335	 * Starting at the block pointed to by zh_log we read the log chain.
336	 * For each block in the chain we strongly check that block to
337	 * ensure its validity.  We stop when an invalid block is found.
338	 * For each block pointer in the chain we call parse_blk_func().
339	 * For each record in each valid block we call parse_lr_func().
340	 * If the log has been claimed, stop if we encounter a sequence
341	 * number greater than the highest claimed sequence number.
342	 */
343	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
344	zil_bp_tree_init(zilog);
345
346	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
347		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
348		int reclen;
349		char *end;
350
351		if (blk_seq > claim_blk_seq)
352			break;
353		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
354			break;
355		ASSERT3U(max_blk_seq, <, blk_seq);
356		max_blk_seq = blk_seq;
357		blk_count++;
358
359		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
360			break;
361
362		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
363		if (error != 0)
364			break;
365
366		for (lrp = lrbuf; lrp < end; lrp += reclen) {
367			lr_t *lr = (lr_t *)lrp;
368			reclen = lr->lrc_reclen;
369			ASSERT3U(reclen, >=, sizeof (lr_t));
370			if (lr->lrc_seq > claim_lr_seq)
371				goto done;
372			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
373				goto done;
374			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
375			max_lr_seq = lr->lrc_seq;
376			lr_count++;
377		}
378	}
379done:
380	zilog->zl_parse_error = error;
381	zilog->zl_parse_blk_seq = max_blk_seq;
382	zilog->zl_parse_lr_seq = max_lr_seq;
383	zilog->zl_parse_blk_count = blk_count;
384	zilog->zl_parse_lr_count = lr_count;
385
386	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
387	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
388
389	zil_bp_tree_fini(zilog);
390	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
391
392	return (error);
393}
394
395static int
396zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
397{
398	/*
399	 * Claim log block if not already committed and not already claimed.
400	 * If tx == NULL, just verify that the block is claimable.
401	 */
402	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
403	    zil_bp_tree_add(zilog, bp) != 0)
404		return (0);
405
406	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
407	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
408	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
409}
410
411static int
412zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
413{
414	lr_write_t *lr = (lr_write_t *)lrc;
415	int error;
416
417	if (lrc->lrc_txtype != TX_WRITE)
418		return (0);
419
420	/*
421	 * If the block is not readable, don't claim it.  This can happen
422	 * in normal operation when a log block is written to disk before
423	 * some of the dmu_sync() blocks it points to.  In this case, the
424	 * transaction cannot have been committed to anyone (we would have
425	 * waited for all writes to be stable first), so it is semantically
426	 * correct to declare this the end of the log.
427	 */
428	if (lr->lr_blkptr.blk_birth >= first_txg &&
429	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
430		return (error);
431	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
432}
433
434/* ARGSUSED */
435static int
436zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
437{
438	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
439
440	return (0);
441}
442
443static int
444zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
445{
446	lr_write_t *lr = (lr_write_t *)lrc;
447	blkptr_t *bp = &lr->lr_blkptr;
448
449	/*
450	 * If we previously claimed it, we need to free it.
451	 */
452	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
453	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
454	    !BP_IS_HOLE(bp))
455		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
456
457	return (0);
458}
459
460static lwb_t *
461zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
462{
463	lwb_t *lwb;
464
465	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
466	lwb->lwb_zilog = zilog;
467	lwb->lwb_blk = *bp;
468	lwb->lwb_slog = slog;
469	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
470	lwb->lwb_max_txg = txg;
471	lwb->lwb_zio = NULL;
472	lwb->lwb_tx = NULL;
473	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
474		lwb->lwb_nused = sizeof (zil_chain_t);
475		lwb->lwb_sz = BP_GET_LSIZE(bp);
476	} else {
477		lwb->lwb_nused = 0;
478		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
479	}
480
481	mutex_enter(&zilog->zl_lock);
482	list_insert_tail(&zilog->zl_lwb_list, lwb);
483	mutex_exit(&zilog->zl_lock);
484
485	return (lwb);
486}
487
488/*
489 * Called when we create in-memory log transactions so that we know
490 * to cleanup the itxs at the end of spa_sync().
491 */
492void
493zilog_dirty(zilog_t *zilog, uint64_t txg)
494{
495	dsl_pool_t *dp = zilog->zl_dmu_pool;
496	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
497
498	if (ds->ds_is_snapshot)
499		panic("dirtying snapshot!");
500
501	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
502		/* up the hold count until we can be written out */
503		dmu_buf_add_ref(ds->ds_dbuf, zilog);
504	}
505}
506
507/*
508 * Determine if the zil is dirty in the specified txg. Callers wanting to
509 * ensure that the dirty state does not change must hold the itxg_lock for
510 * the specified txg. Holding the lock will ensure that the zil cannot be
511 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
512 * state.
513 */
514boolean_t
515zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
516{
517	dsl_pool_t *dp = zilog->zl_dmu_pool;
518
519	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
520		return (B_TRUE);
521	return (B_FALSE);
522}
523
524/*
525 * Determine if the zil is dirty. The zil is considered dirty if it has
526 * any pending itx records that have not been cleaned by zil_clean().
527 */
528boolean_t
529zilog_is_dirty(zilog_t *zilog)
530{
531	dsl_pool_t *dp = zilog->zl_dmu_pool;
532
533	for (int t = 0; t < TXG_SIZE; t++) {
534		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
535			return (B_TRUE);
536	}
537	return (B_FALSE);
538}
539
540/*
541 * Create an on-disk intent log.
542 */
543static lwb_t *
544zil_create(zilog_t *zilog)
545{
546	const zil_header_t *zh = zilog->zl_header;
547	lwb_t *lwb = NULL;
548	uint64_t txg = 0;
549	dmu_tx_t *tx = NULL;
550	blkptr_t blk;
551	int error = 0;
552	boolean_t slog = FALSE;
553
554	/*
555	 * Wait for any previous destroy to complete.
556	 */
557	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
558
559	ASSERT(zh->zh_claim_txg == 0);
560	ASSERT(zh->zh_replay_seq == 0);
561
562	blk = zh->zh_log;
563
564	/*
565	 * Allocate an initial log block if:
566	 *    - there isn't one already
567	 *    - the existing block is the wrong endianess
568	 */
569	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
570		tx = dmu_tx_create(zilog->zl_os);
571		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
572		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
573		txg = dmu_tx_get_txg(tx);
574
575		if (!BP_IS_HOLE(&blk)) {
576			zio_free_zil(zilog->zl_spa, txg, &blk);
577			BP_ZERO(&blk);
578		}
579
580		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
581		    ZIL_MIN_BLKSZ, &slog);
582
583		if (error == 0)
584			zil_init_log_chain(zilog, &blk);
585	}
586
587	/*
588	 * Allocate a log write buffer (lwb) for the first log block.
589	 */
590	if (error == 0)
591		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
592
593	/*
594	 * If we just allocated the first log block, commit our transaction
595	 * and wait for zil_sync() to stuff the block poiner into zh_log.
596	 * (zh is part of the MOS, so we cannot modify it in open context.)
597	 */
598	if (tx != NULL) {
599		dmu_tx_commit(tx);
600		txg_wait_synced(zilog->zl_dmu_pool, txg);
601	}
602
603	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
604
605	return (lwb);
606}
607
608/*
609 * In one tx, free all log blocks and clear the log header.
610 * If keep_first is set, then we're replaying a log with no content.
611 * We want to keep the first block, however, so that the first
612 * synchronous transaction doesn't require a txg_wait_synced()
613 * in zil_create().  We don't need to txg_wait_synced() here either
614 * when keep_first is set, because both zil_create() and zil_destroy()
615 * will wait for any in-progress destroys to complete.
616 */
617void
618zil_destroy(zilog_t *zilog, boolean_t keep_first)
619{
620	const zil_header_t *zh = zilog->zl_header;
621	lwb_t *lwb;
622	dmu_tx_t *tx;
623	uint64_t txg;
624
625	/*
626	 * Wait for any previous destroy to complete.
627	 */
628	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
629
630	zilog->zl_old_header = *zh;		/* debugging aid */
631
632	if (BP_IS_HOLE(&zh->zh_log))
633		return;
634
635	tx = dmu_tx_create(zilog->zl_os);
636	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
637	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
638	txg = dmu_tx_get_txg(tx);
639
640	mutex_enter(&zilog->zl_lock);
641
642	ASSERT3U(zilog->zl_destroy_txg, <, txg);
643	zilog->zl_destroy_txg = txg;
644	zilog->zl_keep_first = keep_first;
645
646	if (!list_is_empty(&zilog->zl_lwb_list)) {
647		ASSERT(zh->zh_claim_txg == 0);
648		VERIFY(!keep_first);
649		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
650			list_remove(&zilog->zl_lwb_list, lwb);
651			if (lwb->lwb_buf != NULL)
652				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
653			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
654			kmem_cache_free(zil_lwb_cache, lwb);
655		}
656	} else if (!keep_first) {
657		zil_destroy_sync(zilog, tx);
658	}
659	mutex_exit(&zilog->zl_lock);
660
661	dmu_tx_commit(tx);
662}
663
664void
665zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
666{
667	ASSERT(list_is_empty(&zilog->zl_lwb_list));
668	(void) zil_parse(zilog, zil_free_log_block,
669	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
670}
671
672int
673zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
674{
675	dmu_tx_t *tx = txarg;
676	uint64_t first_txg = dmu_tx_get_txg(tx);
677	zilog_t *zilog;
678	zil_header_t *zh;
679	objset_t *os;
680	int error;
681
682	error = dmu_objset_own_obj(dp, ds->ds_object,
683	    DMU_OST_ANY, B_FALSE, FTAG, &os);
684	if (error != 0) {
685		/*
686		 * EBUSY indicates that the objset is inconsistent, in which
687		 * case it can not have a ZIL.
688		 */
689		if (error != EBUSY) {
690			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
691			    (unsigned long long)ds->ds_object, error);
692		}
693		return (0);
694	}
695
696	zilog = dmu_objset_zil(os);
697	zh = zil_header_in_syncing_context(zilog);
698
699	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
700		if (!BP_IS_HOLE(&zh->zh_log))
701			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
702		BP_ZERO(&zh->zh_log);
703		dsl_dataset_dirty(dmu_objset_ds(os), tx);
704		dmu_objset_disown(os, FTAG);
705		return (0);
706	}
707
708	/*
709	 * Claim all log blocks if we haven't already done so, and remember
710	 * the highest claimed sequence number.  This ensures that if we can
711	 * read only part of the log now (e.g. due to a missing device),
712	 * but we can read the entire log later, we will not try to replay
713	 * or destroy beyond the last block we successfully claimed.
714	 */
715	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
716	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
717		(void) zil_parse(zilog, zil_claim_log_block,
718		    zil_claim_log_record, tx, first_txg);
719		zh->zh_claim_txg = first_txg;
720		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
721		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
722		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
723			zh->zh_flags |= ZIL_REPLAY_NEEDED;
724		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
725		dsl_dataset_dirty(dmu_objset_ds(os), tx);
726	}
727
728	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
729	dmu_objset_disown(os, FTAG);
730	return (0);
731}
732
733/*
734 * Check the log by walking the log chain.
735 * Checksum errors are ok as they indicate the end of the chain.
736 * Any other error (no device or read failure) returns an error.
737 */
738/* ARGSUSED */
739int
740zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
741{
742	zilog_t *zilog;
743	objset_t *os;
744	blkptr_t *bp;
745	int error;
746
747	ASSERT(tx == NULL);
748
749	error = dmu_objset_from_ds(ds, &os);
750	if (error != 0) {
751		cmn_err(CE_WARN, "can't open objset %llu, error %d",
752		    (unsigned long long)ds->ds_object, error);
753		return (0);
754	}
755
756	zilog = dmu_objset_zil(os);
757	bp = (blkptr_t *)&zilog->zl_header->zh_log;
758
759	/*
760	 * Check the first block and determine if it's on a log device
761	 * which may have been removed or faulted prior to loading this
762	 * pool.  If so, there's no point in checking the rest of the log
763	 * as its content should have already been synced to the pool.
764	 */
765	if (!BP_IS_HOLE(bp)) {
766		vdev_t *vd;
767		boolean_t valid = B_TRUE;
768
769		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
770		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
771		if (vd->vdev_islog && vdev_is_dead(vd))
772			valid = vdev_log_state_valid(vd);
773		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
774
775		if (!valid)
776			return (0);
777	}
778
779	/*
780	 * Because tx == NULL, zil_claim_log_block() will not actually claim
781	 * any blocks, but just determine whether it is possible to do so.
782	 * In addition to checking the log chain, zil_claim_log_block()
783	 * will invoke zio_claim() with a done func of spa_claim_notify(),
784	 * which will update spa_max_claim_txg.  See spa_load() for details.
785	 */
786	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
787	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
788
789	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
790}
791
792static int
793zil_vdev_compare(const void *x1, const void *x2)
794{
795	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
796	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
797
798	if (v1 < v2)
799		return (-1);
800	if (v1 > v2)
801		return (1);
802
803	return (0);
804}
805
806void
807zil_add_block(zilog_t *zilog, const blkptr_t *bp)
808{
809	avl_tree_t *t = &zilog->zl_vdev_tree;
810	avl_index_t where;
811	zil_vdev_node_t *zv, zvsearch;
812	int ndvas = BP_GET_NDVAS(bp);
813	int i;
814
815	if (zfs_nocacheflush)
816		return;
817
818	ASSERT(zilog->zl_writer);
819
820	/*
821	 * Even though we're zl_writer, we still need a lock because the
822	 * zl_get_data() callbacks may have dmu_sync() done callbacks
823	 * that will run concurrently.
824	 */
825	mutex_enter(&zilog->zl_vdev_lock);
826	for (i = 0; i < ndvas; i++) {
827		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
828		if (avl_find(t, &zvsearch, &where) == NULL) {
829			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
830			zv->zv_vdev = zvsearch.zv_vdev;
831			avl_insert(t, zv, where);
832		}
833	}
834	mutex_exit(&zilog->zl_vdev_lock);
835}
836
837static void
838zil_flush_vdevs(zilog_t *zilog)
839{
840	spa_t *spa = zilog->zl_spa;
841	avl_tree_t *t = &zilog->zl_vdev_tree;
842	void *cookie = NULL;
843	zil_vdev_node_t *zv;
844	zio_t *zio = NULL;
845
846	ASSERT(zilog->zl_writer);
847
848	/*
849	 * We don't need zl_vdev_lock here because we're the zl_writer,
850	 * and all zl_get_data() callbacks are done.
851	 */
852	if (avl_numnodes(t) == 0)
853		return;
854
855	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
856
857	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
858		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
859		if (vd != NULL && !vd->vdev_nowritecache) {
860			if (zio == NULL)
861				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
862			zio_flush(zio, vd);
863		}
864		kmem_free(zv, sizeof (*zv));
865	}
866
867	/*
868	 * Wait for all the flushes to complete.  Not all devices actually
869	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
870	 */
871	if (zio)
872		(void) zio_wait(zio);
873
874	spa_config_exit(spa, SCL_STATE, FTAG);
875}
876
877/*
878 * Function called when a log block write completes
879 */
880static void
881zil_lwb_write_done(zio_t *zio)
882{
883	lwb_t *lwb = zio->io_private;
884	zilog_t *zilog = lwb->lwb_zilog;
885	dmu_tx_t *tx = lwb->lwb_tx;
886
887	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
888	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
889	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
890	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
891	ASSERT(!BP_IS_GANG(zio->io_bp));
892	ASSERT(!BP_IS_HOLE(zio->io_bp));
893	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
894
895	/*
896	 * Ensure the lwb buffer pointer is cleared before releasing
897	 * the txg. If we have had an allocation failure and
898	 * the txg is waiting to sync then we want want zil_sync()
899	 * to remove the lwb so that it's not picked up as the next new
900	 * one in zil_commit_writer(). zil_sync() will only remove
901	 * the lwb if lwb_buf is null.
902	 */
903	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
904	mutex_enter(&zilog->zl_lock);
905	lwb->lwb_buf = NULL;
906	lwb->lwb_tx = NULL;
907	mutex_exit(&zilog->zl_lock);
908
909	/*
910	 * Now that we've written this log block, we have a stable pointer
911	 * to the next block in the chain, so it's OK to let the txg in
912	 * which we allocated the next block sync.
913	 */
914	dmu_tx_commit(tx);
915}
916
917/*
918 * Initialize the io for a log block.
919 */
920static void
921zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
922{
923	zbookmark_phys_t zb;
924	zio_priority_t prio;
925
926	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
927	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
928	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
929
930	if (zilog->zl_root_zio == NULL) {
931		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
932		    ZIO_FLAG_CANFAIL);
933	}
934	if (lwb->lwb_zio == NULL) {
935		if (zilog->zl_cur_used <= zil_slog_limit || !lwb->lwb_slog)
936			prio = ZIO_PRIORITY_SYNC_WRITE;
937		else
938			prio = ZIO_PRIORITY_ASYNC_WRITE;
939		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
940		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
941		    zil_lwb_write_done, lwb, prio,
942		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
943	}
944}
945
946/*
947 * Define a limited set of intent log block sizes.
948 *
949 * These must be a multiple of 4KB. Note only the amount used (again
950 * aligned to 4KB) actually gets written. However, we can't always just
951 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
952 */
953uint64_t zil_block_buckets[] = {
954    4096,		/* non TX_WRITE */
955    8192+4096,		/* data base */
956    32*1024 + 4096, 	/* NFS writes */
957    UINT64_MAX
958};
959
960/*
961 * Start a log block write and advance to the next log block.
962 * Calls are serialized.
963 */
964static lwb_t *
965zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb, boolean_t last)
966{
967	lwb_t *nlwb = NULL;
968	zil_chain_t *zilc;
969	spa_t *spa = zilog->zl_spa;
970	blkptr_t *bp;
971	dmu_tx_t *tx;
972	uint64_t txg;
973	uint64_t zil_blksz, wsz;
974	int i, error;
975	boolean_t slog;
976
977	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
978		zilc = (zil_chain_t *)lwb->lwb_buf;
979		bp = &zilc->zc_next_blk;
980	} else {
981		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
982		bp = &zilc->zc_next_blk;
983	}
984
985	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
986
987	/*
988	 * Allocate the next block and save its address in this block
989	 * before writing it in order to establish the log chain.
990	 * Note that if the allocation of nlwb synced before we wrote
991	 * the block that points at it (lwb), we'd leak it if we crashed.
992	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
993	 * We dirty the dataset to ensure that zil_sync() will be called
994	 * to clean up in the event of allocation failure or I/O failure.
995	 */
996	tx = dmu_tx_create(zilog->zl_os);
997	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
998	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
999	txg = dmu_tx_get_txg(tx);
1000
1001	lwb->lwb_tx = tx;
1002
1003	/*
1004	 * Log blocks are pre-allocated. Here we select the size of the next
1005	 * block, based on size used in the last block.
1006	 * - first find the smallest bucket that will fit the block from a
1007	 *   limited set of block sizes. This is because it's faster to write
1008	 *   blocks allocated from the same metaslab as they are adjacent or
1009	 *   close.
1010	 * - next find the maximum from the new suggested size and an array of
1011	 *   previous sizes. This lessens a picket fence effect of wrongly
1012	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1013	 *   requests.
1014	 *
1015	 * Note we only write what is used, but we can't just allocate
1016	 * the maximum block size because we can exhaust the available
1017	 * pool log space.
1018	 */
1019	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1020	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1021		continue;
1022	zil_blksz = zil_block_buckets[i];
1023	if (zil_blksz == UINT64_MAX)
1024		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1025	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1026	for (i = 0; i < ZIL_PREV_BLKS; i++)
1027		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1028	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1029
1030	BP_ZERO(bp);
1031	/* pass the old blkptr in order to spread log blocks across devs */
1032	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1033	if (error == 0) {
1034		ASSERT3U(bp->blk_birth, ==, txg);
1035		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1036		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1037
1038		/*
1039		 * Allocate a new log write buffer (lwb).
1040		 */
1041		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1042
1043		/* Record the block for later vdev flushing */
1044		zil_add_block(zilog, &lwb->lwb_blk);
1045	}
1046
1047	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1048		/* For Slim ZIL only write what is used. */
1049		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1050		ASSERT3U(wsz, <=, lwb->lwb_sz);
1051		zio_shrink(lwb->lwb_zio, wsz);
1052
1053	} else {
1054		wsz = lwb->lwb_sz;
1055	}
1056
1057	zilc->zc_pad = 0;
1058	zilc->zc_nused = lwb->lwb_nused;
1059	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1060
1061	/*
1062	 * clear unused data for security
1063	 */
1064	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1065
1066	if (last)
1067		lwb->lwb_zio->io_pipeline &= ~ZIO_STAGE_ISSUE_ASYNC;
1068	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1069
1070	/*
1071	 * If there was an allocation failure then nlwb will be null which
1072	 * forces a txg_wait_synced().
1073	 */
1074	return (nlwb);
1075}
1076
1077static lwb_t *
1078zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1079{
1080	lr_t *lrcb, *lrc = &itx->itx_lr; /* common log record */
1081	lr_write_t *lrwb, *lrw = (lr_write_t *)lrc;
1082	char *lr_buf;
1083	uint64_t txg = lrc->lrc_txg;
1084	uint64_t reclen = lrc->lrc_reclen;
1085	uint64_t dlen = 0;
1086	uint64_t dnow, lwb_sp;
1087
1088	if (lwb == NULL)
1089		return (NULL);
1090
1091	ASSERT(lwb->lwb_buf != NULL);
1092
1093	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1094		dlen = P2ROUNDUP_TYPED(
1095		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1096
1097	zilog->zl_cur_used += (reclen + dlen);
1098
1099	zil_lwb_write_init(zilog, lwb);
1100
1101cont:
1102	/*
1103	 * If this record won't fit in the current log block, start a new one.
1104	 * For WR_NEED_COPY optimize layout for minimal number of chunks, but
1105	 * try to keep wasted space withing reasonable range (12%).
1106	 */
1107	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1108	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1109	    lwb_sp < ZIL_MAX_LOG_DATA / 8 && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1110	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1111		lwb = zil_lwb_write_start(zilog, lwb, B_FALSE);
1112		if (lwb == NULL)
1113			return (NULL);
1114		zil_lwb_write_init(zilog, lwb);
1115		ASSERT(LWB_EMPTY(lwb));
1116		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1117		ASSERT3U(reclen + MIN(dlen, sizeof(uint64_t)), <=, lwb_sp);
1118	}
1119
1120	dnow = MIN(dlen, lwb_sp - reclen);
1121	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1122	bcopy(lrc, lr_buf, reclen);
1123	lrcb = (lr_t *)lr_buf;
1124	lrwb = (lr_write_t *)lrcb;
1125
1126	/*
1127	 * If it's a write, fetch the data or get its blkptr as appropriate.
1128	 */
1129	if (lrc->lrc_txtype == TX_WRITE) {
1130		if (txg > spa_freeze_txg(zilog->zl_spa))
1131			txg_wait_synced(zilog->zl_dmu_pool, txg);
1132		if (itx->itx_wr_state != WR_COPIED) {
1133			char *dbuf;
1134			int error;
1135
1136			if (itx->itx_wr_state == WR_NEED_COPY) {
1137				dbuf = lr_buf + reclen;
1138				lrcb->lrc_reclen += dnow;
1139				if (lrwb->lr_length > dnow)
1140					lrwb->lr_length = dnow;
1141				lrw->lr_offset += dnow;
1142				lrw->lr_length -= dnow;
1143			} else {
1144				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1145				dbuf = NULL;
1146			}
1147			error = zilog->zl_get_data(
1148			    itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1149			if (error == EIO) {
1150				txg_wait_synced(zilog->zl_dmu_pool, txg);
1151				return (lwb);
1152			}
1153			if (error != 0) {
1154				ASSERT(error == ENOENT || error == EEXIST ||
1155				    error == EALREADY);
1156				return (lwb);
1157			}
1158		}
1159	}
1160
1161	/*
1162	 * We're actually making an entry, so update lrc_seq to be the
1163	 * log record sequence number.  Note that this is generally not
1164	 * equal to the itx sequence number because not all transactions
1165	 * are synchronous, and sometimes spa_sync() gets there first.
1166	 */
1167	lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1168	lwb->lwb_nused += reclen + dnow;
1169	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1170	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1171	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1172
1173	dlen -= dnow;
1174	if (dlen > 0) {
1175		zilog->zl_cur_used += reclen;
1176		goto cont;
1177	}
1178
1179	return (lwb);
1180}
1181
1182itx_t *
1183zil_itx_create(uint64_t txtype, size_t lrsize)
1184{
1185	itx_t *itx;
1186
1187	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1188
1189	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1190	itx->itx_lr.lrc_txtype = txtype;
1191	itx->itx_lr.lrc_reclen = lrsize;
1192	itx->itx_lr.lrc_seq = 0;	/* defensive */
1193	itx->itx_sync = B_TRUE;		/* default is synchronous */
1194
1195	return (itx);
1196}
1197
1198void
1199zil_itx_destroy(itx_t *itx)
1200{
1201	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1202}
1203
1204/*
1205 * Free up the sync and async itxs. The itxs_t has already been detached
1206 * so no locks are needed.
1207 */
1208static void
1209zil_itxg_clean(itxs_t *itxs)
1210{
1211	itx_t *itx;
1212	list_t *list;
1213	avl_tree_t *t;
1214	void *cookie;
1215	itx_async_node_t *ian;
1216
1217	list = &itxs->i_sync_list;
1218	while ((itx = list_head(list)) != NULL) {
1219		list_remove(list, itx);
1220		kmem_free(itx, offsetof(itx_t, itx_lr) +
1221		    itx->itx_lr.lrc_reclen);
1222	}
1223
1224	cookie = NULL;
1225	t = &itxs->i_async_tree;
1226	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1227		list = &ian->ia_list;
1228		while ((itx = list_head(list)) != NULL) {
1229			list_remove(list, itx);
1230			kmem_free(itx, offsetof(itx_t, itx_lr) +
1231			    itx->itx_lr.lrc_reclen);
1232		}
1233		list_destroy(list);
1234		kmem_free(ian, sizeof (itx_async_node_t));
1235	}
1236	avl_destroy(t);
1237
1238	kmem_free(itxs, sizeof (itxs_t));
1239}
1240
1241static int
1242zil_aitx_compare(const void *x1, const void *x2)
1243{
1244	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1245	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1246
1247	if (o1 < o2)
1248		return (-1);
1249	if (o1 > o2)
1250		return (1);
1251
1252	return (0);
1253}
1254
1255/*
1256 * Remove all async itx with the given oid.
1257 */
1258static void
1259zil_remove_async(zilog_t *zilog, uint64_t oid)
1260{
1261	uint64_t otxg, txg;
1262	itx_async_node_t *ian;
1263	avl_tree_t *t;
1264	avl_index_t where;
1265	list_t clean_list;
1266	itx_t *itx;
1267
1268	ASSERT(oid != 0);
1269	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1270
1271	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1272		otxg = ZILTEST_TXG;
1273	else
1274		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1275
1276	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1277		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1278
1279		mutex_enter(&itxg->itxg_lock);
1280		if (itxg->itxg_txg != txg) {
1281			mutex_exit(&itxg->itxg_lock);
1282			continue;
1283		}
1284
1285		/*
1286		 * Locate the object node and append its list.
1287		 */
1288		t = &itxg->itxg_itxs->i_async_tree;
1289		ian = avl_find(t, &oid, &where);
1290		if (ian != NULL)
1291			list_move_tail(&clean_list, &ian->ia_list);
1292		mutex_exit(&itxg->itxg_lock);
1293	}
1294	while ((itx = list_head(&clean_list)) != NULL) {
1295		list_remove(&clean_list, itx);
1296		kmem_free(itx, offsetof(itx_t, itx_lr) +
1297		    itx->itx_lr.lrc_reclen);
1298	}
1299	list_destroy(&clean_list);
1300}
1301
1302void
1303zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1304{
1305	uint64_t txg;
1306	itxg_t *itxg;
1307	itxs_t *itxs, *clean = NULL;
1308
1309	/*
1310	 * Object ids can be re-instantiated in the next txg so
1311	 * remove any async transactions to avoid future leaks.
1312	 * This can happen if a fsync occurs on the re-instantiated
1313	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1314	 * the new file data and flushes a write record for the old object.
1315	 */
1316	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1317		zil_remove_async(zilog, itx->itx_oid);
1318
1319	/*
1320	 * Ensure the data of a renamed file is committed before the rename.
1321	 */
1322	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1323		zil_async_to_sync(zilog, itx->itx_oid);
1324
1325	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1326		txg = ZILTEST_TXG;
1327	else
1328		txg = dmu_tx_get_txg(tx);
1329
1330	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1331	mutex_enter(&itxg->itxg_lock);
1332	itxs = itxg->itxg_itxs;
1333	if (itxg->itxg_txg != txg) {
1334		if (itxs != NULL) {
1335			/*
1336			 * The zil_clean callback hasn't got around to cleaning
1337			 * this itxg. Save the itxs for release below.
1338			 * This should be rare.
1339			 */
1340			clean = itxg->itxg_itxs;
1341		}
1342		itxg->itxg_txg = txg;
1343		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1344
1345		list_create(&itxs->i_sync_list, sizeof (itx_t),
1346		    offsetof(itx_t, itx_node));
1347		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1348		    sizeof (itx_async_node_t),
1349		    offsetof(itx_async_node_t, ia_node));
1350	}
1351	if (itx->itx_sync) {
1352		list_insert_tail(&itxs->i_sync_list, itx);
1353	} else {
1354		avl_tree_t *t = &itxs->i_async_tree;
1355		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1356		itx_async_node_t *ian;
1357		avl_index_t where;
1358
1359		ian = avl_find(t, &foid, &where);
1360		if (ian == NULL) {
1361			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1362			list_create(&ian->ia_list, sizeof (itx_t),
1363			    offsetof(itx_t, itx_node));
1364			ian->ia_foid = foid;
1365			avl_insert(t, ian, where);
1366		}
1367		list_insert_tail(&ian->ia_list, itx);
1368	}
1369
1370	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1371	zilog_dirty(zilog, txg);
1372	mutex_exit(&itxg->itxg_lock);
1373
1374	/* Release the old itxs now we've dropped the lock */
1375	if (clean != NULL)
1376		zil_itxg_clean(clean);
1377}
1378
1379/*
1380 * If there are any in-memory intent log transactions which have now been
1381 * synced then start up a taskq to free them. We should only do this after we
1382 * have written out the uberblocks (i.e. txg has been comitted) so that
1383 * don't inadvertently clean out in-memory log records that would be required
1384 * by zil_commit().
1385 */
1386void
1387zil_clean(zilog_t *zilog, uint64_t synced_txg)
1388{
1389	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1390	itxs_t *clean_me;
1391
1392	mutex_enter(&itxg->itxg_lock);
1393	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1394		mutex_exit(&itxg->itxg_lock);
1395		return;
1396	}
1397	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1398	ASSERT(itxg->itxg_txg != 0);
1399	ASSERT(zilog->zl_clean_taskq != NULL);
1400	clean_me = itxg->itxg_itxs;
1401	itxg->itxg_itxs = NULL;
1402	itxg->itxg_txg = 0;
1403	mutex_exit(&itxg->itxg_lock);
1404	/*
1405	 * Preferably start a task queue to free up the old itxs but
1406	 * if taskq_dispatch can't allocate resources to do that then
1407	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1408	 * created a bad performance problem.
1409	 */
1410	if (taskq_dispatch(zilog->zl_clean_taskq,
1411	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1412		zil_itxg_clean(clean_me);
1413}
1414
1415/*
1416 * Get the list of itxs to commit into zl_itx_commit_list.
1417 */
1418static void
1419zil_get_commit_list(zilog_t *zilog)
1420{
1421	uint64_t otxg, txg;
1422	list_t *commit_list = &zilog->zl_itx_commit_list;
1423
1424	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1425		otxg = ZILTEST_TXG;
1426	else
1427		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1428
1429	/*
1430	 * This is inherently racy, since there is nothing to prevent
1431	 * the last synced txg from changing. That's okay since we'll
1432	 * only commit things in the future.
1433	 */
1434	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1435		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1436
1437		mutex_enter(&itxg->itxg_lock);
1438		if (itxg->itxg_txg != txg) {
1439			mutex_exit(&itxg->itxg_lock);
1440			continue;
1441		}
1442
1443		/*
1444		 * If we're adding itx records to the zl_itx_commit_list,
1445		 * then the zil better be dirty in this "txg". We can assert
1446		 * that here since we're holding the itxg_lock which will
1447		 * prevent spa_sync from cleaning it. Once we add the itxs
1448		 * to the zl_itx_commit_list we must commit it to disk even
1449		 * if it's unnecessary (i.e. the txg was synced).
1450		 */
1451		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1452		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1453		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1454
1455		mutex_exit(&itxg->itxg_lock);
1456	}
1457}
1458
1459/*
1460 * Move the async itxs for a specified object to commit into sync lists.
1461 */
1462void
1463zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1464{
1465	uint64_t otxg, txg;
1466	itx_async_node_t *ian;
1467	avl_tree_t *t;
1468	avl_index_t where;
1469
1470	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1471		otxg = ZILTEST_TXG;
1472	else
1473		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1474
1475	/*
1476	 * This is inherently racy, since there is nothing to prevent
1477	 * the last synced txg from changing.
1478	 */
1479	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1480		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1481
1482		mutex_enter(&itxg->itxg_lock);
1483		if (itxg->itxg_txg != txg) {
1484			mutex_exit(&itxg->itxg_lock);
1485			continue;
1486		}
1487
1488		/*
1489		 * If a foid is specified then find that node and append its
1490		 * list. Otherwise walk the tree appending all the lists
1491		 * to the sync list. We add to the end rather than the
1492		 * beginning to ensure the create has happened.
1493		 */
1494		t = &itxg->itxg_itxs->i_async_tree;
1495		if (foid != 0) {
1496			ian = avl_find(t, &foid, &where);
1497			if (ian != NULL) {
1498				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1499				    &ian->ia_list);
1500			}
1501		} else {
1502			void *cookie = NULL;
1503
1504			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1505				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1506				    &ian->ia_list);
1507				list_destroy(&ian->ia_list);
1508				kmem_free(ian, sizeof (itx_async_node_t));
1509			}
1510		}
1511		mutex_exit(&itxg->itxg_lock);
1512	}
1513}
1514
1515static void
1516zil_commit_writer(zilog_t *zilog)
1517{
1518	uint64_t txg;
1519	itx_t *itx;
1520	lwb_t *lwb;
1521	spa_t *spa = zilog->zl_spa;
1522	int error = 0;
1523
1524	ASSERT(zilog->zl_root_zio == NULL);
1525
1526	mutex_exit(&zilog->zl_lock);
1527
1528	zil_get_commit_list(zilog);
1529
1530	/*
1531	 * Return if there's nothing to commit before we dirty the fs by
1532	 * calling zil_create().
1533	 */
1534	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1535		mutex_enter(&zilog->zl_lock);
1536		return;
1537	}
1538
1539	if (zilog->zl_suspend) {
1540		lwb = NULL;
1541	} else {
1542		lwb = list_tail(&zilog->zl_lwb_list);
1543		if (lwb == NULL)
1544			lwb = zil_create(zilog);
1545	}
1546
1547	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1548	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1549		txg = itx->itx_lr.lrc_txg;
1550		ASSERT3U(txg, !=, 0);
1551
1552		/*
1553		 * This is inherently racy and may result in us writing
1554		 * out a log block for a txg that was just synced. This is
1555		 * ok since we'll end cleaning up that log block the next
1556		 * time we call zil_sync().
1557		 */
1558		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1559			lwb = zil_lwb_commit(zilog, itx, lwb);
1560		list_remove(&zilog->zl_itx_commit_list, itx);
1561		kmem_free(itx, offsetof(itx_t, itx_lr)
1562		    + itx->itx_lr.lrc_reclen);
1563	}
1564	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1565
1566	/* write the last block out */
1567	if (lwb != NULL && lwb->lwb_zio != NULL)
1568		lwb = zil_lwb_write_start(zilog, lwb, B_TRUE);
1569
1570	zilog->zl_cur_used = 0;
1571
1572	/*
1573	 * Wait if necessary for the log blocks to be on stable storage.
1574	 */
1575	if (zilog->zl_root_zio) {
1576		error = zio_wait(zilog->zl_root_zio);
1577		zilog->zl_root_zio = NULL;
1578		zil_flush_vdevs(zilog);
1579	}
1580
1581	if (error || lwb == NULL)
1582		txg_wait_synced(zilog->zl_dmu_pool, 0);
1583
1584	mutex_enter(&zilog->zl_lock);
1585
1586	/*
1587	 * Remember the highest committed log sequence number for ztest.
1588	 * We only update this value when all the log writes succeeded,
1589	 * because ztest wants to ASSERT that it got the whole log chain.
1590	 */
1591	if (error == 0 && lwb != NULL)
1592		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1593}
1594
1595/*
1596 * Commit zfs transactions to stable storage.
1597 * If foid is 0 push out all transactions, otherwise push only those
1598 * for that object or might reference that object.
1599 *
1600 * itxs are committed in batches. In a heavily stressed zil there will be
1601 * a commit writer thread who is writing out a bunch of itxs to the log
1602 * for a set of committing threads (cthreads) in the same batch as the writer.
1603 * Those cthreads are all waiting on the same cv for that batch.
1604 *
1605 * There will also be a different and growing batch of threads that are
1606 * waiting to commit (qthreads). When the committing batch completes
1607 * a transition occurs such that the cthreads exit and the qthreads become
1608 * cthreads. One of the new cthreads becomes the writer thread for the
1609 * batch. Any new threads arriving become new qthreads.
1610 *
1611 * Only 2 condition variables are needed and there's no transition
1612 * between the two cvs needed. They just flip-flop between qthreads
1613 * and cthreads.
1614 *
1615 * Using this scheme we can efficiently wakeup up only those threads
1616 * that have been committed.
1617 */
1618void
1619zil_commit(zilog_t *zilog, uint64_t foid)
1620{
1621	uint64_t mybatch;
1622
1623	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1624		return;
1625
1626	/* move the async itxs for the foid to the sync queues */
1627	zil_async_to_sync(zilog, foid);
1628
1629	mutex_enter(&zilog->zl_lock);
1630	mybatch = zilog->zl_next_batch;
1631	while (zilog->zl_writer) {
1632		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1633		if (mybatch <= zilog->zl_com_batch) {
1634			mutex_exit(&zilog->zl_lock);
1635			return;
1636		}
1637	}
1638
1639	zilog->zl_next_batch++;
1640	zilog->zl_writer = B_TRUE;
1641	zil_commit_writer(zilog);
1642	zilog->zl_com_batch = mybatch;
1643	zilog->zl_writer = B_FALSE;
1644	mutex_exit(&zilog->zl_lock);
1645
1646	/* wake up one thread to become the next writer */
1647	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1648
1649	/* wake up all threads waiting for this batch to be committed */
1650	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1651}
1652
1653/*
1654 * Called in syncing context to free committed log blocks and update log header.
1655 */
1656void
1657zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1658{
1659	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1660	uint64_t txg = dmu_tx_get_txg(tx);
1661	spa_t *spa = zilog->zl_spa;
1662	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1663	lwb_t *lwb;
1664
1665	/*
1666	 * We don't zero out zl_destroy_txg, so make sure we don't try
1667	 * to destroy it twice.
1668	 */
1669	if (spa_sync_pass(spa) != 1)
1670		return;
1671
1672	mutex_enter(&zilog->zl_lock);
1673
1674	ASSERT(zilog->zl_stop_sync == 0);
1675
1676	if (*replayed_seq != 0) {
1677		ASSERT(zh->zh_replay_seq < *replayed_seq);
1678		zh->zh_replay_seq = *replayed_seq;
1679		*replayed_seq = 0;
1680	}
1681
1682	if (zilog->zl_destroy_txg == txg) {
1683		blkptr_t blk = zh->zh_log;
1684
1685		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1686
1687		bzero(zh, sizeof (zil_header_t));
1688		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1689
1690		if (zilog->zl_keep_first) {
1691			/*
1692			 * If this block was part of log chain that couldn't
1693			 * be claimed because a device was missing during
1694			 * zil_claim(), but that device later returns,
1695			 * then this block could erroneously appear valid.
1696			 * To guard against this, assign a new GUID to the new
1697			 * log chain so it doesn't matter what blk points to.
1698			 */
1699			zil_init_log_chain(zilog, &blk);
1700			zh->zh_log = blk;
1701		}
1702	}
1703
1704	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1705		zh->zh_log = lwb->lwb_blk;
1706		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1707			break;
1708		list_remove(&zilog->zl_lwb_list, lwb);
1709		zio_free_zil(spa, txg, &lwb->lwb_blk);
1710		kmem_cache_free(zil_lwb_cache, lwb);
1711
1712		/*
1713		 * If we don't have anything left in the lwb list then
1714		 * we've had an allocation failure and we need to zero
1715		 * out the zil_header blkptr so that we don't end
1716		 * up freeing the same block twice.
1717		 */
1718		if (list_head(&zilog->zl_lwb_list) == NULL)
1719			BP_ZERO(&zh->zh_log);
1720	}
1721	mutex_exit(&zilog->zl_lock);
1722}
1723
1724void
1725zil_init(void)
1726{
1727	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1728	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1729}
1730
1731void
1732zil_fini(void)
1733{
1734	kmem_cache_destroy(zil_lwb_cache);
1735}
1736
1737void
1738zil_set_sync(zilog_t *zilog, uint64_t sync)
1739{
1740	zilog->zl_sync = sync;
1741}
1742
1743void
1744zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1745{
1746	zilog->zl_logbias = logbias;
1747}
1748
1749zilog_t *
1750zil_alloc(objset_t *os, zil_header_t *zh_phys)
1751{
1752	zilog_t *zilog;
1753
1754	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1755
1756	zilog->zl_header = zh_phys;
1757	zilog->zl_os = os;
1758	zilog->zl_spa = dmu_objset_spa(os);
1759	zilog->zl_dmu_pool = dmu_objset_pool(os);
1760	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1761	zilog->zl_logbias = dmu_objset_logbias(os);
1762	zilog->zl_sync = dmu_objset_syncprop(os);
1763	zilog->zl_next_batch = 1;
1764
1765	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1766
1767	for (int i = 0; i < TXG_SIZE; i++) {
1768		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1769		    MUTEX_DEFAULT, NULL);
1770	}
1771
1772	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1773	    offsetof(lwb_t, lwb_node));
1774
1775	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1776	    offsetof(itx_t, itx_node));
1777
1778	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1779
1780	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1781	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1782
1783	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1784	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1785	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1786	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1787
1788	return (zilog);
1789}
1790
1791void
1792zil_free(zilog_t *zilog)
1793{
1794	zilog->zl_stop_sync = 1;
1795
1796	ASSERT0(zilog->zl_suspend);
1797	ASSERT0(zilog->zl_suspending);
1798
1799	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1800	list_destroy(&zilog->zl_lwb_list);
1801
1802	avl_destroy(&zilog->zl_vdev_tree);
1803	mutex_destroy(&zilog->zl_vdev_lock);
1804
1805	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1806	list_destroy(&zilog->zl_itx_commit_list);
1807
1808	for (int i = 0; i < TXG_SIZE; i++) {
1809		/*
1810		 * It's possible for an itx to be generated that doesn't dirty
1811		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1812		 * callback to remove the entry. We remove those here.
1813		 *
1814		 * Also free up the ziltest itxs.
1815		 */
1816		if (zilog->zl_itxg[i].itxg_itxs)
1817			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1818		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1819	}
1820
1821	mutex_destroy(&zilog->zl_lock);
1822
1823	cv_destroy(&zilog->zl_cv_writer);
1824	cv_destroy(&zilog->zl_cv_suspend);
1825	cv_destroy(&zilog->zl_cv_batch[0]);
1826	cv_destroy(&zilog->zl_cv_batch[1]);
1827
1828	kmem_free(zilog, sizeof (zilog_t));
1829}
1830
1831/*
1832 * Open an intent log.
1833 */
1834zilog_t *
1835zil_open(objset_t *os, zil_get_data_t *get_data)
1836{
1837	zilog_t *zilog = dmu_objset_zil(os);
1838
1839	ASSERT(zilog->zl_clean_taskq == NULL);
1840	ASSERT(zilog->zl_get_data == NULL);
1841	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1842
1843	zilog->zl_get_data = get_data;
1844	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1845	    2, 2, TASKQ_PREPOPULATE);
1846
1847	return (zilog);
1848}
1849
1850/*
1851 * Close an intent log.
1852 */
1853void
1854zil_close(zilog_t *zilog)
1855{
1856	lwb_t *lwb;
1857	uint64_t txg = 0;
1858
1859	zil_commit(zilog, 0); /* commit all itx */
1860
1861	/*
1862	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1863	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1864	 * callbacks have occurred that may clean the zil.  Only then can we
1865	 * destroy the zl_clean_taskq.
1866	 */
1867	mutex_enter(&zilog->zl_lock);
1868	lwb = list_tail(&zilog->zl_lwb_list);
1869	if (lwb != NULL)
1870		txg = lwb->lwb_max_txg;
1871	mutex_exit(&zilog->zl_lock);
1872	if (txg)
1873		txg_wait_synced(zilog->zl_dmu_pool, txg);
1874
1875	if (zilog_is_dirty(zilog))
1876		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1877	VERIFY(!zilog_is_dirty(zilog));
1878
1879	taskq_destroy(zilog->zl_clean_taskq);
1880	zilog->zl_clean_taskq = NULL;
1881	zilog->zl_get_data = NULL;
1882
1883	/*
1884	 * We should have only one LWB left on the list; remove it now.
1885	 */
1886	mutex_enter(&zilog->zl_lock);
1887	lwb = list_head(&zilog->zl_lwb_list);
1888	if (lwb != NULL) {
1889		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1890		list_remove(&zilog->zl_lwb_list, lwb);
1891		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1892		kmem_cache_free(zil_lwb_cache, lwb);
1893	}
1894	mutex_exit(&zilog->zl_lock);
1895}
1896
1897static char *suspend_tag = "zil suspending";
1898
1899/*
1900 * Suspend an intent log.  While in suspended mode, we still honor
1901 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1902 * On old version pools, we suspend the log briefly when taking a
1903 * snapshot so that it will have an empty intent log.
1904 *
1905 * Long holds are not really intended to be used the way we do here --
1906 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1907 * could fail.  Therefore we take pains to only put a long hold if it is
1908 * actually necessary.  Fortunately, it will only be necessary if the
1909 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1910 * will already have a long hold, so we are not really making things any worse.
1911 *
1912 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1913 * zvol_state_t), and use their mechanism to prevent their hold from being
1914 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1915 * very little gain.
1916 *
1917 * if cookiep == NULL, this does both the suspend & resume.
1918 * Otherwise, it returns with the dataset "long held", and the cookie
1919 * should be passed into zil_resume().
1920 */
1921int
1922zil_suspend(const char *osname, void **cookiep)
1923{
1924	objset_t *os;
1925	zilog_t *zilog;
1926	const zil_header_t *zh;
1927	int error;
1928
1929	error = dmu_objset_hold(osname, suspend_tag, &os);
1930	if (error != 0)
1931		return (error);
1932	zilog = dmu_objset_zil(os);
1933
1934	mutex_enter(&zilog->zl_lock);
1935	zh = zilog->zl_header;
1936
1937	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1938		mutex_exit(&zilog->zl_lock);
1939		dmu_objset_rele(os, suspend_tag);
1940		return (SET_ERROR(EBUSY));
1941	}
1942
1943	/*
1944	 * Don't put a long hold in the cases where we can avoid it.  This
1945	 * is when there is no cookie so we are doing a suspend & resume
1946	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1947	 * for the suspend because it's already suspended, or there's no ZIL.
1948	 */
1949	if (cookiep == NULL && !zilog->zl_suspending &&
1950	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1951		mutex_exit(&zilog->zl_lock);
1952		dmu_objset_rele(os, suspend_tag);
1953		return (0);
1954	}
1955
1956	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1957	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1958
1959	zilog->zl_suspend++;
1960
1961	if (zilog->zl_suspend > 1) {
1962		/*
1963		 * Someone else is already suspending it.
1964		 * Just wait for them to finish.
1965		 */
1966
1967		while (zilog->zl_suspending)
1968			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1969		mutex_exit(&zilog->zl_lock);
1970
1971		if (cookiep == NULL)
1972			zil_resume(os);
1973		else
1974			*cookiep = os;
1975		return (0);
1976	}
1977
1978	/*
1979	 * If there is no pointer to an on-disk block, this ZIL must not
1980	 * be active (e.g. filesystem not mounted), so there's nothing
1981	 * to clean up.
1982	 */
1983	if (BP_IS_HOLE(&zh->zh_log)) {
1984		ASSERT(cookiep != NULL); /* fast path already handled */
1985
1986		*cookiep = os;
1987		mutex_exit(&zilog->zl_lock);
1988		return (0);
1989	}
1990
1991	zilog->zl_suspending = B_TRUE;
1992	mutex_exit(&zilog->zl_lock);
1993
1994	zil_commit(zilog, 0);
1995
1996	zil_destroy(zilog, B_FALSE);
1997
1998	mutex_enter(&zilog->zl_lock);
1999	zilog->zl_suspending = B_FALSE;
2000	cv_broadcast(&zilog->zl_cv_suspend);
2001	mutex_exit(&zilog->zl_lock);
2002
2003	if (cookiep == NULL)
2004		zil_resume(os);
2005	else
2006		*cookiep = os;
2007	return (0);
2008}
2009
2010void
2011zil_resume(void *cookie)
2012{
2013	objset_t *os = cookie;
2014	zilog_t *zilog = dmu_objset_zil(os);
2015
2016	mutex_enter(&zilog->zl_lock);
2017	ASSERT(zilog->zl_suspend != 0);
2018	zilog->zl_suspend--;
2019	mutex_exit(&zilog->zl_lock);
2020	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2021	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2022}
2023
2024typedef struct zil_replay_arg {
2025	zil_replay_func_t **zr_replay;
2026	void		*zr_arg;
2027	boolean_t	zr_byteswap;
2028	char		*zr_lr;
2029} zil_replay_arg_t;
2030
2031static int
2032zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2033{
2034	char name[ZFS_MAX_DATASET_NAME_LEN];
2035
2036	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2037
2038	dmu_objset_name(zilog->zl_os, name);
2039
2040	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2041	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2042	    (u_longlong_t)lr->lrc_seq,
2043	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2044	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2045
2046	return (error);
2047}
2048
2049static int
2050zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2051{
2052	zil_replay_arg_t *zr = zra;
2053	const zil_header_t *zh = zilog->zl_header;
2054	uint64_t reclen = lr->lrc_reclen;
2055	uint64_t txtype = lr->lrc_txtype;
2056	int error = 0;
2057
2058	zilog->zl_replaying_seq = lr->lrc_seq;
2059
2060	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2061		return (0);
2062
2063	if (lr->lrc_txg < claim_txg)		/* already committed */
2064		return (0);
2065
2066	/* Strip case-insensitive bit, still present in log record */
2067	txtype &= ~TX_CI;
2068
2069	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2070		return (zil_replay_error(zilog, lr, EINVAL));
2071
2072	/*
2073	 * If this record type can be logged out of order, the object
2074	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2075	 */
2076	if (TX_OOO(txtype)) {
2077		error = dmu_object_info(zilog->zl_os,
2078		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2079		if (error == ENOENT || error == EEXIST)
2080			return (0);
2081	}
2082
2083	/*
2084	 * Make a copy of the data so we can revise and extend it.
2085	 */
2086	bcopy(lr, zr->zr_lr, reclen);
2087
2088	/*
2089	 * If this is a TX_WRITE with a blkptr, suck in the data.
2090	 */
2091	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2092		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2093		    zr->zr_lr + reclen);
2094		if (error != 0)
2095			return (zil_replay_error(zilog, lr, error));
2096	}
2097
2098	/*
2099	 * The log block containing this lr may have been byteswapped
2100	 * so that we can easily examine common fields like lrc_txtype.
2101	 * However, the log is a mix of different record types, and only the
2102	 * replay vectors know how to byteswap their records.  Therefore, if
2103	 * the lr was byteswapped, undo it before invoking the replay vector.
2104	 */
2105	if (zr->zr_byteswap)
2106		byteswap_uint64_array(zr->zr_lr, reclen);
2107
2108	/*
2109	 * We must now do two things atomically: replay this log record,
2110	 * and update the log header sequence number to reflect the fact that
2111	 * we did so. At the end of each replay function the sequence number
2112	 * is updated if we are in replay mode.
2113	 */
2114	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2115	if (error != 0) {
2116		/*
2117		 * The DMU's dnode layer doesn't see removes until the txg
2118		 * commits, so a subsequent claim can spuriously fail with
2119		 * EEXIST. So if we receive any error we try syncing out
2120		 * any removes then retry the transaction.  Note that we
2121		 * specify B_FALSE for byteswap now, so we don't do it twice.
2122		 */
2123		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2124		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2125		if (error != 0)
2126			return (zil_replay_error(zilog, lr, error));
2127	}
2128	return (0);
2129}
2130
2131/* ARGSUSED */
2132static int
2133zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2134{
2135	zilog->zl_replay_blks++;
2136
2137	return (0);
2138}
2139
2140/*
2141 * If this dataset has a non-empty intent log, replay it and destroy it.
2142 */
2143void
2144zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2145{
2146	zilog_t *zilog = dmu_objset_zil(os);
2147	const zil_header_t *zh = zilog->zl_header;
2148	zil_replay_arg_t zr;
2149
2150	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2151		zil_destroy(zilog, B_TRUE);
2152		return;
2153	}
2154
2155	zr.zr_replay = replay_func;
2156	zr.zr_arg = arg;
2157	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2158	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2159
2160	/*
2161	 * Wait for in-progress removes to sync before starting replay.
2162	 */
2163	txg_wait_synced(zilog->zl_dmu_pool, 0);
2164
2165	zilog->zl_replay = B_TRUE;
2166	zilog->zl_replay_time = ddi_get_lbolt();
2167	ASSERT(zilog->zl_replay_blks == 0);
2168	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2169	    zh->zh_claim_txg);
2170	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2171
2172	zil_destroy(zilog, B_FALSE);
2173	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2174	zilog->zl_replay = B_FALSE;
2175}
2176
2177boolean_t
2178zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2179{
2180	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2181		return (B_TRUE);
2182
2183	if (zilog->zl_replay) {
2184		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2185		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2186		    zilog->zl_replaying_seq;
2187		return (B_TRUE);
2188	}
2189
2190	return (B_FALSE);
2191}
2192
2193/* ARGSUSED */
2194int
2195zil_vdev_offline(const char *osname, void *arg)
2196{
2197	int error;
2198
2199	error = zil_suspend(osname, NULL);
2200	if (error != 0)
2201		return (SET_ERROR(EEXIST));
2202	return (0);
2203}
2204