zil.c revision 315388
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
85SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
86    &zfs_nocacheflush, 0, "Disable cache flush");
87boolean_t zfs_trim_enabled = B_TRUE;
88SYSCTL_DECL(_vfs_zfs_trim);
89TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
90SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
91    "Enable ZFS TRIM");
92
93static kmem_cache_t *zil_lwb_cache;
94
95#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
96    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
97
98
99/*
100 * ziltest is by and large an ugly hack, but very useful in
101 * checking replay without tedious work.
102 * When running ziltest we want to keep all itx's and so maintain
103 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
104 * We subtract TXG_CONCURRENT_STATES to allow for common code.
105 */
106#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
107
108static int
109zil_bp_compare(const void *x1, const void *x2)
110{
111	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
112	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
113
114	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
115		return (-1);
116	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
117		return (1);
118
119	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
120		return (-1);
121	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
122		return (1);
123
124	return (0);
125}
126
127static void
128zil_bp_tree_init(zilog_t *zilog)
129{
130	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
131	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
132}
133
134static void
135zil_bp_tree_fini(zilog_t *zilog)
136{
137	avl_tree_t *t = &zilog->zl_bp_tree;
138	zil_bp_node_t *zn;
139	void *cookie = NULL;
140
141	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
142		kmem_free(zn, sizeof (zil_bp_node_t));
143
144	avl_destroy(t);
145}
146
147int
148zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
149{
150	avl_tree_t *t = &zilog->zl_bp_tree;
151	const dva_t *dva;
152	zil_bp_node_t *zn;
153	avl_index_t where;
154
155	if (BP_IS_EMBEDDED(bp))
156		return (0);
157
158	dva = BP_IDENTITY(bp);
159
160	if (avl_find(t, dva, &where) != NULL)
161		return (SET_ERROR(EEXIST));
162
163	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
164	zn->zn_dva = *dva;
165	avl_insert(t, zn, where);
166
167	return (0);
168}
169
170static zil_header_t *
171zil_header_in_syncing_context(zilog_t *zilog)
172{
173	return ((zil_header_t *)zilog->zl_header);
174}
175
176static void
177zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
178{
179	zio_cksum_t *zc = &bp->blk_cksum;
180
181	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
182	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
183	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
184	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
185}
186
187/*
188 * Read a log block and make sure it's valid.
189 */
190static int
191zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
192    char **end)
193{
194	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
195	arc_flags_t aflags = ARC_FLAG_WAIT;
196	arc_buf_t *abuf = NULL;
197	zbookmark_phys_t zb;
198	int error;
199
200	if (zilog->zl_header->zh_claim_txg == 0)
201		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
202
203	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
204		zio_flags |= ZIO_FLAG_SPECULATIVE;
205
206	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
207	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
208
209	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
210	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
211
212	if (error == 0) {
213		zio_cksum_t cksum = bp->blk_cksum;
214
215		/*
216		 * Validate the checksummed log block.
217		 *
218		 * Sequence numbers should be... sequential.  The checksum
219		 * verifier for the next block should be bp's checksum plus 1.
220		 *
221		 * Also check the log chain linkage and size used.
222		 */
223		cksum.zc_word[ZIL_ZC_SEQ]++;
224
225		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
226			zil_chain_t *zilc = abuf->b_data;
227			char *lr = (char *)(zilc + 1);
228			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
229
230			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
231			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
232				error = SET_ERROR(ECKSUM);
233			} else {
234				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
235				bcopy(lr, dst, len);
236				*end = (char *)dst + len;
237				*nbp = zilc->zc_next_blk;
238			}
239		} else {
240			char *lr = abuf->b_data;
241			uint64_t size = BP_GET_LSIZE(bp);
242			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
243
244			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
245			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
246			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
247				error = SET_ERROR(ECKSUM);
248			} else {
249				ASSERT3U(zilc->zc_nused, <=,
250				    SPA_OLD_MAXBLOCKSIZE);
251				bcopy(lr, dst, zilc->zc_nused);
252				*end = (char *)dst + zilc->zc_nused;
253				*nbp = zilc->zc_next_blk;
254			}
255		}
256
257		arc_buf_destroy(abuf, &abuf);
258	}
259
260	return (error);
261}
262
263/*
264 * Read a TX_WRITE log data block.
265 */
266static int
267zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
268{
269	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
270	const blkptr_t *bp = &lr->lr_blkptr;
271	arc_flags_t aflags = ARC_FLAG_WAIT;
272	arc_buf_t *abuf = NULL;
273	zbookmark_phys_t zb;
274	int error;
275
276	if (BP_IS_HOLE(bp)) {
277		if (wbuf != NULL)
278			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
279		return (0);
280	}
281
282	if (zilog->zl_header->zh_claim_txg == 0)
283		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
284
285	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
286	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
287
288	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
289	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
290
291	if (error == 0) {
292		if (wbuf != NULL)
293			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
294		arc_buf_destroy(abuf, &abuf);
295	}
296
297	return (error);
298}
299
300/*
301 * Parse the intent log, and call parse_func for each valid record within.
302 */
303int
304zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
305    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
306{
307	const zil_header_t *zh = zilog->zl_header;
308	boolean_t claimed = !!zh->zh_claim_txg;
309	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
310	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
311	uint64_t max_blk_seq = 0;
312	uint64_t max_lr_seq = 0;
313	uint64_t blk_count = 0;
314	uint64_t lr_count = 0;
315	blkptr_t blk, next_blk;
316	char *lrbuf, *lrp;
317	int error = 0;
318
319	/*
320	 * Old logs didn't record the maximum zh_claim_lr_seq.
321	 */
322	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
323		claim_lr_seq = UINT64_MAX;
324
325	/*
326	 * Starting at the block pointed to by zh_log we read the log chain.
327	 * For each block in the chain we strongly check that block to
328	 * ensure its validity.  We stop when an invalid block is found.
329	 * For each block pointer in the chain we call parse_blk_func().
330	 * For each record in each valid block we call parse_lr_func().
331	 * If the log has been claimed, stop if we encounter a sequence
332	 * number greater than the highest claimed sequence number.
333	 */
334	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
335	zil_bp_tree_init(zilog);
336
337	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
338		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
339		int reclen;
340		char *end;
341
342		if (blk_seq > claim_blk_seq)
343			break;
344		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
345			break;
346		ASSERT3U(max_blk_seq, <, blk_seq);
347		max_blk_seq = blk_seq;
348		blk_count++;
349
350		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
351			break;
352
353		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
354		if (error != 0)
355			break;
356
357		for (lrp = lrbuf; lrp < end; lrp += reclen) {
358			lr_t *lr = (lr_t *)lrp;
359			reclen = lr->lrc_reclen;
360			ASSERT3U(reclen, >=, sizeof (lr_t));
361			if (lr->lrc_seq > claim_lr_seq)
362				goto done;
363			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
364				goto done;
365			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
366			max_lr_seq = lr->lrc_seq;
367			lr_count++;
368		}
369	}
370done:
371	zilog->zl_parse_error = error;
372	zilog->zl_parse_blk_seq = max_blk_seq;
373	zilog->zl_parse_lr_seq = max_lr_seq;
374	zilog->zl_parse_blk_count = blk_count;
375	zilog->zl_parse_lr_count = lr_count;
376
377	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
378	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
379
380	zil_bp_tree_fini(zilog);
381	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
382
383	return (error);
384}
385
386static int
387zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
388{
389	/*
390	 * Claim log block if not already committed and not already claimed.
391	 * If tx == NULL, just verify that the block is claimable.
392	 */
393	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
394	    zil_bp_tree_add(zilog, bp) != 0)
395		return (0);
396
397	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
398	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
399	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
400}
401
402static int
403zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
404{
405	lr_write_t *lr = (lr_write_t *)lrc;
406	int error;
407
408	if (lrc->lrc_txtype != TX_WRITE)
409		return (0);
410
411	/*
412	 * If the block is not readable, don't claim it.  This can happen
413	 * in normal operation when a log block is written to disk before
414	 * some of the dmu_sync() blocks it points to.  In this case, the
415	 * transaction cannot have been committed to anyone (we would have
416	 * waited for all writes to be stable first), so it is semantically
417	 * correct to declare this the end of the log.
418	 */
419	if (lr->lr_blkptr.blk_birth >= first_txg &&
420	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
421		return (error);
422	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
423}
424
425/* ARGSUSED */
426static int
427zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
428{
429	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
430
431	return (0);
432}
433
434static int
435zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
436{
437	lr_write_t *lr = (lr_write_t *)lrc;
438	blkptr_t *bp = &lr->lr_blkptr;
439
440	/*
441	 * If we previously claimed it, we need to free it.
442	 */
443	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
444	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
445	    !BP_IS_HOLE(bp))
446		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
447
448	return (0);
449}
450
451static lwb_t *
452zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
453{
454	lwb_t *lwb;
455
456	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
457	lwb->lwb_zilog = zilog;
458	lwb->lwb_blk = *bp;
459	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
460	lwb->lwb_max_txg = txg;
461	lwb->lwb_zio = NULL;
462	lwb->lwb_tx = NULL;
463	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
464		lwb->lwb_nused = sizeof (zil_chain_t);
465		lwb->lwb_sz = BP_GET_LSIZE(bp);
466	} else {
467		lwb->lwb_nused = 0;
468		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
469	}
470
471	mutex_enter(&zilog->zl_lock);
472	list_insert_tail(&zilog->zl_lwb_list, lwb);
473	mutex_exit(&zilog->zl_lock);
474
475	return (lwb);
476}
477
478/*
479 * Called when we create in-memory log transactions so that we know
480 * to cleanup the itxs at the end of spa_sync().
481 */
482void
483zilog_dirty(zilog_t *zilog, uint64_t txg)
484{
485	dsl_pool_t *dp = zilog->zl_dmu_pool;
486	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
487
488	if (ds->ds_is_snapshot)
489		panic("dirtying snapshot!");
490
491	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
492		/* up the hold count until we can be written out */
493		dmu_buf_add_ref(ds->ds_dbuf, zilog);
494	}
495}
496
497/*
498 * Determine if the zil is dirty in the specified txg. Callers wanting to
499 * ensure that the dirty state does not change must hold the itxg_lock for
500 * the specified txg. Holding the lock will ensure that the zil cannot be
501 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
502 * state.
503 */
504boolean_t
505zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
506{
507	dsl_pool_t *dp = zilog->zl_dmu_pool;
508
509	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
510		return (B_TRUE);
511	return (B_FALSE);
512}
513
514/*
515 * Determine if the zil is dirty. The zil is considered dirty if it has
516 * any pending itx records that have not been cleaned by zil_clean().
517 */
518boolean_t
519zilog_is_dirty(zilog_t *zilog)
520{
521	dsl_pool_t *dp = zilog->zl_dmu_pool;
522
523	for (int t = 0; t < TXG_SIZE; t++) {
524		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
525			return (B_TRUE);
526	}
527	return (B_FALSE);
528}
529
530/*
531 * Create an on-disk intent log.
532 */
533static lwb_t *
534zil_create(zilog_t *zilog)
535{
536	const zil_header_t *zh = zilog->zl_header;
537	lwb_t *lwb = NULL;
538	uint64_t txg = 0;
539	dmu_tx_t *tx = NULL;
540	blkptr_t blk;
541	int error = 0;
542
543	/*
544	 * Wait for any previous destroy to complete.
545	 */
546	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
547
548	ASSERT(zh->zh_claim_txg == 0);
549	ASSERT(zh->zh_replay_seq == 0);
550
551	blk = zh->zh_log;
552
553	/*
554	 * Allocate an initial log block if:
555	 *    - there isn't one already
556	 *    - the existing block is the wrong endianess
557	 */
558	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
559		tx = dmu_tx_create(zilog->zl_os);
560		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
561		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
562		txg = dmu_tx_get_txg(tx);
563
564		if (!BP_IS_HOLE(&blk)) {
565			zio_free_zil(zilog->zl_spa, txg, &blk);
566			BP_ZERO(&blk);
567		}
568
569		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
570		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
571
572		if (error == 0)
573			zil_init_log_chain(zilog, &blk);
574	}
575
576	/*
577	 * Allocate a log write buffer (lwb) for the first log block.
578	 */
579	if (error == 0)
580		lwb = zil_alloc_lwb(zilog, &blk, txg);
581
582	/*
583	 * If we just allocated the first log block, commit our transaction
584	 * and wait for zil_sync() to stuff the block poiner into zh_log.
585	 * (zh is part of the MOS, so we cannot modify it in open context.)
586	 */
587	if (tx != NULL) {
588		dmu_tx_commit(tx);
589		txg_wait_synced(zilog->zl_dmu_pool, txg);
590	}
591
592	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
593
594	return (lwb);
595}
596
597/*
598 * In one tx, free all log blocks and clear the log header.
599 * If keep_first is set, then we're replaying a log with no content.
600 * We want to keep the first block, however, so that the first
601 * synchronous transaction doesn't require a txg_wait_synced()
602 * in zil_create().  We don't need to txg_wait_synced() here either
603 * when keep_first is set, because both zil_create() and zil_destroy()
604 * will wait for any in-progress destroys to complete.
605 */
606void
607zil_destroy(zilog_t *zilog, boolean_t keep_first)
608{
609	const zil_header_t *zh = zilog->zl_header;
610	lwb_t *lwb;
611	dmu_tx_t *tx;
612	uint64_t txg;
613
614	/*
615	 * Wait for any previous destroy to complete.
616	 */
617	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
618
619	zilog->zl_old_header = *zh;		/* debugging aid */
620
621	if (BP_IS_HOLE(&zh->zh_log))
622		return;
623
624	tx = dmu_tx_create(zilog->zl_os);
625	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
626	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
627	txg = dmu_tx_get_txg(tx);
628
629	mutex_enter(&zilog->zl_lock);
630
631	ASSERT3U(zilog->zl_destroy_txg, <, txg);
632	zilog->zl_destroy_txg = txg;
633	zilog->zl_keep_first = keep_first;
634
635	if (!list_is_empty(&zilog->zl_lwb_list)) {
636		ASSERT(zh->zh_claim_txg == 0);
637		VERIFY(!keep_first);
638		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
639			list_remove(&zilog->zl_lwb_list, lwb);
640			if (lwb->lwb_buf != NULL)
641				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
642			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
643			kmem_cache_free(zil_lwb_cache, lwb);
644		}
645	} else if (!keep_first) {
646		zil_destroy_sync(zilog, tx);
647	}
648	mutex_exit(&zilog->zl_lock);
649
650	dmu_tx_commit(tx);
651}
652
653void
654zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
655{
656	ASSERT(list_is_empty(&zilog->zl_lwb_list));
657	(void) zil_parse(zilog, zil_free_log_block,
658	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
659}
660
661int
662zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
663{
664	dmu_tx_t *tx = txarg;
665	uint64_t first_txg = dmu_tx_get_txg(tx);
666	zilog_t *zilog;
667	zil_header_t *zh;
668	objset_t *os;
669	int error;
670
671	error = dmu_objset_own_obj(dp, ds->ds_object,
672	    DMU_OST_ANY, B_FALSE, FTAG, &os);
673	if (error != 0) {
674		/*
675		 * EBUSY indicates that the objset is inconsistent, in which
676		 * case it can not have a ZIL.
677		 */
678		if (error != EBUSY) {
679			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
680			    (unsigned long long)ds->ds_object, error);
681		}
682		return (0);
683	}
684
685	zilog = dmu_objset_zil(os);
686	zh = zil_header_in_syncing_context(zilog);
687
688	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
689		if (!BP_IS_HOLE(&zh->zh_log))
690			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
691		BP_ZERO(&zh->zh_log);
692		dsl_dataset_dirty(dmu_objset_ds(os), tx);
693		dmu_objset_disown(os, FTAG);
694		return (0);
695	}
696
697	/*
698	 * Claim all log blocks if we haven't already done so, and remember
699	 * the highest claimed sequence number.  This ensures that if we can
700	 * read only part of the log now (e.g. due to a missing device),
701	 * but we can read the entire log later, we will not try to replay
702	 * or destroy beyond the last block we successfully claimed.
703	 */
704	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
705	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
706		(void) zil_parse(zilog, zil_claim_log_block,
707		    zil_claim_log_record, tx, first_txg);
708		zh->zh_claim_txg = first_txg;
709		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
710		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
711		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
712			zh->zh_flags |= ZIL_REPLAY_NEEDED;
713		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
714		dsl_dataset_dirty(dmu_objset_ds(os), tx);
715	}
716
717	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
718	dmu_objset_disown(os, FTAG);
719	return (0);
720}
721
722/*
723 * Check the log by walking the log chain.
724 * Checksum errors are ok as they indicate the end of the chain.
725 * Any other error (no device or read failure) returns an error.
726 */
727/* ARGSUSED */
728int
729zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
730{
731	zilog_t *zilog;
732	objset_t *os;
733	blkptr_t *bp;
734	int error;
735
736	ASSERT(tx == NULL);
737
738	error = dmu_objset_from_ds(ds, &os);
739	if (error != 0) {
740		cmn_err(CE_WARN, "can't open objset %llu, error %d",
741		    (unsigned long long)ds->ds_object, error);
742		return (0);
743	}
744
745	zilog = dmu_objset_zil(os);
746	bp = (blkptr_t *)&zilog->zl_header->zh_log;
747
748	/*
749	 * Check the first block and determine if it's on a log device
750	 * which may have been removed or faulted prior to loading this
751	 * pool.  If so, there's no point in checking the rest of the log
752	 * as its content should have already been synced to the pool.
753	 */
754	if (!BP_IS_HOLE(bp)) {
755		vdev_t *vd;
756		boolean_t valid = B_TRUE;
757
758		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
759		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
760		if (vd->vdev_islog && vdev_is_dead(vd))
761			valid = vdev_log_state_valid(vd);
762		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
763
764		if (!valid)
765			return (0);
766	}
767
768	/*
769	 * Because tx == NULL, zil_claim_log_block() will not actually claim
770	 * any blocks, but just determine whether it is possible to do so.
771	 * In addition to checking the log chain, zil_claim_log_block()
772	 * will invoke zio_claim() with a done func of spa_claim_notify(),
773	 * which will update spa_max_claim_txg.  See spa_load() for details.
774	 */
775	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
776	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
777
778	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
779}
780
781static int
782zil_vdev_compare(const void *x1, const void *x2)
783{
784	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
785	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
786
787	if (v1 < v2)
788		return (-1);
789	if (v1 > v2)
790		return (1);
791
792	return (0);
793}
794
795void
796zil_add_block(zilog_t *zilog, const blkptr_t *bp)
797{
798	avl_tree_t *t = &zilog->zl_vdev_tree;
799	avl_index_t where;
800	zil_vdev_node_t *zv, zvsearch;
801	int ndvas = BP_GET_NDVAS(bp);
802	int i;
803
804	if (zfs_nocacheflush)
805		return;
806
807	ASSERT(zilog->zl_writer);
808
809	/*
810	 * Even though we're zl_writer, we still need a lock because the
811	 * zl_get_data() callbacks may have dmu_sync() done callbacks
812	 * that will run concurrently.
813	 */
814	mutex_enter(&zilog->zl_vdev_lock);
815	for (i = 0; i < ndvas; i++) {
816		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
817		if (avl_find(t, &zvsearch, &where) == NULL) {
818			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
819			zv->zv_vdev = zvsearch.zv_vdev;
820			avl_insert(t, zv, where);
821		}
822	}
823	mutex_exit(&zilog->zl_vdev_lock);
824}
825
826static void
827zil_flush_vdevs(zilog_t *zilog)
828{
829	spa_t *spa = zilog->zl_spa;
830	avl_tree_t *t = &zilog->zl_vdev_tree;
831	void *cookie = NULL;
832	zil_vdev_node_t *zv;
833	zio_t *zio = NULL;
834
835	ASSERT(zilog->zl_writer);
836
837	/*
838	 * We don't need zl_vdev_lock here because we're the zl_writer,
839	 * and all zl_get_data() callbacks are done.
840	 */
841	if (avl_numnodes(t) == 0)
842		return;
843
844	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
845
846	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
847		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
848		if (vd != NULL && !vd->vdev_nowritecache) {
849			if (zio == NULL)
850				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
851			zio_flush(zio, vd);
852		}
853		kmem_free(zv, sizeof (*zv));
854	}
855
856	/*
857	 * Wait for all the flushes to complete.  Not all devices actually
858	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
859	 */
860	if (zio)
861		(void) zio_wait(zio);
862
863	spa_config_exit(spa, SCL_STATE, FTAG);
864}
865
866/*
867 * Function called when a log block write completes
868 */
869static void
870zil_lwb_write_done(zio_t *zio)
871{
872	lwb_t *lwb = zio->io_private;
873	zilog_t *zilog = lwb->lwb_zilog;
874	dmu_tx_t *tx = lwb->lwb_tx;
875
876	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
877	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
878	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
879	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
880	ASSERT(!BP_IS_GANG(zio->io_bp));
881	ASSERT(!BP_IS_HOLE(zio->io_bp));
882	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
883
884	/*
885	 * Ensure the lwb buffer pointer is cleared before releasing
886	 * the txg. If we have had an allocation failure and
887	 * the txg is waiting to sync then we want want zil_sync()
888	 * to remove the lwb so that it's not picked up as the next new
889	 * one in zil_commit_writer(). zil_sync() will only remove
890	 * the lwb if lwb_buf is null.
891	 */
892	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
893	mutex_enter(&zilog->zl_lock);
894	lwb->lwb_buf = NULL;
895	lwb->lwb_tx = NULL;
896	mutex_exit(&zilog->zl_lock);
897
898	/*
899	 * Now that we've written this log block, we have a stable pointer
900	 * to the next block in the chain, so it's OK to let the txg in
901	 * which we allocated the next block sync.
902	 */
903	dmu_tx_commit(tx);
904}
905
906/*
907 * Initialize the io for a log block.
908 */
909static void
910zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
911{
912	zbookmark_phys_t zb;
913
914	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
915	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
916	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
917
918	if (zilog->zl_root_zio == NULL) {
919		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
920		    ZIO_FLAG_CANFAIL);
921	}
922	if (lwb->lwb_zio == NULL) {
923		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
924		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
925		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
926		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
927	}
928}
929
930/*
931 * Define a limited set of intent log block sizes.
932 *
933 * These must be a multiple of 4KB. Note only the amount used (again
934 * aligned to 4KB) actually gets written. However, we can't always just
935 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
936 */
937uint64_t zil_block_buckets[] = {
938    4096,		/* non TX_WRITE */
939    8192+4096,		/* data base */
940    32*1024 + 4096, 	/* NFS writes */
941    UINT64_MAX
942};
943
944/*
945 * Use the slog as long as the logbias is 'latency' and the current commit size
946 * is less than the limit or the total list size is less than 2X the limit.
947 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
948 */
949uint64_t zil_slog_limit = 1024 * 1024;
950#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
951	(((zilog)->zl_cur_used < zil_slog_limit) || \
952	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
953
954/*
955 * Start a log block write and advance to the next log block.
956 * Calls are serialized.
957 */
958static lwb_t *
959zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb, boolean_t last)
960{
961	lwb_t *nlwb = NULL;
962	zil_chain_t *zilc;
963	spa_t *spa = zilog->zl_spa;
964	blkptr_t *bp;
965	dmu_tx_t *tx;
966	uint64_t txg;
967	uint64_t zil_blksz, wsz;
968	int i, error;
969
970	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
971		zilc = (zil_chain_t *)lwb->lwb_buf;
972		bp = &zilc->zc_next_blk;
973	} else {
974		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
975		bp = &zilc->zc_next_blk;
976	}
977
978	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
979
980	/*
981	 * Allocate the next block and save its address in this block
982	 * before writing it in order to establish the log chain.
983	 * Note that if the allocation of nlwb synced before we wrote
984	 * the block that points at it (lwb), we'd leak it if we crashed.
985	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
986	 * We dirty the dataset to ensure that zil_sync() will be called
987	 * to clean up in the event of allocation failure or I/O failure.
988	 */
989	tx = dmu_tx_create(zilog->zl_os);
990	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
991	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
992	txg = dmu_tx_get_txg(tx);
993
994	lwb->lwb_tx = tx;
995
996	/*
997	 * Log blocks are pre-allocated. Here we select the size of the next
998	 * block, based on size used in the last block.
999	 * - first find the smallest bucket that will fit the block from a
1000	 *   limited set of block sizes. This is because it's faster to write
1001	 *   blocks allocated from the same metaslab as they are adjacent or
1002	 *   close.
1003	 * - next find the maximum from the new suggested size and an array of
1004	 *   previous sizes. This lessens a picket fence effect of wrongly
1005	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1006	 *   requests.
1007	 *
1008	 * Note we only write what is used, but we can't just allocate
1009	 * the maximum block size because we can exhaust the available
1010	 * pool log space.
1011	 */
1012	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1013	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1014		continue;
1015	zil_blksz = zil_block_buckets[i];
1016	if (zil_blksz == UINT64_MAX)
1017		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1018	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1019	for (i = 0; i < ZIL_PREV_BLKS; i++)
1020		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1021	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1022
1023	BP_ZERO(bp);
1024	/* pass the old blkptr in order to spread log blocks across devs */
1025	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1026	    USE_SLOG(zilog));
1027	if (error == 0) {
1028		ASSERT3U(bp->blk_birth, ==, txg);
1029		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1030		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1031
1032		/*
1033		 * Allocate a new log write buffer (lwb).
1034		 */
1035		nlwb = zil_alloc_lwb(zilog, bp, txg);
1036
1037		/* Record the block for later vdev flushing */
1038		zil_add_block(zilog, &lwb->lwb_blk);
1039	}
1040
1041	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1042		/* For Slim ZIL only write what is used. */
1043		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1044		ASSERT3U(wsz, <=, lwb->lwb_sz);
1045		zio_shrink(lwb->lwb_zio, wsz);
1046
1047	} else {
1048		wsz = lwb->lwb_sz;
1049	}
1050
1051	zilc->zc_pad = 0;
1052	zilc->zc_nused = lwb->lwb_nused;
1053	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1054
1055	/*
1056	 * clear unused data for security
1057	 */
1058	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1059
1060	if (last)
1061		lwb->lwb_zio->io_pipeline &= ~ZIO_STAGE_ISSUE_ASYNC;
1062	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1063
1064	/*
1065	 * If there was an allocation failure then nlwb will be null which
1066	 * forces a txg_wait_synced().
1067	 */
1068	return (nlwb);
1069}
1070
1071static lwb_t *
1072zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1073{
1074	lr_t *lrc = &itx->itx_lr; /* common log record */
1075	lr_write_t *lrw = (lr_write_t *)lrc;
1076	char *lr_buf;
1077	uint64_t txg = lrc->lrc_txg;
1078	uint64_t reclen = lrc->lrc_reclen;
1079	uint64_t dlen = 0;
1080
1081	if (lwb == NULL)
1082		return (NULL);
1083
1084	ASSERT(lwb->lwb_buf != NULL);
1085
1086	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1087		dlen = P2ROUNDUP_TYPED(
1088		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1089
1090	zilog->zl_cur_used += (reclen + dlen);
1091
1092	zil_lwb_write_init(zilog, lwb);
1093
1094	/*
1095	 * If this record won't fit in the current log block, start a new one.
1096	 */
1097	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1098		lwb = zil_lwb_write_start(zilog, lwb, B_FALSE);
1099		if (lwb == NULL)
1100			return (NULL);
1101		zil_lwb_write_init(zilog, lwb);
1102		ASSERT(LWB_EMPTY(lwb));
1103		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1104			txg_wait_synced(zilog->zl_dmu_pool, txg);
1105			return (lwb);
1106		}
1107	}
1108
1109	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1110	bcopy(lrc, lr_buf, reclen);
1111	lrc = (lr_t *)lr_buf;
1112	lrw = (lr_write_t *)lrc;
1113
1114	/*
1115	 * If it's a write, fetch the data or get its blkptr as appropriate.
1116	 */
1117	if (lrc->lrc_txtype == TX_WRITE) {
1118		if (txg > spa_freeze_txg(zilog->zl_spa))
1119			txg_wait_synced(zilog->zl_dmu_pool, txg);
1120		if (itx->itx_wr_state != WR_COPIED) {
1121			char *dbuf;
1122			int error;
1123
1124			if (dlen) {
1125				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1126				dbuf = lr_buf + reclen;
1127				lrw->lr_common.lrc_reclen += dlen;
1128			} else {
1129				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1130				dbuf = NULL;
1131			}
1132			error = zilog->zl_get_data(
1133			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1134			if (error == EIO) {
1135				txg_wait_synced(zilog->zl_dmu_pool, txg);
1136				return (lwb);
1137			}
1138			if (error != 0) {
1139				ASSERT(error == ENOENT || error == EEXIST ||
1140				    error == EALREADY);
1141				return (lwb);
1142			}
1143		}
1144	}
1145
1146	/*
1147	 * We're actually making an entry, so update lrc_seq to be the
1148	 * log record sequence number.  Note that this is generally not
1149	 * equal to the itx sequence number because not all transactions
1150	 * are synchronous, and sometimes spa_sync() gets there first.
1151	 */
1152	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1153	lwb->lwb_nused += reclen + dlen;
1154	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1155	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1156	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1157
1158	return (lwb);
1159}
1160
1161itx_t *
1162zil_itx_create(uint64_t txtype, size_t lrsize)
1163{
1164	itx_t *itx;
1165
1166	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1167
1168	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1169	itx->itx_lr.lrc_txtype = txtype;
1170	itx->itx_lr.lrc_reclen = lrsize;
1171	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1172	itx->itx_lr.lrc_seq = 0;	/* defensive */
1173	itx->itx_sync = B_TRUE;		/* default is synchronous */
1174
1175	return (itx);
1176}
1177
1178void
1179zil_itx_destroy(itx_t *itx)
1180{
1181	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1182}
1183
1184/*
1185 * Free up the sync and async itxs. The itxs_t has already been detached
1186 * so no locks are needed.
1187 */
1188static void
1189zil_itxg_clean(itxs_t *itxs)
1190{
1191	itx_t *itx;
1192	list_t *list;
1193	avl_tree_t *t;
1194	void *cookie;
1195	itx_async_node_t *ian;
1196
1197	list = &itxs->i_sync_list;
1198	while ((itx = list_head(list)) != NULL) {
1199		list_remove(list, itx);
1200		kmem_free(itx, offsetof(itx_t, itx_lr) +
1201		    itx->itx_lr.lrc_reclen);
1202	}
1203
1204	cookie = NULL;
1205	t = &itxs->i_async_tree;
1206	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1207		list = &ian->ia_list;
1208		while ((itx = list_head(list)) != NULL) {
1209			list_remove(list, itx);
1210			kmem_free(itx, offsetof(itx_t, itx_lr) +
1211			    itx->itx_lr.lrc_reclen);
1212		}
1213		list_destroy(list);
1214		kmem_free(ian, sizeof (itx_async_node_t));
1215	}
1216	avl_destroy(t);
1217
1218	kmem_free(itxs, sizeof (itxs_t));
1219}
1220
1221static int
1222zil_aitx_compare(const void *x1, const void *x2)
1223{
1224	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1225	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1226
1227	if (o1 < o2)
1228		return (-1);
1229	if (o1 > o2)
1230		return (1);
1231
1232	return (0);
1233}
1234
1235/*
1236 * Remove all async itx with the given oid.
1237 */
1238static void
1239zil_remove_async(zilog_t *zilog, uint64_t oid)
1240{
1241	uint64_t otxg, txg;
1242	itx_async_node_t *ian;
1243	avl_tree_t *t;
1244	avl_index_t where;
1245	list_t clean_list;
1246	itx_t *itx;
1247
1248	ASSERT(oid != 0);
1249	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1250
1251	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1252		otxg = ZILTEST_TXG;
1253	else
1254		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1255
1256	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1257		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1258
1259		mutex_enter(&itxg->itxg_lock);
1260		if (itxg->itxg_txg != txg) {
1261			mutex_exit(&itxg->itxg_lock);
1262			continue;
1263		}
1264
1265		/*
1266		 * Locate the object node and append its list.
1267		 */
1268		t = &itxg->itxg_itxs->i_async_tree;
1269		ian = avl_find(t, &oid, &where);
1270		if (ian != NULL)
1271			list_move_tail(&clean_list, &ian->ia_list);
1272		mutex_exit(&itxg->itxg_lock);
1273	}
1274	while ((itx = list_head(&clean_list)) != NULL) {
1275		list_remove(&clean_list, itx);
1276		kmem_free(itx, offsetof(itx_t, itx_lr) +
1277		    itx->itx_lr.lrc_reclen);
1278	}
1279	list_destroy(&clean_list);
1280}
1281
1282void
1283zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1284{
1285	uint64_t txg;
1286	itxg_t *itxg;
1287	itxs_t *itxs, *clean = NULL;
1288
1289	/*
1290	 * Object ids can be re-instantiated in the next txg so
1291	 * remove any async transactions to avoid future leaks.
1292	 * This can happen if a fsync occurs on the re-instantiated
1293	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1294	 * the new file data and flushes a write record for the old object.
1295	 */
1296	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1297		zil_remove_async(zilog, itx->itx_oid);
1298
1299	/*
1300	 * Ensure the data of a renamed file is committed before the rename.
1301	 */
1302	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1303		zil_async_to_sync(zilog, itx->itx_oid);
1304
1305	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1306		txg = ZILTEST_TXG;
1307	else
1308		txg = dmu_tx_get_txg(tx);
1309
1310	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1311	mutex_enter(&itxg->itxg_lock);
1312	itxs = itxg->itxg_itxs;
1313	if (itxg->itxg_txg != txg) {
1314		if (itxs != NULL) {
1315			/*
1316			 * The zil_clean callback hasn't got around to cleaning
1317			 * this itxg. Save the itxs for release below.
1318			 * This should be rare.
1319			 */
1320			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1321			itxg->itxg_sod = 0;
1322			clean = itxg->itxg_itxs;
1323		}
1324		ASSERT(itxg->itxg_sod == 0);
1325		itxg->itxg_txg = txg;
1326		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1327
1328		list_create(&itxs->i_sync_list, sizeof (itx_t),
1329		    offsetof(itx_t, itx_node));
1330		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1331		    sizeof (itx_async_node_t),
1332		    offsetof(itx_async_node_t, ia_node));
1333	}
1334	if (itx->itx_sync) {
1335		list_insert_tail(&itxs->i_sync_list, itx);
1336		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1337		itxg->itxg_sod += itx->itx_sod;
1338	} else {
1339		avl_tree_t *t = &itxs->i_async_tree;
1340		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1341		itx_async_node_t *ian;
1342		avl_index_t where;
1343
1344		ian = avl_find(t, &foid, &where);
1345		if (ian == NULL) {
1346			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1347			list_create(&ian->ia_list, sizeof (itx_t),
1348			    offsetof(itx_t, itx_node));
1349			ian->ia_foid = foid;
1350			avl_insert(t, ian, where);
1351		}
1352		list_insert_tail(&ian->ia_list, itx);
1353	}
1354
1355	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1356	zilog_dirty(zilog, txg);
1357	mutex_exit(&itxg->itxg_lock);
1358
1359	/* Release the old itxs now we've dropped the lock */
1360	if (clean != NULL)
1361		zil_itxg_clean(clean);
1362}
1363
1364/*
1365 * If there are any in-memory intent log transactions which have now been
1366 * synced then start up a taskq to free them. We should only do this after we
1367 * have written out the uberblocks (i.e. txg has been comitted) so that
1368 * don't inadvertently clean out in-memory log records that would be required
1369 * by zil_commit().
1370 */
1371void
1372zil_clean(zilog_t *zilog, uint64_t synced_txg)
1373{
1374	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1375	itxs_t *clean_me;
1376
1377	mutex_enter(&itxg->itxg_lock);
1378	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1379		mutex_exit(&itxg->itxg_lock);
1380		return;
1381	}
1382	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1383	ASSERT(itxg->itxg_txg != 0);
1384	ASSERT(zilog->zl_clean_taskq != NULL);
1385	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1386	itxg->itxg_sod = 0;
1387	clean_me = itxg->itxg_itxs;
1388	itxg->itxg_itxs = NULL;
1389	itxg->itxg_txg = 0;
1390	mutex_exit(&itxg->itxg_lock);
1391	/*
1392	 * Preferably start a task queue to free up the old itxs but
1393	 * if taskq_dispatch can't allocate resources to do that then
1394	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1395	 * created a bad performance problem.
1396	 */
1397	if (taskq_dispatch(zilog->zl_clean_taskq,
1398	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1399		zil_itxg_clean(clean_me);
1400}
1401
1402/*
1403 * Get the list of itxs to commit into zl_itx_commit_list.
1404 */
1405static void
1406zil_get_commit_list(zilog_t *zilog)
1407{
1408	uint64_t otxg, txg;
1409	list_t *commit_list = &zilog->zl_itx_commit_list;
1410	uint64_t push_sod = 0;
1411
1412	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1413		otxg = ZILTEST_TXG;
1414	else
1415		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1416
1417	/*
1418	 * This is inherently racy, since there is nothing to prevent
1419	 * the last synced txg from changing. That's okay since we'll
1420	 * only commit things in the future.
1421	 */
1422	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1423		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1424
1425		mutex_enter(&itxg->itxg_lock);
1426		if (itxg->itxg_txg != txg) {
1427			mutex_exit(&itxg->itxg_lock);
1428			continue;
1429		}
1430
1431		/*
1432		 * If we're adding itx records to the zl_itx_commit_list,
1433		 * then the zil better be dirty in this "txg". We can assert
1434		 * that here since we're holding the itxg_lock which will
1435		 * prevent spa_sync from cleaning it. Once we add the itxs
1436		 * to the zl_itx_commit_list we must commit it to disk even
1437		 * if it's unnecessary (i.e. the txg was synced).
1438		 */
1439		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1440		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1441		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1442		push_sod += itxg->itxg_sod;
1443		itxg->itxg_sod = 0;
1444
1445		mutex_exit(&itxg->itxg_lock);
1446	}
1447	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1448}
1449
1450/*
1451 * Move the async itxs for a specified object to commit into sync lists.
1452 */
1453void
1454zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1455{
1456	uint64_t otxg, txg;
1457	itx_async_node_t *ian;
1458	avl_tree_t *t;
1459	avl_index_t where;
1460
1461	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1462		otxg = ZILTEST_TXG;
1463	else
1464		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1465
1466	/*
1467	 * This is inherently racy, since there is nothing to prevent
1468	 * the last synced txg from changing.
1469	 */
1470	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1471		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1472
1473		mutex_enter(&itxg->itxg_lock);
1474		if (itxg->itxg_txg != txg) {
1475			mutex_exit(&itxg->itxg_lock);
1476			continue;
1477		}
1478
1479		/*
1480		 * If a foid is specified then find that node and append its
1481		 * list. Otherwise walk the tree appending all the lists
1482		 * to the sync list. We add to the end rather than the
1483		 * beginning to ensure the create has happened.
1484		 */
1485		t = &itxg->itxg_itxs->i_async_tree;
1486		if (foid != 0) {
1487			ian = avl_find(t, &foid, &where);
1488			if (ian != NULL) {
1489				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1490				    &ian->ia_list);
1491			}
1492		} else {
1493			void *cookie = NULL;
1494
1495			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1496				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1497				    &ian->ia_list);
1498				list_destroy(&ian->ia_list);
1499				kmem_free(ian, sizeof (itx_async_node_t));
1500			}
1501		}
1502		mutex_exit(&itxg->itxg_lock);
1503	}
1504}
1505
1506static void
1507zil_commit_writer(zilog_t *zilog)
1508{
1509	uint64_t txg;
1510	itx_t *itx;
1511	lwb_t *lwb;
1512	spa_t *spa = zilog->zl_spa;
1513	int error = 0;
1514
1515	ASSERT(zilog->zl_root_zio == NULL);
1516
1517	mutex_exit(&zilog->zl_lock);
1518
1519	zil_get_commit_list(zilog);
1520
1521	/*
1522	 * Return if there's nothing to commit before we dirty the fs by
1523	 * calling zil_create().
1524	 */
1525	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1526		mutex_enter(&zilog->zl_lock);
1527		return;
1528	}
1529
1530	if (zilog->zl_suspend) {
1531		lwb = NULL;
1532	} else {
1533		lwb = list_tail(&zilog->zl_lwb_list);
1534		if (lwb == NULL)
1535			lwb = zil_create(zilog);
1536	}
1537
1538	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1539	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1540		txg = itx->itx_lr.lrc_txg;
1541		ASSERT3U(txg, !=, 0);
1542
1543		/*
1544		 * This is inherently racy and may result in us writing
1545		 * out a log block for a txg that was just synced. This is
1546		 * ok since we'll end cleaning up that log block the next
1547		 * time we call zil_sync().
1548		 */
1549		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1550			lwb = zil_lwb_commit(zilog, itx, lwb);
1551		list_remove(&zilog->zl_itx_commit_list, itx);
1552		kmem_free(itx, offsetof(itx_t, itx_lr)
1553		    + itx->itx_lr.lrc_reclen);
1554	}
1555	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1556
1557	/* write the last block out */
1558	if (lwb != NULL && lwb->lwb_zio != NULL)
1559		lwb = zil_lwb_write_start(zilog, lwb, B_TRUE);
1560
1561	zilog->zl_cur_used = 0;
1562
1563	/*
1564	 * Wait if necessary for the log blocks to be on stable storage.
1565	 */
1566	if (zilog->zl_root_zio) {
1567		error = zio_wait(zilog->zl_root_zio);
1568		zilog->zl_root_zio = NULL;
1569		zil_flush_vdevs(zilog);
1570	}
1571
1572	if (error || lwb == NULL)
1573		txg_wait_synced(zilog->zl_dmu_pool, 0);
1574
1575	mutex_enter(&zilog->zl_lock);
1576
1577	/*
1578	 * Remember the highest committed log sequence number for ztest.
1579	 * We only update this value when all the log writes succeeded,
1580	 * because ztest wants to ASSERT that it got the whole log chain.
1581	 */
1582	if (error == 0 && lwb != NULL)
1583		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1584}
1585
1586/*
1587 * Commit zfs transactions to stable storage.
1588 * If foid is 0 push out all transactions, otherwise push only those
1589 * for that object or might reference that object.
1590 *
1591 * itxs are committed in batches. In a heavily stressed zil there will be
1592 * a commit writer thread who is writing out a bunch of itxs to the log
1593 * for a set of committing threads (cthreads) in the same batch as the writer.
1594 * Those cthreads are all waiting on the same cv for that batch.
1595 *
1596 * There will also be a different and growing batch of threads that are
1597 * waiting to commit (qthreads). When the committing batch completes
1598 * a transition occurs such that the cthreads exit and the qthreads become
1599 * cthreads. One of the new cthreads becomes the writer thread for the
1600 * batch. Any new threads arriving become new qthreads.
1601 *
1602 * Only 2 condition variables are needed and there's no transition
1603 * between the two cvs needed. They just flip-flop between qthreads
1604 * and cthreads.
1605 *
1606 * Using this scheme we can efficiently wakeup up only those threads
1607 * that have been committed.
1608 */
1609void
1610zil_commit(zilog_t *zilog, uint64_t foid)
1611{
1612	uint64_t mybatch;
1613
1614	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1615		return;
1616
1617	/* move the async itxs for the foid to the sync queues */
1618	zil_async_to_sync(zilog, foid);
1619
1620	mutex_enter(&zilog->zl_lock);
1621	mybatch = zilog->zl_next_batch;
1622	while (zilog->zl_writer) {
1623		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1624		if (mybatch <= zilog->zl_com_batch) {
1625			mutex_exit(&zilog->zl_lock);
1626			return;
1627		}
1628	}
1629
1630	zilog->zl_next_batch++;
1631	zilog->zl_writer = B_TRUE;
1632	zil_commit_writer(zilog);
1633	zilog->zl_com_batch = mybatch;
1634	zilog->zl_writer = B_FALSE;
1635	mutex_exit(&zilog->zl_lock);
1636
1637	/* wake up one thread to become the next writer */
1638	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1639
1640	/* wake up all threads waiting for this batch to be committed */
1641	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1642}
1643
1644/*
1645 * Called in syncing context to free committed log blocks and update log header.
1646 */
1647void
1648zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1649{
1650	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1651	uint64_t txg = dmu_tx_get_txg(tx);
1652	spa_t *spa = zilog->zl_spa;
1653	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1654	lwb_t *lwb;
1655
1656	/*
1657	 * We don't zero out zl_destroy_txg, so make sure we don't try
1658	 * to destroy it twice.
1659	 */
1660	if (spa_sync_pass(spa) != 1)
1661		return;
1662
1663	mutex_enter(&zilog->zl_lock);
1664
1665	ASSERT(zilog->zl_stop_sync == 0);
1666
1667	if (*replayed_seq != 0) {
1668		ASSERT(zh->zh_replay_seq < *replayed_seq);
1669		zh->zh_replay_seq = *replayed_seq;
1670		*replayed_seq = 0;
1671	}
1672
1673	if (zilog->zl_destroy_txg == txg) {
1674		blkptr_t blk = zh->zh_log;
1675
1676		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1677
1678		bzero(zh, sizeof (zil_header_t));
1679		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1680
1681		if (zilog->zl_keep_first) {
1682			/*
1683			 * If this block was part of log chain that couldn't
1684			 * be claimed because a device was missing during
1685			 * zil_claim(), but that device later returns,
1686			 * then this block could erroneously appear valid.
1687			 * To guard against this, assign a new GUID to the new
1688			 * log chain so it doesn't matter what blk points to.
1689			 */
1690			zil_init_log_chain(zilog, &blk);
1691			zh->zh_log = blk;
1692		}
1693	}
1694
1695	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1696		zh->zh_log = lwb->lwb_blk;
1697		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1698			break;
1699		list_remove(&zilog->zl_lwb_list, lwb);
1700		zio_free_zil(spa, txg, &lwb->lwb_blk);
1701		kmem_cache_free(zil_lwb_cache, lwb);
1702
1703		/*
1704		 * If we don't have anything left in the lwb list then
1705		 * we've had an allocation failure and we need to zero
1706		 * out the zil_header blkptr so that we don't end
1707		 * up freeing the same block twice.
1708		 */
1709		if (list_head(&zilog->zl_lwb_list) == NULL)
1710			BP_ZERO(&zh->zh_log);
1711	}
1712	mutex_exit(&zilog->zl_lock);
1713}
1714
1715void
1716zil_init(void)
1717{
1718	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1719	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1720}
1721
1722void
1723zil_fini(void)
1724{
1725	kmem_cache_destroy(zil_lwb_cache);
1726}
1727
1728void
1729zil_set_sync(zilog_t *zilog, uint64_t sync)
1730{
1731	zilog->zl_sync = sync;
1732}
1733
1734void
1735zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1736{
1737	zilog->zl_logbias = logbias;
1738}
1739
1740zilog_t *
1741zil_alloc(objset_t *os, zil_header_t *zh_phys)
1742{
1743	zilog_t *zilog;
1744
1745	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1746
1747	zilog->zl_header = zh_phys;
1748	zilog->zl_os = os;
1749	zilog->zl_spa = dmu_objset_spa(os);
1750	zilog->zl_dmu_pool = dmu_objset_pool(os);
1751	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1752	zilog->zl_logbias = dmu_objset_logbias(os);
1753	zilog->zl_sync = dmu_objset_syncprop(os);
1754	zilog->zl_next_batch = 1;
1755
1756	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1757
1758	for (int i = 0; i < TXG_SIZE; i++) {
1759		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1760		    MUTEX_DEFAULT, NULL);
1761	}
1762
1763	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1764	    offsetof(lwb_t, lwb_node));
1765
1766	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1767	    offsetof(itx_t, itx_node));
1768
1769	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1770
1771	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1772	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1773
1774	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1775	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1776	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1777	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1778
1779	return (zilog);
1780}
1781
1782void
1783zil_free(zilog_t *zilog)
1784{
1785	zilog->zl_stop_sync = 1;
1786
1787	ASSERT0(zilog->zl_suspend);
1788	ASSERT0(zilog->zl_suspending);
1789
1790	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1791	list_destroy(&zilog->zl_lwb_list);
1792
1793	avl_destroy(&zilog->zl_vdev_tree);
1794	mutex_destroy(&zilog->zl_vdev_lock);
1795
1796	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1797	list_destroy(&zilog->zl_itx_commit_list);
1798
1799	for (int i = 0; i < TXG_SIZE; i++) {
1800		/*
1801		 * It's possible for an itx to be generated that doesn't dirty
1802		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1803		 * callback to remove the entry. We remove those here.
1804		 *
1805		 * Also free up the ziltest itxs.
1806		 */
1807		if (zilog->zl_itxg[i].itxg_itxs)
1808			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1809		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1810	}
1811
1812	mutex_destroy(&zilog->zl_lock);
1813
1814	cv_destroy(&zilog->zl_cv_writer);
1815	cv_destroy(&zilog->zl_cv_suspend);
1816	cv_destroy(&zilog->zl_cv_batch[0]);
1817	cv_destroy(&zilog->zl_cv_batch[1]);
1818
1819	kmem_free(zilog, sizeof (zilog_t));
1820}
1821
1822/*
1823 * Open an intent log.
1824 */
1825zilog_t *
1826zil_open(objset_t *os, zil_get_data_t *get_data)
1827{
1828	zilog_t *zilog = dmu_objset_zil(os);
1829
1830	ASSERT(zilog->zl_clean_taskq == NULL);
1831	ASSERT(zilog->zl_get_data == NULL);
1832	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1833
1834	zilog->zl_get_data = get_data;
1835	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1836	    2, 2, TASKQ_PREPOPULATE);
1837
1838	return (zilog);
1839}
1840
1841/*
1842 * Close an intent log.
1843 */
1844void
1845zil_close(zilog_t *zilog)
1846{
1847	lwb_t *lwb;
1848	uint64_t txg = 0;
1849
1850	zil_commit(zilog, 0); /* commit all itx */
1851
1852	/*
1853	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1854	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1855	 * callbacks have occurred that may clean the zil.  Only then can we
1856	 * destroy the zl_clean_taskq.
1857	 */
1858	mutex_enter(&zilog->zl_lock);
1859	lwb = list_tail(&zilog->zl_lwb_list);
1860	if (lwb != NULL)
1861		txg = lwb->lwb_max_txg;
1862	mutex_exit(&zilog->zl_lock);
1863	if (txg)
1864		txg_wait_synced(zilog->zl_dmu_pool, txg);
1865
1866	if (zilog_is_dirty(zilog))
1867		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1868	VERIFY(!zilog_is_dirty(zilog));
1869
1870	taskq_destroy(zilog->zl_clean_taskq);
1871	zilog->zl_clean_taskq = NULL;
1872	zilog->zl_get_data = NULL;
1873
1874	/*
1875	 * We should have only one LWB left on the list; remove it now.
1876	 */
1877	mutex_enter(&zilog->zl_lock);
1878	lwb = list_head(&zilog->zl_lwb_list);
1879	if (lwb != NULL) {
1880		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1881		list_remove(&zilog->zl_lwb_list, lwb);
1882		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1883		kmem_cache_free(zil_lwb_cache, lwb);
1884	}
1885	mutex_exit(&zilog->zl_lock);
1886}
1887
1888static char *suspend_tag = "zil suspending";
1889
1890/*
1891 * Suspend an intent log.  While in suspended mode, we still honor
1892 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1893 * On old version pools, we suspend the log briefly when taking a
1894 * snapshot so that it will have an empty intent log.
1895 *
1896 * Long holds are not really intended to be used the way we do here --
1897 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1898 * could fail.  Therefore we take pains to only put a long hold if it is
1899 * actually necessary.  Fortunately, it will only be necessary if the
1900 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1901 * will already have a long hold, so we are not really making things any worse.
1902 *
1903 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1904 * zvol_state_t), and use their mechanism to prevent their hold from being
1905 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1906 * very little gain.
1907 *
1908 * if cookiep == NULL, this does both the suspend & resume.
1909 * Otherwise, it returns with the dataset "long held", and the cookie
1910 * should be passed into zil_resume().
1911 */
1912int
1913zil_suspend(const char *osname, void **cookiep)
1914{
1915	objset_t *os;
1916	zilog_t *zilog;
1917	const zil_header_t *zh;
1918	int error;
1919
1920	error = dmu_objset_hold(osname, suspend_tag, &os);
1921	if (error != 0)
1922		return (error);
1923	zilog = dmu_objset_zil(os);
1924
1925	mutex_enter(&zilog->zl_lock);
1926	zh = zilog->zl_header;
1927
1928	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1929		mutex_exit(&zilog->zl_lock);
1930		dmu_objset_rele(os, suspend_tag);
1931		return (SET_ERROR(EBUSY));
1932	}
1933
1934	/*
1935	 * Don't put a long hold in the cases where we can avoid it.  This
1936	 * is when there is no cookie so we are doing a suspend & resume
1937	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1938	 * for the suspend because it's already suspended, or there's no ZIL.
1939	 */
1940	if (cookiep == NULL && !zilog->zl_suspending &&
1941	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1942		mutex_exit(&zilog->zl_lock);
1943		dmu_objset_rele(os, suspend_tag);
1944		return (0);
1945	}
1946
1947	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1948	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1949
1950	zilog->zl_suspend++;
1951
1952	if (zilog->zl_suspend > 1) {
1953		/*
1954		 * Someone else is already suspending it.
1955		 * Just wait for them to finish.
1956		 */
1957
1958		while (zilog->zl_suspending)
1959			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1960		mutex_exit(&zilog->zl_lock);
1961
1962		if (cookiep == NULL)
1963			zil_resume(os);
1964		else
1965			*cookiep = os;
1966		return (0);
1967	}
1968
1969	/*
1970	 * If there is no pointer to an on-disk block, this ZIL must not
1971	 * be active (e.g. filesystem not mounted), so there's nothing
1972	 * to clean up.
1973	 */
1974	if (BP_IS_HOLE(&zh->zh_log)) {
1975		ASSERT(cookiep != NULL); /* fast path already handled */
1976
1977		*cookiep = os;
1978		mutex_exit(&zilog->zl_lock);
1979		return (0);
1980	}
1981
1982	zilog->zl_suspending = B_TRUE;
1983	mutex_exit(&zilog->zl_lock);
1984
1985	zil_commit(zilog, 0);
1986
1987	zil_destroy(zilog, B_FALSE);
1988
1989	mutex_enter(&zilog->zl_lock);
1990	zilog->zl_suspending = B_FALSE;
1991	cv_broadcast(&zilog->zl_cv_suspend);
1992	mutex_exit(&zilog->zl_lock);
1993
1994	if (cookiep == NULL)
1995		zil_resume(os);
1996	else
1997		*cookiep = os;
1998	return (0);
1999}
2000
2001void
2002zil_resume(void *cookie)
2003{
2004	objset_t *os = cookie;
2005	zilog_t *zilog = dmu_objset_zil(os);
2006
2007	mutex_enter(&zilog->zl_lock);
2008	ASSERT(zilog->zl_suspend != 0);
2009	zilog->zl_suspend--;
2010	mutex_exit(&zilog->zl_lock);
2011	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2012	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2013}
2014
2015typedef struct zil_replay_arg {
2016	zil_replay_func_t **zr_replay;
2017	void		*zr_arg;
2018	boolean_t	zr_byteswap;
2019	char		*zr_lr;
2020} zil_replay_arg_t;
2021
2022static int
2023zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2024{
2025	char name[ZFS_MAX_DATASET_NAME_LEN];
2026
2027	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2028
2029	dmu_objset_name(zilog->zl_os, name);
2030
2031	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2032	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2033	    (u_longlong_t)lr->lrc_seq,
2034	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2035	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2036
2037	return (error);
2038}
2039
2040static int
2041zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2042{
2043	zil_replay_arg_t *zr = zra;
2044	const zil_header_t *zh = zilog->zl_header;
2045	uint64_t reclen = lr->lrc_reclen;
2046	uint64_t txtype = lr->lrc_txtype;
2047	int error = 0;
2048
2049	zilog->zl_replaying_seq = lr->lrc_seq;
2050
2051	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2052		return (0);
2053
2054	if (lr->lrc_txg < claim_txg)		/* already committed */
2055		return (0);
2056
2057	/* Strip case-insensitive bit, still present in log record */
2058	txtype &= ~TX_CI;
2059
2060	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2061		return (zil_replay_error(zilog, lr, EINVAL));
2062
2063	/*
2064	 * If this record type can be logged out of order, the object
2065	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2066	 */
2067	if (TX_OOO(txtype)) {
2068		error = dmu_object_info(zilog->zl_os,
2069		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2070		if (error == ENOENT || error == EEXIST)
2071			return (0);
2072	}
2073
2074	/*
2075	 * Make a copy of the data so we can revise and extend it.
2076	 */
2077	bcopy(lr, zr->zr_lr, reclen);
2078
2079	/*
2080	 * If this is a TX_WRITE with a blkptr, suck in the data.
2081	 */
2082	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2083		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2084		    zr->zr_lr + reclen);
2085		if (error != 0)
2086			return (zil_replay_error(zilog, lr, error));
2087	}
2088
2089	/*
2090	 * The log block containing this lr may have been byteswapped
2091	 * so that we can easily examine common fields like lrc_txtype.
2092	 * However, the log is a mix of different record types, and only the
2093	 * replay vectors know how to byteswap their records.  Therefore, if
2094	 * the lr was byteswapped, undo it before invoking the replay vector.
2095	 */
2096	if (zr->zr_byteswap)
2097		byteswap_uint64_array(zr->zr_lr, reclen);
2098
2099	/*
2100	 * We must now do two things atomically: replay this log record,
2101	 * and update the log header sequence number to reflect the fact that
2102	 * we did so. At the end of each replay function the sequence number
2103	 * is updated if we are in replay mode.
2104	 */
2105	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2106	if (error != 0) {
2107		/*
2108		 * The DMU's dnode layer doesn't see removes until the txg
2109		 * commits, so a subsequent claim can spuriously fail with
2110		 * EEXIST. So if we receive any error we try syncing out
2111		 * any removes then retry the transaction.  Note that we
2112		 * specify B_FALSE for byteswap now, so we don't do it twice.
2113		 */
2114		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2115		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2116		if (error != 0)
2117			return (zil_replay_error(zilog, lr, error));
2118	}
2119	return (0);
2120}
2121
2122/* ARGSUSED */
2123static int
2124zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2125{
2126	zilog->zl_replay_blks++;
2127
2128	return (0);
2129}
2130
2131/*
2132 * If this dataset has a non-empty intent log, replay it and destroy it.
2133 */
2134void
2135zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2136{
2137	zilog_t *zilog = dmu_objset_zil(os);
2138	const zil_header_t *zh = zilog->zl_header;
2139	zil_replay_arg_t zr;
2140
2141	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2142		zil_destroy(zilog, B_TRUE);
2143		return;
2144	}
2145
2146	zr.zr_replay = replay_func;
2147	zr.zr_arg = arg;
2148	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2149	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2150
2151	/*
2152	 * Wait for in-progress removes to sync before starting replay.
2153	 */
2154	txg_wait_synced(zilog->zl_dmu_pool, 0);
2155
2156	zilog->zl_replay = B_TRUE;
2157	zilog->zl_replay_time = ddi_get_lbolt();
2158	ASSERT(zilog->zl_replay_blks == 0);
2159	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2160	    zh->zh_claim_txg);
2161	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2162
2163	zil_destroy(zilog, B_FALSE);
2164	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2165	zilog->zl_replay = B_FALSE;
2166}
2167
2168boolean_t
2169zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2170{
2171	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2172		return (B_TRUE);
2173
2174	if (zilog->zl_replay) {
2175		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2176		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2177		    zilog->zl_replaying_seq;
2178		return (B_TRUE);
2179	}
2180
2181	return (B_FALSE);
2182}
2183
2184/* ARGSUSED */
2185int
2186zil_vdev_offline(const char *osname, void *arg)
2187{
2188	int error;
2189
2190	error = zil_suspend(osname, NULL);
2191	if (error != 0)
2192		return (SET_ERROR(EEXIST));
2193	return (0);
2194}
2195