zil.c revision 310516
1156230Smux/*
2156230Smux * CDDL HEADER START
3156230Smux *
4156230Smux * The contents of this file are subject to the terms of the
5156230Smux * Common Development and Distribution License (the "License").
6156230Smux * You may not use this file except in compliance with the License.
7156230Smux *
8156230Smux * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9156230Smux * or http://www.opensolaris.org/os/licensing.
10156230Smux * See the License for the specific language governing permissions
11156230Smux * and limitations under the License.
12156230Smux *
13156230Smux * When distributing Covered Code, include this CDDL HEADER in each
14156230Smux * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15156230Smux * If applicable, add the following below this CDDL HEADER, with the
16156230Smux * fields enclosed by brackets "[]" replaced with your own identifying
17156230Smux * information: Portions Copyright [yyyy] [name of copyright owner]
18156230Smux *
19156230Smux * CDDL HEADER END
20156230Smux */
21156230Smux/*
22156230Smux * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23156230Smux * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24156230Smux * Copyright (c) 2014 Integros [integros.com]
25156230Smux */
26156230Smux
27156230Smux/* Portions Copyright 2010 Robert Milkowski */
28156230Smux
29156230Smux#include <sys/zfs_context.h>
30156230Smux#include <sys/spa.h>
31156230Smux#include <sys/dmu.h>
32156230Smux#include <sys/zap.h>
33156230Smux#include <sys/arc.h>
34156230Smux#include <sys/stat.h>
35156230Smux#include <sys/resource.h>
36156230Smux#include <sys/zil.h>
37156230Smux#include <sys/zil_impl.h>
38156230Smux#include <sys/dsl_dataset.h>
39156230Smux#include <sys/vdev_impl.h>
40156230Smux#include <sys/dmu_tx.h>
41156230Smux#include <sys/dsl_pool.h>
42250227Sjkim
43156230Smux/*
44156230Smux * The zfs intent log (ZIL) saves transaction records of system calls
45156230Smux * that change the file system in memory with enough information
46156230Smux * to be able to replay them. These are stored in memory until
47156230Smux * either the DMU transaction group (txg) commits them to the stable pool
48156230Smux * and they can be discarded, or they are flushed to the stable log
49156230Smux * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50156230Smux * requirement. In the event of a panic or power fail then those log
51156230Smux * records (transactions) are replayed.
52156230Smux *
53156230Smux * There is one ZIL per file system. Its on-disk (pool) format consists
54156230Smux * of 3 parts:
55156230Smux *
56156230Smux * 	- ZIL header
57156230Smux * 	- ZIL blocks
58156701Smux * 	- ZIL records
59156230Smux *
60156230Smux * A log record holds a system call transaction. Log blocks can
61156230Smux * hold many log records and the blocks are chained together.
62156230Smux * Each ZIL block contains a block pointer (blkptr_t) to the next
63156230Smux * ZIL block in the chain. The ZIL header points to the first
64156230Smux * block in the chain. Note there is not a fixed place in the pool
65156230Smux * to hold blocks. They are dynamically allocated and freed as
66156230Smux * needed from the blocks available. Figure X shows the ZIL structure:
67156230Smux */
68156230Smux
69156230Smux/*
70156230Smux * Disable intent logging replay.  This global ZIL switch affects all pools.
71156230Smux */
72156230Smuxint zil_replay_disable = 0;
73156230SmuxSYSCTL_DECL(_vfs_zfs);
74156230SmuxTUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
75156230SmuxSYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
76156230Smux    &zil_replay_disable, 0, "Disable intent logging replay");
77156230Smux
78156230Smux/*
79156230Smux * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
85SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
86    &zfs_nocacheflush, 0, "Disable cache flush");
87boolean_t zfs_trim_enabled = B_TRUE;
88SYSCTL_DECL(_vfs_zfs_trim);
89TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
90SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
91    "Enable ZFS TRIM");
92
93static kmem_cache_t *zil_lwb_cache;
94
95#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
96    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
97
98
99/*
100 * ziltest is by and large an ugly hack, but very useful in
101 * checking replay without tedious work.
102 * When running ziltest we want to keep all itx's and so maintain
103 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
104 * We subtract TXG_CONCURRENT_STATES to allow for common code.
105 */
106#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
107
108static int
109zil_bp_compare(const void *x1, const void *x2)
110{
111	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
112	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
113
114	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
115		return (-1);
116	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
117		return (1);
118
119	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
120		return (-1);
121	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
122		return (1);
123
124	return (0);
125}
126
127static void
128zil_bp_tree_init(zilog_t *zilog)
129{
130	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
131	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
132}
133
134static void
135zil_bp_tree_fini(zilog_t *zilog)
136{
137	avl_tree_t *t = &zilog->zl_bp_tree;
138	zil_bp_node_t *zn;
139	void *cookie = NULL;
140
141	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
142		kmem_free(zn, sizeof (zil_bp_node_t));
143
144	avl_destroy(t);
145}
146
147int
148zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
149{
150	avl_tree_t *t = &zilog->zl_bp_tree;
151	const dva_t *dva;
152	zil_bp_node_t *zn;
153	avl_index_t where;
154
155	if (BP_IS_EMBEDDED(bp))
156		return (0);
157
158	dva = BP_IDENTITY(bp);
159
160	if (avl_find(t, dva, &where) != NULL)
161		return (SET_ERROR(EEXIST));
162
163	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
164	zn->zn_dva = *dva;
165	avl_insert(t, zn, where);
166
167	return (0);
168}
169
170static zil_header_t *
171zil_header_in_syncing_context(zilog_t *zilog)
172{
173	return ((zil_header_t *)zilog->zl_header);
174}
175
176static void
177zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
178{
179	zio_cksum_t *zc = &bp->blk_cksum;
180
181	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
182	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
183	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
184	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
185}
186
187/*
188 * Read a log block and make sure it's valid.
189 */
190static int
191zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
192    char **end)
193{
194	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
195	arc_flags_t aflags = ARC_FLAG_WAIT;
196	arc_buf_t *abuf = NULL;
197	zbookmark_phys_t zb;
198	int error;
199
200	if (zilog->zl_header->zh_claim_txg == 0)
201		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
202
203	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
204		zio_flags |= ZIO_FLAG_SPECULATIVE;
205
206	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
207	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
208
209	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
210	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
211
212	if (error == 0) {
213		zio_cksum_t cksum = bp->blk_cksum;
214
215		/*
216		 * Validate the checksummed log block.
217		 *
218		 * Sequence numbers should be... sequential.  The checksum
219		 * verifier for the next block should be bp's checksum plus 1.
220		 *
221		 * Also check the log chain linkage and size used.
222		 */
223		cksum.zc_word[ZIL_ZC_SEQ]++;
224
225		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
226			zil_chain_t *zilc = abuf->b_data;
227			char *lr = (char *)(zilc + 1);
228			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
229
230			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
231			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
232				error = SET_ERROR(ECKSUM);
233			} else {
234				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
235				bcopy(lr, dst, len);
236				*end = (char *)dst + len;
237				*nbp = zilc->zc_next_blk;
238			}
239		} else {
240			char *lr = abuf->b_data;
241			uint64_t size = BP_GET_LSIZE(bp);
242			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
243
244			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
245			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
246			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
247				error = SET_ERROR(ECKSUM);
248			} else {
249				ASSERT3U(zilc->zc_nused, <=,
250				    SPA_OLD_MAXBLOCKSIZE);
251				bcopy(lr, dst, zilc->zc_nused);
252				*end = (char *)dst + zilc->zc_nused;
253				*nbp = zilc->zc_next_blk;
254			}
255		}
256
257		arc_buf_destroy(abuf, &abuf);
258	}
259
260	return (error);
261}
262
263/*
264 * Read a TX_WRITE log data block.
265 */
266static int
267zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
268{
269	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
270	const blkptr_t *bp = &lr->lr_blkptr;
271	arc_flags_t aflags = ARC_FLAG_WAIT;
272	arc_buf_t *abuf = NULL;
273	zbookmark_phys_t zb;
274	int error;
275
276	if (BP_IS_HOLE(bp)) {
277		if (wbuf != NULL)
278			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
279		return (0);
280	}
281
282	if (zilog->zl_header->zh_claim_txg == 0)
283		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
284
285	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
286	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
287
288	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
289	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
290
291	if (error == 0) {
292		if (wbuf != NULL)
293			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
294		arc_buf_destroy(abuf, &abuf);
295	}
296
297	return (error);
298}
299
300/*
301 * Parse the intent log, and call parse_func for each valid record within.
302 */
303int
304zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
305    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
306{
307	const zil_header_t *zh = zilog->zl_header;
308	boolean_t claimed = !!zh->zh_claim_txg;
309	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
310	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
311	uint64_t max_blk_seq = 0;
312	uint64_t max_lr_seq = 0;
313	uint64_t blk_count = 0;
314	uint64_t lr_count = 0;
315	blkptr_t blk, next_blk;
316	char *lrbuf, *lrp;
317	int error = 0;
318
319	/*
320	 * Old logs didn't record the maximum zh_claim_lr_seq.
321	 */
322	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
323		claim_lr_seq = UINT64_MAX;
324
325	/*
326	 * Starting at the block pointed to by zh_log we read the log chain.
327	 * For each block in the chain we strongly check that block to
328	 * ensure its validity.  We stop when an invalid block is found.
329	 * For each block pointer in the chain we call parse_blk_func().
330	 * For each record in each valid block we call parse_lr_func().
331	 * If the log has been claimed, stop if we encounter a sequence
332	 * number greater than the highest claimed sequence number.
333	 */
334	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
335	zil_bp_tree_init(zilog);
336
337	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
338		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
339		int reclen;
340		char *end;
341
342		if (blk_seq > claim_blk_seq)
343			break;
344		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
345			break;
346		ASSERT3U(max_blk_seq, <, blk_seq);
347		max_blk_seq = blk_seq;
348		blk_count++;
349
350		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
351			break;
352
353		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
354		if (error != 0)
355			break;
356
357		for (lrp = lrbuf; lrp < end; lrp += reclen) {
358			lr_t *lr = (lr_t *)lrp;
359			reclen = lr->lrc_reclen;
360			ASSERT3U(reclen, >=, sizeof (lr_t));
361			if (lr->lrc_seq > claim_lr_seq)
362				goto done;
363			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
364				goto done;
365			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
366			max_lr_seq = lr->lrc_seq;
367			lr_count++;
368		}
369	}
370done:
371	zilog->zl_parse_error = error;
372	zilog->zl_parse_blk_seq = max_blk_seq;
373	zilog->zl_parse_lr_seq = max_lr_seq;
374	zilog->zl_parse_blk_count = blk_count;
375	zilog->zl_parse_lr_count = lr_count;
376
377	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
378	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
379
380	zil_bp_tree_fini(zilog);
381	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
382
383	return (error);
384}
385
386static int
387zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
388{
389	/*
390	 * Claim log block if not already committed and not already claimed.
391	 * If tx == NULL, just verify that the block is claimable.
392	 */
393	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
394	    zil_bp_tree_add(zilog, bp) != 0)
395		return (0);
396
397	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
398	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
399	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
400}
401
402static int
403zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
404{
405	lr_write_t *lr = (lr_write_t *)lrc;
406	int error;
407
408	if (lrc->lrc_txtype != TX_WRITE)
409		return (0);
410
411	/*
412	 * If the block is not readable, don't claim it.  This can happen
413	 * in normal operation when a log block is written to disk before
414	 * some of the dmu_sync() blocks it points to.  In this case, the
415	 * transaction cannot have been committed to anyone (we would have
416	 * waited for all writes to be stable first), so it is semantically
417	 * correct to declare this the end of the log.
418	 */
419	if (lr->lr_blkptr.blk_birth >= first_txg &&
420	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
421		return (error);
422	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
423}
424
425/* ARGSUSED */
426static int
427zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
428{
429	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
430
431	return (0);
432}
433
434static int
435zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
436{
437	lr_write_t *lr = (lr_write_t *)lrc;
438	blkptr_t *bp = &lr->lr_blkptr;
439
440	/*
441	 * If we previously claimed it, we need to free it.
442	 */
443	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
444	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
445	    !BP_IS_HOLE(bp))
446		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
447
448	return (0);
449}
450
451static lwb_t *
452zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
453{
454	lwb_t *lwb;
455
456	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
457	lwb->lwb_zilog = zilog;
458	lwb->lwb_blk = *bp;
459	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
460	lwb->lwb_max_txg = txg;
461	lwb->lwb_zio = NULL;
462	lwb->lwb_tx = NULL;
463	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
464		lwb->lwb_nused = sizeof (zil_chain_t);
465		lwb->lwb_sz = BP_GET_LSIZE(bp);
466	} else {
467		lwb->lwb_nused = 0;
468		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
469	}
470
471	mutex_enter(&zilog->zl_lock);
472	list_insert_tail(&zilog->zl_lwb_list, lwb);
473	mutex_exit(&zilog->zl_lock);
474
475	return (lwb);
476}
477
478/*
479 * Called when we create in-memory log transactions so that we know
480 * to cleanup the itxs at the end of spa_sync().
481 */
482void
483zilog_dirty(zilog_t *zilog, uint64_t txg)
484{
485	dsl_pool_t *dp = zilog->zl_dmu_pool;
486	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
487
488	if (ds->ds_is_snapshot)
489		panic("dirtying snapshot!");
490
491	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
492		/* up the hold count until we can be written out */
493		dmu_buf_add_ref(ds->ds_dbuf, zilog);
494	}
495}
496
497/*
498 * Determine if the zil is dirty in the specified txg. Callers wanting to
499 * ensure that the dirty state does not change must hold the itxg_lock for
500 * the specified txg. Holding the lock will ensure that the zil cannot be
501 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
502 * state.
503 */
504boolean_t
505zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
506{
507	dsl_pool_t *dp = zilog->zl_dmu_pool;
508
509	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
510		return (B_TRUE);
511	return (B_FALSE);
512}
513
514/*
515 * Determine if the zil is dirty. The zil is considered dirty if it has
516 * any pending itx records that have not been cleaned by zil_clean().
517 */
518boolean_t
519zilog_is_dirty(zilog_t *zilog)
520{
521	dsl_pool_t *dp = zilog->zl_dmu_pool;
522
523	for (int t = 0; t < TXG_SIZE; t++) {
524		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
525			return (B_TRUE);
526	}
527	return (B_FALSE);
528}
529
530/*
531 * Create an on-disk intent log.
532 */
533static lwb_t *
534zil_create(zilog_t *zilog)
535{
536	const zil_header_t *zh = zilog->zl_header;
537	lwb_t *lwb = NULL;
538	uint64_t txg = 0;
539	dmu_tx_t *tx = NULL;
540	blkptr_t blk;
541	int error = 0;
542
543	/*
544	 * Wait for any previous destroy to complete.
545	 */
546	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
547
548	ASSERT(zh->zh_claim_txg == 0);
549	ASSERT(zh->zh_replay_seq == 0);
550
551	blk = zh->zh_log;
552
553	/*
554	 * Allocate an initial log block if:
555	 *    - there isn't one already
556	 *    - the existing block is the wrong endianess
557	 */
558	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
559		tx = dmu_tx_create(zilog->zl_os);
560		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
561		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
562		txg = dmu_tx_get_txg(tx);
563
564		if (!BP_IS_HOLE(&blk)) {
565			zio_free_zil(zilog->zl_spa, txg, &blk);
566			BP_ZERO(&blk);
567		}
568
569		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
570		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
571
572		if (error == 0)
573			zil_init_log_chain(zilog, &blk);
574	}
575
576	/*
577	 * Allocate a log write buffer (lwb) for the first log block.
578	 */
579	if (error == 0)
580		lwb = zil_alloc_lwb(zilog, &blk, txg);
581
582	/*
583	 * If we just allocated the first log block, commit our transaction
584	 * and wait for zil_sync() to stuff the block poiner into zh_log.
585	 * (zh is part of the MOS, so we cannot modify it in open context.)
586	 */
587	if (tx != NULL) {
588		dmu_tx_commit(tx);
589		txg_wait_synced(zilog->zl_dmu_pool, txg);
590	}
591
592	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
593
594	return (lwb);
595}
596
597/*
598 * In one tx, free all log blocks and clear the log header.
599 * If keep_first is set, then we're replaying a log with no content.
600 * We want to keep the first block, however, so that the first
601 * synchronous transaction doesn't require a txg_wait_synced()
602 * in zil_create().  We don't need to txg_wait_synced() here either
603 * when keep_first is set, because both zil_create() and zil_destroy()
604 * will wait for any in-progress destroys to complete.
605 */
606void
607zil_destroy(zilog_t *zilog, boolean_t keep_first)
608{
609	const zil_header_t *zh = zilog->zl_header;
610	lwb_t *lwb;
611	dmu_tx_t *tx;
612	uint64_t txg;
613
614	/*
615	 * Wait for any previous destroy to complete.
616	 */
617	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
618
619	zilog->zl_old_header = *zh;		/* debugging aid */
620
621	if (BP_IS_HOLE(&zh->zh_log))
622		return;
623
624	tx = dmu_tx_create(zilog->zl_os);
625	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
626	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
627	txg = dmu_tx_get_txg(tx);
628
629	mutex_enter(&zilog->zl_lock);
630
631	ASSERT3U(zilog->zl_destroy_txg, <, txg);
632	zilog->zl_destroy_txg = txg;
633	zilog->zl_keep_first = keep_first;
634
635	if (!list_is_empty(&zilog->zl_lwb_list)) {
636		ASSERT(zh->zh_claim_txg == 0);
637		VERIFY(!keep_first);
638		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
639			list_remove(&zilog->zl_lwb_list, lwb);
640			if (lwb->lwb_buf != NULL)
641				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
642			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
643			kmem_cache_free(zil_lwb_cache, lwb);
644		}
645	} else if (!keep_first) {
646		zil_destroy_sync(zilog, tx);
647	}
648	mutex_exit(&zilog->zl_lock);
649
650	dmu_tx_commit(tx);
651}
652
653void
654zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
655{
656	ASSERT(list_is_empty(&zilog->zl_lwb_list));
657	(void) zil_parse(zilog, zil_free_log_block,
658	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
659}
660
661int
662zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
663{
664	dmu_tx_t *tx = txarg;
665	uint64_t first_txg = dmu_tx_get_txg(tx);
666	zilog_t *zilog;
667	zil_header_t *zh;
668	objset_t *os;
669	int error;
670
671	error = dmu_objset_own_obj(dp, ds->ds_object,
672	    DMU_OST_ANY, B_FALSE, FTAG, &os);
673	if (error != 0) {
674		/*
675		 * EBUSY indicates that the objset is inconsistent, in which
676		 * case it can not have a ZIL.
677		 */
678		if (error != EBUSY) {
679			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
680			    (unsigned long long)ds->ds_object, error);
681		}
682		return (0);
683	}
684
685	zilog = dmu_objset_zil(os);
686	zh = zil_header_in_syncing_context(zilog);
687
688	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
689		if (!BP_IS_HOLE(&zh->zh_log))
690			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
691		BP_ZERO(&zh->zh_log);
692		dsl_dataset_dirty(dmu_objset_ds(os), tx);
693		dmu_objset_disown(os, FTAG);
694		return (0);
695	}
696
697	/*
698	 * Claim all log blocks if we haven't already done so, and remember
699	 * the highest claimed sequence number.  This ensures that if we can
700	 * read only part of the log now (e.g. due to a missing device),
701	 * but we can read the entire log later, we will not try to replay
702	 * or destroy beyond the last block we successfully claimed.
703	 */
704	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
705	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
706		(void) zil_parse(zilog, zil_claim_log_block,
707		    zil_claim_log_record, tx, first_txg);
708		zh->zh_claim_txg = first_txg;
709		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
710		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
711		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
712			zh->zh_flags |= ZIL_REPLAY_NEEDED;
713		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
714		dsl_dataset_dirty(dmu_objset_ds(os), tx);
715	}
716
717	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
718	dmu_objset_disown(os, FTAG);
719	return (0);
720}
721
722/*
723 * Check the log by walking the log chain.
724 * Checksum errors are ok as they indicate the end of the chain.
725 * Any other error (no device or read failure) returns an error.
726 */
727/* ARGSUSED */
728int
729zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
730{
731	zilog_t *zilog;
732	objset_t *os;
733	blkptr_t *bp;
734	int error;
735
736	ASSERT(tx == NULL);
737
738	error = dmu_objset_from_ds(ds, &os);
739	if (error != 0) {
740		cmn_err(CE_WARN, "can't open objset %llu, error %d",
741		    (unsigned long long)ds->ds_object, error);
742		return (0);
743	}
744
745	zilog = dmu_objset_zil(os);
746	bp = (blkptr_t *)&zilog->zl_header->zh_log;
747
748	/*
749	 * Check the first block and determine if it's on a log device
750	 * which may have been removed or faulted prior to loading this
751	 * pool.  If so, there's no point in checking the rest of the log
752	 * as its content should have already been synced to the pool.
753	 */
754	if (!BP_IS_HOLE(bp)) {
755		vdev_t *vd;
756		boolean_t valid = B_TRUE;
757
758		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
759		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
760		if (vd->vdev_islog && vdev_is_dead(vd))
761			valid = vdev_log_state_valid(vd);
762		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
763
764		if (!valid)
765			return (0);
766	}
767
768	/*
769	 * Because tx == NULL, zil_claim_log_block() will not actually claim
770	 * any blocks, but just determine whether it is possible to do so.
771	 * In addition to checking the log chain, zil_claim_log_block()
772	 * will invoke zio_claim() with a done func of spa_claim_notify(),
773	 * which will update spa_max_claim_txg.  See spa_load() for details.
774	 */
775	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
776	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
777
778	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
779}
780
781static int
782zil_vdev_compare(const void *x1, const void *x2)
783{
784	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
785	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
786
787	if (v1 < v2)
788		return (-1);
789	if (v1 > v2)
790		return (1);
791
792	return (0);
793}
794
795void
796zil_add_block(zilog_t *zilog, const blkptr_t *bp)
797{
798	avl_tree_t *t = &zilog->zl_vdev_tree;
799	avl_index_t where;
800	zil_vdev_node_t *zv, zvsearch;
801	int ndvas = BP_GET_NDVAS(bp);
802	int i;
803
804	if (zfs_nocacheflush)
805		return;
806
807	ASSERT(zilog->zl_writer);
808
809	/*
810	 * Even though we're zl_writer, we still need a lock because the
811	 * zl_get_data() callbacks may have dmu_sync() done callbacks
812	 * that will run concurrently.
813	 */
814	mutex_enter(&zilog->zl_vdev_lock);
815	for (i = 0; i < ndvas; i++) {
816		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
817		if (avl_find(t, &zvsearch, &where) == NULL) {
818			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
819			zv->zv_vdev = zvsearch.zv_vdev;
820			avl_insert(t, zv, where);
821		}
822	}
823	mutex_exit(&zilog->zl_vdev_lock);
824}
825
826static void
827zil_flush_vdevs(zilog_t *zilog)
828{
829	spa_t *spa = zilog->zl_spa;
830	avl_tree_t *t = &zilog->zl_vdev_tree;
831	void *cookie = NULL;
832	zil_vdev_node_t *zv;
833	zio_t *zio;
834
835	ASSERT(zilog->zl_writer);
836
837	/*
838	 * We don't need zl_vdev_lock here because we're the zl_writer,
839	 * and all zl_get_data() callbacks are done.
840	 */
841	if (avl_numnodes(t) == 0)
842		return;
843
844	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
845
846	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
847
848	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
849		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
850		if (vd != NULL)
851			zio_flush(zio, vd);
852		kmem_free(zv, sizeof (*zv));
853	}
854
855	/*
856	 * Wait for all the flushes to complete.  Not all devices actually
857	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
858	 */
859	(void) zio_wait(zio);
860
861	spa_config_exit(spa, SCL_STATE, FTAG);
862}
863
864/*
865 * Function called when a log block write completes
866 */
867static void
868zil_lwb_write_done(zio_t *zio)
869{
870	lwb_t *lwb = zio->io_private;
871	zilog_t *zilog = lwb->lwb_zilog;
872	dmu_tx_t *tx = lwb->lwb_tx;
873
874	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
875	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
876	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
877	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
878	ASSERT(!BP_IS_GANG(zio->io_bp));
879	ASSERT(!BP_IS_HOLE(zio->io_bp));
880	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
881
882	/*
883	 * Ensure the lwb buffer pointer is cleared before releasing
884	 * the txg. If we have had an allocation failure and
885	 * the txg is waiting to sync then we want want zil_sync()
886	 * to remove the lwb so that it's not picked up as the next new
887	 * one in zil_commit_writer(). zil_sync() will only remove
888	 * the lwb if lwb_buf is null.
889	 */
890	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
891	mutex_enter(&zilog->zl_lock);
892	lwb->lwb_buf = NULL;
893	lwb->lwb_tx = NULL;
894	mutex_exit(&zilog->zl_lock);
895
896	/*
897	 * Now that we've written this log block, we have a stable pointer
898	 * to the next block in the chain, so it's OK to let the txg in
899	 * which we allocated the next block sync.
900	 */
901	dmu_tx_commit(tx);
902}
903
904/*
905 * Initialize the io for a log block.
906 */
907static void
908zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
909{
910	zbookmark_phys_t zb;
911
912	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
913	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
914	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
915
916	if (zilog->zl_root_zio == NULL) {
917		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
918		    ZIO_FLAG_CANFAIL);
919	}
920	if (lwb->lwb_zio == NULL) {
921		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
922		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
923		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
924		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
925	}
926}
927
928/*
929 * Define a limited set of intent log block sizes.
930 *
931 * These must be a multiple of 4KB. Note only the amount used (again
932 * aligned to 4KB) actually gets written. However, we can't always just
933 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
934 */
935uint64_t zil_block_buckets[] = {
936    4096,		/* non TX_WRITE */
937    8192+4096,		/* data base */
938    32*1024 + 4096, 	/* NFS writes */
939    UINT64_MAX
940};
941
942/*
943 * Use the slog as long as the logbias is 'latency' and the current commit size
944 * is less than the limit or the total list size is less than 2X the limit.
945 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
946 */
947uint64_t zil_slog_limit = 1024 * 1024;
948#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
949	(((zilog)->zl_cur_used < zil_slog_limit) || \
950	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
951
952/*
953 * Start a log block write and advance to the next log block.
954 * Calls are serialized.
955 */
956static lwb_t *
957zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
958{
959	lwb_t *nlwb = NULL;
960	zil_chain_t *zilc;
961	spa_t *spa = zilog->zl_spa;
962	blkptr_t *bp;
963	dmu_tx_t *tx;
964	uint64_t txg;
965	uint64_t zil_blksz, wsz;
966	int i, error;
967
968	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
969		zilc = (zil_chain_t *)lwb->lwb_buf;
970		bp = &zilc->zc_next_blk;
971	} else {
972		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
973		bp = &zilc->zc_next_blk;
974	}
975
976	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
977
978	/*
979	 * Allocate the next block and save its address in this block
980	 * before writing it in order to establish the log chain.
981	 * Note that if the allocation of nlwb synced before we wrote
982	 * the block that points at it (lwb), we'd leak it if we crashed.
983	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
984	 * We dirty the dataset to ensure that zil_sync() will be called
985	 * to clean up in the event of allocation failure or I/O failure.
986	 */
987	tx = dmu_tx_create(zilog->zl_os);
988	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
989	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
990	txg = dmu_tx_get_txg(tx);
991
992	lwb->lwb_tx = tx;
993
994	/*
995	 * Log blocks are pre-allocated. Here we select the size of the next
996	 * block, based on size used in the last block.
997	 * - first find the smallest bucket that will fit the block from a
998	 *   limited set of block sizes. This is because it's faster to write
999	 *   blocks allocated from the same metaslab as they are adjacent or
1000	 *   close.
1001	 * - next find the maximum from the new suggested size and an array of
1002	 *   previous sizes. This lessens a picket fence effect of wrongly
1003	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1004	 *   requests.
1005	 *
1006	 * Note we only write what is used, but we can't just allocate
1007	 * the maximum block size because we can exhaust the available
1008	 * pool log space.
1009	 */
1010	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1011	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1012		continue;
1013	zil_blksz = zil_block_buckets[i];
1014	if (zil_blksz == UINT64_MAX)
1015		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1016	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1017	for (i = 0; i < ZIL_PREV_BLKS; i++)
1018		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1019	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1020
1021	BP_ZERO(bp);
1022	/* pass the old blkptr in order to spread log blocks across devs */
1023	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1024	    USE_SLOG(zilog));
1025	if (error == 0) {
1026		ASSERT3U(bp->blk_birth, ==, txg);
1027		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1028		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1029
1030		/*
1031		 * Allocate a new log write buffer (lwb).
1032		 */
1033		nlwb = zil_alloc_lwb(zilog, bp, txg);
1034
1035		/* Record the block for later vdev flushing */
1036		zil_add_block(zilog, &lwb->lwb_blk);
1037	}
1038
1039	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1040		/* For Slim ZIL only write what is used. */
1041		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1042		ASSERT3U(wsz, <=, lwb->lwb_sz);
1043		zio_shrink(lwb->lwb_zio, wsz);
1044
1045	} else {
1046		wsz = lwb->lwb_sz;
1047	}
1048
1049	zilc->zc_pad = 0;
1050	zilc->zc_nused = lwb->lwb_nused;
1051	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1052
1053	/*
1054	 * clear unused data for security
1055	 */
1056	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1057
1058	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1059
1060	/*
1061	 * If there was an allocation failure then nlwb will be null which
1062	 * forces a txg_wait_synced().
1063	 */
1064	return (nlwb);
1065}
1066
1067static lwb_t *
1068zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1069{
1070	lr_t *lrc = &itx->itx_lr; /* common log record */
1071	lr_write_t *lrw = (lr_write_t *)lrc;
1072	char *lr_buf;
1073	uint64_t txg = lrc->lrc_txg;
1074	uint64_t reclen = lrc->lrc_reclen;
1075	uint64_t dlen = 0;
1076
1077	if (lwb == NULL)
1078		return (NULL);
1079
1080	ASSERT(lwb->lwb_buf != NULL);
1081
1082	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1083		dlen = P2ROUNDUP_TYPED(
1084		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1085
1086	zilog->zl_cur_used += (reclen + dlen);
1087
1088	zil_lwb_write_init(zilog, lwb);
1089
1090	/*
1091	 * If this record won't fit in the current log block, start a new one.
1092	 */
1093	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1094		lwb = zil_lwb_write_start(zilog, lwb);
1095		if (lwb == NULL)
1096			return (NULL);
1097		zil_lwb_write_init(zilog, lwb);
1098		ASSERT(LWB_EMPTY(lwb));
1099		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1100			txg_wait_synced(zilog->zl_dmu_pool, txg);
1101			return (lwb);
1102		}
1103	}
1104
1105	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1106	bcopy(lrc, lr_buf, reclen);
1107	lrc = (lr_t *)lr_buf;
1108	lrw = (lr_write_t *)lrc;
1109
1110	/*
1111	 * If it's a write, fetch the data or get its blkptr as appropriate.
1112	 */
1113	if (lrc->lrc_txtype == TX_WRITE) {
1114		if (txg > spa_freeze_txg(zilog->zl_spa))
1115			txg_wait_synced(zilog->zl_dmu_pool, txg);
1116		if (itx->itx_wr_state != WR_COPIED) {
1117			char *dbuf;
1118			int error;
1119
1120			if (dlen) {
1121				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1122				dbuf = lr_buf + reclen;
1123				lrw->lr_common.lrc_reclen += dlen;
1124			} else {
1125				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1126				dbuf = NULL;
1127			}
1128			error = zilog->zl_get_data(
1129			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1130			if (error == EIO) {
1131				txg_wait_synced(zilog->zl_dmu_pool, txg);
1132				return (lwb);
1133			}
1134			if (error != 0) {
1135				ASSERT(error == ENOENT || error == EEXIST ||
1136				    error == EALREADY);
1137				return (lwb);
1138			}
1139		}
1140	}
1141
1142	/*
1143	 * We're actually making an entry, so update lrc_seq to be the
1144	 * log record sequence number.  Note that this is generally not
1145	 * equal to the itx sequence number because not all transactions
1146	 * are synchronous, and sometimes spa_sync() gets there first.
1147	 */
1148	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1149	lwb->lwb_nused += reclen + dlen;
1150	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1151	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1152	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1153
1154	return (lwb);
1155}
1156
1157itx_t *
1158zil_itx_create(uint64_t txtype, size_t lrsize)
1159{
1160	itx_t *itx;
1161
1162	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1163
1164	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1165	itx->itx_lr.lrc_txtype = txtype;
1166	itx->itx_lr.lrc_reclen = lrsize;
1167	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1168	itx->itx_lr.lrc_seq = 0;	/* defensive */
1169	itx->itx_sync = B_TRUE;		/* default is synchronous */
1170
1171	return (itx);
1172}
1173
1174void
1175zil_itx_destroy(itx_t *itx)
1176{
1177	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1178}
1179
1180/*
1181 * Free up the sync and async itxs. The itxs_t has already been detached
1182 * so no locks are needed.
1183 */
1184static void
1185zil_itxg_clean(itxs_t *itxs)
1186{
1187	itx_t *itx;
1188	list_t *list;
1189	avl_tree_t *t;
1190	void *cookie;
1191	itx_async_node_t *ian;
1192
1193	list = &itxs->i_sync_list;
1194	while ((itx = list_head(list)) != NULL) {
1195		list_remove(list, itx);
1196		kmem_free(itx, offsetof(itx_t, itx_lr) +
1197		    itx->itx_lr.lrc_reclen);
1198	}
1199
1200	cookie = NULL;
1201	t = &itxs->i_async_tree;
1202	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1203		list = &ian->ia_list;
1204		while ((itx = list_head(list)) != NULL) {
1205			list_remove(list, itx);
1206			kmem_free(itx, offsetof(itx_t, itx_lr) +
1207			    itx->itx_lr.lrc_reclen);
1208		}
1209		list_destroy(list);
1210		kmem_free(ian, sizeof (itx_async_node_t));
1211	}
1212	avl_destroy(t);
1213
1214	kmem_free(itxs, sizeof (itxs_t));
1215}
1216
1217static int
1218zil_aitx_compare(const void *x1, const void *x2)
1219{
1220	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1221	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1222
1223	if (o1 < o2)
1224		return (-1);
1225	if (o1 > o2)
1226		return (1);
1227
1228	return (0);
1229}
1230
1231/*
1232 * Remove all async itx with the given oid.
1233 */
1234static void
1235zil_remove_async(zilog_t *zilog, uint64_t oid)
1236{
1237	uint64_t otxg, txg;
1238	itx_async_node_t *ian;
1239	avl_tree_t *t;
1240	avl_index_t where;
1241	list_t clean_list;
1242	itx_t *itx;
1243
1244	ASSERT(oid != 0);
1245	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1246
1247	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1248		otxg = ZILTEST_TXG;
1249	else
1250		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1251
1252	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1253		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1254
1255		mutex_enter(&itxg->itxg_lock);
1256		if (itxg->itxg_txg != txg) {
1257			mutex_exit(&itxg->itxg_lock);
1258			continue;
1259		}
1260
1261		/*
1262		 * Locate the object node and append its list.
1263		 */
1264		t = &itxg->itxg_itxs->i_async_tree;
1265		ian = avl_find(t, &oid, &where);
1266		if (ian != NULL)
1267			list_move_tail(&clean_list, &ian->ia_list);
1268		mutex_exit(&itxg->itxg_lock);
1269	}
1270	while ((itx = list_head(&clean_list)) != NULL) {
1271		list_remove(&clean_list, itx);
1272		kmem_free(itx, offsetof(itx_t, itx_lr) +
1273		    itx->itx_lr.lrc_reclen);
1274	}
1275	list_destroy(&clean_list);
1276}
1277
1278void
1279zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1280{
1281	uint64_t txg;
1282	itxg_t *itxg;
1283	itxs_t *itxs, *clean = NULL;
1284
1285	/*
1286	 * Object ids can be re-instantiated in the next txg so
1287	 * remove any async transactions to avoid future leaks.
1288	 * This can happen if a fsync occurs on the re-instantiated
1289	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1290	 * the new file data and flushes a write record for the old object.
1291	 */
1292	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1293		zil_remove_async(zilog, itx->itx_oid);
1294
1295	/*
1296	 * Ensure the data of a renamed file is committed before the rename.
1297	 */
1298	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1299		zil_async_to_sync(zilog, itx->itx_oid);
1300
1301	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1302		txg = ZILTEST_TXG;
1303	else
1304		txg = dmu_tx_get_txg(tx);
1305
1306	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1307	mutex_enter(&itxg->itxg_lock);
1308	itxs = itxg->itxg_itxs;
1309	if (itxg->itxg_txg != txg) {
1310		if (itxs != NULL) {
1311			/*
1312			 * The zil_clean callback hasn't got around to cleaning
1313			 * this itxg. Save the itxs for release below.
1314			 * This should be rare.
1315			 */
1316			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1317			itxg->itxg_sod = 0;
1318			clean = itxg->itxg_itxs;
1319		}
1320		ASSERT(itxg->itxg_sod == 0);
1321		itxg->itxg_txg = txg;
1322		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1323
1324		list_create(&itxs->i_sync_list, sizeof (itx_t),
1325		    offsetof(itx_t, itx_node));
1326		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1327		    sizeof (itx_async_node_t),
1328		    offsetof(itx_async_node_t, ia_node));
1329	}
1330	if (itx->itx_sync) {
1331		list_insert_tail(&itxs->i_sync_list, itx);
1332		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1333		itxg->itxg_sod += itx->itx_sod;
1334	} else {
1335		avl_tree_t *t = &itxs->i_async_tree;
1336		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1337		itx_async_node_t *ian;
1338		avl_index_t where;
1339
1340		ian = avl_find(t, &foid, &where);
1341		if (ian == NULL) {
1342			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1343			list_create(&ian->ia_list, sizeof (itx_t),
1344			    offsetof(itx_t, itx_node));
1345			ian->ia_foid = foid;
1346			avl_insert(t, ian, where);
1347		}
1348		list_insert_tail(&ian->ia_list, itx);
1349	}
1350
1351	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1352	zilog_dirty(zilog, txg);
1353	mutex_exit(&itxg->itxg_lock);
1354
1355	/* Release the old itxs now we've dropped the lock */
1356	if (clean != NULL)
1357		zil_itxg_clean(clean);
1358}
1359
1360/*
1361 * If there are any in-memory intent log transactions which have now been
1362 * synced then start up a taskq to free them. We should only do this after we
1363 * have written out the uberblocks (i.e. txg has been comitted) so that
1364 * don't inadvertently clean out in-memory log records that would be required
1365 * by zil_commit().
1366 */
1367void
1368zil_clean(zilog_t *zilog, uint64_t synced_txg)
1369{
1370	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1371	itxs_t *clean_me;
1372
1373	mutex_enter(&itxg->itxg_lock);
1374	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1375		mutex_exit(&itxg->itxg_lock);
1376		return;
1377	}
1378	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1379	ASSERT(itxg->itxg_txg != 0);
1380	ASSERT(zilog->zl_clean_taskq != NULL);
1381	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1382	itxg->itxg_sod = 0;
1383	clean_me = itxg->itxg_itxs;
1384	itxg->itxg_itxs = NULL;
1385	itxg->itxg_txg = 0;
1386	mutex_exit(&itxg->itxg_lock);
1387	/*
1388	 * Preferably start a task queue to free up the old itxs but
1389	 * if taskq_dispatch can't allocate resources to do that then
1390	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1391	 * created a bad performance problem.
1392	 */
1393	if (taskq_dispatch(zilog->zl_clean_taskq,
1394	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1395		zil_itxg_clean(clean_me);
1396}
1397
1398/*
1399 * Get the list of itxs to commit into zl_itx_commit_list.
1400 */
1401static void
1402zil_get_commit_list(zilog_t *zilog)
1403{
1404	uint64_t otxg, txg;
1405	list_t *commit_list = &zilog->zl_itx_commit_list;
1406	uint64_t push_sod = 0;
1407
1408	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1409		otxg = ZILTEST_TXG;
1410	else
1411		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1412
1413	/*
1414	 * This is inherently racy, since there is nothing to prevent
1415	 * the last synced txg from changing. That's okay since we'll
1416	 * only commit things in the future.
1417	 */
1418	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1419		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1420
1421		mutex_enter(&itxg->itxg_lock);
1422		if (itxg->itxg_txg != txg) {
1423			mutex_exit(&itxg->itxg_lock);
1424			continue;
1425		}
1426
1427		/*
1428		 * If we're adding itx records to the zl_itx_commit_list,
1429		 * then the zil better be dirty in this "txg". We can assert
1430		 * that here since we're holding the itxg_lock which will
1431		 * prevent spa_sync from cleaning it. Once we add the itxs
1432		 * to the zl_itx_commit_list we must commit it to disk even
1433		 * if it's unnecessary (i.e. the txg was synced).
1434		 */
1435		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1436		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1437		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1438		push_sod += itxg->itxg_sod;
1439		itxg->itxg_sod = 0;
1440
1441		mutex_exit(&itxg->itxg_lock);
1442	}
1443	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1444}
1445
1446/*
1447 * Move the async itxs for a specified object to commit into sync lists.
1448 */
1449void
1450zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1451{
1452	uint64_t otxg, txg;
1453	itx_async_node_t *ian;
1454	avl_tree_t *t;
1455	avl_index_t where;
1456
1457	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1458		otxg = ZILTEST_TXG;
1459	else
1460		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1461
1462	/*
1463	 * This is inherently racy, since there is nothing to prevent
1464	 * the last synced txg from changing.
1465	 */
1466	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1467		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1468
1469		mutex_enter(&itxg->itxg_lock);
1470		if (itxg->itxg_txg != txg) {
1471			mutex_exit(&itxg->itxg_lock);
1472			continue;
1473		}
1474
1475		/*
1476		 * If a foid is specified then find that node and append its
1477		 * list. Otherwise walk the tree appending all the lists
1478		 * to the sync list. We add to the end rather than the
1479		 * beginning to ensure the create has happened.
1480		 */
1481		t = &itxg->itxg_itxs->i_async_tree;
1482		if (foid != 0) {
1483			ian = avl_find(t, &foid, &where);
1484			if (ian != NULL) {
1485				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1486				    &ian->ia_list);
1487			}
1488		} else {
1489			void *cookie = NULL;
1490
1491			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1492				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1493				    &ian->ia_list);
1494				list_destroy(&ian->ia_list);
1495				kmem_free(ian, sizeof (itx_async_node_t));
1496			}
1497		}
1498		mutex_exit(&itxg->itxg_lock);
1499	}
1500}
1501
1502static void
1503zil_commit_writer(zilog_t *zilog)
1504{
1505	uint64_t txg;
1506	itx_t *itx;
1507	lwb_t *lwb;
1508	spa_t *spa = zilog->zl_spa;
1509	int error = 0;
1510
1511	ASSERT(zilog->zl_root_zio == NULL);
1512
1513	mutex_exit(&zilog->zl_lock);
1514
1515	zil_get_commit_list(zilog);
1516
1517	/*
1518	 * Return if there's nothing to commit before we dirty the fs by
1519	 * calling zil_create().
1520	 */
1521	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1522		mutex_enter(&zilog->zl_lock);
1523		return;
1524	}
1525
1526	if (zilog->zl_suspend) {
1527		lwb = NULL;
1528	} else {
1529		lwb = list_tail(&zilog->zl_lwb_list);
1530		if (lwb == NULL)
1531			lwb = zil_create(zilog);
1532	}
1533
1534	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1535	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1536		txg = itx->itx_lr.lrc_txg;
1537		ASSERT3U(txg, !=, 0);
1538
1539		/*
1540		 * This is inherently racy and may result in us writing
1541		 * out a log block for a txg that was just synced. This is
1542		 * ok since we'll end cleaning up that log block the next
1543		 * time we call zil_sync().
1544		 */
1545		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1546			lwb = zil_lwb_commit(zilog, itx, lwb);
1547		list_remove(&zilog->zl_itx_commit_list, itx);
1548		kmem_free(itx, offsetof(itx_t, itx_lr)
1549		    + itx->itx_lr.lrc_reclen);
1550	}
1551	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1552
1553	/* write the last block out */
1554	if (lwb != NULL && lwb->lwb_zio != NULL)
1555		lwb = zil_lwb_write_start(zilog, lwb);
1556
1557	zilog->zl_cur_used = 0;
1558
1559	/*
1560	 * Wait if necessary for the log blocks to be on stable storage.
1561	 */
1562	if (zilog->zl_root_zio) {
1563		error = zio_wait(zilog->zl_root_zio);
1564		zilog->zl_root_zio = NULL;
1565		zil_flush_vdevs(zilog);
1566	}
1567
1568	if (error || lwb == NULL)
1569		txg_wait_synced(zilog->zl_dmu_pool, 0);
1570
1571	mutex_enter(&zilog->zl_lock);
1572
1573	/*
1574	 * Remember the highest committed log sequence number for ztest.
1575	 * We only update this value when all the log writes succeeded,
1576	 * because ztest wants to ASSERT that it got the whole log chain.
1577	 */
1578	if (error == 0 && lwb != NULL)
1579		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1580}
1581
1582/*
1583 * Commit zfs transactions to stable storage.
1584 * If foid is 0 push out all transactions, otherwise push only those
1585 * for that object or might reference that object.
1586 *
1587 * itxs are committed in batches. In a heavily stressed zil there will be
1588 * a commit writer thread who is writing out a bunch of itxs to the log
1589 * for a set of committing threads (cthreads) in the same batch as the writer.
1590 * Those cthreads are all waiting on the same cv for that batch.
1591 *
1592 * There will also be a different and growing batch of threads that are
1593 * waiting to commit (qthreads). When the committing batch completes
1594 * a transition occurs such that the cthreads exit and the qthreads become
1595 * cthreads. One of the new cthreads becomes the writer thread for the
1596 * batch. Any new threads arriving become new qthreads.
1597 *
1598 * Only 2 condition variables are needed and there's no transition
1599 * between the two cvs needed. They just flip-flop between qthreads
1600 * and cthreads.
1601 *
1602 * Using this scheme we can efficiently wakeup up only those threads
1603 * that have been committed.
1604 */
1605void
1606zil_commit(zilog_t *zilog, uint64_t foid)
1607{
1608	uint64_t mybatch;
1609
1610	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1611		return;
1612
1613	/* move the async itxs for the foid to the sync queues */
1614	zil_async_to_sync(zilog, foid);
1615
1616	mutex_enter(&zilog->zl_lock);
1617	mybatch = zilog->zl_next_batch;
1618	while (zilog->zl_writer) {
1619		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1620		if (mybatch <= zilog->zl_com_batch) {
1621			mutex_exit(&zilog->zl_lock);
1622			return;
1623		}
1624	}
1625
1626	zilog->zl_next_batch++;
1627	zilog->zl_writer = B_TRUE;
1628	zil_commit_writer(zilog);
1629	zilog->zl_com_batch = mybatch;
1630	zilog->zl_writer = B_FALSE;
1631	mutex_exit(&zilog->zl_lock);
1632
1633	/* wake up one thread to become the next writer */
1634	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1635
1636	/* wake up all threads waiting for this batch to be committed */
1637	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1638}
1639
1640/*
1641 * Called in syncing context to free committed log blocks and update log header.
1642 */
1643void
1644zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1645{
1646	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1647	uint64_t txg = dmu_tx_get_txg(tx);
1648	spa_t *spa = zilog->zl_spa;
1649	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1650	lwb_t *lwb;
1651
1652	/*
1653	 * We don't zero out zl_destroy_txg, so make sure we don't try
1654	 * to destroy it twice.
1655	 */
1656	if (spa_sync_pass(spa) != 1)
1657		return;
1658
1659	mutex_enter(&zilog->zl_lock);
1660
1661	ASSERT(zilog->zl_stop_sync == 0);
1662
1663	if (*replayed_seq != 0) {
1664		ASSERT(zh->zh_replay_seq < *replayed_seq);
1665		zh->zh_replay_seq = *replayed_seq;
1666		*replayed_seq = 0;
1667	}
1668
1669	if (zilog->zl_destroy_txg == txg) {
1670		blkptr_t blk = zh->zh_log;
1671
1672		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1673
1674		bzero(zh, sizeof (zil_header_t));
1675		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1676
1677		if (zilog->zl_keep_first) {
1678			/*
1679			 * If this block was part of log chain that couldn't
1680			 * be claimed because a device was missing during
1681			 * zil_claim(), but that device later returns,
1682			 * then this block could erroneously appear valid.
1683			 * To guard against this, assign a new GUID to the new
1684			 * log chain so it doesn't matter what blk points to.
1685			 */
1686			zil_init_log_chain(zilog, &blk);
1687			zh->zh_log = blk;
1688		}
1689	}
1690
1691	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1692		zh->zh_log = lwb->lwb_blk;
1693		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1694			break;
1695		list_remove(&zilog->zl_lwb_list, lwb);
1696		zio_free_zil(spa, txg, &lwb->lwb_blk);
1697		kmem_cache_free(zil_lwb_cache, lwb);
1698
1699		/*
1700		 * If we don't have anything left in the lwb list then
1701		 * we've had an allocation failure and we need to zero
1702		 * out the zil_header blkptr so that we don't end
1703		 * up freeing the same block twice.
1704		 */
1705		if (list_head(&zilog->zl_lwb_list) == NULL)
1706			BP_ZERO(&zh->zh_log);
1707	}
1708	mutex_exit(&zilog->zl_lock);
1709}
1710
1711void
1712zil_init(void)
1713{
1714	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1715	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1716}
1717
1718void
1719zil_fini(void)
1720{
1721	kmem_cache_destroy(zil_lwb_cache);
1722}
1723
1724void
1725zil_set_sync(zilog_t *zilog, uint64_t sync)
1726{
1727	zilog->zl_sync = sync;
1728}
1729
1730void
1731zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1732{
1733	zilog->zl_logbias = logbias;
1734}
1735
1736zilog_t *
1737zil_alloc(objset_t *os, zil_header_t *zh_phys)
1738{
1739	zilog_t *zilog;
1740
1741	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1742
1743	zilog->zl_header = zh_phys;
1744	zilog->zl_os = os;
1745	zilog->zl_spa = dmu_objset_spa(os);
1746	zilog->zl_dmu_pool = dmu_objset_pool(os);
1747	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1748	zilog->zl_logbias = dmu_objset_logbias(os);
1749	zilog->zl_sync = dmu_objset_syncprop(os);
1750	zilog->zl_next_batch = 1;
1751
1752	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1753
1754	for (int i = 0; i < TXG_SIZE; i++) {
1755		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1756		    MUTEX_DEFAULT, NULL);
1757	}
1758
1759	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1760	    offsetof(lwb_t, lwb_node));
1761
1762	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1763	    offsetof(itx_t, itx_node));
1764
1765	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1766
1767	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1768	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1769
1770	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1771	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1772	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1773	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1774
1775	return (zilog);
1776}
1777
1778void
1779zil_free(zilog_t *zilog)
1780{
1781	zilog->zl_stop_sync = 1;
1782
1783	ASSERT0(zilog->zl_suspend);
1784	ASSERT0(zilog->zl_suspending);
1785
1786	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1787	list_destroy(&zilog->zl_lwb_list);
1788
1789	avl_destroy(&zilog->zl_vdev_tree);
1790	mutex_destroy(&zilog->zl_vdev_lock);
1791
1792	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1793	list_destroy(&zilog->zl_itx_commit_list);
1794
1795	for (int i = 0; i < TXG_SIZE; i++) {
1796		/*
1797		 * It's possible for an itx to be generated that doesn't dirty
1798		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1799		 * callback to remove the entry. We remove those here.
1800		 *
1801		 * Also free up the ziltest itxs.
1802		 */
1803		if (zilog->zl_itxg[i].itxg_itxs)
1804			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1805		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1806	}
1807
1808	mutex_destroy(&zilog->zl_lock);
1809
1810	cv_destroy(&zilog->zl_cv_writer);
1811	cv_destroy(&zilog->zl_cv_suspend);
1812	cv_destroy(&zilog->zl_cv_batch[0]);
1813	cv_destroy(&zilog->zl_cv_batch[1]);
1814
1815	kmem_free(zilog, sizeof (zilog_t));
1816}
1817
1818/*
1819 * Open an intent log.
1820 */
1821zilog_t *
1822zil_open(objset_t *os, zil_get_data_t *get_data)
1823{
1824	zilog_t *zilog = dmu_objset_zil(os);
1825
1826	ASSERT(zilog->zl_clean_taskq == NULL);
1827	ASSERT(zilog->zl_get_data == NULL);
1828	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1829
1830	zilog->zl_get_data = get_data;
1831	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1832	    2, 2, TASKQ_PREPOPULATE);
1833
1834	return (zilog);
1835}
1836
1837/*
1838 * Close an intent log.
1839 */
1840void
1841zil_close(zilog_t *zilog)
1842{
1843	lwb_t *lwb;
1844	uint64_t txg = 0;
1845
1846	zil_commit(zilog, 0); /* commit all itx */
1847
1848	/*
1849	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1850	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1851	 * callbacks have occurred that may clean the zil.  Only then can we
1852	 * destroy the zl_clean_taskq.
1853	 */
1854	mutex_enter(&zilog->zl_lock);
1855	lwb = list_tail(&zilog->zl_lwb_list);
1856	if (lwb != NULL)
1857		txg = lwb->lwb_max_txg;
1858	mutex_exit(&zilog->zl_lock);
1859	if (txg)
1860		txg_wait_synced(zilog->zl_dmu_pool, txg);
1861
1862	if (zilog_is_dirty(zilog))
1863		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1864	VERIFY(!zilog_is_dirty(zilog));
1865
1866	taskq_destroy(zilog->zl_clean_taskq);
1867	zilog->zl_clean_taskq = NULL;
1868	zilog->zl_get_data = NULL;
1869
1870	/*
1871	 * We should have only one LWB left on the list; remove it now.
1872	 */
1873	mutex_enter(&zilog->zl_lock);
1874	lwb = list_head(&zilog->zl_lwb_list);
1875	if (lwb != NULL) {
1876		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1877		list_remove(&zilog->zl_lwb_list, lwb);
1878		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1879		kmem_cache_free(zil_lwb_cache, lwb);
1880	}
1881	mutex_exit(&zilog->zl_lock);
1882}
1883
1884static char *suspend_tag = "zil suspending";
1885
1886/*
1887 * Suspend an intent log.  While in suspended mode, we still honor
1888 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1889 * On old version pools, we suspend the log briefly when taking a
1890 * snapshot so that it will have an empty intent log.
1891 *
1892 * Long holds are not really intended to be used the way we do here --
1893 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1894 * could fail.  Therefore we take pains to only put a long hold if it is
1895 * actually necessary.  Fortunately, it will only be necessary if the
1896 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1897 * will already have a long hold, so we are not really making things any worse.
1898 *
1899 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1900 * zvol_state_t), and use their mechanism to prevent their hold from being
1901 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1902 * very little gain.
1903 *
1904 * if cookiep == NULL, this does both the suspend & resume.
1905 * Otherwise, it returns with the dataset "long held", and the cookie
1906 * should be passed into zil_resume().
1907 */
1908int
1909zil_suspend(const char *osname, void **cookiep)
1910{
1911	objset_t *os;
1912	zilog_t *zilog;
1913	const zil_header_t *zh;
1914	int error;
1915
1916	error = dmu_objset_hold(osname, suspend_tag, &os);
1917	if (error != 0)
1918		return (error);
1919	zilog = dmu_objset_zil(os);
1920
1921	mutex_enter(&zilog->zl_lock);
1922	zh = zilog->zl_header;
1923
1924	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1925		mutex_exit(&zilog->zl_lock);
1926		dmu_objset_rele(os, suspend_tag);
1927		return (SET_ERROR(EBUSY));
1928	}
1929
1930	/*
1931	 * Don't put a long hold in the cases where we can avoid it.  This
1932	 * is when there is no cookie so we are doing a suspend & resume
1933	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1934	 * for the suspend because it's already suspended, or there's no ZIL.
1935	 */
1936	if (cookiep == NULL && !zilog->zl_suspending &&
1937	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1938		mutex_exit(&zilog->zl_lock);
1939		dmu_objset_rele(os, suspend_tag);
1940		return (0);
1941	}
1942
1943	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1944	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1945
1946	zilog->zl_suspend++;
1947
1948	if (zilog->zl_suspend > 1) {
1949		/*
1950		 * Someone else is already suspending it.
1951		 * Just wait for them to finish.
1952		 */
1953
1954		while (zilog->zl_suspending)
1955			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1956		mutex_exit(&zilog->zl_lock);
1957
1958		if (cookiep == NULL)
1959			zil_resume(os);
1960		else
1961			*cookiep = os;
1962		return (0);
1963	}
1964
1965	/*
1966	 * If there is no pointer to an on-disk block, this ZIL must not
1967	 * be active (e.g. filesystem not mounted), so there's nothing
1968	 * to clean up.
1969	 */
1970	if (BP_IS_HOLE(&zh->zh_log)) {
1971		ASSERT(cookiep != NULL); /* fast path already handled */
1972
1973		*cookiep = os;
1974		mutex_exit(&zilog->zl_lock);
1975		return (0);
1976	}
1977
1978	zilog->zl_suspending = B_TRUE;
1979	mutex_exit(&zilog->zl_lock);
1980
1981	zil_commit(zilog, 0);
1982
1983	zil_destroy(zilog, B_FALSE);
1984
1985	mutex_enter(&zilog->zl_lock);
1986	zilog->zl_suspending = B_FALSE;
1987	cv_broadcast(&zilog->zl_cv_suspend);
1988	mutex_exit(&zilog->zl_lock);
1989
1990	if (cookiep == NULL)
1991		zil_resume(os);
1992	else
1993		*cookiep = os;
1994	return (0);
1995}
1996
1997void
1998zil_resume(void *cookie)
1999{
2000	objset_t *os = cookie;
2001	zilog_t *zilog = dmu_objset_zil(os);
2002
2003	mutex_enter(&zilog->zl_lock);
2004	ASSERT(zilog->zl_suspend != 0);
2005	zilog->zl_suspend--;
2006	mutex_exit(&zilog->zl_lock);
2007	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2008	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2009}
2010
2011typedef struct zil_replay_arg {
2012	zil_replay_func_t **zr_replay;
2013	void		*zr_arg;
2014	boolean_t	zr_byteswap;
2015	char		*zr_lr;
2016} zil_replay_arg_t;
2017
2018static int
2019zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2020{
2021	char name[ZFS_MAX_DATASET_NAME_LEN];
2022
2023	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2024
2025	dmu_objset_name(zilog->zl_os, name);
2026
2027	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2028	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2029	    (u_longlong_t)lr->lrc_seq,
2030	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2031	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2032
2033	return (error);
2034}
2035
2036static int
2037zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2038{
2039	zil_replay_arg_t *zr = zra;
2040	const zil_header_t *zh = zilog->zl_header;
2041	uint64_t reclen = lr->lrc_reclen;
2042	uint64_t txtype = lr->lrc_txtype;
2043	int error = 0;
2044
2045	zilog->zl_replaying_seq = lr->lrc_seq;
2046
2047	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2048		return (0);
2049
2050	if (lr->lrc_txg < claim_txg)		/* already committed */
2051		return (0);
2052
2053	/* Strip case-insensitive bit, still present in log record */
2054	txtype &= ~TX_CI;
2055
2056	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2057		return (zil_replay_error(zilog, lr, EINVAL));
2058
2059	/*
2060	 * If this record type can be logged out of order, the object
2061	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2062	 */
2063	if (TX_OOO(txtype)) {
2064		error = dmu_object_info(zilog->zl_os,
2065		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2066		if (error == ENOENT || error == EEXIST)
2067			return (0);
2068	}
2069
2070	/*
2071	 * Make a copy of the data so we can revise and extend it.
2072	 */
2073	bcopy(lr, zr->zr_lr, reclen);
2074
2075	/*
2076	 * If this is a TX_WRITE with a blkptr, suck in the data.
2077	 */
2078	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2079		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2080		    zr->zr_lr + reclen);
2081		if (error != 0)
2082			return (zil_replay_error(zilog, lr, error));
2083	}
2084
2085	/*
2086	 * The log block containing this lr may have been byteswapped
2087	 * so that we can easily examine common fields like lrc_txtype.
2088	 * However, the log is a mix of different record types, and only the
2089	 * replay vectors know how to byteswap their records.  Therefore, if
2090	 * the lr was byteswapped, undo it before invoking the replay vector.
2091	 */
2092	if (zr->zr_byteswap)
2093		byteswap_uint64_array(zr->zr_lr, reclen);
2094
2095	/*
2096	 * We must now do two things atomically: replay this log record,
2097	 * and update the log header sequence number to reflect the fact that
2098	 * we did so. At the end of each replay function the sequence number
2099	 * is updated if we are in replay mode.
2100	 */
2101	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2102	if (error != 0) {
2103		/*
2104		 * The DMU's dnode layer doesn't see removes until the txg
2105		 * commits, so a subsequent claim can spuriously fail with
2106		 * EEXIST. So if we receive any error we try syncing out
2107		 * any removes then retry the transaction.  Note that we
2108		 * specify B_FALSE for byteswap now, so we don't do it twice.
2109		 */
2110		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2111		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2112		if (error != 0)
2113			return (zil_replay_error(zilog, lr, error));
2114	}
2115	return (0);
2116}
2117
2118/* ARGSUSED */
2119static int
2120zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2121{
2122	zilog->zl_replay_blks++;
2123
2124	return (0);
2125}
2126
2127/*
2128 * If this dataset has a non-empty intent log, replay it and destroy it.
2129 */
2130void
2131zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2132{
2133	zilog_t *zilog = dmu_objset_zil(os);
2134	const zil_header_t *zh = zilog->zl_header;
2135	zil_replay_arg_t zr;
2136
2137	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2138		zil_destroy(zilog, B_TRUE);
2139		return;
2140	}
2141
2142	zr.zr_replay = replay_func;
2143	zr.zr_arg = arg;
2144	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2145	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2146
2147	/*
2148	 * Wait for in-progress removes to sync before starting replay.
2149	 */
2150	txg_wait_synced(zilog->zl_dmu_pool, 0);
2151
2152	zilog->zl_replay = B_TRUE;
2153	zilog->zl_replay_time = ddi_get_lbolt();
2154	ASSERT(zilog->zl_replay_blks == 0);
2155	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2156	    zh->zh_claim_txg);
2157	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2158
2159	zil_destroy(zilog, B_FALSE);
2160	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2161	zilog->zl_replay = B_FALSE;
2162}
2163
2164boolean_t
2165zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2166{
2167	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2168		return (B_TRUE);
2169
2170	if (zilog->zl_replay) {
2171		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2172		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2173		    zilog->zl_replaying_seq;
2174		return (B_TRUE);
2175	}
2176
2177	return (B_FALSE);
2178}
2179
2180/* ARGSUSED */
2181int
2182zil_vdev_offline(const char *osname, void *arg)
2183{
2184	int error;
2185
2186	error = zil_suspend(osname, NULL);
2187	if (error != 0)
2188		return (SET_ERROR(EEXIST));
2189	return (0);
2190}
2191