zil.c revision 307266
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/dmu.h>
33#include <sys/zap.h>
34#include <sys/arc.h>
35#include <sys/stat.h>
36#include <sys/resource.h>
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
40#include <sys/vdev_impl.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_pool.h>
43
44/*
45 * The zfs intent log (ZIL) saves transaction records of system calls
46 * that change the file system in memory with enough information
47 * to be able to replay them. These are stored in memory until
48 * either the DMU transaction group (txg) commits them to the stable pool
49 * and they can be discarded, or they are flushed to the stable log
50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51 * requirement. In the event of a panic or power fail then those log
52 * records (transactions) are replayed.
53 *
54 * There is one ZIL per file system. Its on-disk (pool) format consists
55 * of 3 parts:
56 *
57 * 	- ZIL header
58 * 	- ZIL blocks
59 * 	- ZIL records
60 *
61 * A log record holds a system call transaction. Log blocks can
62 * hold many log records and the blocks are chained together.
63 * Each ZIL block contains a block pointer (blkptr_t) to the next
64 * ZIL block in the chain. The ZIL header points to the first
65 * block in the chain. Note there is not a fixed place in the pool
66 * to hold blocks. They are dynamically allocated and freed as
67 * needed from the blocks available. Figure X shows the ZIL structure:
68 */
69
70/*
71 * Disable intent logging replay.  This global ZIL switch affects all pools.
72 */
73int zil_replay_disable = 0;
74SYSCTL_DECL(_vfs_zfs);
75TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
76SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
77    &zil_replay_disable, 0, "Disable intent logging replay");
78
79/*
80 * Tunable parameter for debugging or performance analysis.  Setting
81 * zfs_nocacheflush will cause corruption on power loss if a volatile
82 * out-of-order write cache is enabled.
83 */
84boolean_t zfs_nocacheflush = B_FALSE;
85TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
86SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
87    &zfs_nocacheflush, 0, "Disable cache flush");
88boolean_t zfs_trim_enabled = B_TRUE;
89SYSCTL_DECL(_vfs_zfs_trim);
90TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
91SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
92    "Enable ZFS TRIM");
93
94static kmem_cache_t *zil_lwb_cache;
95
96static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
97
98#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
99    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
100
101
102/*
103 * ziltest is by and large an ugly hack, but very useful in
104 * checking replay without tedious work.
105 * When running ziltest we want to keep all itx's and so maintain
106 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
107 * We subtract TXG_CONCURRENT_STATES to allow for common code.
108 */
109#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
110
111static int
112zil_bp_compare(const void *x1, const void *x2)
113{
114	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
115	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
116
117	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
118		return (-1);
119	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
120		return (1);
121
122	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
123		return (-1);
124	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
125		return (1);
126
127	return (0);
128}
129
130static void
131zil_bp_tree_init(zilog_t *zilog)
132{
133	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
134	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
135}
136
137static void
138zil_bp_tree_fini(zilog_t *zilog)
139{
140	avl_tree_t *t = &zilog->zl_bp_tree;
141	zil_bp_node_t *zn;
142	void *cookie = NULL;
143
144	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
145		kmem_free(zn, sizeof (zil_bp_node_t));
146
147	avl_destroy(t);
148}
149
150int
151zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
152{
153	avl_tree_t *t = &zilog->zl_bp_tree;
154	const dva_t *dva;
155	zil_bp_node_t *zn;
156	avl_index_t where;
157
158	if (BP_IS_EMBEDDED(bp))
159		return (0);
160
161	dva = BP_IDENTITY(bp);
162
163	if (avl_find(t, dva, &where) != NULL)
164		return (SET_ERROR(EEXIST));
165
166	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
167	zn->zn_dva = *dva;
168	avl_insert(t, zn, where);
169
170	return (0);
171}
172
173static zil_header_t *
174zil_header_in_syncing_context(zilog_t *zilog)
175{
176	return ((zil_header_t *)zilog->zl_header);
177}
178
179static void
180zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
181{
182	zio_cksum_t *zc = &bp->blk_cksum;
183
184	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
185	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
186	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
187	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
188}
189
190/*
191 * Read a log block and make sure it's valid.
192 */
193static int
194zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
195    char **end)
196{
197	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
198	arc_flags_t aflags = ARC_FLAG_WAIT;
199	arc_buf_t *abuf = NULL;
200	zbookmark_phys_t zb;
201	int error;
202
203	if (zilog->zl_header->zh_claim_txg == 0)
204		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
205
206	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
207		zio_flags |= ZIO_FLAG_SPECULATIVE;
208
209	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
210	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
211
212	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
213	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
214
215	if (error == 0) {
216		zio_cksum_t cksum = bp->blk_cksum;
217
218		/*
219		 * Validate the checksummed log block.
220		 *
221		 * Sequence numbers should be... sequential.  The checksum
222		 * verifier for the next block should be bp's checksum plus 1.
223		 *
224		 * Also check the log chain linkage and size used.
225		 */
226		cksum.zc_word[ZIL_ZC_SEQ]++;
227
228		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
229			zil_chain_t *zilc = abuf->b_data;
230			char *lr = (char *)(zilc + 1);
231			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
232
233			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
234			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
235				error = SET_ERROR(ECKSUM);
236			} else {
237				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
238				bcopy(lr, dst, len);
239				*end = (char *)dst + len;
240				*nbp = zilc->zc_next_blk;
241			}
242		} else {
243			char *lr = abuf->b_data;
244			uint64_t size = BP_GET_LSIZE(bp);
245			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
246
247			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
248			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
249			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
250				error = SET_ERROR(ECKSUM);
251			} else {
252				ASSERT3U(zilc->zc_nused, <=,
253				    SPA_OLD_MAXBLOCKSIZE);
254				bcopy(lr, dst, zilc->zc_nused);
255				*end = (char *)dst + zilc->zc_nused;
256				*nbp = zilc->zc_next_blk;
257			}
258		}
259
260		arc_buf_destroy(abuf, &abuf);
261	}
262
263	return (error);
264}
265
266/*
267 * Read a TX_WRITE log data block.
268 */
269static int
270zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
271{
272	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
273	const blkptr_t *bp = &lr->lr_blkptr;
274	arc_flags_t aflags = ARC_FLAG_WAIT;
275	arc_buf_t *abuf = NULL;
276	zbookmark_phys_t zb;
277	int error;
278
279	if (BP_IS_HOLE(bp)) {
280		if (wbuf != NULL)
281			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
282		return (0);
283	}
284
285	if (zilog->zl_header->zh_claim_txg == 0)
286		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
287
288	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
289	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
290
291	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
292	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
293
294	if (error == 0) {
295		if (wbuf != NULL)
296			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
297		arc_buf_destroy(abuf, &abuf);
298	}
299
300	return (error);
301}
302
303/*
304 * Parse the intent log, and call parse_func for each valid record within.
305 */
306int
307zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
308    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
309{
310	const zil_header_t *zh = zilog->zl_header;
311	boolean_t claimed = !!zh->zh_claim_txg;
312	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
313	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
314	uint64_t max_blk_seq = 0;
315	uint64_t max_lr_seq = 0;
316	uint64_t blk_count = 0;
317	uint64_t lr_count = 0;
318	blkptr_t blk, next_blk;
319	char *lrbuf, *lrp;
320	int error = 0;
321
322	/*
323	 * Old logs didn't record the maximum zh_claim_lr_seq.
324	 */
325	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
326		claim_lr_seq = UINT64_MAX;
327
328	/*
329	 * Starting at the block pointed to by zh_log we read the log chain.
330	 * For each block in the chain we strongly check that block to
331	 * ensure its validity.  We stop when an invalid block is found.
332	 * For each block pointer in the chain we call parse_blk_func().
333	 * For each record in each valid block we call parse_lr_func().
334	 * If the log has been claimed, stop if we encounter a sequence
335	 * number greater than the highest claimed sequence number.
336	 */
337	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
338	zil_bp_tree_init(zilog);
339
340	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
341		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
342		int reclen;
343		char *end;
344
345		if (blk_seq > claim_blk_seq)
346			break;
347		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
348			break;
349		ASSERT3U(max_blk_seq, <, blk_seq);
350		max_blk_seq = blk_seq;
351		blk_count++;
352
353		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
354			break;
355
356		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
357		if (error != 0)
358			break;
359
360		for (lrp = lrbuf; lrp < end; lrp += reclen) {
361			lr_t *lr = (lr_t *)lrp;
362			reclen = lr->lrc_reclen;
363			ASSERT3U(reclen, >=, sizeof (lr_t));
364			if (lr->lrc_seq > claim_lr_seq)
365				goto done;
366			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
367				goto done;
368			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
369			max_lr_seq = lr->lrc_seq;
370			lr_count++;
371		}
372	}
373done:
374	zilog->zl_parse_error = error;
375	zilog->zl_parse_blk_seq = max_blk_seq;
376	zilog->zl_parse_lr_seq = max_lr_seq;
377	zilog->zl_parse_blk_count = blk_count;
378	zilog->zl_parse_lr_count = lr_count;
379
380	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
381	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
382
383	zil_bp_tree_fini(zilog);
384	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
385
386	return (error);
387}
388
389static int
390zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
391{
392	/*
393	 * Claim log block if not already committed and not already claimed.
394	 * If tx == NULL, just verify that the block is claimable.
395	 */
396	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
397	    zil_bp_tree_add(zilog, bp) != 0)
398		return (0);
399
400	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
401	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
402	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
403}
404
405static int
406zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
407{
408	lr_write_t *lr = (lr_write_t *)lrc;
409	int error;
410
411	if (lrc->lrc_txtype != TX_WRITE)
412		return (0);
413
414	/*
415	 * If the block is not readable, don't claim it.  This can happen
416	 * in normal operation when a log block is written to disk before
417	 * some of the dmu_sync() blocks it points to.  In this case, the
418	 * transaction cannot have been committed to anyone (we would have
419	 * waited for all writes to be stable first), so it is semantically
420	 * correct to declare this the end of the log.
421	 */
422	if (lr->lr_blkptr.blk_birth >= first_txg &&
423	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
424		return (error);
425	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
426}
427
428/* ARGSUSED */
429static int
430zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
431{
432	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
433
434	return (0);
435}
436
437static int
438zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
439{
440	lr_write_t *lr = (lr_write_t *)lrc;
441	blkptr_t *bp = &lr->lr_blkptr;
442
443	/*
444	 * If we previously claimed it, we need to free it.
445	 */
446	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
447	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
448	    !BP_IS_HOLE(bp))
449		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
450
451	return (0);
452}
453
454static lwb_t *
455zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
456{
457	lwb_t *lwb;
458
459	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
460	lwb->lwb_zilog = zilog;
461	lwb->lwb_blk = *bp;
462	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
463	lwb->lwb_max_txg = txg;
464	lwb->lwb_zio = NULL;
465	lwb->lwb_tx = NULL;
466	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
467		lwb->lwb_nused = sizeof (zil_chain_t);
468		lwb->lwb_sz = BP_GET_LSIZE(bp);
469	} else {
470		lwb->lwb_nused = 0;
471		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
472	}
473
474	mutex_enter(&zilog->zl_lock);
475	list_insert_tail(&zilog->zl_lwb_list, lwb);
476	mutex_exit(&zilog->zl_lock);
477
478	return (lwb);
479}
480
481/*
482 * Called when we create in-memory log transactions so that we know
483 * to cleanup the itxs at the end of spa_sync().
484 */
485void
486zilog_dirty(zilog_t *zilog, uint64_t txg)
487{
488	dsl_pool_t *dp = zilog->zl_dmu_pool;
489	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
490
491	if (ds->ds_is_snapshot)
492		panic("dirtying snapshot!");
493
494	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
495		/* up the hold count until we can be written out */
496		dmu_buf_add_ref(ds->ds_dbuf, zilog);
497	}
498}
499
500boolean_t
501zilog_is_dirty(zilog_t *zilog)
502{
503	dsl_pool_t *dp = zilog->zl_dmu_pool;
504
505	for (int t = 0; t < TXG_SIZE; t++) {
506		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
507			return (B_TRUE);
508	}
509	return (B_FALSE);
510}
511
512/*
513 * Create an on-disk intent log.
514 */
515static lwb_t *
516zil_create(zilog_t *zilog)
517{
518	const zil_header_t *zh = zilog->zl_header;
519	lwb_t *lwb = NULL;
520	uint64_t txg = 0;
521	dmu_tx_t *tx = NULL;
522	blkptr_t blk;
523	int error = 0;
524
525	/*
526	 * Wait for any previous destroy to complete.
527	 */
528	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
529
530	ASSERT(zh->zh_claim_txg == 0);
531	ASSERT(zh->zh_replay_seq == 0);
532
533	blk = zh->zh_log;
534
535	/*
536	 * Allocate an initial log block if:
537	 *    - there isn't one already
538	 *    - the existing block is the wrong endianess
539	 */
540	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
541		tx = dmu_tx_create(zilog->zl_os);
542		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
543		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
544		txg = dmu_tx_get_txg(tx);
545
546		if (!BP_IS_HOLE(&blk)) {
547			zio_free_zil(zilog->zl_spa, txg, &blk);
548			BP_ZERO(&blk);
549		}
550
551		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
552		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
553
554		if (error == 0)
555			zil_init_log_chain(zilog, &blk);
556	}
557
558	/*
559	 * Allocate a log write buffer (lwb) for the first log block.
560	 */
561	if (error == 0)
562		lwb = zil_alloc_lwb(zilog, &blk, txg);
563
564	/*
565	 * If we just allocated the first log block, commit our transaction
566	 * and wait for zil_sync() to stuff the block poiner into zh_log.
567	 * (zh is part of the MOS, so we cannot modify it in open context.)
568	 */
569	if (tx != NULL) {
570		dmu_tx_commit(tx);
571		txg_wait_synced(zilog->zl_dmu_pool, txg);
572	}
573
574	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
575
576	return (lwb);
577}
578
579/*
580 * In one tx, free all log blocks and clear the log header.
581 * If keep_first is set, then we're replaying a log with no content.
582 * We want to keep the first block, however, so that the first
583 * synchronous transaction doesn't require a txg_wait_synced()
584 * in zil_create().  We don't need to txg_wait_synced() here either
585 * when keep_first is set, because both zil_create() and zil_destroy()
586 * will wait for any in-progress destroys to complete.
587 */
588void
589zil_destroy(zilog_t *zilog, boolean_t keep_first)
590{
591	const zil_header_t *zh = zilog->zl_header;
592	lwb_t *lwb;
593	dmu_tx_t *tx;
594	uint64_t txg;
595
596	/*
597	 * Wait for any previous destroy to complete.
598	 */
599	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
600
601	zilog->zl_old_header = *zh;		/* debugging aid */
602
603	if (BP_IS_HOLE(&zh->zh_log))
604		return;
605
606	tx = dmu_tx_create(zilog->zl_os);
607	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
608	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
609	txg = dmu_tx_get_txg(tx);
610
611	mutex_enter(&zilog->zl_lock);
612
613	ASSERT3U(zilog->zl_destroy_txg, <, txg);
614	zilog->zl_destroy_txg = txg;
615	zilog->zl_keep_first = keep_first;
616
617	if (!list_is_empty(&zilog->zl_lwb_list)) {
618		ASSERT(zh->zh_claim_txg == 0);
619		VERIFY(!keep_first);
620		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
621			list_remove(&zilog->zl_lwb_list, lwb);
622			if (lwb->lwb_buf != NULL)
623				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
624			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
625			kmem_cache_free(zil_lwb_cache, lwb);
626		}
627	} else if (!keep_first) {
628		zil_destroy_sync(zilog, tx);
629	}
630	mutex_exit(&zilog->zl_lock);
631
632	dmu_tx_commit(tx);
633}
634
635void
636zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
637{
638	ASSERT(list_is_empty(&zilog->zl_lwb_list));
639	(void) zil_parse(zilog, zil_free_log_block,
640	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
641}
642
643int
644zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
645{
646	dmu_tx_t *tx = txarg;
647	uint64_t first_txg = dmu_tx_get_txg(tx);
648	zilog_t *zilog;
649	zil_header_t *zh;
650	objset_t *os;
651	int error;
652
653	error = dmu_objset_own_obj(dp, ds->ds_object,
654	    DMU_OST_ANY, B_FALSE, FTAG, &os);
655	if (error != 0) {
656		/*
657		 * EBUSY indicates that the objset is inconsistent, in which
658		 * case it can not have a ZIL.
659		 */
660		if (error != EBUSY) {
661			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
662			    (unsigned long long)ds->ds_object, error);
663		}
664		return (0);
665	}
666
667	zilog = dmu_objset_zil(os);
668	zh = zil_header_in_syncing_context(zilog);
669
670	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
671		if (!BP_IS_HOLE(&zh->zh_log))
672			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
673		BP_ZERO(&zh->zh_log);
674		dsl_dataset_dirty(dmu_objset_ds(os), tx);
675		dmu_objset_disown(os, FTAG);
676		return (0);
677	}
678
679	/*
680	 * Claim all log blocks if we haven't already done so, and remember
681	 * the highest claimed sequence number.  This ensures that if we can
682	 * read only part of the log now (e.g. due to a missing device),
683	 * but we can read the entire log later, we will not try to replay
684	 * or destroy beyond the last block we successfully claimed.
685	 */
686	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
687	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
688		(void) zil_parse(zilog, zil_claim_log_block,
689		    zil_claim_log_record, tx, first_txg);
690		zh->zh_claim_txg = first_txg;
691		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
692		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
693		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
694			zh->zh_flags |= ZIL_REPLAY_NEEDED;
695		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
696		dsl_dataset_dirty(dmu_objset_ds(os), tx);
697	}
698
699	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
700	dmu_objset_disown(os, FTAG);
701	return (0);
702}
703
704/*
705 * Check the log by walking the log chain.
706 * Checksum errors are ok as they indicate the end of the chain.
707 * Any other error (no device or read failure) returns an error.
708 */
709/* ARGSUSED */
710int
711zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
712{
713	zilog_t *zilog;
714	objset_t *os;
715	blkptr_t *bp;
716	int error;
717
718	ASSERT(tx == NULL);
719
720	error = dmu_objset_from_ds(ds, &os);
721	if (error != 0) {
722		cmn_err(CE_WARN, "can't open objset %llu, error %d",
723		    (unsigned long long)ds->ds_object, error);
724		return (0);
725	}
726
727	zilog = dmu_objset_zil(os);
728	bp = (blkptr_t *)&zilog->zl_header->zh_log;
729
730	/*
731	 * Check the first block and determine if it's on a log device
732	 * which may have been removed or faulted prior to loading this
733	 * pool.  If so, there's no point in checking the rest of the log
734	 * as its content should have already been synced to the pool.
735	 */
736	if (!BP_IS_HOLE(bp)) {
737		vdev_t *vd;
738		boolean_t valid = B_TRUE;
739
740		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
741		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
742		if (vd->vdev_islog && vdev_is_dead(vd))
743			valid = vdev_log_state_valid(vd);
744		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
745
746		if (!valid)
747			return (0);
748	}
749
750	/*
751	 * Because tx == NULL, zil_claim_log_block() will not actually claim
752	 * any blocks, but just determine whether it is possible to do so.
753	 * In addition to checking the log chain, zil_claim_log_block()
754	 * will invoke zio_claim() with a done func of spa_claim_notify(),
755	 * which will update spa_max_claim_txg.  See spa_load() for details.
756	 */
757	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
758	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
759
760	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
761}
762
763static int
764zil_vdev_compare(const void *x1, const void *x2)
765{
766	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
767	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
768
769	if (v1 < v2)
770		return (-1);
771	if (v1 > v2)
772		return (1);
773
774	return (0);
775}
776
777void
778zil_add_block(zilog_t *zilog, const blkptr_t *bp)
779{
780	avl_tree_t *t = &zilog->zl_vdev_tree;
781	avl_index_t where;
782	zil_vdev_node_t *zv, zvsearch;
783	int ndvas = BP_GET_NDVAS(bp);
784	int i;
785
786	if (zfs_nocacheflush)
787		return;
788
789	ASSERT(zilog->zl_writer);
790
791	/*
792	 * Even though we're zl_writer, we still need a lock because the
793	 * zl_get_data() callbacks may have dmu_sync() done callbacks
794	 * that will run concurrently.
795	 */
796	mutex_enter(&zilog->zl_vdev_lock);
797	for (i = 0; i < ndvas; i++) {
798		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
799		if (avl_find(t, &zvsearch, &where) == NULL) {
800			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
801			zv->zv_vdev = zvsearch.zv_vdev;
802			avl_insert(t, zv, where);
803		}
804	}
805	mutex_exit(&zilog->zl_vdev_lock);
806}
807
808static void
809zil_flush_vdevs(zilog_t *zilog)
810{
811	spa_t *spa = zilog->zl_spa;
812	avl_tree_t *t = &zilog->zl_vdev_tree;
813	void *cookie = NULL;
814	zil_vdev_node_t *zv;
815	zio_t *zio;
816
817	ASSERT(zilog->zl_writer);
818
819	/*
820	 * We don't need zl_vdev_lock here because we're the zl_writer,
821	 * and all zl_get_data() callbacks are done.
822	 */
823	if (avl_numnodes(t) == 0)
824		return;
825
826	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
827
828	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
829
830	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
831		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
832		if (vd != NULL)
833			zio_flush(zio, vd);
834		kmem_free(zv, sizeof (*zv));
835	}
836
837	/*
838	 * Wait for all the flushes to complete.  Not all devices actually
839	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
840	 */
841	(void) zio_wait(zio);
842
843	spa_config_exit(spa, SCL_STATE, FTAG);
844}
845
846/*
847 * Function called when a log block write completes
848 */
849static void
850zil_lwb_write_done(zio_t *zio)
851{
852	lwb_t *lwb = zio->io_private;
853	zilog_t *zilog = lwb->lwb_zilog;
854	dmu_tx_t *tx = lwb->lwb_tx;
855
856	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
857	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
858	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
859	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
860	ASSERT(!BP_IS_GANG(zio->io_bp));
861	ASSERT(!BP_IS_HOLE(zio->io_bp));
862	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
863
864	/*
865	 * Ensure the lwb buffer pointer is cleared before releasing
866	 * the txg. If we have had an allocation failure and
867	 * the txg is waiting to sync then we want want zil_sync()
868	 * to remove the lwb so that it's not picked up as the next new
869	 * one in zil_commit_writer(). zil_sync() will only remove
870	 * the lwb if lwb_buf is null.
871	 */
872	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
873	mutex_enter(&zilog->zl_lock);
874	lwb->lwb_buf = NULL;
875	lwb->lwb_tx = NULL;
876	mutex_exit(&zilog->zl_lock);
877
878	/*
879	 * Now that we've written this log block, we have a stable pointer
880	 * to the next block in the chain, so it's OK to let the txg in
881	 * which we allocated the next block sync.
882	 */
883	dmu_tx_commit(tx);
884}
885
886/*
887 * Initialize the io for a log block.
888 */
889static void
890zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
891{
892	zbookmark_phys_t zb;
893
894	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
895	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
896	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
897
898	if (zilog->zl_root_zio == NULL) {
899		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
900		    ZIO_FLAG_CANFAIL);
901	}
902	if (lwb->lwb_zio == NULL) {
903		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
904		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
905		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
906		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
907	}
908}
909
910/*
911 * Define a limited set of intent log block sizes.
912 *
913 * These must be a multiple of 4KB. Note only the amount used (again
914 * aligned to 4KB) actually gets written. However, we can't always just
915 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
916 */
917uint64_t zil_block_buckets[] = {
918    4096,		/* non TX_WRITE */
919    8192+4096,		/* data base */
920    32*1024 + 4096, 	/* NFS writes */
921    UINT64_MAX
922};
923
924/*
925 * Use the slog as long as the logbias is 'latency' and the current commit size
926 * is less than the limit or the total list size is less than 2X the limit.
927 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
928 */
929uint64_t zil_slog_limit = 1024 * 1024;
930#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
931	(((zilog)->zl_cur_used < zil_slog_limit) || \
932	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
933
934/*
935 * Start a log block write and advance to the next log block.
936 * Calls are serialized.
937 */
938static lwb_t *
939zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
940{
941	lwb_t *nlwb = NULL;
942	zil_chain_t *zilc;
943	spa_t *spa = zilog->zl_spa;
944	blkptr_t *bp;
945	dmu_tx_t *tx;
946	uint64_t txg;
947	uint64_t zil_blksz, wsz;
948	int i, error;
949
950	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
951		zilc = (zil_chain_t *)lwb->lwb_buf;
952		bp = &zilc->zc_next_blk;
953	} else {
954		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
955		bp = &zilc->zc_next_blk;
956	}
957
958	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
959
960	/*
961	 * Allocate the next block and save its address in this block
962	 * before writing it in order to establish the log chain.
963	 * Note that if the allocation of nlwb synced before we wrote
964	 * the block that points at it (lwb), we'd leak it if we crashed.
965	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
966	 * We dirty the dataset to ensure that zil_sync() will be called
967	 * to clean up in the event of allocation failure or I/O failure.
968	 */
969	tx = dmu_tx_create(zilog->zl_os);
970	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
971	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
972	txg = dmu_tx_get_txg(tx);
973
974	lwb->lwb_tx = tx;
975
976	/*
977	 * Log blocks are pre-allocated. Here we select the size of the next
978	 * block, based on size used in the last block.
979	 * - first find the smallest bucket that will fit the block from a
980	 *   limited set of block sizes. This is because it's faster to write
981	 *   blocks allocated from the same metaslab as they are adjacent or
982	 *   close.
983	 * - next find the maximum from the new suggested size and an array of
984	 *   previous sizes. This lessens a picket fence effect of wrongly
985	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
986	 *   requests.
987	 *
988	 * Note we only write what is used, but we can't just allocate
989	 * the maximum block size because we can exhaust the available
990	 * pool log space.
991	 */
992	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
993	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
994		continue;
995	zil_blksz = zil_block_buckets[i];
996	if (zil_blksz == UINT64_MAX)
997		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
998	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
999	for (i = 0; i < ZIL_PREV_BLKS; i++)
1000		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1001	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1002
1003	BP_ZERO(bp);
1004	/* pass the old blkptr in order to spread log blocks across devs */
1005	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1006	    USE_SLOG(zilog));
1007	if (error == 0) {
1008		ASSERT3U(bp->blk_birth, ==, txg);
1009		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1010		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1011
1012		/*
1013		 * Allocate a new log write buffer (lwb).
1014		 */
1015		nlwb = zil_alloc_lwb(zilog, bp, txg);
1016
1017		/* Record the block for later vdev flushing */
1018		zil_add_block(zilog, &lwb->lwb_blk);
1019	}
1020
1021	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1022		/* For Slim ZIL only write what is used. */
1023		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1024		ASSERT3U(wsz, <=, lwb->lwb_sz);
1025		zio_shrink(lwb->lwb_zio, wsz);
1026
1027	} else {
1028		wsz = lwb->lwb_sz;
1029	}
1030
1031	zilc->zc_pad = 0;
1032	zilc->zc_nused = lwb->lwb_nused;
1033	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1034
1035	/*
1036	 * clear unused data for security
1037	 */
1038	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1039
1040	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1041
1042	/*
1043	 * If there was an allocation failure then nlwb will be null which
1044	 * forces a txg_wait_synced().
1045	 */
1046	return (nlwb);
1047}
1048
1049static lwb_t *
1050zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1051{
1052	lr_t *lrc = &itx->itx_lr; /* common log record */
1053	lr_write_t *lrw = (lr_write_t *)lrc;
1054	char *lr_buf;
1055	uint64_t txg = lrc->lrc_txg;
1056	uint64_t reclen = lrc->lrc_reclen;
1057	uint64_t dlen = 0;
1058
1059	if (lwb == NULL)
1060		return (NULL);
1061
1062	ASSERT(lwb->lwb_buf != NULL);
1063	ASSERT(zilog_is_dirty(zilog) ||
1064	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1065
1066	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1067		dlen = P2ROUNDUP_TYPED(
1068		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1069
1070	zilog->zl_cur_used += (reclen + dlen);
1071
1072	zil_lwb_write_init(zilog, lwb);
1073
1074	/*
1075	 * If this record won't fit in the current log block, start a new one.
1076	 */
1077	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1078		lwb = zil_lwb_write_start(zilog, lwb);
1079		if (lwb == NULL)
1080			return (NULL);
1081		zil_lwb_write_init(zilog, lwb);
1082		ASSERT(LWB_EMPTY(lwb));
1083		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1084			txg_wait_synced(zilog->zl_dmu_pool, txg);
1085			return (lwb);
1086		}
1087	}
1088
1089	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1090	bcopy(lrc, lr_buf, reclen);
1091	lrc = (lr_t *)lr_buf;
1092	lrw = (lr_write_t *)lrc;
1093
1094	/*
1095	 * If it's a write, fetch the data or get its blkptr as appropriate.
1096	 */
1097	if (lrc->lrc_txtype == TX_WRITE) {
1098		if (txg > spa_freeze_txg(zilog->zl_spa))
1099			txg_wait_synced(zilog->zl_dmu_pool, txg);
1100		if (itx->itx_wr_state != WR_COPIED) {
1101			char *dbuf;
1102			int error;
1103
1104			if (dlen) {
1105				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1106				dbuf = lr_buf + reclen;
1107				lrw->lr_common.lrc_reclen += dlen;
1108			} else {
1109				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1110				dbuf = NULL;
1111			}
1112			error = zilog->zl_get_data(
1113			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1114			if (error == EIO) {
1115				txg_wait_synced(zilog->zl_dmu_pool, txg);
1116				return (lwb);
1117			}
1118			if (error != 0) {
1119				ASSERT(error == ENOENT || error == EEXIST ||
1120				    error == EALREADY);
1121				return (lwb);
1122			}
1123		}
1124	}
1125
1126	/*
1127	 * We're actually making an entry, so update lrc_seq to be the
1128	 * log record sequence number.  Note that this is generally not
1129	 * equal to the itx sequence number because not all transactions
1130	 * are synchronous, and sometimes spa_sync() gets there first.
1131	 */
1132	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1133	lwb->lwb_nused += reclen + dlen;
1134	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1135	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1136	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1137
1138	return (lwb);
1139}
1140
1141itx_t *
1142zil_itx_create(uint64_t txtype, size_t lrsize)
1143{
1144	itx_t *itx;
1145
1146	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1147
1148	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1149	itx->itx_lr.lrc_txtype = txtype;
1150	itx->itx_lr.lrc_reclen = lrsize;
1151	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1152	itx->itx_lr.lrc_seq = 0;	/* defensive */
1153	itx->itx_sync = B_TRUE;		/* default is synchronous */
1154
1155	return (itx);
1156}
1157
1158void
1159zil_itx_destroy(itx_t *itx)
1160{
1161	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1162}
1163
1164/*
1165 * Free up the sync and async itxs. The itxs_t has already been detached
1166 * so no locks are needed.
1167 */
1168static void
1169zil_itxg_clean(itxs_t *itxs)
1170{
1171	itx_t *itx;
1172	list_t *list;
1173	avl_tree_t *t;
1174	void *cookie;
1175	itx_async_node_t *ian;
1176
1177	list = &itxs->i_sync_list;
1178	while ((itx = list_head(list)) != NULL) {
1179		list_remove(list, itx);
1180		kmem_free(itx, offsetof(itx_t, itx_lr) +
1181		    itx->itx_lr.lrc_reclen);
1182	}
1183
1184	cookie = NULL;
1185	t = &itxs->i_async_tree;
1186	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1187		list = &ian->ia_list;
1188		while ((itx = list_head(list)) != NULL) {
1189			list_remove(list, itx);
1190			kmem_free(itx, offsetof(itx_t, itx_lr) +
1191			    itx->itx_lr.lrc_reclen);
1192		}
1193		list_destroy(list);
1194		kmem_free(ian, sizeof (itx_async_node_t));
1195	}
1196	avl_destroy(t);
1197
1198	kmem_free(itxs, sizeof (itxs_t));
1199}
1200
1201static int
1202zil_aitx_compare(const void *x1, const void *x2)
1203{
1204	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1205	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1206
1207	if (o1 < o2)
1208		return (-1);
1209	if (o1 > o2)
1210		return (1);
1211
1212	return (0);
1213}
1214
1215/*
1216 * Remove all async itx with the given oid.
1217 */
1218static void
1219zil_remove_async(zilog_t *zilog, uint64_t oid)
1220{
1221	uint64_t otxg, txg;
1222	itx_async_node_t *ian;
1223	avl_tree_t *t;
1224	avl_index_t where;
1225	list_t clean_list;
1226	itx_t *itx;
1227
1228	ASSERT(oid != 0);
1229	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1230
1231	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1232		otxg = ZILTEST_TXG;
1233	else
1234		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1235
1236	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1237		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1238
1239		mutex_enter(&itxg->itxg_lock);
1240		if (itxg->itxg_txg != txg) {
1241			mutex_exit(&itxg->itxg_lock);
1242			continue;
1243		}
1244
1245		/*
1246		 * Locate the object node and append its list.
1247		 */
1248		t = &itxg->itxg_itxs->i_async_tree;
1249		ian = avl_find(t, &oid, &where);
1250		if (ian != NULL)
1251			list_move_tail(&clean_list, &ian->ia_list);
1252		mutex_exit(&itxg->itxg_lock);
1253	}
1254	while ((itx = list_head(&clean_list)) != NULL) {
1255		list_remove(&clean_list, itx);
1256		kmem_free(itx, offsetof(itx_t, itx_lr) +
1257		    itx->itx_lr.lrc_reclen);
1258	}
1259	list_destroy(&clean_list);
1260}
1261
1262void
1263zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1264{
1265	uint64_t txg;
1266	itxg_t *itxg;
1267	itxs_t *itxs, *clean = NULL;
1268
1269	/*
1270	 * Object ids can be re-instantiated in the next txg so
1271	 * remove any async transactions to avoid future leaks.
1272	 * This can happen if a fsync occurs on the re-instantiated
1273	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1274	 * the new file data and flushes a write record for the old object.
1275	 */
1276	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1277		zil_remove_async(zilog, itx->itx_oid);
1278
1279	/*
1280	 * Ensure the data of a renamed file is committed before the rename.
1281	 */
1282	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1283		zil_async_to_sync(zilog, itx->itx_oid);
1284
1285	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1286		txg = ZILTEST_TXG;
1287	else
1288		txg = dmu_tx_get_txg(tx);
1289
1290	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1291	mutex_enter(&itxg->itxg_lock);
1292	itxs = itxg->itxg_itxs;
1293	if (itxg->itxg_txg != txg) {
1294		if (itxs != NULL) {
1295			/*
1296			 * The zil_clean callback hasn't got around to cleaning
1297			 * this itxg. Save the itxs for release below.
1298			 * This should be rare.
1299			 */
1300			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1301			itxg->itxg_sod = 0;
1302			clean = itxg->itxg_itxs;
1303		}
1304		ASSERT(itxg->itxg_sod == 0);
1305		itxg->itxg_txg = txg;
1306		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1307
1308		list_create(&itxs->i_sync_list, sizeof (itx_t),
1309		    offsetof(itx_t, itx_node));
1310		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1311		    sizeof (itx_async_node_t),
1312		    offsetof(itx_async_node_t, ia_node));
1313	}
1314	if (itx->itx_sync) {
1315		list_insert_tail(&itxs->i_sync_list, itx);
1316		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1317		itxg->itxg_sod += itx->itx_sod;
1318	} else {
1319		avl_tree_t *t = &itxs->i_async_tree;
1320		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1321		itx_async_node_t *ian;
1322		avl_index_t where;
1323
1324		ian = avl_find(t, &foid, &where);
1325		if (ian == NULL) {
1326			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1327			list_create(&ian->ia_list, sizeof (itx_t),
1328			    offsetof(itx_t, itx_node));
1329			ian->ia_foid = foid;
1330			avl_insert(t, ian, where);
1331		}
1332		list_insert_tail(&ian->ia_list, itx);
1333	}
1334
1335	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1336	zilog_dirty(zilog, txg);
1337	mutex_exit(&itxg->itxg_lock);
1338
1339	/* Release the old itxs now we've dropped the lock */
1340	if (clean != NULL)
1341		zil_itxg_clean(clean);
1342}
1343
1344/*
1345 * If there are any in-memory intent log transactions which have now been
1346 * synced then start up a taskq to free them. We should only do this after we
1347 * have written out the uberblocks (i.e. txg has been comitted) so that
1348 * don't inadvertently clean out in-memory log records that would be required
1349 * by zil_commit().
1350 */
1351void
1352zil_clean(zilog_t *zilog, uint64_t synced_txg)
1353{
1354	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1355	itxs_t *clean_me;
1356
1357	mutex_enter(&itxg->itxg_lock);
1358	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1359		mutex_exit(&itxg->itxg_lock);
1360		return;
1361	}
1362	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1363	ASSERT(itxg->itxg_txg != 0);
1364	ASSERT(zilog->zl_clean_taskq != NULL);
1365	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1366	itxg->itxg_sod = 0;
1367	clean_me = itxg->itxg_itxs;
1368	itxg->itxg_itxs = NULL;
1369	itxg->itxg_txg = 0;
1370	mutex_exit(&itxg->itxg_lock);
1371	/*
1372	 * Preferably start a task queue to free up the old itxs but
1373	 * if taskq_dispatch can't allocate resources to do that then
1374	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1375	 * created a bad performance problem.
1376	 */
1377	if (taskq_dispatch(zilog->zl_clean_taskq,
1378	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1379		zil_itxg_clean(clean_me);
1380}
1381
1382/*
1383 * Get the list of itxs to commit into zl_itx_commit_list.
1384 */
1385static void
1386zil_get_commit_list(zilog_t *zilog)
1387{
1388	uint64_t otxg, txg;
1389	list_t *commit_list = &zilog->zl_itx_commit_list;
1390	uint64_t push_sod = 0;
1391
1392	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1393		otxg = ZILTEST_TXG;
1394	else
1395		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1396
1397	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1398		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1399
1400		mutex_enter(&itxg->itxg_lock);
1401		if (itxg->itxg_txg != txg) {
1402			mutex_exit(&itxg->itxg_lock);
1403			continue;
1404		}
1405
1406		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1407		push_sod += itxg->itxg_sod;
1408		itxg->itxg_sod = 0;
1409
1410		mutex_exit(&itxg->itxg_lock);
1411	}
1412	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1413}
1414
1415/*
1416 * Move the async itxs for a specified object to commit into sync lists.
1417 */
1418static void
1419zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1420{
1421	uint64_t otxg, txg;
1422	itx_async_node_t *ian;
1423	avl_tree_t *t;
1424	avl_index_t where;
1425
1426	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1427		otxg = ZILTEST_TXG;
1428	else
1429		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1430
1431	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1432		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1433
1434		mutex_enter(&itxg->itxg_lock);
1435		if (itxg->itxg_txg != txg) {
1436			mutex_exit(&itxg->itxg_lock);
1437			continue;
1438		}
1439
1440		/*
1441		 * If a foid is specified then find that node and append its
1442		 * list. Otherwise walk the tree appending all the lists
1443		 * to the sync list. We add to the end rather than the
1444		 * beginning to ensure the create has happened.
1445		 */
1446		t = &itxg->itxg_itxs->i_async_tree;
1447		if (foid != 0) {
1448			ian = avl_find(t, &foid, &where);
1449			if (ian != NULL) {
1450				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1451				    &ian->ia_list);
1452			}
1453		} else {
1454			void *cookie = NULL;
1455
1456			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1457				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1458				    &ian->ia_list);
1459				list_destroy(&ian->ia_list);
1460				kmem_free(ian, sizeof (itx_async_node_t));
1461			}
1462		}
1463		mutex_exit(&itxg->itxg_lock);
1464	}
1465}
1466
1467static void
1468zil_commit_writer(zilog_t *zilog)
1469{
1470	uint64_t txg;
1471	itx_t *itx;
1472	lwb_t *lwb;
1473	spa_t *spa = zilog->zl_spa;
1474	int error = 0;
1475
1476	ASSERT(zilog->zl_root_zio == NULL);
1477
1478	mutex_exit(&zilog->zl_lock);
1479
1480	zil_get_commit_list(zilog);
1481
1482	/*
1483	 * Return if there's nothing to commit before we dirty the fs by
1484	 * calling zil_create().
1485	 */
1486	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1487		mutex_enter(&zilog->zl_lock);
1488		return;
1489	}
1490
1491	if (zilog->zl_suspend) {
1492		lwb = NULL;
1493	} else {
1494		lwb = list_tail(&zilog->zl_lwb_list);
1495		if (lwb == NULL)
1496			lwb = zil_create(zilog);
1497	}
1498
1499	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1500	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1501		txg = itx->itx_lr.lrc_txg;
1502		ASSERT(txg);
1503
1504		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1505			lwb = zil_lwb_commit(zilog, itx, lwb);
1506		list_remove(&zilog->zl_itx_commit_list, itx);
1507		kmem_free(itx, offsetof(itx_t, itx_lr)
1508		    + itx->itx_lr.lrc_reclen);
1509	}
1510	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1511
1512	/* write the last block out */
1513	if (lwb != NULL && lwb->lwb_zio != NULL)
1514		lwb = zil_lwb_write_start(zilog, lwb);
1515
1516	zilog->zl_cur_used = 0;
1517
1518	/*
1519	 * Wait if necessary for the log blocks to be on stable storage.
1520	 */
1521	if (zilog->zl_root_zio) {
1522		error = zio_wait(zilog->zl_root_zio);
1523		zilog->zl_root_zio = NULL;
1524		zil_flush_vdevs(zilog);
1525	}
1526
1527	if (error || lwb == NULL)
1528		txg_wait_synced(zilog->zl_dmu_pool, 0);
1529
1530	mutex_enter(&zilog->zl_lock);
1531
1532	/*
1533	 * Remember the highest committed log sequence number for ztest.
1534	 * We only update this value when all the log writes succeeded,
1535	 * because ztest wants to ASSERT that it got the whole log chain.
1536	 */
1537	if (error == 0 && lwb != NULL)
1538		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1539}
1540
1541/*
1542 * Commit zfs transactions to stable storage.
1543 * If foid is 0 push out all transactions, otherwise push only those
1544 * for that object or might reference that object.
1545 *
1546 * itxs are committed in batches. In a heavily stressed zil there will be
1547 * a commit writer thread who is writing out a bunch of itxs to the log
1548 * for a set of committing threads (cthreads) in the same batch as the writer.
1549 * Those cthreads are all waiting on the same cv for that batch.
1550 *
1551 * There will also be a different and growing batch of threads that are
1552 * waiting to commit (qthreads). When the committing batch completes
1553 * a transition occurs such that the cthreads exit and the qthreads become
1554 * cthreads. One of the new cthreads becomes the writer thread for the
1555 * batch. Any new threads arriving become new qthreads.
1556 *
1557 * Only 2 condition variables are needed and there's no transition
1558 * between the two cvs needed. They just flip-flop between qthreads
1559 * and cthreads.
1560 *
1561 * Using this scheme we can efficiently wakeup up only those threads
1562 * that have been committed.
1563 */
1564void
1565zil_commit(zilog_t *zilog, uint64_t foid)
1566{
1567	uint64_t mybatch;
1568
1569	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1570		return;
1571
1572	/* move the async itxs for the foid to the sync queues */
1573	zil_async_to_sync(zilog, foid);
1574
1575	mutex_enter(&zilog->zl_lock);
1576	mybatch = zilog->zl_next_batch;
1577	while (zilog->zl_writer) {
1578		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1579		if (mybatch <= zilog->zl_com_batch) {
1580			mutex_exit(&zilog->zl_lock);
1581			return;
1582		}
1583	}
1584
1585	zilog->zl_next_batch++;
1586	zilog->zl_writer = B_TRUE;
1587	zil_commit_writer(zilog);
1588	zilog->zl_com_batch = mybatch;
1589	zilog->zl_writer = B_FALSE;
1590	mutex_exit(&zilog->zl_lock);
1591
1592	/* wake up one thread to become the next writer */
1593	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1594
1595	/* wake up all threads waiting for this batch to be committed */
1596	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1597}
1598
1599/*
1600 * Called in syncing context to free committed log blocks and update log header.
1601 */
1602void
1603zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1604{
1605	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1606	uint64_t txg = dmu_tx_get_txg(tx);
1607	spa_t *spa = zilog->zl_spa;
1608	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1609	lwb_t *lwb;
1610
1611	/*
1612	 * We don't zero out zl_destroy_txg, so make sure we don't try
1613	 * to destroy it twice.
1614	 */
1615	if (spa_sync_pass(spa) != 1)
1616		return;
1617
1618	mutex_enter(&zilog->zl_lock);
1619
1620	ASSERT(zilog->zl_stop_sync == 0);
1621
1622	if (*replayed_seq != 0) {
1623		ASSERT(zh->zh_replay_seq < *replayed_seq);
1624		zh->zh_replay_seq = *replayed_seq;
1625		*replayed_seq = 0;
1626	}
1627
1628	if (zilog->zl_destroy_txg == txg) {
1629		blkptr_t blk = zh->zh_log;
1630
1631		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1632
1633		bzero(zh, sizeof (zil_header_t));
1634		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1635
1636		if (zilog->zl_keep_first) {
1637			/*
1638			 * If this block was part of log chain that couldn't
1639			 * be claimed because a device was missing during
1640			 * zil_claim(), but that device later returns,
1641			 * then this block could erroneously appear valid.
1642			 * To guard against this, assign a new GUID to the new
1643			 * log chain so it doesn't matter what blk points to.
1644			 */
1645			zil_init_log_chain(zilog, &blk);
1646			zh->zh_log = blk;
1647		}
1648	}
1649
1650	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1651		zh->zh_log = lwb->lwb_blk;
1652		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1653			break;
1654		list_remove(&zilog->zl_lwb_list, lwb);
1655		zio_free_zil(spa, txg, &lwb->lwb_blk);
1656		kmem_cache_free(zil_lwb_cache, lwb);
1657
1658		/*
1659		 * If we don't have anything left in the lwb list then
1660		 * we've had an allocation failure and we need to zero
1661		 * out the zil_header blkptr so that we don't end
1662		 * up freeing the same block twice.
1663		 */
1664		if (list_head(&zilog->zl_lwb_list) == NULL)
1665			BP_ZERO(&zh->zh_log);
1666	}
1667	mutex_exit(&zilog->zl_lock);
1668}
1669
1670void
1671zil_init(void)
1672{
1673	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1674	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1675}
1676
1677void
1678zil_fini(void)
1679{
1680	kmem_cache_destroy(zil_lwb_cache);
1681}
1682
1683void
1684zil_set_sync(zilog_t *zilog, uint64_t sync)
1685{
1686	zilog->zl_sync = sync;
1687}
1688
1689void
1690zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1691{
1692	zilog->zl_logbias = logbias;
1693}
1694
1695zilog_t *
1696zil_alloc(objset_t *os, zil_header_t *zh_phys)
1697{
1698	zilog_t *zilog;
1699
1700	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1701
1702	zilog->zl_header = zh_phys;
1703	zilog->zl_os = os;
1704	zilog->zl_spa = dmu_objset_spa(os);
1705	zilog->zl_dmu_pool = dmu_objset_pool(os);
1706	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1707	zilog->zl_logbias = dmu_objset_logbias(os);
1708	zilog->zl_sync = dmu_objset_syncprop(os);
1709	zilog->zl_next_batch = 1;
1710
1711	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1712
1713	for (int i = 0; i < TXG_SIZE; i++) {
1714		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1715		    MUTEX_DEFAULT, NULL);
1716	}
1717
1718	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1719	    offsetof(lwb_t, lwb_node));
1720
1721	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1722	    offsetof(itx_t, itx_node));
1723
1724	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1725
1726	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1727	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1728
1729	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1730	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1731	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1732	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1733
1734	return (zilog);
1735}
1736
1737void
1738zil_free(zilog_t *zilog)
1739{
1740	zilog->zl_stop_sync = 1;
1741
1742	ASSERT0(zilog->zl_suspend);
1743	ASSERT0(zilog->zl_suspending);
1744
1745	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1746	list_destroy(&zilog->zl_lwb_list);
1747
1748	avl_destroy(&zilog->zl_vdev_tree);
1749	mutex_destroy(&zilog->zl_vdev_lock);
1750
1751	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1752	list_destroy(&zilog->zl_itx_commit_list);
1753
1754	for (int i = 0; i < TXG_SIZE; i++) {
1755		/*
1756		 * It's possible for an itx to be generated that doesn't dirty
1757		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1758		 * callback to remove the entry. We remove those here.
1759		 *
1760		 * Also free up the ziltest itxs.
1761		 */
1762		if (zilog->zl_itxg[i].itxg_itxs)
1763			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1764		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1765	}
1766
1767	mutex_destroy(&zilog->zl_lock);
1768
1769	cv_destroy(&zilog->zl_cv_writer);
1770	cv_destroy(&zilog->zl_cv_suspend);
1771	cv_destroy(&zilog->zl_cv_batch[0]);
1772	cv_destroy(&zilog->zl_cv_batch[1]);
1773
1774	kmem_free(zilog, sizeof (zilog_t));
1775}
1776
1777/*
1778 * Open an intent log.
1779 */
1780zilog_t *
1781zil_open(objset_t *os, zil_get_data_t *get_data)
1782{
1783	zilog_t *zilog = dmu_objset_zil(os);
1784
1785	ASSERT(zilog->zl_clean_taskq == NULL);
1786	ASSERT(zilog->zl_get_data == NULL);
1787	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1788
1789	zilog->zl_get_data = get_data;
1790	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1791	    2, 2, TASKQ_PREPOPULATE);
1792
1793	return (zilog);
1794}
1795
1796/*
1797 * Close an intent log.
1798 */
1799void
1800zil_close(zilog_t *zilog)
1801{
1802	lwb_t *lwb;
1803	uint64_t txg = 0;
1804
1805	zil_commit(zilog, 0); /* commit all itx */
1806
1807	/*
1808	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1809	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1810	 * callbacks have occurred that may clean the zil.  Only then can we
1811	 * destroy the zl_clean_taskq.
1812	 */
1813	mutex_enter(&zilog->zl_lock);
1814	lwb = list_tail(&zilog->zl_lwb_list);
1815	if (lwb != NULL)
1816		txg = lwb->lwb_max_txg;
1817	mutex_exit(&zilog->zl_lock);
1818	if (txg)
1819		txg_wait_synced(zilog->zl_dmu_pool, txg);
1820	ASSERT(!zilog_is_dirty(zilog));
1821
1822	taskq_destroy(zilog->zl_clean_taskq);
1823	zilog->zl_clean_taskq = NULL;
1824	zilog->zl_get_data = NULL;
1825
1826	/*
1827	 * We should have only one LWB left on the list; remove it now.
1828	 */
1829	mutex_enter(&zilog->zl_lock);
1830	lwb = list_head(&zilog->zl_lwb_list);
1831	if (lwb != NULL) {
1832		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1833		list_remove(&zilog->zl_lwb_list, lwb);
1834		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1835		kmem_cache_free(zil_lwb_cache, lwb);
1836	}
1837	mutex_exit(&zilog->zl_lock);
1838}
1839
1840static char *suspend_tag = "zil suspending";
1841
1842/*
1843 * Suspend an intent log.  While in suspended mode, we still honor
1844 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1845 * On old version pools, we suspend the log briefly when taking a
1846 * snapshot so that it will have an empty intent log.
1847 *
1848 * Long holds are not really intended to be used the way we do here --
1849 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1850 * could fail.  Therefore we take pains to only put a long hold if it is
1851 * actually necessary.  Fortunately, it will only be necessary if the
1852 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1853 * will already have a long hold, so we are not really making things any worse.
1854 *
1855 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1856 * zvol_state_t), and use their mechanism to prevent their hold from being
1857 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1858 * very little gain.
1859 *
1860 * if cookiep == NULL, this does both the suspend & resume.
1861 * Otherwise, it returns with the dataset "long held", and the cookie
1862 * should be passed into zil_resume().
1863 */
1864int
1865zil_suspend(const char *osname, void **cookiep)
1866{
1867	objset_t *os;
1868	zilog_t *zilog;
1869	const zil_header_t *zh;
1870	int error;
1871
1872	error = dmu_objset_hold(osname, suspend_tag, &os);
1873	if (error != 0)
1874		return (error);
1875	zilog = dmu_objset_zil(os);
1876
1877	mutex_enter(&zilog->zl_lock);
1878	zh = zilog->zl_header;
1879
1880	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1881		mutex_exit(&zilog->zl_lock);
1882		dmu_objset_rele(os, suspend_tag);
1883		return (SET_ERROR(EBUSY));
1884	}
1885
1886	/*
1887	 * Don't put a long hold in the cases where we can avoid it.  This
1888	 * is when there is no cookie so we are doing a suspend & resume
1889	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1890	 * for the suspend because it's already suspended, or there's no ZIL.
1891	 */
1892	if (cookiep == NULL && !zilog->zl_suspending &&
1893	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1894		mutex_exit(&zilog->zl_lock);
1895		dmu_objset_rele(os, suspend_tag);
1896		return (0);
1897	}
1898
1899	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1900	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1901
1902	zilog->zl_suspend++;
1903
1904	if (zilog->zl_suspend > 1) {
1905		/*
1906		 * Someone else is already suspending it.
1907		 * Just wait for them to finish.
1908		 */
1909
1910		while (zilog->zl_suspending)
1911			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1912		mutex_exit(&zilog->zl_lock);
1913
1914		if (cookiep == NULL)
1915			zil_resume(os);
1916		else
1917			*cookiep = os;
1918		return (0);
1919	}
1920
1921	/*
1922	 * If there is no pointer to an on-disk block, this ZIL must not
1923	 * be active (e.g. filesystem not mounted), so there's nothing
1924	 * to clean up.
1925	 */
1926	if (BP_IS_HOLE(&zh->zh_log)) {
1927		ASSERT(cookiep != NULL); /* fast path already handled */
1928
1929		*cookiep = os;
1930		mutex_exit(&zilog->zl_lock);
1931		return (0);
1932	}
1933
1934	zilog->zl_suspending = B_TRUE;
1935	mutex_exit(&zilog->zl_lock);
1936
1937	zil_commit(zilog, 0);
1938
1939	zil_destroy(zilog, B_FALSE);
1940
1941	mutex_enter(&zilog->zl_lock);
1942	zilog->zl_suspending = B_FALSE;
1943	cv_broadcast(&zilog->zl_cv_suspend);
1944	mutex_exit(&zilog->zl_lock);
1945
1946	if (cookiep == NULL)
1947		zil_resume(os);
1948	else
1949		*cookiep = os;
1950	return (0);
1951}
1952
1953void
1954zil_resume(void *cookie)
1955{
1956	objset_t *os = cookie;
1957	zilog_t *zilog = dmu_objset_zil(os);
1958
1959	mutex_enter(&zilog->zl_lock);
1960	ASSERT(zilog->zl_suspend != 0);
1961	zilog->zl_suspend--;
1962	mutex_exit(&zilog->zl_lock);
1963	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1964	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1965}
1966
1967typedef struct zil_replay_arg {
1968	zil_replay_func_t **zr_replay;
1969	void		*zr_arg;
1970	boolean_t	zr_byteswap;
1971	char		*zr_lr;
1972} zil_replay_arg_t;
1973
1974static int
1975zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1976{
1977	char name[ZFS_MAX_DATASET_NAME_LEN];
1978
1979	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1980
1981	dmu_objset_name(zilog->zl_os, name);
1982
1983	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1984	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1985	    (u_longlong_t)lr->lrc_seq,
1986	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1987	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1988
1989	return (error);
1990}
1991
1992static int
1993zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1994{
1995	zil_replay_arg_t *zr = zra;
1996	const zil_header_t *zh = zilog->zl_header;
1997	uint64_t reclen = lr->lrc_reclen;
1998	uint64_t txtype = lr->lrc_txtype;
1999	int error = 0;
2000
2001	zilog->zl_replaying_seq = lr->lrc_seq;
2002
2003	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2004		return (0);
2005
2006	if (lr->lrc_txg < claim_txg)		/* already committed */
2007		return (0);
2008
2009	/* Strip case-insensitive bit, still present in log record */
2010	txtype &= ~TX_CI;
2011
2012	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2013		return (zil_replay_error(zilog, lr, EINVAL));
2014
2015	/*
2016	 * If this record type can be logged out of order, the object
2017	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2018	 */
2019	if (TX_OOO(txtype)) {
2020		error = dmu_object_info(zilog->zl_os,
2021		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2022		if (error == ENOENT || error == EEXIST)
2023			return (0);
2024	}
2025
2026	/*
2027	 * Make a copy of the data so we can revise and extend it.
2028	 */
2029	bcopy(lr, zr->zr_lr, reclen);
2030
2031	/*
2032	 * If this is a TX_WRITE with a blkptr, suck in the data.
2033	 */
2034	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2035		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2036		    zr->zr_lr + reclen);
2037		if (error != 0)
2038			return (zil_replay_error(zilog, lr, error));
2039	}
2040
2041	/*
2042	 * The log block containing this lr may have been byteswapped
2043	 * so that we can easily examine common fields like lrc_txtype.
2044	 * However, the log is a mix of different record types, and only the
2045	 * replay vectors know how to byteswap their records.  Therefore, if
2046	 * the lr was byteswapped, undo it before invoking the replay vector.
2047	 */
2048	if (zr->zr_byteswap)
2049		byteswap_uint64_array(zr->zr_lr, reclen);
2050
2051	/*
2052	 * We must now do two things atomically: replay this log record,
2053	 * and update the log header sequence number to reflect the fact that
2054	 * we did so. At the end of each replay function the sequence number
2055	 * is updated if we are in replay mode.
2056	 */
2057	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2058	if (error != 0) {
2059		/*
2060		 * The DMU's dnode layer doesn't see removes until the txg
2061		 * commits, so a subsequent claim can spuriously fail with
2062		 * EEXIST. So if we receive any error we try syncing out
2063		 * any removes then retry the transaction.  Note that we
2064		 * specify B_FALSE for byteswap now, so we don't do it twice.
2065		 */
2066		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2067		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2068		if (error != 0)
2069			return (zil_replay_error(zilog, lr, error));
2070	}
2071	return (0);
2072}
2073
2074/* ARGSUSED */
2075static int
2076zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2077{
2078	zilog->zl_replay_blks++;
2079
2080	return (0);
2081}
2082
2083/*
2084 * If this dataset has a non-empty intent log, replay it and destroy it.
2085 */
2086void
2087zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2088{
2089	zilog_t *zilog = dmu_objset_zil(os);
2090	const zil_header_t *zh = zilog->zl_header;
2091	zil_replay_arg_t zr;
2092
2093	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2094		zil_destroy(zilog, B_TRUE);
2095		return;
2096	}
2097
2098	zr.zr_replay = replay_func;
2099	zr.zr_arg = arg;
2100	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2101	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2102
2103	/*
2104	 * Wait for in-progress removes to sync before starting replay.
2105	 */
2106	txg_wait_synced(zilog->zl_dmu_pool, 0);
2107
2108	zilog->zl_replay = B_TRUE;
2109	zilog->zl_replay_time = ddi_get_lbolt();
2110	ASSERT(zilog->zl_replay_blks == 0);
2111	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2112	    zh->zh_claim_txg);
2113	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2114
2115	zil_destroy(zilog, B_FALSE);
2116	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2117	zilog->zl_replay = B_FALSE;
2118}
2119
2120boolean_t
2121zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2122{
2123	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2124		return (B_TRUE);
2125
2126	if (zilog->zl_replay) {
2127		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2128		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2129		    zilog->zl_replaying_seq;
2130		return (B_TRUE);
2131	}
2132
2133	return (B_FALSE);
2134}
2135
2136/* ARGSUSED */
2137int
2138zil_vdev_offline(const char *osname, void *arg)
2139{
2140	int error;
2141
2142	error = zil_suspend(osname, NULL);
2143	if (error != 0)
2144		return (SET_ERROR(EEXIST));
2145	return (0);
2146}
2147