zil.c revision 315385
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
85SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
86    &zfs_nocacheflush, 0, "Disable cache flush");
87boolean_t zfs_trim_enabled = B_TRUE;
88SYSCTL_DECL(_vfs_zfs_trim);
89TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
90SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
91    "Enable ZFS TRIM");
92
93static kmem_cache_t *zil_lwb_cache;
94
95#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
96    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
97
98
99/*
100 * ziltest is by and large an ugly hack, but very useful in
101 * checking replay without tedious work.
102 * When running ziltest we want to keep all itx's and so maintain
103 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
104 * We subtract TXG_CONCURRENT_STATES to allow for common code.
105 */
106#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
107
108static int
109zil_bp_compare(const void *x1, const void *x2)
110{
111	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
112	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
113
114	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
115		return (-1);
116	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
117		return (1);
118
119	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
120		return (-1);
121	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
122		return (1);
123
124	return (0);
125}
126
127static void
128zil_bp_tree_init(zilog_t *zilog)
129{
130	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
131	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
132}
133
134static void
135zil_bp_tree_fini(zilog_t *zilog)
136{
137	avl_tree_t *t = &zilog->zl_bp_tree;
138	zil_bp_node_t *zn;
139	void *cookie = NULL;
140
141	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
142		kmem_free(zn, sizeof (zil_bp_node_t));
143
144	avl_destroy(t);
145}
146
147int
148zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
149{
150	avl_tree_t *t = &zilog->zl_bp_tree;
151	const dva_t *dva;
152	zil_bp_node_t *zn;
153	avl_index_t where;
154
155	if (BP_IS_EMBEDDED(bp))
156		return (0);
157
158	dva = BP_IDENTITY(bp);
159
160	if (avl_find(t, dva, &where) != NULL)
161		return (SET_ERROR(EEXIST));
162
163	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
164	zn->zn_dva = *dva;
165	avl_insert(t, zn, where);
166
167	return (0);
168}
169
170static zil_header_t *
171zil_header_in_syncing_context(zilog_t *zilog)
172{
173	return ((zil_header_t *)zilog->zl_header);
174}
175
176static void
177zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
178{
179	zio_cksum_t *zc = &bp->blk_cksum;
180
181	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
182	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
183	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
184	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
185}
186
187/*
188 * Read a log block and make sure it's valid.
189 */
190static int
191zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
192    char **end)
193{
194	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
195	arc_flags_t aflags = ARC_FLAG_WAIT;
196	arc_buf_t *abuf = NULL;
197	zbookmark_phys_t zb;
198	int error;
199
200	if (zilog->zl_header->zh_claim_txg == 0)
201		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
202
203	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
204		zio_flags |= ZIO_FLAG_SPECULATIVE;
205
206	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
207	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
208
209	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
210	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
211
212	if (error == 0) {
213		zio_cksum_t cksum = bp->blk_cksum;
214
215		/*
216		 * Validate the checksummed log block.
217		 *
218		 * Sequence numbers should be... sequential.  The checksum
219		 * verifier for the next block should be bp's checksum plus 1.
220		 *
221		 * Also check the log chain linkage and size used.
222		 */
223		cksum.zc_word[ZIL_ZC_SEQ]++;
224
225		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
226			zil_chain_t *zilc = abuf->b_data;
227			char *lr = (char *)(zilc + 1);
228			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
229
230			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
231			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
232				error = SET_ERROR(ECKSUM);
233			} else {
234				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
235				bcopy(lr, dst, len);
236				*end = (char *)dst + len;
237				*nbp = zilc->zc_next_blk;
238			}
239		} else {
240			char *lr = abuf->b_data;
241			uint64_t size = BP_GET_LSIZE(bp);
242			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
243
244			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
245			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
246			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
247				error = SET_ERROR(ECKSUM);
248			} else {
249				ASSERT3U(zilc->zc_nused, <=,
250				    SPA_OLD_MAXBLOCKSIZE);
251				bcopy(lr, dst, zilc->zc_nused);
252				*end = (char *)dst + zilc->zc_nused;
253				*nbp = zilc->zc_next_blk;
254			}
255		}
256
257		arc_buf_destroy(abuf, &abuf);
258	}
259
260	return (error);
261}
262
263/*
264 * Read a TX_WRITE log data block.
265 */
266static int
267zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
268{
269	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
270	const blkptr_t *bp = &lr->lr_blkptr;
271	arc_flags_t aflags = ARC_FLAG_WAIT;
272	arc_buf_t *abuf = NULL;
273	zbookmark_phys_t zb;
274	int error;
275
276	if (BP_IS_HOLE(bp)) {
277		if (wbuf != NULL)
278			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
279		return (0);
280	}
281
282	if (zilog->zl_header->zh_claim_txg == 0)
283		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
284
285	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
286	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
287
288	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
289	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
290
291	if (error == 0) {
292		if (wbuf != NULL)
293			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
294		arc_buf_destroy(abuf, &abuf);
295	}
296
297	return (error);
298}
299
300/*
301 * Parse the intent log, and call parse_func for each valid record within.
302 */
303int
304zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
305    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
306{
307	const zil_header_t *zh = zilog->zl_header;
308	boolean_t claimed = !!zh->zh_claim_txg;
309	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
310	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
311	uint64_t max_blk_seq = 0;
312	uint64_t max_lr_seq = 0;
313	uint64_t blk_count = 0;
314	uint64_t lr_count = 0;
315	blkptr_t blk, next_blk;
316	char *lrbuf, *lrp;
317	int error = 0;
318
319	/*
320	 * Old logs didn't record the maximum zh_claim_lr_seq.
321	 */
322	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
323		claim_lr_seq = UINT64_MAX;
324
325	/*
326	 * Starting at the block pointed to by zh_log we read the log chain.
327	 * For each block in the chain we strongly check that block to
328	 * ensure its validity.  We stop when an invalid block is found.
329	 * For each block pointer in the chain we call parse_blk_func().
330	 * For each record in each valid block we call parse_lr_func().
331	 * If the log has been claimed, stop if we encounter a sequence
332	 * number greater than the highest claimed sequence number.
333	 */
334	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
335	zil_bp_tree_init(zilog);
336
337	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
338		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
339		int reclen;
340		char *end;
341
342		if (blk_seq > claim_blk_seq)
343			break;
344		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
345			break;
346		ASSERT3U(max_blk_seq, <, blk_seq);
347		max_blk_seq = blk_seq;
348		blk_count++;
349
350		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
351			break;
352
353		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
354		if (error != 0)
355			break;
356
357		for (lrp = lrbuf; lrp < end; lrp += reclen) {
358			lr_t *lr = (lr_t *)lrp;
359			reclen = lr->lrc_reclen;
360			ASSERT3U(reclen, >=, sizeof (lr_t));
361			if (lr->lrc_seq > claim_lr_seq)
362				goto done;
363			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
364				goto done;
365			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
366			max_lr_seq = lr->lrc_seq;
367			lr_count++;
368		}
369	}
370done:
371	zilog->zl_parse_error = error;
372	zilog->zl_parse_blk_seq = max_blk_seq;
373	zilog->zl_parse_lr_seq = max_lr_seq;
374	zilog->zl_parse_blk_count = blk_count;
375	zilog->zl_parse_lr_count = lr_count;
376
377	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
378	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
379
380	zil_bp_tree_fini(zilog);
381	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
382
383	return (error);
384}
385
386static int
387zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
388{
389	/*
390	 * Claim log block if not already committed and not already claimed.
391	 * If tx == NULL, just verify that the block is claimable.
392	 */
393	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
394	    zil_bp_tree_add(zilog, bp) != 0)
395		return (0);
396
397	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
398	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
399	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
400}
401
402static int
403zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
404{
405	lr_write_t *lr = (lr_write_t *)lrc;
406	int error;
407
408	if (lrc->lrc_txtype != TX_WRITE)
409		return (0);
410
411	/*
412	 * If the block is not readable, don't claim it.  This can happen
413	 * in normal operation when a log block is written to disk before
414	 * some of the dmu_sync() blocks it points to.  In this case, the
415	 * transaction cannot have been committed to anyone (we would have
416	 * waited for all writes to be stable first), so it is semantically
417	 * correct to declare this the end of the log.
418	 */
419	if (lr->lr_blkptr.blk_birth >= first_txg &&
420	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
421		return (error);
422	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
423}
424
425/* ARGSUSED */
426static int
427zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
428{
429	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
430
431	return (0);
432}
433
434static int
435zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
436{
437	lr_write_t *lr = (lr_write_t *)lrc;
438	blkptr_t *bp = &lr->lr_blkptr;
439
440	/*
441	 * If we previously claimed it, we need to free it.
442	 */
443	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
444	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
445	    !BP_IS_HOLE(bp))
446		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
447
448	return (0);
449}
450
451static lwb_t *
452zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
453{
454	lwb_t *lwb;
455
456	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
457	lwb->lwb_zilog = zilog;
458	lwb->lwb_blk = *bp;
459	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
460	lwb->lwb_max_txg = txg;
461	lwb->lwb_zio = NULL;
462	lwb->lwb_tx = NULL;
463	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
464		lwb->lwb_nused = sizeof (zil_chain_t);
465		lwb->lwb_sz = BP_GET_LSIZE(bp);
466	} else {
467		lwb->lwb_nused = 0;
468		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
469	}
470
471	mutex_enter(&zilog->zl_lock);
472	list_insert_tail(&zilog->zl_lwb_list, lwb);
473	mutex_exit(&zilog->zl_lock);
474
475	return (lwb);
476}
477
478/*
479 * Called when we create in-memory log transactions so that we know
480 * to cleanup the itxs at the end of spa_sync().
481 */
482void
483zilog_dirty(zilog_t *zilog, uint64_t txg)
484{
485	dsl_pool_t *dp = zilog->zl_dmu_pool;
486	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
487
488	if (ds->ds_is_snapshot)
489		panic("dirtying snapshot!");
490
491	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
492		/* up the hold count until we can be written out */
493		dmu_buf_add_ref(ds->ds_dbuf, zilog);
494	}
495}
496
497/*
498 * Determine if the zil is dirty in the specified txg. Callers wanting to
499 * ensure that the dirty state does not change must hold the itxg_lock for
500 * the specified txg. Holding the lock will ensure that the zil cannot be
501 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
502 * state.
503 */
504boolean_t
505zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
506{
507	dsl_pool_t *dp = zilog->zl_dmu_pool;
508
509	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
510		return (B_TRUE);
511	return (B_FALSE);
512}
513
514/*
515 * Determine if the zil is dirty. The zil is considered dirty if it has
516 * any pending itx records that have not been cleaned by zil_clean().
517 */
518boolean_t
519zilog_is_dirty(zilog_t *zilog)
520{
521	dsl_pool_t *dp = zilog->zl_dmu_pool;
522
523	for (int t = 0; t < TXG_SIZE; t++) {
524		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
525			return (B_TRUE);
526	}
527	return (B_FALSE);
528}
529
530/*
531 * Create an on-disk intent log.
532 */
533static lwb_t *
534zil_create(zilog_t *zilog)
535{
536	const zil_header_t *zh = zilog->zl_header;
537	lwb_t *lwb = NULL;
538	uint64_t txg = 0;
539	dmu_tx_t *tx = NULL;
540	blkptr_t blk;
541	int error = 0;
542
543	/*
544	 * Wait for any previous destroy to complete.
545	 */
546	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
547
548	ASSERT(zh->zh_claim_txg == 0);
549	ASSERT(zh->zh_replay_seq == 0);
550
551	blk = zh->zh_log;
552
553	/*
554	 * Allocate an initial log block if:
555	 *    - there isn't one already
556	 *    - the existing block is the wrong endianess
557	 */
558	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
559		tx = dmu_tx_create(zilog->zl_os);
560		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
561		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
562		txg = dmu_tx_get_txg(tx);
563
564		if (!BP_IS_HOLE(&blk)) {
565			zio_free_zil(zilog->zl_spa, txg, &blk);
566			BP_ZERO(&blk);
567		}
568
569		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
570		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
571
572		if (error == 0)
573			zil_init_log_chain(zilog, &blk);
574	}
575
576	/*
577	 * Allocate a log write buffer (lwb) for the first log block.
578	 */
579	if (error == 0)
580		lwb = zil_alloc_lwb(zilog, &blk, txg);
581
582	/*
583	 * If we just allocated the first log block, commit our transaction
584	 * and wait for zil_sync() to stuff the block poiner into zh_log.
585	 * (zh is part of the MOS, so we cannot modify it in open context.)
586	 */
587	if (tx != NULL) {
588		dmu_tx_commit(tx);
589		txg_wait_synced(zilog->zl_dmu_pool, txg);
590	}
591
592	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
593
594	return (lwb);
595}
596
597/*
598 * In one tx, free all log blocks and clear the log header.
599 * If keep_first is set, then we're replaying a log with no content.
600 * We want to keep the first block, however, so that the first
601 * synchronous transaction doesn't require a txg_wait_synced()
602 * in zil_create().  We don't need to txg_wait_synced() here either
603 * when keep_first is set, because both zil_create() and zil_destroy()
604 * will wait for any in-progress destroys to complete.
605 */
606void
607zil_destroy(zilog_t *zilog, boolean_t keep_first)
608{
609	const zil_header_t *zh = zilog->zl_header;
610	lwb_t *lwb;
611	dmu_tx_t *tx;
612	uint64_t txg;
613
614	/*
615	 * Wait for any previous destroy to complete.
616	 */
617	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
618
619	zilog->zl_old_header = *zh;		/* debugging aid */
620
621	if (BP_IS_HOLE(&zh->zh_log))
622		return;
623
624	tx = dmu_tx_create(zilog->zl_os);
625	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
626	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
627	txg = dmu_tx_get_txg(tx);
628
629	mutex_enter(&zilog->zl_lock);
630
631	ASSERT3U(zilog->zl_destroy_txg, <, txg);
632	zilog->zl_destroy_txg = txg;
633	zilog->zl_keep_first = keep_first;
634
635	if (!list_is_empty(&zilog->zl_lwb_list)) {
636		ASSERT(zh->zh_claim_txg == 0);
637		VERIFY(!keep_first);
638		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
639			list_remove(&zilog->zl_lwb_list, lwb);
640			if (lwb->lwb_buf != NULL)
641				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
642			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
643			kmem_cache_free(zil_lwb_cache, lwb);
644		}
645	} else if (!keep_first) {
646		zil_destroy_sync(zilog, tx);
647	}
648	mutex_exit(&zilog->zl_lock);
649
650	dmu_tx_commit(tx);
651}
652
653void
654zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
655{
656	ASSERT(list_is_empty(&zilog->zl_lwb_list));
657	(void) zil_parse(zilog, zil_free_log_block,
658	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
659}
660
661int
662zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
663{
664	dmu_tx_t *tx = txarg;
665	uint64_t first_txg = dmu_tx_get_txg(tx);
666	zilog_t *zilog;
667	zil_header_t *zh;
668	objset_t *os;
669	int error;
670
671	error = dmu_objset_own_obj(dp, ds->ds_object,
672	    DMU_OST_ANY, B_FALSE, FTAG, &os);
673	if (error != 0) {
674		/*
675		 * EBUSY indicates that the objset is inconsistent, in which
676		 * case it can not have a ZIL.
677		 */
678		if (error != EBUSY) {
679			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
680			    (unsigned long long)ds->ds_object, error);
681		}
682		return (0);
683	}
684
685	zilog = dmu_objset_zil(os);
686	zh = zil_header_in_syncing_context(zilog);
687
688	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
689		if (!BP_IS_HOLE(&zh->zh_log))
690			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
691		BP_ZERO(&zh->zh_log);
692		dsl_dataset_dirty(dmu_objset_ds(os), tx);
693		dmu_objset_disown(os, FTAG);
694		return (0);
695	}
696
697	/*
698	 * Claim all log blocks if we haven't already done so, and remember
699	 * the highest claimed sequence number.  This ensures that if we can
700	 * read only part of the log now (e.g. due to a missing device),
701	 * but we can read the entire log later, we will not try to replay
702	 * or destroy beyond the last block we successfully claimed.
703	 */
704	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
705	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
706		(void) zil_parse(zilog, zil_claim_log_block,
707		    zil_claim_log_record, tx, first_txg);
708		zh->zh_claim_txg = first_txg;
709		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
710		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
711		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
712			zh->zh_flags |= ZIL_REPLAY_NEEDED;
713		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
714		dsl_dataset_dirty(dmu_objset_ds(os), tx);
715	}
716
717	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
718	dmu_objset_disown(os, FTAG);
719	return (0);
720}
721
722/*
723 * Check the log by walking the log chain.
724 * Checksum errors are ok as they indicate the end of the chain.
725 * Any other error (no device or read failure) returns an error.
726 */
727/* ARGSUSED */
728int
729zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
730{
731	zilog_t *zilog;
732	objset_t *os;
733	blkptr_t *bp;
734	int error;
735
736	ASSERT(tx == NULL);
737
738	error = dmu_objset_from_ds(ds, &os);
739	if (error != 0) {
740		cmn_err(CE_WARN, "can't open objset %llu, error %d",
741		    (unsigned long long)ds->ds_object, error);
742		return (0);
743	}
744
745	zilog = dmu_objset_zil(os);
746	bp = (blkptr_t *)&zilog->zl_header->zh_log;
747
748	/*
749	 * Check the first block and determine if it's on a log device
750	 * which may have been removed or faulted prior to loading this
751	 * pool.  If so, there's no point in checking the rest of the log
752	 * as its content should have already been synced to the pool.
753	 */
754	if (!BP_IS_HOLE(bp)) {
755		vdev_t *vd;
756		boolean_t valid = B_TRUE;
757
758		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
759		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
760		if (vd->vdev_islog && vdev_is_dead(vd))
761			valid = vdev_log_state_valid(vd);
762		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
763
764		if (!valid)
765			return (0);
766	}
767
768	/*
769	 * Because tx == NULL, zil_claim_log_block() will not actually claim
770	 * any blocks, but just determine whether it is possible to do so.
771	 * In addition to checking the log chain, zil_claim_log_block()
772	 * will invoke zio_claim() with a done func of spa_claim_notify(),
773	 * which will update spa_max_claim_txg.  See spa_load() for details.
774	 */
775	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
776	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
777
778	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
779}
780
781static int
782zil_vdev_compare(const void *x1, const void *x2)
783{
784	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
785	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
786
787	if (v1 < v2)
788		return (-1);
789	if (v1 > v2)
790		return (1);
791
792	return (0);
793}
794
795void
796zil_add_block(zilog_t *zilog, const blkptr_t *bp)
797{
798	avl_tree_t *t = &zilog->zl_vdev_tree;
799	avl_index_t where;
800	zil_vdev_node_t *zv, zvsearch;
801	int ndvas = BP_GET_NDVAS(bp);
802	int i;
803
804	if (zfs_nocacheflush)
805		return;
806
807	ASSERT(zilog->zl_writer);
808
809	/*
810	 * Even though we're zl_writer, we still need a lock because the
811	 * zl_get_data() callbacks may have dmu_sync() done callbacks
812	 * that will run concurrently.
813	 */
814	mutex_enter(&zilog->zl_vdev_lock);
815	for (i = 0; i < ndvas; i++) {
816		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
817		if (avl_find(t, &zvsearch, &where) == NULL) {
818			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
819			zv->zv_vdev = zvsearch.zv_vdev;
820			avl_insert(t, zv, where);
821		}
822	}
823	mutex_exit(&zilog->zl_vdev_lock);
824}
825
826static void
827zil_flush_vdevs(zilog_t *zilog)
828{
829	spa_t *spa = zilog->zl_spa;
830	avl_tree_t *t = &zilog->zl_vdev_tree;
831	void *cookie = NULL;
832	zil_vdev_node_t *zv;
833	zio_t *zio = NULL;
834
835	ASSERT(zilog->zl_writer);
836
837	/*
838	 * We don't need zl_vdev_lock here because we're the zl_writer,
839	 * and all zl_get_data() callbacks are done.
840	 */
841	if (avl_numnodes(t) == 0)
842		return;
843
844	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
845
846	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
847		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
848		if (vd != NULL && !vd->vdev_nowritecache) {
849			if (zio == NULL)
850				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
851			zio_flush(zio, vd);
852		}
853		kmem_free(zv, sizeof (*zv));
854	}
855
856	/*
857	 * Wait for all the flushes to complete.  Not all devices actually
858	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
859	 */
860	if (zio)
861		(void) zio_wait(zio);
862
863	spa_config_exit(spa, SCL_STATE, FTAG);
864}
865
866/*
867 * Function called when a log block write completes
868 */
869static void
870zil_lwb_write_done(zio_t *zio)
871{
872	lwb_t *lwb = zio->io_private;
873	zilog_t *zilog = lwb->lwb_zilog;
874	dmu_tx_t *tx = lwb->lwb_tx;
875
876	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
877	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
878	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
879	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
880	ASSERT(!BP_IS_GANG(zio->io_bp));
881	ASSERT(!BP_IS_HOLE(zio->io_bp));
882	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
883
884	/*
885	 * Ensure the lwb buffer pointer is cleared before releasing
886	 * the txg. If we have had an allocation failure and
887	 * the txg is waiting to sync then we want want zil_sync()
888	 * to remove the lwb so that it's not picked up as the next new
889	 * one in zil_commit_writer(). zil_sync() will only remove
890	 * the lwb if lwb_buf is null.
891	 */
892	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
893	mutex_enter(&zilog->zl_lock);
894	lwb->lwb_buf = NULL;
895	lwb->lwb_tx = NULL;
896	mutex_exit(&zilog->zl_lock);
897
898	/*
899	 * Now that we've written this log block, we have a stable pointer
900	 * to the next block in the chain, so it's OK to let the txg in
901	 * which we allocated the next block sync.
902	 */
903	dmu_tx_commit(tx);
904}
905
906/*
907 * Initialize the io for a log block.
908 */
909static void
910zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
911{
912	zbookmark_phys_t zb;
913
914	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
915	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
916	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
917
918	if (zilog->zl_root_zio == NULL) {
919		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
920		    ZIO_FLAG_CANFAIL);
921	}
922	if (lwb->lwb_zio == NULL) {
923		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
924		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
925		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
926		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
927	}
928}
929
930/*
931 * Define a limited set of intent log block sizes.
932 *
933 * These must be a multiple of 4KB. Note only the amount used (again
934 * aligned to 4KB) actually gets written. However, we can't always just
935 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
936 */
937uint64_t zil_block_buckets[] = {
938    4096,		/* non TX_WRITE */
939    8192+4096,		/* data base */
940    32*1024 + 4096, 	/* NFS writes */
941    UINT64_MAX
942};
943
944/*
945 * Use the slog as long as the logbias is 'latency' and the current commit size
946 * is less than the limit or the total list size is less than 2X the limit.
947 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
948 */
949uint64_t zil_slog_limit = 1024 * 1024;
950#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
951	(((zilog)->zl_cur_used < zil_slog_limit) || \
952	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
953
954/*
955 * Start a log block write and advance to the next log block.
956 * Calls are serialized.
957 */
958static lwb_t *
959zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
960{
961	lwb_t *nlwb = NULL;
962	zil_chain_t *zilc;
963	spa_t *spa = zilog->zl_spa;
964	blkptr_t *bp;
965	dmu_tx_t *tx;
966	uint64_t txg;
967	uint64_t zil_blksz, wsz;
968	int i, error;
969
970	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
971		zilc = (zil_chain_t *)lwb->lwb_buf;
972		bp = &zilc->zc_next_blk;
973	} else {
974		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
975		bp = &zilc->zc_next_blk;
976	}
977
978	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
979
980	/*
981	 * Allocate the next block and save its address in this block
982	 * before writing it in order to establish the log chain.
983	 * Note that if the allocation of nlwb synced before we wrote
984	 * the block that points at it (lwb), we'd leak it if we crashed.
985	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
986	 * We dirty the dataset to ensure that zil_sync() will be called
987	 * to clean up in the event of allocation failure or I/O failure.
988	 */
989	tx = dmu_tx_create(zilog->zl_os);
990	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
991	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
992	txg = dmu_tx_get_txg(tx);
993
994	lwb->lwb_tx = tx;
995
996	/*
997	 * Log blocks are pre-allocated. Here we select the size of the next
998	 * block, based on size used in the last block.
999	 * - first find the smallest bucket that will fit the block from a
1000	 *   limited set of block sizes. This is because it's faster to write
1001	 *   blocks allocated from the same metaslab as they are adjacent or
1002	 *   close.
1003	 * - next find the maximum from the new suggested size and an array of
1004	 *   previous sizes. This lessens a picket fence effect of wrongly
1005	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1006	 *   requests.
1007	 *
1008	 * Note we only write what is used, but we can't just allocate
1009	 * the maximum block size because we can exhaust the available
1010	 * pool log space.
1011	 */
1012	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1013	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1014		continue;
1015	zil_blksz = zil_block_buckets[i];
1016	if (zil_blksz == UINT64_MAX)
1017		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1018	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1019	for (i = 0; i < ZIL_PREV_BLKS; i++)
1020		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1021	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1022
1023	BP_ZERO(bp);
1024	/* pass the old blkptr in order to spread log blocks across devs */
1025	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1026	    USE_SLOG(zilog));
1027	if (error == 0) {
1028		ASSERT3U(bp->blk_birth, ==, txg);
1029		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1030		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1031
1032		/*
1033		 * Allocate a new log write buffer (lwb).
1034		 */
1035		nlwb = zil_alloc_lwb(zilog, bp, txg);
1036
1037		/* Record the block for later vdev flushing */
1038		zil_add_block(zilog, &lwb->lwb_blk);
1039	}
1040
1041	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1042		/* For Slim ZIL only write what is used. */
1043		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1044		ASSERT3U(wsz, <=, lwb->lwb_sz);
1045		zio_shrink(lwb->lwb_zio, wsz);
1046
1047	} else {
1048		wsz = lwb->lwb_sz;
1049	}
1050
1051	zilc->zc_pad = 0;
1052	zilc->zc_nused = lwb->lwb_nused;
1053	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1054
1055	/*
1056	 * clear unused data for security
1057	 */
1058	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1059
1060	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1061
1062	/*
1063	 * If there was an allocation failure then nlwb will be null which
1064	 * forces a txg_wait_synced().
1065	 */
1066	return (nlwb);
1067}
1068
1069static lwb_t *
1070zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1071{
1072	lr_t *lrc = &itx->itx_lr; /* common log record */
1073	lr_write_t *lrw = (lr_write_t *)lrc;
1074	char *lr_buf;
1075	uint64_t txg = lrc->lrc_txg;
1076	uint64_t reclen = lrc->lrc_reclen;
1077	uint64_t dlen = 0;
1078
1079	if (lwb == NULL)
1080		return (NULL);
1081
1082	ASSERT(lwb->lwb_buf != NULL);
1083
1084	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1085		dlen = P2ROUNDUP_TYPED(
1086		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1087
1088	zilog->zl_cur_used += (reclen + dlen);
1089
1090	zil_lwb_write_init(zilog, lwb);
1091
1092	/*
1093	 * If this record won't fit in the current log block, start a new one.
1094	 */
1095	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1096		lwb = zil_lwb_write_start(zilog, lwb);
1097		if (lwb == NULL)
1098			return (NULL);
1099		zil_lwb_write_init(zilog, lwb);
1100		ASSERT(LWB_EMPTY(lwb));
1101		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1102			txg_wait_synced(zilog->zl_dmu_pool, txg);
1103			return (lwb);
1104		}
1105	}
1106
1107	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1108	bcopy(lrc, lr_buf, reclen);
1109	lrc = (lr_t *)lr_buf;
1110	lrw = (lr_write_t *)lrc;
1111
1112	/*
1113	 * If it's a write, fetch the data or get its blkptr as appropriate.
1114	 */
1115	if (lrc->lrc_txtype == TX_WRITE) {
1116		if (txg > spa_freeze_txg(zilog->zl_spa))
1117			txg_wait_synced(zilog->zl_dmu_pool, txg);
1118		if (itx->itx_wr_state != WR_COPIED) {
1119			char *dbuf;
1120			int error;
1121
1122			if (dlen) {
1123				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1124				dbuf = lr_buf + reclen;
1125				lrw->lr_common.lrc_reclen += dlen;
1126			} else {
1127				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1128				dbuf = NULL;
1129			}
1130			error = zilog->zl_get_data(
1131			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1132			if (error == EIO) {
1133				txg_wait_synced(zilog->zl_dmu_pool, txg);
1134				return (lwb);
1135			}
1136			if (error != 0) {
1137				ASSERT(error == ENOENT || error == EEXIST ||
1138				    error == EALREADY);
1139				return (lwb);
1140			}
1141		}
1142	}
1143
1144	/*
1145	 * We're actually making an entry, so update lrc_seq to be the
1146	 * log record sequence number.  Note that this is generally not
1147	 * equal to the itx sequence number because not all transactions
1148	 * are synchronous, and sometimes spa_sync() gets there first.
1149	 */
1150	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1151	lwb->lwb_nused += reclen + dlen;
1152	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1153	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1154	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1155
1156	return (lwb);
1157}
1158
1159itx_t *
1160zil_itx_create(uint64_t txtype, size_t lrsize)
1161{
1162	itx_t *itx;
1163
1164	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1165
1166	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1167	itx->itx_lr.lrc_txtype = txtype;
1168	itx->itx_lr.lrc_reclen = lrsize;
1169	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1170	itx->itx_lr.lrc_seq = 0;	/* defensive */
1171	itx->itx_sync = B_TRUE;		/* default is synchronous */
1172
1173	return (itx);
1174}
1175
1176void
1177zil_itx_destroy(itx_t *itx)
1178{
1179	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1180}
1181
1182/*
1183 * Free up the sync and async itxs. The itxs_t has already been detached
1184 * so no locks are needed.
1185 */
1186static void
1187zil_itxg_clean(itxs_t *itxs)
1188{
1189	itx_t *itx;
1190	list_t *list;
1191	avl_tree_t *t;
1192	void *cookie;
1193	itx_async_node_t *ian;
1194
1195	list = &itxs->i_sync_list;
1196	while ((itx = list_head(list)) != NULL) {
1197		list_remove(list, itx);
1198		kmem_free(itx, offsetof(itx_t, itx_lr) +
1199		    itx->itx_lr.lrc_reclen);
1200	}
1201
1202	cookie = NULL;
1203	t = &itxs->i_async_tree;
1204	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1205		list = &ian->ia_list;
1206		while ((itx = list_head(list)) != NULL) {
1207			list_remove(list, itx);
1208			kmem_free(itx, offsetof(itx_t, itx_lr) +
1209			    itx->itx_lr.lrc_reclen);
1210		}
1211		list_destroy(list);
1212		kmem_free(ian, sizeof (itx_async_node_t));
1213	}
1214	avl_destroy(t);
1215
1216	kmem_free(itxs, sizeof (itxs_t));
1217}
1218
1219static int
1220zil_aitx_compare(const void *x1, const void *x2)
1221{
1222	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1223	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1224
1225	if (o1 < o2)
1226		return (-1);
1227	if (o1 > o2)
1228		return (1);
1229
1230	return (0);
1231}
1232
1233/*
1234 * Remove all async itx with the given oid.
1235 */
1236static void
1237zil_remove_async(zilog_t *zilog, uint64_t oid)
1238{
1239	uint64_t otxg, txg;
1240	itx_async_node_t *ian;
1241	avl_tree_t *t;
1242	avl_index_t where;
1243	list_t clean_list;
1244	itx_t *itx;
1245
1246	ASSERT(oid != 0);
1247	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1248
1249	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1250		otxg = ZILTEST_TXG;
1251	else
1252		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1253
1254	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1255		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1256
1257		mutex_enter(&itxg->itxg_lock);
1258		if (itxg->itxg_txg != txg) {
1259			mutex_exit(&itxg->itxg_lock);
1260			continue;
1261		}
1262
1263		/*
1264		 * Locate the object node and append its list.
1265		 */
1266		t = &itxg->itxg_itxs->i_async_tree;
1267		ian = avl_find(t, &oid, &where);
1268		if (ian != NULL)
1269			list_move_tail(&clean_list, &ian->ia_list);
1270		mutex_exit(&itxg->itxg_lock);
1271	}
1272	while ((itx = list_head(&clean_list)) != NULL) {
1273		list_remove(&clean_list, itx);
1274		kmem_free(itx, offsetof(itx_t, itx_lr) +
1275		    itx->itx_lr.lrc_reclen);
1276	}
1277	list_destroy(&clean_list);
1278}
1279
1280void
1281zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1282{
1283	uint64_t txg;
1284	itxg_t *itxg;
1285	itxs_t *itxs, *clean = NULL;
1286
1287	/*
1288	 * Object ids can be re-instantiated in the next txg so
1289	 * remove any async transactions to avoid future leaks.
1290	 * This can happen if a fsync occurs on the re-instantiated
1291	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1292	 * the new file data and flushes a write record for the old object.
1293	 */
1294	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1295		zil_remove_async(zilog, itx->itx_oid);
1296
1297	/*
1298	 * Ensure the data of a renamed file is committed before the rename.
1299	 */
1300	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1301		zil_async_to_sync(zilog, itx->itx_oid);
1302
1303	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1304		txg = ZILTEST_TXG;
1305	else
1306		txg = dmu_tx_get_txg(tx);
1307
1308	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1309	mutex_enter(&itxg->itxg_lock);
1310	itxs = itxg->itxg_itxs;
1311	if (itxg->itxg_txg != txg) {
1312		if (itxs != NULL) {
1313			/*
1314			 * The zil_clean callback hasn't got around to cleaning
1315			 * this itxg. Save the itxs for release below.
1316			 * This should be rare.
1317			 */
1318			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1319			itxg->itxg_sod = 0;
1320			clean = itxg->itxg_itxs;
1321		}
1322		ASSERT(itxg->itxg_sod == 0);
1323		itxg->itxg_txg = txg;
1324		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1325
1326		list_create(&itxs->i_sync_list, sizeof (itx_t),
1327		    offsetof(itx_t, itx_node));
1328		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1329		    sizeof (itx_async_node_t),
1330		    offsetof(itx_async_node_t, ia_node));
1331	}
1332	if (itx->itx_sync) {
1333		list_insert_tail(&itxs->i_sync_list, itx);
1334		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1335		itxg->itxg_sod += itx->itx_sod;
1336	} else {
1337		avl_tree_t *t = &itxs->i_async_tree;
1338		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1339		itx_async_node_t *ian;
1340		avl_index_t where;
1341
1342		ian = avl_find(t, &foid, &where);
1343		if (ian == NULL) {
1344			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1345			list_create(&ian->ia_list, sizeof (itx_t),
1346			    offsetof(itx_t, itx_node));
1347			ian->ia_foid = foid;
1348			avl_insert(t, ian, where);
1349		}
1350		list_insert_tail(&ian->ia_list, itx);
1351	}
1352
1353	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1354	zilog_dirty(zilog, txg);
1355	mutex_exit(&itxg->itxg_lock);
1356
1357	/* Release the old itxs now we've dropped the lock */
1358	if (clean != NULL)
1359		zil_itxg_clean(clean);
1360}
1361
1362/*
1363 * If there are any in-memory intent log transactions which have now been
1364 * synced then start up a taskq to free them. We should only do this after we
1365 * have written out the uberblocks (i.e. txg has been comitted) so that
1366 * don't inadvertently clean out in-memory log records that would be required
1367 * by zil_commit().
1368 */
1369void
1370zil_clean(zilog_t *zilog, uint64_t synced_txg)
1371{
1372	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1373	itxs_t *clean_me;
1374
1375	mutex_enter(&itxg->itxg_lock);
1376	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1377		mutex_exit(&itxg->itxg_lock);
1378		return;
1379	}
1380	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1381	ASSERT(itxg->itxg_txg != 0);
1382	ASSERT(zilog->zl_clean_taskq != NULL);
1383	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1384	itxg->itxg_sod = 0;
1385	clean_me = itxg->itxg_itxs;
1386	itxg->itxg_itxs = NULL;
1387	itxg->itxg_txg = 0;
1388	mutex_exit(&itxg->itxg_lock);
1389	/*
1390	 * Preferably start a task queue to free up the old itxs but
1391	 * if taskq_dispatch can't allocate resources to do that then
1392	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1393	 * created a bad performance problem.
1394	 */
1395	if (taskq_dispatch(zilog->zl_clean_taskq,
1396	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1397		zil_itxg_clean(clean_me);
1398}
1399
1400/*
1401 * Get the list of itxs to commit into zl_itx_commit_list.
1402 */
1403static void
1404zil_get_commit_list(zilog_t *zilog)
1405{
1406	uint64_t otxg, txg;
1407	list_t *commit_list = &zilog->zl_itx_commit_list;
1408	uint64_t push_sod = 0;
1409
1410	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1411		otxg = ZILTEST_TXG;
1412	else
1413		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1414
1415	/*
1416	 * This is inherently racy, since there is nothing to prevent
1417	 * the last synced txg from changing. That's okay since we'll
1418	 * only commit things in the future.
1419	 */
1420	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1421		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1422
1423		mutex_enter(&itxg->itxg_lock);
1424		if (itxg->itxg_txg != txg) {
1425			mutex_exit(&itxg->itxg_lock);
1426			continue;
1427		}
1428
1429		/*
1430		 * If we're adding itx records to the zl_itx_commit_list,
1431		 * then the zil better be dirty in this "txg". We can assert
1432		 * that here since we're holding the itxg_lock which will
1433		 * prevent spa_sync from cleaning it. Once we add the itxs
1434		 * to the zl_itx_commit_list we must commit it to disk even
1435		 * if it's unnecessary (i.e. the txg was synced).
1436		 */
1437		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1438		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1439		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1440		push_sod += itxg->itxg_sod;
1441		itxg->itxg_sod = 0;
1442
1443		mutex_exit(&itxg->itxg_lock);
1444	}
1445	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1446}
1447
1448/*
1449 * Move the async itxs for a specified object to commit into sync lists.
1450 */
1451void
1452zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1453{
1454	uint64_t otxg, txg;
1455	itx_async_node_t *ian;
1456	avl_tree_t *t;
1457	avl_index_t where;
1458
1459	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1460		otxg = ZILTEST_TXG;
1461	else
1462		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1463
1464	/*
1465	 * This is inherently racy, since there is nothing to prevent
1466	 * the last synced txg from changing.
1467	 */
1468	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1469		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1470
1471		mutex_enter(&itxg->itxg_lock);
1472		if (itxg->itxg_txg != txg) {
1473			mutex_exit(&itxg->itxg_lock);
1474			continue;
1475		}
1476
1477		/*
1478		 * If a foid is specified then find that node and append its
1479		 * list. Otherwise walk the tree appending all the lists
1480		 * to the sync list. We add to the end rather than the
1481		 * beginning to ensure the create has happened.
1482		 */
1483		t = &itxg->itxg_itxs->i_async_tree;
1484		if (foid != 0) {
1485			ian = avl_find(t, &foid, &where);
1486			if (ian != NULL) {
1487				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1488				    &ian->ia_list);
1489			}
1490		} else {
1491			void *cookie = NULL;
1492
1493			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1494				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1495				    &ian->ia_list);
1496				list_destroy(&ian->ia_list);
1497				kmem_free(ian, sizeof (itx_async_node_t));
1498			}
1499		}
1500		mutex_exit(&itxg->itxg_lock);
1501	}
1502}
1503
1504static void
1505zil_commit_writer(zilog_t *zilog)
1506{
1507	uint64_t txg;
1508	itx_t *itx;
1509	lwb_t *lwb;
1510	spa_t *spa = zilog->zl_spa;
1511	int error = 0;
1512
1513	ASSERT(zilog->zl_root_zio == NULL);
1514
1515	mutex_exit(&zilog->zl_lock);
1516
1517	zil_get_commit_list(zilog);
1518
1519	/*
1520	 * Return if there's nothing to commit before we dirty the fs by
1521	 * calling zil_create().
1522	 */
1523	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1524		mutex_enter(&zilog->zl_lock);
1525		return;
1526	}
1527
1528	if (zilog->zl_suspend) {
1529		lwb = NULL;
1530	} else {
1531		lwb = list_tail(&zilog->zl_lwb_list);
1532		if (lwb == NULL)
1533			lwb = zil_create(zilog);
1534	}
1535
1536	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1537	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1538		txg = itx->itx_lr.lrc_txg;
1539		ASSERT3U(txg, !=, 0);
1540
1541		/*
1542		 * This is inherently racy and may result in us writing
1543		 * out a log block for a txg that was just synced. This is
1544		 * ok since we'll end cleaning up that log block the next
1545		 * time we call zil_sync().
1546		 */
1547		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1548			lwb = zil_lwb_commit(zilog, itx, lwb);
1549		list_remove(&zilog->zl_itx_commit_list, itx);
1550		kmem_free(itx, offsetof(itx_t, itx_lr)
1551		    + itx->itx_lr.lrc_reclen);
1552	}
1553	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1554
1555	/* write the last block out */
1556	if (lwb != NULL && lwb->lwb_zio != NULL)
1557		lwb = zil_lwb_write_start(zilog, lwb);
1558
1559	zilog->zl_cur_used = 0;
1560
1561	/*
1562	 * Wait if necessary for the log blocks to be on stable storage.
1563	 */
1564	if (zilog->zl_root_zio) {
1565		error = zio_wait(zilog->zl_root_zio);
1566		zilog->zl_root_zio = NULL;
1567		zil_flush_vdevs(zilog);
1568	}
1569
1570	if (error || lwb == NULL)
1571		txg_wait_synced(zilog->zl_dmu_pool, 0);
1572
1573	mutex_enter(&zilog->zl_lock);
1574
1575	/*
1576	 * Remember the highest committed log sequence number for ztest.
1577	 * We only update this value when all the log writes succeeded,
1578	 * because ztest wants to ASSERT that it got the whole log chain.
1579	 */
1580	if (error == 0 && lwb != NULL)
1581		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1582}
1583
1584/*
1585 * Commit zfs transactions to stable storage.
1586 * If foid is 0 push out all transactions, otherwise push only those
1587 * for that object or might reference that object.
1588 *
1589 * itxs are committed in batches. In a heavily stressed zil there will be
1590 * a commit writer thread who is writing out a bunch of itxs to the log
1591 * for a set of committing threads (cthreads) in the same batch as the writer.
1592 * Those cthreads are all waiting on the same cv for that batch.
1593 *
1594 * There will also be a different and growing batch of threads that are
1595 * waiting to commit (qthreads). When the committing batch completes
1596 * a transition occurs such that the cthreads exit and the qthreads become
1597 * cthreads. One of the new cthreads becomes the writer thread for the
1598 * batch. Any new threads arriving become new qthreads.
1599 *
1600 * Only 2 condition variables are needed and there's no transition
1601 * between the two cvs needed. They just flip-flop between qthreads
1602 * and cthreads.
1603 *
1604 * Using this scheme we can efficiently wakeup up only those threads
1605 * that have been committed.
1606 */
1607void
1608zil_commit(zilog_t *zilog, uint64_t foid)
1609{
1610	uint64_t mybatch;
1611
1612	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1613		return;
1614
1615	/* move the async itxs for the foid to the sync queues */
1616	zil_async_to_sync(zilog, foid);
1617
1618	mutex_enter(&zilog->zl_lock);
1619	mybatch = zilog->zl_next_batch;
1620	while (zilog->zl_writer) {
1621		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1622		if (mybatch <= zilog->zl_com_batch) {
1623			mutex_exit(&zilog->zl_lock);
1624			return;
1625		}
1626	}
1627
1628	zilog->zl_next_batch++;
1629	zilog->zl_writer = B_TRUE;
1630	zil_commit_writer(zilog);
1631	zilog->zl_com_batch = mybatch;
1632	zilog->zl_writer = B_FALSE;
1633	mutex_exit(&zilog->zl_lock);
1634
1635	/* wake up one thread to become the next writer */
1636	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1637
1638	/* wake up all threads waiting for this batch to be committed */
1639	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1640}
1641
1642/*
1643 * Called in syncing context to free committed log blocks and update log header.
1644 */
1645void
1646zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1647{
1648	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1649	uint64_t txg = dmu_tx_get_txg(tx);
1650	spa_t *spa = zilog->zl_spa;
1651	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1652	lwb_t *lwb;
1653
1654	/*
1655	 * We don't zero out zl_destroy_txg, so make sure we don't try
1656	 * to destroy it twice.
1657	 */
1658	if (spa_sync_pass(spa) != 1)
1659		return;
1660
1661	mutex_enter(&zilog->zl_lock);
1662
1663	ASSERT(zilog->zl_stop_sync == 0);
1664
1665	if (*replayed_seq != 0) {
1666		ASSERT(zh->zh_replay_seq < *replayed_seq);
1667		zh->zh_replay_seq = *replayed_seq;
1668		*replayed_seq = 0;
1669	}
1670
1671	if (zilog->zl_destroy_txg == txg) {
1672		blkptr_t blk = zh->zh_log;
1673
1674		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1675
1676		bzero(zh, sizeof (zil_header_t));
1677		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1678
1679		if (zilog->zl_keep_first) {
1680			/*
1681			 * If this block was part of log chain that couldn't
1682			 * be claimed because a device was missing during
1683			 * zil_claim(), but that device later returns,
1684			 * then this block could erroneously appear valid.
1685			 * To guard against this, assign a new GUID to the new
1686			 * log chain so it doesn't matter what blk points to.
1687			 */
1688			zil_init_log_chain(zilog, &blk);
1689			zh->zh_log = blk;
1690		}
1691	}
1692
1693	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1694		zh->zh_log = lwb->lwb_blk;
1695		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1696			break;
1697		list_remove(&zilog->zl_lwb_list, lwb);
1698		zio_free_zil(spa, txg, &lwb->lwb_blk);
1699		kmem_cache_free(zil_lwb_cache, lwb);
1700
1701		/*
1702		 * If we don't have anything left in the lwb list then
1703		 * we've had an allocation failure and we need to zero
1704		 * out the zil_header blkptr so that we don't end
1705		 * up freeing the same block twice.
1706		 */
1707		if (list_head(&zilog->zl_lwb_list) == NULL)
1708			BP_ZERO(&zh->zh_log);
1709	}
1710	mutex_exit(&zilog->zl_lock);
1711}
1712
1713void
1714zil_init(void)
1715{
1716	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1717	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1718}
1719
1720void
1721zil_fini(void)
1722{
1723	kmem_cache_destroy(zil_lwb_cache);
1724}
1725
1726void
1727zil_set_sync(zilog_t *zilog, uint64_t sync)
1728{
1729	zilog->zl_sync = sync;
1730}
1731
1732void
1733zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1734{
1735	zilog->zl_logbias = logbias;
1736}
1737
1738zilog_t *
1739zil_alloc(objset_t *os, zil_header_t *zh_phys)
1740{
1741	zilog_t *zilog;
1742
1743	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1744
1745	zilog->zl_header = zh_phys;
1746	zilog->zl_os = os;
1747	zilog->zl_spa = dmu_objset_spa(os);
1748	zilog->zl_dmu_pool = dmu_objset_pool(os);
1749	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1750	zilog->zl_logbias = dmu_objset_logbias(os);
1751	zilog->zl_sync = dmu_objset_syncprop(os);
1752	zilog->zl_next_batch = 1;
1753
1754	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1755
1756	for (int i = 0; i < TXG_SIZE; i++) {
1757		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1758		    MUTEX_DEFAULT, NULL);
1759	}
1760
1761	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1762	    offsetof(lwb_t, lwb_node));
1763
1764	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1765	    offsetof(itx_t, itx_node));
1766
1767	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1768
1769	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1770	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1771
1772	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1773	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1774	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1775	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1776
1777	return (zilog);
1778}
1779
1780void
1781zil_free(zilog_t *zilog)
1782{
1783	zilog->zl_stop_sync = 1;
1784
1785	ASSERT0(zilog->zl_suspend);
1786	ASSERT0(zilog->zl_suspending);
1787
1788	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1789	list_destroy(&zilog->zl_lwb_list);
1790
1791	avl_destroy(&zilog->zl_vdev_tree);
1792	mutex_destroy(&zilog->zl_vdev_lock);
1793
1794	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1795	list_destroy(&zilog->zl_itx_commit_list);
1796
1797	for (int i = 0; i < TXG_SIZE; i++) {
1798		/*
1799		 * It's possible for an itx to be generated that doesn't dirty
1800		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1801		 * callback to remove the entry. We remove those here.
1802		 *
1803		 * Also free up the ziltest itxs.
1804		 */
1805		if (zilog->zl_itxg[i].itxg_itxs)
1806			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1807		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1808	}
1809
1810	mutex_destroy(&zilog->zl_lock);
1811
1812	cv_destroy(&zilog->zl_cv_writer);
1813	cv_destroy(&zilog->zl_cv_suspend);
1814	cv_destroy(&zilog->zl_cv_batch[0]);
1815	cv_destroy(&zilog->zl_cv_batch[1]);
1816
1817	kmem_free(zilog, sizeof (zilog_t));
1818}
1819
1820/*
1821 * Open an intent log.
1822 */
1823zilog_t *
1824zil_open(objset_t *os, zil_get_data_t *get_data)
1825{
1826	zilog_t *zilog = dmu_objset_zil(os);
1827
1828	ASSERT(zilog->zl_clean_taskq == NULL);
1829	ASSERT(zilog->zl_get_data == NULL);
1830	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1831
1832	zilog->zl_get_data = get_data;
1833	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1834	    2, 2, TASKQ_PREPOPULATE);
1835
1836	return (zilog);
1837}
1838
1839/*
1840 * Close an intent log.
1841 */
1842void
1843zil_close(zilog_t *zilog)
1844{
1845	lwb_t *lwb;
1846	uint64_t txg = 0;
1847
1848	zil_commit(zilog, 0); /* commit all itx */
1849
1850	/*
1851	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1852	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1853	 * callbacks have occurred that may clean the zil.  Only then can we
1854	 * destroy the zl_clean_taskq.
1855	 */
1856	mutex_enter(&zilog->zl_lock);
1857	lwb = list_tail(&zilog->zl_lwb_list);
1858	if (lwb != NULL)
1859		txg = lwb->lwb_max_txg;
1860	mutex_exit(&zilog->zl_lock);
1861	if (txg)
1862		txg_wait_synced(zilog->zl_dmu_pool, txg);
1863
1864	if (zilog_is_dirty(zilog))
1865		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1866	VERIFY(!zilog_is_dirty(zilog));
1867
1868	taskq_destroy(zilog->zl_clean_taskq);
1869	zilog->zl_clean_taskq = NULL;
1870	zilog->zl_get_data = NULL;
1871
1872	/*
1873	 * We should have only one LWB left on the list; remove it now.
1874	 */
1875	mutex_enter(&zilog->zl_lock);
1876	lwb = list_head(&zilog->zl_lwb_list);
1877	if (lwb != NULL) {
1878		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1879		list_remove(&zilog->zl_lwb_list, lwb);
1880		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1881		kmem_cache_free(zil_lwb_cache, lwb);
1882	}
1883	mutex_exit(&zilog->zl_lock);
1884}
1885
1886static char *suspend_tag = "zil suspending";
1887
1888/*
1889 * Suspend an intent log.  While in suspended mode, we still honor
1890 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1891 * On old version pools, we suspend the log briefly when taking a
1892 * snapshot so that it will have an empty intent log.
1893 *
1894 * Long holds are not really intended to be used the way we do here --
1895 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1896 * could fail.  Therefore we take pains to only put a long hold if it is
1897 * actually necessary.  Fortunately, it will only be necessary if the
1898 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1899 * will already have a long hold, so we are not really making things any worse.
1900 *
1901 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1902 * zvol_state_t), and use their mechanism to prevent their hold from being
1903 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1904 * very little gain.
1905 *
1906 * if cookiep == NULL, this does both the suspend & resume.
1907 * Otherwise, it returns with the dataset "long held", and the cookie
1908 * should be passed into zil_resume().
1909 */
1910int
1911zil_suspend(const char *osname, void **cookiep)
1912{
1913	objset_t *os;
1914	zilog_t *zilog;
1915	const zil_header_t *zh;
1916	int error;
1917
1918	error = dmu_objset_hold(osname, suspend_tag, &os);
1919	if (error != 0)
1920		return (error);
1921	zilog = dmu_objset_zil(os);
1922
1923	mutex_enter(&zilog->zl_lock);
1924	zh = zilog->zl_header;
1925
1926	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1927		mutex_exit(&zilog->zl_lock);
1928		dmu_objset_rele(os, suspend_tag);
1929		return (SET_ERROR(EBUSY));
1930	}
1931
1932	/*
1933	 * Don't put a long hold in the cases where we can avoid it.  This
1934	 * is when there is no cookie so we are doing a suspend & resume
1935	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1936	 * for the suspend because it's already suspended, or there's no ZIL.
1937	 */
1938	if (cookiep == NULL && !zilog->zl_suspending &&
1939	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1940		mutex_exit(&zilog->zl_lock);
1941		dmu_objset_rele(os, suspend_tag);
1942		return (0);
1943	}
1944
1945	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1946	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1947
1948	zilog->zl_suspend++;
1949
1950	if (zilog->zl_suspend > 1) {
1951		/*
1952		 * Someone else is already suspending it.
1953		 * Just wait for them to finish.
1954		 */
1955
1956		while (zilog->zl_suspending)
1957			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1958		mutex_exit(&zilog->zl_lock);
1959
1960		if (cookiep == NULL)
1961			zil_resume(os);
1962		else
1963			*cookiep = os;
1964		return (0);
1965	}
1966
1967	/*
1968	 * If there is no pointer to an on-disk block, this ZIL must not
1969	 * be active (e.g. filesystem not mounted), so there's nothing
1970	 * to clean up.
1971	 */
1972	if (BP_IS_HOLE(&zh->zh_log)) {
1973		ASSERT(cookiep != NULL); /* fast path already handled */
1974
1975		*cookiep = os;
1976		mutex_exit(&zilog->zl_lock);
1977		return (0);
1978	}
1979
1980	zilog->zl_suspending = B_TRUE;
1981	mutex_exit(&zilog->zl_lock);
1982
1983	zil_commit(zilog, 0);
1984
1985	zil_destroy(zilog, B_FALSE);
1986
1987	mutex_enter(&zilog->zl_lock);
1988	zilog->zl_suspending = B_FALSE;
1989	cv_broadcast(&zilog->zl_cv_suspend);
1990	mutex_exit(&zilog->zl_lock);
1991
1992	if (cookiep == NULL)
1993		zil_resume(os);
1994	else
1995		*cookiep = os;
1996	return (0);
1997}
1998
1999void
2000zil_resume(void *cookie)
2001{
2002	objset_t *os = cookie;
2003	zilog_t *zilog = dmu_objset_zil(os);
2004
2005	mutex_enter(&zilog->zl_lock);
2006	ASSERT(zilog->zl_suspend != 0);
2007	zilog->zl_suspend--;
2008	mutex_exit(&zilog->zl_lock);
2009	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2010	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2011}
2012
2013typedef struct zil_replay_arg {
2014	zil_replay_func_t **zr_replay;
2015	void		*zr_arg;
2016	boolean_t	zr_byteswap;
2017	char		*zr_lr;
2018} zil_replay_arg_t;
2019
2020static int
2021zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2022{
2023	char name[ZFS_MAX_DATASET_NAME_LEN];
2024
2025	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2026
2027	dmu_objset_name(zilog->zl_os, name);
2028
2029	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2030	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2031	    (u_longlong_t)lr->lrc_seq,
2032	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2033	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2034
2035	return (error);
2036}
2037
2038static int
2039zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2040{
2041	zil_replay_arg_t *zr = zra;
2042	const zil_header_t *zh = zilog->zl_header;
2043	uint64_t reclen = lr->lrc_reclen;
2044	uint64_t txtype = lr->lrc_txtype;
2045	int error = 0;
2046
2047	zilog->zl_replaying_seq = lr->lrc_seq;
2048
2049	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2050		return (0);
2051
2052	if (lr->lrc_txg < claim_txg)		/* already committed */
2053		return (0);
2054
2055	/* Strip case-insensitive bit, still present in log record */
2056	txtype &= ~TX_CI;
2057
2058	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2059		return (zil_replay_error(zilog, lr, EINVAL));
2060
2061	/*
2062	 * If this record type can be logged out of order, the object
2063	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2064	 */
2065	if (TX_OOO(txtype)) {
2066		error = dmu_object_info(zilog->zl_os,
2067		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2068		if (error == ENOENT || error == EEXIST)
2069			return (0);
2070	}
2071
2072	/*
2073	 * Make a copy of the data so we can revise and extend it.
2074	 */
2075	bcopy(lr, zr->zr_lr, reclen);
2076
2077	/*
2078	 * If this is a TX_WRITE with a blkptr, suck in the data.
2079	 */
2080	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2081		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2082		    zr->zr_lr + reclen);
2083		if (error != 0)
2084			return (zil_replay_error(zilog, lr, error));
2085	}
2086
2087	/*
2088	 * The log block containing this lr may have been byteswapped
2089	 * so that we can easily examine common fields like lrc_txtype.
2090	 * However, the log is a mix of different record types, and only the
2091	 * replay vectors know how to byteswap their records.  Therefore, if
2092	 * the lr was byteswapped, undo it before invoking the replay vector.
2093	 */
2094	if (zr->zr_byteswap)
2095		byteswap_uint64_array(zr->zr_lr, reclen);
2096
2097	/*
2098	 * We must now do two things atomically: replay this log record,
2099	 * and update the log header sequence number to reflect the fact that
2100	 * we did so. At the end of each replay function the sequence number
2101	 * is updated if we are in replay mode.
2102	 */
2103	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2104	if (error != 0) {
2105		/*
2106		 * The DMU's dnode layer doesn't see removes until the txg
2107		 * commits, so a subsequent claim can spuriously fail with
2108		 * EEXIST. So if we receive any error we try syncing out
2109		 * any removes then retry the transaction.  Note that we
2110		 * specify B_FALSE for byteswap now, so we don't do it twice.
2111		 */
2112		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2113		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2114		if (error != 0)
2115			return (zil_replay_error(zilog, lr, error));
2116	}
2117	return (0);
2118}
2119
2120/* ARGSUSED */
2121static int
2122zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2123{
2124	zilog->zl_replay_blks++;
2125
2126	return (0);
2127}
2128
2129/*
2130 * If this dataset has a non-empty intent log, replay it and destroy it.
2131 */
2132void
2133zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2134{
2135	zilog_t *zilog = dmu_objset_zil(os);
2136	const zil_header_t *zh = zilog->zl_header;
2137	zil_replay_arg_t zr;
2138
2139	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2140		zil_destroy(zilog, B_TRUE);
2141		return;
2142	}
2143
2144	zr.zr_replay = replay_func;
2145	zr.zr_arg = arg;
2146	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2147	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2148
2149	/*
2150	 * Wait for in-progress removes to sync before starting replay.
2151	 */
2152	txg_wait_synced(zilog->zl_dmu_pool, 0);
2153
2154	zilog->zl_replay = B_TRUE;
2155	zilog->zl_replay_time = ddi_get_lbolt();
2156	ASSERT(zilog->zl_replay_blks == 0);
2157	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2158	    zh->zh_claim_txg);
2159	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2160
2161	zil_destroy(zilog, B_FALSE);
2162	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2163	zilog->zl_replay = B_FALSE;
2164}
2165
2166boolean_t
2167zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2168{
2169	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2170		return (B_TRUE);
2171
2172	if (zilog->zl_replay) {
2173		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2174		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2175		    zilog->zl_replaying_seq;
2176		return (B_TRUE);
2177	}
2178
2179	return (B_FALSE);
2180}
2181
2182/* ARGSUSED */
2183int
2184zil_vdev_offline(const char *osname, void *arg)
2185{
2186	int error;
2187
2188	error = zil_suspend(osname, NULL);
2189	if (error != 0)
2190		return (SET_ERROR(EEXIST));
2191	return (0);
2192}
2193