zil.c revision 307122
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
85SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
86    &zfs_nocacheflush, 0, "Disable cache flush");
87boolean_t zfs_trim_enabled = B_TRUE;
88SYSCTL_DECL(_vfs_zfs_trim);
89TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
90SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
91    "Enable ZFS TRIM");
92
93static kmem_cache_t *zil_lwb_cache;
94
95static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
96
97#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
98    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
99
100
101/*
102 * ziltest is by and large an ugly hack, but very useful in
103 * checking replay without tedious work.
104 * When running ziltest we want to keep all itx's and so maintain
105 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
106 * We subtract TXG_CONCURRENT_STATES to allow for common code.
107 */
108#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
109
110static int
111zil_bp_compare(const void *x1, const void *x2)
112{
113	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
114	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
115
116	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
117		return (-1);
118	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
119		return (1);
120
121	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
122		return (-1);
123	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
124		return (1);
125
126	return (0);
127}
128
129static void
130zil_bp_tree_init(zilog_t *zilog)
131{
132	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
133	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
134}
135
136static void
137zil_bp_tree_fini(zilog_t *zilog)
138{
139	avl_tree_t *t = &zilog->zl_bp_tree;
140	zil_bp_node_t *zn;
141	void *cookie = NULL;
142
143	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
144		kmem_free(zn, sizeof (zil_bp_node_t));
145
146	avl_destroy(t);
147}
148
149int
150zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
151{
152	avl_tree_t *t = &zilog->zl_bp_tree;
153	const dva_t *dva;
154	zil_bp_node_t *zn;
155	avl_index_t where;
156
157	if (BP_IS_EMBEDDED(bp))
158		return (0);
159
160	dva = BP_IDENTITY(bp);
161
162	if (avl_find(t, dva, &where) != NULL)
163		return (SET_ERROR(EEXIST));
164
165	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
166	zn->zn_dva = *dva;
167	avl_insert(t, zn, where);
168
169	return (0);
170}
171
172static zil_header_t *
173zil_header_in_syncing_context(zilog_t *zilog)
174{
175	return ((zil_header_t *)zilog->zl_header);
176}
177
178static void
179zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
180{
181	zio_cksum_t *zc = &bp->blk_cksum;
182
183	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
184	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
185	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
186	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
187}
188
189/*
190 * Read a log block and make sure it's valid.
191 */
192static int
193zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
194    char **end)
195{
196	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
197	arc_flags_t aflags = ARC_FLAG_WAIT;
198	arc_buf_t *abuf = NULL;
199	zbookmark_phys_t zb;
200	int error;
201
202	if (zilog->zl_header->zh_claim_txg == 0)
203		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
204
205	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
206		zio_flags |= ZIO_FLAG_SPECULATIVE;
207
208	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
209	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
210
211	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
212	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
213
214	if (error == 0) {
215		zio_cksum_t cksum = bp->blk_cksum;
216
217		/*
218		 * Validate the checksummed log block.
219		 *
220		 * Sequence numbers should be... sequential.  The checksum
221		 * verifier for the next block should be bp's checksum plus 1.
222		 *
223		 * Also check the log chain linkage and size used.
224		 */
225		cksum.zc_word[ZIL_ZC_SEQ]++;
226
227		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
228			zil_chain_t *zilc = abuf->b_data;
229			char *lr = (char *)(zilc + 1);
230			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
231
232			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
233			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
234				error = SET_ERROR(ECKSUM);
235			} else {
236				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
237				bcopy(lr, dst, len);
238				*end = (char *)dst + len;
239				*nbp = zilc->zc_next_blk;
240			}
241		} else {
242			char *lr = abuf->b_data;
243			uint64_t size = BP_GET_LSIZE(bp);
244			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
245
246			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
247			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
248			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
249				error = SET_ERROR(ECKSUM);
250			} else {
251				ASSERT3U(zilc->zc_nused, <=,
252				    SPA_OLD_MAXBLOCKSIZE);
253				bcopy(lr, dst, zilc->zc_nused);
254				*end = (char *)dst + zilc->zc_nused;
255				*nbp = zilc->zc_next_blk;
256			}
257		}
258
259		VERIFY(arc_buf_remove_ref(abuf, &abuf));
260	}
261
262	return (error);
263}
264
265/*
266 * Read a TX_WRITE log data block.
267 */
268static int
269zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
270{
271	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
272	const blkptr_t *bp = &lr->lr_blkptr;
273	arc_flags_t aflags = ARC_FLAG_WAIT;
274	arc_buf_t *abuf = NULL;
275	zbookmark_phys_t zb;
276	int error;
277
278	if (BP_IS_HOLE(bp)) {
279		if (wbuf != NULL)
280			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
281		return (0);
282	}
283
284	if (zilog->zl_header->zh_claim_txg == 0)
285		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
286
287	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
288	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
289
290	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
291	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
292
293	if (error == 0) {
294		if (wbuf != NULL)
295			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
296		(void) arc_buf_remove_ref(abuf, &abuf);
297	}
298
299	return (error);
300}
301
302/*
303 * Parse the intent log, and call parse_func for each valid record within.
304 */
305int
306zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
307    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
308{
309	const zil_header_t *zh = zilog->zl_header;
310	boolean_t claimed = !!zh->zh_claim_txg;
311	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
312	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
313	uint64_t max_blk_seq = 0;
314	uint64_t max_lr_seq = 0;
315	uint64_t blk_count = 0;
316	uint64_t lr_count = 0;
317	blkptr_t blk, next_blk;
318	char *lrbuf, *lrp;
319	int error = 0;
320
321	/*
322	 * Old logs didn't record the maximum zh_claim_lr_seq.
323	 */
324	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
325		claim_lr_seq = UINT64_MAX;
326
327	/*
328	 * Starting at the block pointed to by zh_log we read the log chain.
329	 * For each block in the chain we strongly check that block to
330	 * ensure its validity.  We stop when an invalid block is found.
331	 * For each block pointer in the chain we call parse_blk_func().
332	 * For each record in each valid block we call parse_lr_func().
333	 * If the log has been claimed, stop if we encounter a sequence
334	 * number greater than the highest claimed sequence number.
335	 */
336	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
337	zil_bp_tree_init(zilog);
338
339	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
340		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
341		int reclen;
342		char *end;
343
344		if (blk_seq > claim_blk_seq)
345			break;
346		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
347			break;
348		ASSERT3U(max_blk_seq, <, blk_seq);
349		max_blk_seq = blk_seq;
350		blk_count++;
351
352		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
353			break;
354
355		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
356		if (error != 0)
357			break;
358
359		for (lrp = lrbuf; lrp < end; lrp += reclen) {
360			lr_t *lr = (lr_t *)lrp;
361			reclen = lr->lrc_reclen;
362			ASSERT3U(reclen, >=, sizeof (lr_t));
363			if (lr->lrc_seq > claim_lr_seq)
364				goto done;
365			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
366				goto done;
367			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
368			max_lr_seq = lr->lrc_seq;
369			lr_count++;
370		}
371	}
372done:
373	zilog->zl_parse_error = error;
374	zilog->zl_parse_blk_seq = max_blk_seq;
375	zilog->zl_parse_lr_seq = max_lr_seq;
376	zilog->zl_parse_blk_count = blk_count;
377	zilog->zl_parse_lr_count = lr_count;
378
379	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
380	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
381
382	zil_bp_tree_fini(zilog);
383	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
384
385	return (error);
386}
387
388static int
389zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
390{
391	/*
392	 * Claim log block if not already committed and not already claimed.
393	 * If tx == NULL, just verify that the block is claimable.
394	 */
395	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
396	    zil_bp_tree_add(zilog, bp) != 0)
397		return (0);
398
399	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
400	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
401	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
402}
403
404static int
405zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
406{
407	lr_write_t *lr = (lr_write_t *)lrc;
408	int error;
409
410	if (lrc->lrc_txtype != TX_WRITE)
411		return (0);
412
413	/*
414	 * If the block is not readable, don't claim it.  This can happen
415	 * in normal operation when a log block is written to disk before
416	 * some of the dmu_sync() blocks it points to.  In this case, the
417	 * transaction cannot have been committed to anyone (we would have
418	 * waited for all writes to be stable first), so it is semantically
419	 * correct to declare this the end of the log.
420	 */
421	if (lr->lr_blkptr.blk_birth >= first_txg &&
422	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
423		return (error);
424	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
425}
426
427/* ARGSUSED */
428static int
429zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
430{
431	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
432
433	return (0);
434}
435
436static int
437zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
438{
439	lr_write_t *lr = (lr_write_t *)lrc;
440	blkptr_t *bp = &lr->lr_blkptr;
441
442	/*
443	 * If we previously claimed it, we need to free it.
444	 */
445	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
446	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
447	    !BP_IS_HOLE(bp))
448		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
449
450	return (0);
451}
452
453static lwb_t *
454zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
455{
456	lwb_t *lwb;
457
458	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
459	lwb->lwb_zilog = zilog;
460	lwb->lwb_blk = *bp;
461	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
462	lwb->lwb_max_txg = txg;
463	lwb->lwb_zio = NULL;
464	lwb->lwb_tx = NULL;
465	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
466		lwb->lwb_nused = sizeof (zil_chain_t);
467		lwb->lwb_sz = BP_GET_LSIZE(bp);
468	} else {
469		lwb->lwb_nused = 0;
470		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
471	}
472
473	mutex_enter(&zilog->zl_lock);
474	list_insert_tail(&zilog->zl_lwb_list, lwb);
475	mutex_exit(&zilog->zl_lock);
476
477	return (lwb);
478}
479
480/*
481 * Called when we create in-memory log transactions so that we know
482 * to cleanup the itxs at the end of spa_sync().
483 */
484void
485zilog_dirty(zilog_t *zilog, uint64_t txg)
486{
487	dsl_pool_t *dp = zilog->zl_dmu_pool;
488	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
489
490	if (ds->ds_is_snapshot)
491		panic("dirtying snapshot!");
492
493	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
494		/* up the hold count until we can be written out */
495		dmu_buf_add_ref(ds->ds_dbuf, zilog);
496	}
497}
498
499boolean_t
500zilog_is_dirty(zilog_t *zilog)
501{
502	dsl_pool_t *dp = zilog->zl_dmu_pool;
503
504	for (int t = 0; t < TXG_SIZE; t++) {
505		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
506			return (B_TRUE);
507	}
508	return (B_FALSE);
509}
510
511/*
512 * Create an on-disk intent log.
513 */
514static lwb_t *
515zil_create(zilog_t *zilog)
516{
517	const zil_header_t *zh = zilog->zl_header;
518	lwb_t *lwb = NULL;
519	uint64_t txg = 0;
520	dmu_tx_t *tx = NULL;
521	blkptr_t blk;
522	int error = 0;
523
524	/*
525	 * Wait for any previous destroy to complete.
526	 */
527	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
528
529	ASSERT(zh->zh_claim_txg == 0);
530	ASSERT(zh->zh_replay_seq == 0);
531
532	blk = zh->zh_log;
533
534	/*
535	 * Allocate an initial log block if:
536	 *    - there isn't one already
537	 *    - the existing block is the wrong endianess
538	 */
539	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
540		tx = dmu_tx_create(zilog->zl_os);
541		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
542		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
543		txg = dmu_tx_get_txg(tx);
544
545		if (!BP_IS_HOLE(&blk)) {
546			zio_free_zil(zilog->zl_spa, txg, &blk);
547			BP_ZERO(&blk);
548		}
549
550		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
551		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
552
553		if (error == 0)
554			zil_init_log_chain(zilog, &blk);
555	}
556
557	/*
558	 * Allocate a log write buffer (lwb) for the first log block.
559	 */
560	if (error == 0)
561		lwb = zil_alloc_lwb(zilog, &blk, txg);
562
563	/*
564	 * If we just allocated the first log block, commit our transaction
565	 * and wait for zil_sync() to stuff the block poiner into zh_log.
566	 * (zh is part of the MOS, so we cannot modify it in open context.)
567	 */
568	if (tx != NULL) {
569		dmu_tx_commit(tx);
570		txg_wait_synced(zilog->zl_dmu_pool, txg);
571	}
572
573	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
574
575	return (lwb);
576}
577
578/*
579 * In one tx, free all log blocks and clear the log header.
580 * If keep_first is set, then we're replaying a log with no content.
581 * We want to keep the first block, however, so that the first
582 * synchronous transaction doesn't require a txg_wait_synced()
583 * in zil_create().  We don't need to txg_wait_synced() here either
584 * when keep_first is set, because both zil_create() and zil_destroy()
585 * will wait for any in-progress destroys to complete.
586 */
587void
588zil_destroy(zilog_t *zilog, boolean_t keep_first)
589{
590	const zil_header_t *zh = zilog->zl_header;
591	lwb_t *lwb;
592	dmu_tx_t *tx;
593	uint64_t txg;
594
595	/*
596	 * Wait for any previous destroy to complete.
597	 */
598	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
599
600	zilog->zl_old_header = *zh;		/* debugging aid */
601
602	if (BP_IS_HOLE(&zh->zh_log))
603		return;
604
605	tx = dmu_tx_create(zilog->zl_os);
606	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
607	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
608	txg = dmu_tx_get_txg(tx);
609
610	mutex_enter(&zilog->zl_lock);
611
612	ASSERT3U(zilog->zl_destroy_txg, <, txg);
613	zilog->zl_destroy_txg = txg;
614	zilog->zl_keep_first = keep_first;
615
616	if (!list_is_empty(&zilog->zl_lwb_list)) {
617		ASSERT(zh->zh_claim_txg == 0);
618		VERIFY(!keep_first);
619		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
620			list_remove(&zilog->zl_lwb_list, lwb);
621			if (lwb->lwb_buf != NULL)
622				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
623			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
624			kmem_cache_free(zil_lwb_cache, lwb);
625		}
626	} else if (!keep_first) {
627		zil_destroy_sync(zilog, tx);
628	}
629	mutex_exit(&zilog->zl_lock);
630
631	dmu_tx_commit(tx);
632}
633
634void
635zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
636{
637	ASSERT(list_is_empty(&zilog->zl_lwb_list));
638	(void) zil_parse(zilog, zil_free_log_block,
639	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
640}
641
642int
643zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
644{
645	dmu_tx_t *tx = txarg;
646	uint64_t first_txg = dmu_tx_get_txg(tx);
647	zilog_t *zilog;
648	zil_header_t *zh;
649	objset_t *os;
650	int error;
651
652	error = dmu_objset_own_obj(dp, ds->ds_object,
653	    DMU_OST_ANY, B_FALSE, FTAG, &os);
654	if (error != 0) {
655		/*
656		 * EBUSY indicates that the objset is inconsistent, in which
657		 * case it can not have a ZIL.
658		 */
659		if (error != EBUSY) {
660			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
661			    (unsigned long long)ds->ds_object, error);
662		}
663		return (0);
664	}
665
666	zilog = dmu_objset_zil(os);
667	zh = zil_header_in_syncing_context(zilog);
668
669	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
670		if (!BP_IS_HOLE(&zh->zh_log))
671			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
672		BP_ZERO(&zh->zh_log);
673		dsl_dataset_dirty(dmu_objset_ds(os), tx);
674		dmu_objset_disown(os, FTAG);
675		return (0);
676	}
677
678	/*
679	 * Claim all log blocks if we haven't already done so, and remember
680	 * the highest claimed sequence number.  This ensures that if we can
681	 * read only part of the log now (e.g. due to a missing device),
682	 * but we can read the entire log later, we will not try to replay
683	 * or destroy beyond the last block we successfully claimed.
684	 */
685	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
686	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
687		(void) zil_parse(zilog, zil_claim_log_block,
688		    zil_claim_log_record, tx, first_txg);
689		zh->zh_claim_txg = first_txg;
690		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
691		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
692		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
693			zh->zh_flags |= ZIL_REPLAY_NEEDED;
694		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
695		dsl_dataset_dirty(dmu_objset_ds(os), tx);
696	}
697
698	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
699	dmu_objset_disown(os, FTAG);
700	return (0);
701}
702
703/*
704 * Check the log by walking the log chain.
705 * Checksum errors are ok as they indicate the end of the chain.
706 * Any other error (no device or read failure) returns an error.
707 */
708/* ARGSUSED */
709int
710zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
711{
712	zilog_t *zilog;
713	objset_t *os;
714	blkptr_t *bp;
715	int error;
716
717	ASSERT(tx == NULL);
718
719	error = dmu_objset_from_ds(ds, &os);
720	if (error != 0) {
721		cmn_err(CE_WARN, "can't open objset %llu, error %d",
722		    (unsigned long long)ds->ds_object, error);
723		return (0);
724	}
725
726	zilog = dmu_objset_zil(os);
727	bp = (blkptr_t *)&zilog->zl_header->zh_log;
728
729	/*
730	 * Check the first block and determine if it's on a log device
731	 * which may have been removed or faulted prior to loading this
732	 * pool.  If so, there's no point in checking the rest of the log
733	 * as its content should have already been synced to the pool.
734	 */
735	if (!BP_IS_HOLE(bp)) {
736		vdev_t *vd;
737		boolean_t valid = B_TRUE;
738
739		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
740		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
741		if (vd->vdev_islog && vdev_is_dead(vd))
742			valid = vdev_log_state_valid(vd);
743		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
744
745		if (!valid)
746			return (0);
747	}
748
749	/*
750	 * Because tx == NULL, zil_claim_log_block() will not actually claim
751	 * any blocks, but just determine whether it is possible to do so.
752	 * In addition to checking the log chain, zil_claim_log_block()
753	 * will invoke zio_claim() with a done func of spa_claim_notify(),
754	 * which will update spa_max_claim_txg.  See spa_load() for details.
755	 */
756	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
757	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
758
759	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
760}
761
762static int
763zil_vdev_compare(const void *x1, const void *x2)
764{
765	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
766	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
767
768	if (v1 < v2)
769		return (-1);
770	if (v1 > v2)
771		return (1);
772
773	return (0);
774}
775
776void
777zil_add_block(zilog_t *zilog, const blkptr_t *bp)
778{
779	avl_tree_t *t = &zilog->zl_vdev_tree;
780	avl_index_t where;
781	zil_vdev_node_t *zv, zvsearch;
782	int ndvas = BP_GET_NDVAS(bp);
783	int i;
784
785	if (zfs_nocacheflush)
786		return;
787
788	ASSERT(zilog->zl_writer);
789
790	/*
791	 * Even though we're zl_writer, we still need a lock because the
792	 * zl_get_data() callbacks may have dmu_sync() done callbacks
793	 * that will run concurrently.
794	 */
795	mutex_enter(&zilog->zl_vdev_lock);
796	for (i = 0; i < ndvas; i++) {
797		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
798		if (avl_find(t, &zvsearch, &where) == NULL) {
799			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
800			zv->zv_vdev = zvsearch.zv_vdev;
801			avl_insert(t, zv, where);
802		}
803	}
804	mutex_exit(&zilog->zl_vdev_lock);
805}
806
807static void
808zil_flush_vdevs(zilog_t *zilog)
809{
810	spa_t *spa = zilog->zl_spa;
811	avl_tree_t *t = &zilog->zl_vdev_tree;
812	void *cookie = NULL;
813	zil_vdev_node_t *zv;
814	zio_t *zio;
815
816	ASSERT(zilog->zl_writer);
817
818	/*
819	 * We don't need zl_vdev_lock here because we're the zl_writer,
820	 * and all zl_get_data() callbacks are done.
821	 */
822	if (avl_numnodes(t) == 0)
823		return;
824
825	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
826
827	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
828
829	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
830		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
831		if (vd != NULL)
832			zio_flush(zio, vd);
833		kmem_free(zv, sizeof (*zv));
834	}
835
836	/*
837	 * Wait for all the flushes to complete.  Not all devices actually
838	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
839	 */
840	(void) zio_wait(zio);
841
842	spa_config_exit(spa, SCL_STATE, FTAG);
843}
844
845/*
846 * Function called when a log block write completes
847 */
848static void
849zil_lwb_write_done(zio_t *zio)
850{
851	lwb_t *lwb = zio->io_private;
852	zilog_t *zilog = lwb->lwb_zilog;
853	dmu_tx_t *tx = lwb->lwb_tx;
854
855	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
856	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
857	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
858	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
859	ASSERT(!BP_IS_GANG(zio->io_bp));
860	ASSERT(!BP_IS_HOLE(zio->io_bp));
861	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
862
863	/*
864	 * Ensure the lwb buffer pointer is cleared before releasing
865	 * the txg. If we have had an allocation failure and
866	 * the txg is waiting to sync then we want want zil_sync()
867	 * to remove the lwb so that it's not picked up as the next new
868	 * one in zil_commit_writer(). zil_sync() will only remove
869	 * the lwb if lwb_buf is null.
870	 */
871	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
872	mutex_enter(&zilog->zl_lock);
873	lwb->lwb_buf = NULL;
874	lwb->lwb_tx = NULL;
875	mutex_exit(&zilog->zl_lock);
876
877	/*
878	 * Now that we've written this log block, we have a stable pointer
879	 * to the next block in the chain, so it's OK to let the txg in
880	 * which we allocated the next block sync.
881	 */
882	dmu_tx_commit(tx);
883}
884
885/*
886 * Initialize the io for a log block.
887 */
888static void
889zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
890{
891	zbookmark_phys_t zb;
892
893	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
894	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
895	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
896
897	if (zilog->zl_root_zio == NULL) {
898		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
899		    ZIO_FLAG_CANFAIL);
900	}
901	if (lwb->lwb_zio == NULL) {
902		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
903		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
904		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
905		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
906	}
907}
908
909/*
910 * Define a limited set of intent log block sizes.
911 *
912 * These must be a multiple of 4KB. Note only the amount used (again
913 * aligned to 4KB) actually gets written. However, we can't always just
914 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
915 */
916uint64_t zil_block_buckets[] = {
917    4096,		/* non TX_WRITE */
918    8192+4096,		/* data base */
919    32*1024 + 4096, 	/* NFS writes */
920    UINT64_MAX
921};
922
923/*
924 * Use the slog as long as the logbias is 'latency' and the current commit size
925 * is less than the limit or the total list size is less than 2X the limit.
926 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
927 */
928uint64_t zil_slog_limit = 1024 * 1024;
929#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
930	(((zilog)->zl_cur_used < zil_slog_limit) || \
931	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
932
933/*
934 * Start a log block write and advance to the next log block.
935 * Calls are serialized.
936 */
937static lwb_t *
938zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
939{
940	lwb_t *nlwb = NULL;
941	zil_chain_t *zilc;
942	spa_t *spa = zilog->zl_spa;
943	blkptr_t *bp;
944	dmu_tx_t *tx;
945	uint64_t txg;
946	uint64_t zil_blksz, wsz;
947	int i, error;
948
949	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
950		zilc = (zil_chain_t *)lwb->lwb_buf;
951		bp = &zilc->zc_next_blk;
952	} else {
953		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
954		bp = &zilc->zc_next_blk;
955	}
956
957	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
958
959	/*
960	 * Allocate the next block and save its address in this block
961	 * before writing it in order to establish the log chain.
962	 * Note that if the allocation of nlwb synced before we wrote
963	 * the block that points at it (lwb), we'd leak it if we crashed.
964	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
965	 * We dirty the dataset to ensure that zil_sync() will be called
966	 * to clean up in the event of allocation failure or I/O failure.
967	 */
968	tx = dmu_tx_create(zilog->zl_os);
969	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
970	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
971	txg = dmu_tx_get_txg(tx);
972
973	lwb->lwb_tx = tx;
974
975	/*
976	 * Log blocks are pre-allocated. Here we select the size of the next
977	 * block, based on size used in the last block.
978	 * - first find the smallest bucket that will fit the block from a
979	 *   limited set of block sizes. This is because it's faster to write
980	 *   blocks allocated from the same metaslab as they are adjacent or
981	 *   close.
982	 * - next find the maximum from the new suggested size and an array of
983	 *   previous sizes. This lessens a picket fence effect of wrongly
984	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
985	 *   requests.
986	 *
987	 * Note we only write what is used, but we can't just allocate
988	 * the maximum block size because we can exhaust the available
989	 * pool log space.
990	 */
991	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
992	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
993		continue;
994	zil_blksz = zil_block_buckets[i];
995	if (zil_blksz == UINT64_MAX)
996		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
997	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
998	for (i = 0; i < ZIL_PREV_BLKS; i++)
999		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1000	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1001
1002	BP_ZERO(bp);
1003	/* pass the old blkptr in order to spread log blocks across devs */
1004	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1005	    USE_SLOG(zilog));
1006	if (error == 0) {
1007		ASSERT3U(bp->blk_birth, ==, txg);
1008		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1009		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1010
1011		/*
1012		 * Allocate a new log write buffer (lwb).
1013		 */
1014		nlwb = zil_alloc_lwb(zilog, bp, txg);
1015
1016		/* Record the block for later vdev flushing */
1017		zil_add_block(zilog, &lwb->lwb_blk);
1018	}
1019
1020	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1021		/* For Slim ZIL only write what is used. */
1022		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1023		ASSERT3U(wsz, <=, lwb->lwb_sz);
1024		zio_shrink(lwb->lwb_zio, wsz);
1025
1026	} else {
1027		wsz = lwb->lwb_sz;
1028	}
1029
1030	zilc->zc_pad = 0;
1031	zilc->zc_nused = lwb->lwb_nused;
1032	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1033
1034	/*
1035	 * clear unused data for security
1036	 */
1037	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1038
1039	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1040
1041	/*
1042	 * If there was an allocation failure then nlwb will be null which
1043	 * forces a txg_wait_synced().
1044	 */
1045	return (nlwb);
1046}
1047
1048static lwb_t *
1049zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1050{
1051	lr_t *lrc = &itx->itx_lr; /* common log record */
1052	lr_write_t *lrw = (lr_write_t *)lrc;
1053	char *lr_buf;
1054	uint64_t txg = lrc->lrc_txg;
1055	uint64_t reclen = lrc->lrc_reclen;
1056	uint64_t dlen = 0;
1057
1058	if (lwb == NULL)
1059		return (NULL);
1060
1061	ASSERT(lwb->lwb_buf != NULL);
1062	ASSERT(zilog_is_dirty(zilog) ||
1063	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1064
1065	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1066		dlen = P2ROUNDUP_TYPED(
1067		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1068
1069	zilog->zl_cur_used += (reclen + dlen);
1070
1071	zil_lwb_write_init(zilog, lwb);
1072
1073	/*
1074	 * If this record won't fit in the current log block, start a new one.
1075	 */
1076	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1077		lwb = zil_lwb_write_start(zilog, lwb);
1078		if (lwb == NULL)
1079			return (NULL);
1080		zil_lwb_write_init(zilog, lwb);
1081		ASSERT(LWB_EMPTY(lwb));
1082		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1083			txg_wait_synced(zilog->zl_dmu_pool, txg);
1084			return (lwb);
1085		}
1086	}
1087
1088	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1089	bcopy(lrc, lr_buf, reclen);
1090	lrc = (lr_t *)lr_buf;
1091	lrw = (lr_write_t *)lrc;
1092
1093	/*
1094	 * If it's a write, fetch the data or get its blkptr as appropriate.
1095	 */
1096	if (lrc->lrc_txtype == TX_WRITE) {
1097		if (txg > spa_freeze_txg(zilog->zl_spa))
1098			txg_wait_synced(zilog->zl_dmu_pool, txg);
1099		if (itx->itx_wr_state != WR_COPIED) {
1100			char *dbuf;
1101			int error;
1102
1103			if (dlen) {
1104				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1105				dbuf = lr_buf + reclen;
1106				lrw->lr_common.lrc_reclen += dlen;
1107			} else {
1108				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1109				dbuf = NULL;
1110			}
1111			error = zilog->zl_get_data(
1112			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1113			if (error == EIO) {
1114				txg_wait_synced(zilog->zl_dmu_pool, txg);
1115				return (lwb);
1116			}
1117			if (error != 0) {
1118				ASSERT(error == ENOENT || error == EEXIST ||
1119				    error == EALREADY);
1120				return (lwb);
1121			}
1122		}
1123	}
1124
1125	/*
1126	 * We're actually making an entry, so update lrc_seq to be the
1127	 * log record sequence number.  Note that this is generally not
1128	 * equal to the itx sequence number because not all transactions
1129	 * are synchronous, and sometimes spa_sync() gets there first.
1130	 */
1131	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1132	lwb->lwb_nused += reclen + dlen;
1133	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1134	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1135	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1136
1137	return (lwb);
1138}
1139
1140itx_t *
1141zil_itx_create(uint64_t txtype, size_t lrsize)
1142{
1143	itx_t *itx;
1144
1145	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1146
1147	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1148	itx->itx_lr.lrc_txtype = txtype;
1149	itx->itx_lr.lrc_reclen = lrsize;
1150	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1151	itx->itx_lr.lrc_seq = 0;	/* defensive */
1152	itx->itx_sync = B_TRUE;		/* default is synchronous */
1153
1154	return (itx);
1155}
1156
1157void
1158zil_itx_destroy(itx_t *itx)
1159{
1160	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1161}
1162
1163/*
1164 * Free up the sync and async itxs. The itxs_t has already been detached
1165 * so no locks are needed.
1166 */
1167static void
1168zil_itxg_clean(itxs_t *itxs)
1169{
1170	itx_t *itx;
1171	list_t *list;
1172	avl_tree_t *t;
1173	void *cookie;
1174	itx_async_node_t *ian;
1175
1176	list = &itxs->i_sync_list;
1177	while ((itx = list_head(list)) != NULL) {
1178		list_remove(list, itx);
1179		kmem_free(itx, offsetof(itx_t, itx_lr) +
1180		    itx->itx_lr.lrc_reclen);
1181	}
1182
1183	cookie = NULL;
1184	t = &itxs->i_async_tree;
1185	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1186		list = &ian->ia_list;
1187		while ((itx = list_head(list)) != NULL) {
1188			list_remove(list, itx);
1189			kmem_free(itx, offsetof(itx_t, itx_lr) +
1190			    itx->itx_lr.lrc_reclen);
1191		}
1192		list_destroy(list);
1193		kmem_free(ian, sizeof (itx_async_node_t));
1194	}
1195	avl_destroy(t);
1196
1197	kmem_free(itxs, sizeof (itxs_t));
1198}
1199
1200static int
1201zil_aitx_compare(const void *x1, const void *x2)
1202{
1203	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1204	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1205
1206	if (o1 < o2)
1207		return (-1);
1208	if (o1 > o2)
1209		return (1);
1210
1211	return (0);
1212}
1213
1214/*
1215 * Remove all async itx with the given oid.
1216 */
1217static void
1218zil_remove_async(zilog_t *zilog, uint64_t oid)
1219{
1220	uint64_t otxg, txg;
1221	itx_async_node_t *ian;
1222	avl_tree_t *t;
1223	avl_index_t where;
1224	list_t clean_list;
1225	itx_t *itx;
1226
1227	ASSERT(oid != 0);
1228	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1229
1230	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1231		otxg = ZILTEST_TXG;
1232	else
1233		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1234
1235	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1236		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1237
1238		mutex_enter(&itxg->itxg_lock);
1239		if (itxg->itxg_txg != txg) {
1240			mutex_exit(&itxg->itxg_lock);
1241			continue;
1242		}
1243
1244		/*
1245		 * Locate the object node and append its list.
1246		 */
1247		t = &itxg->itxg_itxs->i_async_tree;
1248		ian = avl_find(t, &oid, &where);
1249		if (ian != NULL)
1250			list_move_tail(&clean_list, &ian->ia_list);
1251		mutex_exit(&itxg->itxg_lock);
1252	}
1253	while ((itx = list_head(&clean_list)) != NULL) {
1254		list_remove(&clean_list, itx);
1255		kmem_free(itx, offsetof(itx_t, itx_lr) +
1256		    itx->itx_lr.lrc_reclen);
1257	}
1258	list_destroy(&clean_list);
1259}
1260
1261void
1262zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1263{
1264	uint64_t txg;
1265	itxg_t *itxg;
1266	itxs_t *itxs, *clean = NULL;
1267
1268	/*
1269	 * Object ids can be re-instantiated in the next txg so
1270	 * remove any async transactions to avoid future leaks.
1271	 * This can happen if a fsync occurs on the re-instantiated
1272	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1273	 * the new file data and flushes a write record for the old object.
1274	 */
1275	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1276		zil_remove_async(zilog, itx->itx_oid);
1277
1278	/*
1279	 * Ensure the data of a renamed file is committed before the rename.
1280	 */
1281	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1282		zil_async_to_sync(zilog, itx->itx_oid);
1283
1284	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1285		txg = ZILTEST_TXG;
1286	else
1287		txg = dmu_tx_get_txg(tx);
1288
1289	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1290	mutex_enter(&itxg->itxg_lock);
1291	itxs = itxg->itxg_itxs;
1292	if (itxg->itxg_txg != txg) {
1293		if (itxs != NULL) {
1294			/*
1295			 * The zil_clean callback hasn't got around to cleaning
1296			 * this itxg. Save the itxs for release below.
1297			 * This should be rare.
1298			 */
1299			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1300			itxg->itxg_sod = 0;
1301			clean = itxg->itxg_itxs;
1302		}
1303		ASSERT(itxg->itxg_sod == 0);
1304		itxg->itxg_txg = txg;
1305		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1306
1307		list_create(&itxs->i_sync_list, sizeof (itx_t),
1308		    offsetof(itx_t, itx_node));
1309		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1310		    sizeof (itx_async_node_t),
1311		    offsetof(itx_async_node_t, ia_node));
1312	}
1313	if (itx->itx_sync) {
1314		list_insert_tail(&itxs->i_sync_list, itx);
1315		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1316		itxg->itxg_sod += itx->itx_sod;
1317	} else {
1318		avl_tree_t *t = &itxs->i_async_tree;
1319		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1320		itx_async_node_t *ian;
1321		avl_index_t where;
1322
1323		ian = avl_find(t, &foid, &where);
1324		if (ian == NULL) {
1325			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1326			list_create(&ian->ia_list, sizeof (itx_t),
1327			    offsetof(itx_t, itx_node));
1328			ian->ia_foid = foid;
1329			avl_insert(t, ian, where);
1330		}
1331		list_insert_tail(&ian->ia_list, itx);
1332	}
1333
1334	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1335	zilog_dirty(zilog, txg);
1336	mutex_exit(&itxg->itxg_lock);
1337
1338	/* Release the old itxs now we've dropped the lock */
1339	if (clean != NULL)
1340		zil_itxg_clean(clean);
1341}
1342
1343/*
1344 * If there are any in-memory intent log transactions which have now been
1345 * synced then start up a taskq to free them. We should only do this after we
1346 * have written out the uberblocks (i.e. txg has been comitted) so that
1347 * don't inadvertently clean out in-memory log records that would be required
1348 * by zil_commit().
1349 */
1350void
1351zil_clean(zilog_t *zilog, uint64_t synced_txg)
1352{
1353	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1354	itxs_t *clean_me;
1355
1356	mutex_enter(&itxg->itxg_lock);
1357	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1358		mutex_exit(&itxg->itxg_lock);
1359		return;
1360	}
1361	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1362	ASSERT(itxg->itxg_txg != 0);
1363	ASSERT(zilog->zl_clean_taskq != NULL);
1364	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1365	itxg->itxg_sod = 0;
1366	clean_me = itxg->itxg_itxs;
1367	itxg->itxg_itxs = NULL;
1368	itxg->itxg_txg = 0;
1369	mutex_exit(&itxg->itxg_lock);
1370	/*
1371	 * Preferably start a task queue to free up the old itxs but
1372	 * if taskq_dispatch can't allocate resources to do that then
1373	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1374	 * created a bad performance problem.
1375	 */
1376	if (taskq_dispatch(zilog->zl_clean_taskq,
1377	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1378		zil_itxg_clean(clean_me);
1379}
1380
1381/*
1382 * Get the list of itxs to commit into zl_itx_commit_list.
1383 */
1384static void
1385zil_get_commit_list(zilog_t *zilog)
1386{
1387	uint64_t otxg, txg;
1388	list_t *commit_list = &zilog->zl_itx_commit_list;
1389	uint64_t push_sod = 0;
1390
1391	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1392		otxg = ZILTEST_TXG;
1393	else
1394		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1395
1396	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1397		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1398
1399		mutex_enter(&itxg->itxg_lock);
1400		if (itxg->itxg_txg != txg) {
1401			mutex_exit(&itxg->itxg_lock);
1402			continue;
1403		}
1404
1405		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1406		push_sod += itxg->itxg_sod;
1407		itxg->itxg_sod = 0;
1408
1409		mutex_exit(&itxg->itxg_lock);
1410	}
1411	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1412}
1413
1414/*
1415 * Move the async itxs for a specified object to commit into sync lists.
1416 */
1417static void
1418zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1419{
1420	uint64_t otxg, txg;
1421	itx_async_node_t *ian;
1422	avl_tree_t *t;
1423	avl_index_t where;
1424
1425	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1426		otxg = ZILTEST_TXG;
1427	else
1428		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1429
1430	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1431		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1432
1433		mutex_enter(&itxg->itxg_lock);
1434		if (itxg->itxg_txg != txg) {
1435			mutex_exit(&itxg->itxg_lock);
1436			continue;
1437		}
1438
1439		/*
1440		 * If a foid is specified then find that node and append its
1441		 * list. Otherwise walk the tree appending all the lists
1442		 * to the sync list. We add to the end rather than the
1443		 * beginning to ensure the create has happened.
1444		 */
1445		t = &itxg->itxg_itxs->i_async_tree;
1446		if (foid != 0) {
1447			ian = avl_find(t, &foid, &where);
1448			if (ian != NULL) {
1449				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1450				    &ian->ia_list);
1451			}
1452		} else {
1453			void *cookie = NULL;
1454
1455			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1456				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1457				    &ian->ia_list);
1458				list_destroy(&ian->ia_list);
1459				kmem_free(ian, sizeof (itx_async_node_t));
1460			}
1461		}
1462		mutex_exit(&itxg->itxg_lock);
1463	}
1464}
1465
1466static void
1467zil_commit_writer(zilog_t *zilog)
1468{
1469	uint64_t txg;
1470	itx_t *itx;
1471	lwb_t *lwb;
1472	spa_t *spa = zilog->zl_spa;
1473	int error = 0;
1474
1475	ASSERT(zilog->zl_root_zio == NULL);
1476
1477	mutex_exit(&zilog->zl_lock);
1478
1479	zil_get_commit_list(zilog);
1480
1481	/*
1482	 * Return if there's nothing to commit before we dirty the fs by
1483	 * calling zil_create().
1484	 */
1485	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1486		mutex_enter(&zilog->zl_lock);
1487		return;
1488	}
1489
1490	if (zilog->zl_suspend) {
1491		lwb = NULL;
1492	} else {
1493		lwb = list_tail(&zilog->zl_lwb_list);
1494		if (lwb == NULL)
1495			lwb = zil_create(zilog);
1496	}
1497
1498	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1499	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1500		txg = itx->itx_lr.lrc_txg;
1501		ASSERT(txg);
1502
1503		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1504			lwb = zil_lwb_commit(zilog, itx, lwb);
1505		list_remove(&zilog->zl_itx_commit_list, itx);
1506		kmem_free(itx, offsetof(itx_t, itx_lr)
1507		    + itx->itx_lr.lrc_reclen);
1508	}
1509	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1510
1511	/* write the last block out */
1512	if (lwb != NULL && lwb->lwb_zio != NULL)
1513		lwb = zil_lwb_write_start(zilog, lwb);
1514
1515	zilog->zl_cur_used = 0;
1516
1517	/*
1518	 * Wait if necessary for the log blocks to be on stable storage.
1519	 */
1520	if (zilog->zl_root_zio) {
1521		error = zio_wait(zilog->zl_root_zio);
1522		zilog->zl_root_zio = NULL;
1523		zil_flush_vdevs(zilog);
1524	}
1525
1526	if (error || lwb == NULL)
1527		txg_wait_synced(zilog->zl_dmu_pool, 0);
1528
1529	mutex_enter(&zilog->zl_lock);
1530
1531	/*
1532	 * Remember the highest committed log sequence number for ztest.
1533	 * We only update this value when all the log writes succeeded,
1534	 * because ztest wants to ASSERT that it got the whole log chain.
1535	 */
1536	if (error == 0 && lwb != NULL)
1537		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1538}
1539
1540/*
1541 * Commit zfs transactions to stable storage.
1542 * If foid is 0 push out all transactions, otherwise push only those
1543 * for that object or might reference that object.
1544 *
1545 * itxs are committed in batches. In a heavily stressed zil there will be
1546 * a commit writer thread who is writing out a bunch of itxs to the log
1547 * for a set of committing threads (cthreads) in the same batch as the writer.
1548 * Those cthreads are all waiting on the same cv for that batch.
1549 *
1550 * There will also be a different and growing batch of threads that are
1551 * waiting to commit (qthreads). When the committing batch completes
1552 * a transition occurs such that the cthreads exit and the qthreads become
1553 * cthreads. One of the new cthreads becomes the writer thread for the
1554 * batch. Any new threads arriving become new qthreads.
1555 *
1556 * Only 2 condition variables are needed and there's no transition
1557 * between the two cvs needed. They just flip-flop between qthreads
1558 * and cthreads.
1559 *
1560 * Using this scheme we can efficiently wakeup up only those threads
1561 * that have been committed.
1562 */
1563void
1564zil_commit(zilog_t *zilog, uint64_t foid)
1565{
1566	uint64_t mybatch;
1567
1568	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1569		return;
1570
1571	/* move the async itxs for the foid to the sync queues */
1572	zil_async_to_sync(zilog, foid);
1573
1574	mutex_enter(&zilog->zl_lock);
1575	mybatch = zilog->zl_next_batch;
1576	while (zilog->zl_writer) {
1577		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1578		if (mybatch <= zilog->zl_com_batch) {
1579			mutex_exit(&zilog->zl_lock);
1580			return;
1581		}
1582	}
1583
1584	zilog->zl_next_batch++;
1585	zilog->zl_writer = B_TRUE;
1586	zil_commit_writer(zilog);
1587	zilog->zl_com_batch = mybatch;
1588	zilog->zl_writer = B_FALSE;
1589	mutex_exit(&zilog->zl_lock);
1590
1591	/* wake up one thread to become the next writer */
1592	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1593
1594	/* wake up all threads waiting for this batch to be committed */
1595	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1596}
1597
1598/*
1599 * Called in syncing context to free committed log blocks and update log header.
1600 */
1601void
1602zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1603{
1604	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1605	uint64_t txg = dmu_tx_get_txg(tx);
1606	spa_t *spa = zilog->zl_spa;
1607	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1608	lwb_t *lwb;
1609
1610	/*
1611	 * We don't zero out zl_destroy_txg, so make sure we don't try
1612	 * to destroy it twice.
1613	 */
1614	if (spa_sync_pass(spa) != 1)
1615		return;
1616
1617	mutex_enter(&zilog->zl_lock);
1618
1619	ASSERT(zilog->zl_stop_sync == 0);
1620
1621	if (*replayed_seq != 0) {
1622		ASSERT(zh->zh_replay_seq < *replayed_seq);
1623		zh->zh_replay_seq = *replayed_seq;
1624		*replayed_seq = 0;
1625	}
1626
1627	if (zilog->zl_destroy_txg == txg) {
1628		blkptr_t blk = zh->zh_log;
1629
1630		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1631
1632		bzero(zh, sizeof (zil_header_t));
1633		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1634
1635		if (zilog->zl_keep_first) {
1636			/*
1637			 * If this block was part of log chain that couldn't
1638			 * be claimed because a device was missing during
1639			 * zil_claim(), but that device later returns,
1640			 * then this block could erroneously appear valid.
1641			 * To guard against this, assign a new GUID to the new
1642			 * log chain so it doesn't matter what blk points to.
1643			 */
1644			zil_init_log_chain(zilog, &blk);
1645			zh->zh_log = blk;
1646		}
1647	}
1648
1649	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1650		zh->zh_log = lwb->lwb_blk;
1651		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1652			break;
1653		list_remove(&zilog->zl_lwb_list, lwb);
1654		zio_free_zil(spa, txg, &lwb->lwb_blk);
1655		kmem_cache_free(zil_lwb_cache, lwb);
1656
1657		/*
1658		 * If we don't have anything left in the lwb list then
1659		 * we've had an allocation failure and we need to zero
1660		 * out the zil_header blkptr so that we don't end
1661		 * up freeing the same block twice.
1662		 */
1663		if (list_head(&zilog->zl_lwb_list) == NULL)
1664			BP_ZERO(&zh->zh_log);
1665	}
1666	mutex_exit(&zilog->zl_lock);
1667}
1668
1669void
1670zil_init(void)
1671{
1672	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1673	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1674}
1675
1676void
1677zil_fini(void)
1678{
1679	kmem_cache_destroy(zil_lwb_cache);
1680}
1681
1682void
1683zil_set_sync(zilog_t *zilog, uint64_t sync)
1684{
1685	zilog->zl_sync = sync;
1686}
1687
1688void
1689zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1690{
1691	zilog->zl_logbias = logbias;
1692}
1693
1694zilog_t *
1695zil_alloc(objset_t *os, zil_header_t *zh_phys)
1696{
1697	zilog_t *zilog;
1698
1699	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1700
1701	zilog->zl_header = zh_phys;
1702	zilog->zl_os = os;
1703	zilog->zl_spa = dmu_objset_spa(os);
1704	zilog->zl_dmu_pool = dmu_objset_pool(os);
1705	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1706	zilog->zl_logbias = dmu_objset_logbias(os);
1707	zilog->zl_sync = dmu_objset_syncprop(os);
1708	zilog->zl_next_batch = 1;
1709
1710	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1711
1712	for (int i = 0; i < TXG_SIZE; i++) {
1713		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1714		    MUTEX_DEFAULT, NULL);
1715	}
1716
1717	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1718	    offsetof(lwb_t, lwb_node));
1719
1720	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1721	    offsetof(itx_t, itx_node));
1722
1723	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1724
1725	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1726	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1727
1728	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1729	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1730	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1731	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1732
1733	return (zilog);
1734}
1735
1736void
1737zil_free(zilog_t *zilog)
1738{
1739	zilog->zl_stop_sync = 1;
1740
1741	ASSERT0(zilog->zl_suspend);
1742	ASSERT0(zilog->zl_suspending);
1743
1744	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1745	list_destroy(&zilog->zl_lwb_list);
1746
1747	avl_destroy(&zilog->zl_vdev_tree);
1748	mutex_destroy(&zilog->zl_vdev_lock);
1749
1750	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1751	list_destroy(&zilog->zl_itx_commit_list);
1752
1753	for (int i = 0; i < TXG_SIZE; i++) {
1754		/*
1755		 * It's possible for an itx to be generated that doesn't dirty
1756		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1757		 * callback to remove the entry. We remove those here.
1758		 *
1759		 * Also free up the ziltest itxs.
1760		 */
1761		if (zilog->zl_itxg[i].itxg_itxs)
1762			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1763		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1764	}
1765
1766	mutex_destroy(&zilog->zl_lock);
1767
1768	cv_destroy(&zilog->zl_cv_writer);
1769	cv_destroy(&zilog->zl_cv_suspend);
1770	cv_destroy(&zilog->zl_cv_batch[0]);
1771	cv_destroy(&zilog->zl_cv_batch[1]);
1772
1773	kmem_free(zilog, sizeof (zilog_t));
1774}
1775
1776/*
1777 * Open an intent log.
1778 */
1779zilog_t *
1780zil_open(objset_t *os, zil_get_data_t *get_data)
1781{
1782	zilog_t *zilog = dmu_objset_zil(os);
1783
1784	ASSERT(zilog->zl_clean_taskq == NULL);
1785	ASSERT(zilog->zl_get_data == NULL);
1786	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1787
1788	zilog->zl_get_data = get_data;
1789	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1790	    2, 2, TASKQ_PREPOPULATE);
1791
1792	return (zilog);
1793}
1794
1795/*
1796 * Close an intent log.
1797 */
1798void
1799zil_close(zilog_t *zilog)
1800{
1801	lwb_t *lwb;
1802	uint64_t txg = 0;
1803
1804	zil_commit(zilog, 0); /* commit all itx */
1805
1806	/*
1807	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1808	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1809	 * callbacks have occurred that may clean the zil.  Only then can we
1810	 * destroy the zl_clean_taskq.
1811	 */
1812	mutex_enter(&zilog->zl_lock);
1813	lwb = list_tail(&zilog->zl_lwb_list);
1814	if (lwb != NULL)
1815		txg = lwb->lwb_max_txg;
1816	mutex_exit(&zilog->zl_lock);
1817	if (txg)
1818		txg_wait_synced(zilog->zl_dmu_pool, txg);
1819	ASSERT(!zilog_is_dirty(zilog));
1820
1821	taskq_destroy(zilog->zl_clean_taskq);
1822	zilog->zl_clean_taskq = NULL;
1823	zilog->zl_get_data = NULL;
1824
1825	/*
1826	 * We should have only one LWB left on the list; remove it now.
1827	 */
1828	mutex_enter(&zilog->zl_lock);
1829	lwb = list_head(&zilog->zl_lwb_list);
1830	if (lwb != NULL) {
1831		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1832		list_remove(&zilog->zl_lwb_list, lwb);
1833		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1834		kmem_cache_free(zil_lwb_cache, lwb);
1835	}
1836	mutex_exit(&zilog->zl_lock);
1837}
1838
1839static char *suspend_tag = "zil suspending";
1840
1841/*
1842 * Suspend an intent log.  While in suspended mode, we still honor
1843 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1844 * On old version pools, we suspend the log briefly when taking a
1845 * snapshot so that it will have an empty intent log.
1846 *
1847 * Long holds are not really intended to be used the way we do here --
1848 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1849 * could fail.  Therefore we take pains to only put a long hold if it is
1850 * actually necessary.  Fortunately, it will only be necessary if the
1851 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1852 * will already have a long hold, so we are not really making things any worse.
1853 *
1854 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1855 * zvol_state_t), and use their mechanism to prevent their hold from being
1856 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1857 * very little gain.
1858 *
1859 * if cookiep == NULL, this does both the suspend & resume.
1860 * Otherwise, it returns with the dataset "long held", and the cookie
1861 * should be passed into zil_resume().
1862 */
1863int
1864zil_suspend(const char *osname, void **cookiep)
1865{
1866	objset_t *os;
1867	zilog_t *zilog;
1868	const zil_header_t *zh;
1869	int error;
1870
1871	error = dmu_objset_hold(osname, suspend_tag, &os);
1872	if (error != 0)
1873		return (error);
1874	zilog = dmu_objset_zil(os);
1875
1876	mutex_enter(&zilog->zl_lock);
1877	zh = zilog->zl_header;
1878
1879	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1880		mutex_exit(&zilog->zl_lock);
1881		dmu_objset_rele(os, suspend_tag);
1882		return (SET_ERROR(EBUSY));
1883	}
1884
1885	/*
1886	 * Don't put a long hold in the cases where we can avoid it.  This
1887	 * is when there is no cookie so we are doing a suspend & resume
1888	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1889	 * for the suspend because it's already suspended, or there's no ZIL.
1890	 */
1891	if (cookiep == NULL && !zilog->zl_suspending &&
1892	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1893		mutex_exit(&zilog->zl_lock);
1894		dmu_objset_rele(os, suspend_tag);
1895		return (0);
1896	}
1897
1898	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1899	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1900
1901	zilog->zl_suspend++;
1902
1903	if (zilog->zl_suspend > 1) {
1904		/*
1905		 * Someone else is already suspending it.
1906		 * Just wait for them to finish.
1907		 */
1908
1909		while (zilog->zl_suspending)
1910			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1911		mutex_exit(&zilog->zl_lock);
1912
1913		if (cookiep == NULL)
1914			zil_resume(os);
1915		else
1916			*cookiep = os;
1917		return (0);
1918	}
1919
1920	/*
1921	 * If there is no pointer to an on-disk block, this ZIL must not
1922	 * be active (e.g. filesystem not mounted), so there's nothing
1923	 * to clean up.
1924	 */
1925	if (BP_IS_HOLE(&zh->zh_log)) {
1926		ASSERT(cookiep != NULL); /* fast path already handled */
1927
1928		*cookiep = os;
1929		mutex_exit(&zilog->zl_lock);
1930		return (0);
1931	}
1932
1933	zilog->zl_suspending = B_TRUE;
1934	mutex_exit(&zilog->zl_lock);
1935
1936	zil_commit(zilog, 0);
1937
1938	zil_destroy(zilog, B_FALSE);
1939
1940	mutex_enter(&zilog->zl_lock);
1941	zilog->zl_suspending = B_FALSE;
1942	cv_broadcast(&zilog->zl_cv_suspend);
1943	mutex_exit(&zilog->zl_lock);
1944
1945	if (cookiep == NULL)
1946		zil_resume(os);
1947	else
1948		*cookiep = os;
1949	return (0);
1950}
1951
1952void
1953zil_resume(void *cookie)
1954{
1955	objset_t *os = cookie;
1956	zilog_t *zilog = dmu_objset_zil(os);
1957
1958	mutex_enter(&zilog->zl_lock);
1959	ASSERT(zilog->zl_suspend != 0);
1960	zilog->zl_suspend--;
1961	mutex_exit(&zilog->zl_lock);
1962	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1963	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1964}
1965
1966typedef struct zil_replay_arg {
1967	zil_replay_func_t **zr_replay;
1968	void		*zr_arg;
1969	boolean_t	zr_byteswap;
1970	char		*zr_lr;
1971} zil_replay_arg_t;
1972
1973static int
1974zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1975{
1976	char name[ZFS_MAX_DATASET_NAME_LEN];
1977
1978	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1979
1980	dmu_objset_name(zilog->zl_os, name);
1981
1982	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1983	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1984	    (u_longlong_t)lr->lrc_seq,
1985	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1986	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1987
1988	return (error);
1989}
1990
1991static int
1992zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1993{
1994	zil_replay_arg_t *zr = zra;
1995	const zil_header_t *zh = zilog->zl_header;
1996	uint64_t reclen = lr->lrc_reclen;
1997	uint64_t txtype = lr->lrc_txtype;
1998	int error = 0;
1999
2000	zilog->zl_replaying_seq = lr->lrc_seq;
2001
2002	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2003		return (0);
2004
2005	if (lr->lrc_txg < claim_txg)		/* already committed */
2006		return (0);
2007
2008	/* Strip case-insensitive bit, still present in log record */
2009	txtype &= ~TX_CI;
2010
2011	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2012		return (zil_replay_error(zilog, lr, EINVAL));
2013
2014	/*
2015	 * If this record type can be logged out of order, the object
2016	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2017	 */
2018	if (TX_OOO(txtype)) {
2019		error = dmu_object_info(zilog->zl_os,
2020		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2021		if (error == ENOENT || error == EEXIST)
2022			return (0);
2023	}
2024
2025	/*
2026	 * Make a copy of the data so we can revise and extend it.
2027	 */
2028	bcopy(lr, zr->zr_lr, reclen);
2029
2030	/*
2031	 * If this is a TX_WRITE with a blkptr, suck in the data.
2032	 */
2033	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2034		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2035		    zr->zr_lr + reclen);
2036		if (error != 0)
2037			return (zil_replay_error(zilog, lr, error));
2038	}
2039
2040	/*
2041	 * The log block containing this lr may have been byteswapped
2042	 * so that we can easily examine common fields like lrc_txtype.
2043	 * However, the log is a mix of different record types, and only the
2044	 * replay vectors know how to byteswap their records.  Therefore, if
2045	 * the lr was byteswapped, undo it before invoking the replay vector.
2046	 */
2047	if (zr->zr_byteswap)
2048		byteswap_uint64_array(zr->zr_lr, reclen);
2049
2050	/*
2051	 * We must now do two things atomically: replay this log record,
2052	 * and update the log header sequence number to reflect the fact that
2053	 * we did so. At the end of each replay function the sequence number
2054	 * is updated if we are in replay mode.
2055	 */
2056	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2057	if (error != 0) {
2058		/*
2059		 * The DMU's dnode layer doesn't see removes until the txg
2060		 * commits, so a subsequent claim can spuriously fail with
2061		 * EEXIST. So if we receive any error we try syncing out
2062		 * any removes then retry the transaction.  Note that we
2063		 * specify B_FALSE for byteswap now, so we don't do it twice.
2064		 */
2065		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2066		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2067		if (error != 0)
2068			return (zil_replay_error(zilog, lr, error));
2069	}
2070	return (0);
2071}
2072
2073/* ARGSUSED */
2074static int
2075zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2076{
2077	zilog->zl_replay_blks++;
2078
2079	return (0);
2080}
2081
2082/*
2083 * If this dataset has a non-empty intent log, replay it and destroy it.
2084 */
2085void
2086zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2087{
2088	zilog_t *zilog = dmu_objset_zil(os);
2089	const zil_header_t *zh = zilog->zl_header;
2090	zil_replay_arg_t zr;
2091
2092	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2093		zil_destroy(zilog, B_TRUE);
2094		return;
2095	}
2096
2097	zr.zr_replay = replay_func;
2098	zr.zr_arg = arg;
2099	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2100	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2101
2102	/*
2103	 * Wait for in-progress removes to sync before starting replay.
2104	 */
2105	txg_wait_synced(zilog->zl_dmu_pool, 0);
2106
2107	zilog->zl_replay = B_TRUE;
2108	zilog->zl_replay_time = ddi_get_lbolt();
2109	ASSERT(zilog->zl_replay_blks == 0);
2110	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2111	    zh->zh_claim_txg);
2112	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2113
2114	zil_destroy(zilog, B_FALSE);
2115	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2116	zilog->zl_replay = B_FALSE;
2117}
2118
2119boolean_t
2120zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2121{
2122	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2123		return (B_TRUE);
2124
2125	if (zilog->zl_replay) {
2126		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2127		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2128		    zilog->zl_replaying_seq;
2129		return (B_TRUE);
2130	}
2131
2132	return (B_FALSE);
2133}
2134
2135/* ARGSUSED */
2136int
2137zil_vdev_offline(const char *osname, void *arg)
2138{
2139	int error;
2140
2141	error = zil_suspend(osname, NULL);
2142	if (error != 0)
2143		return (SET_ERROR(EEXIST));
2144	return (0);
2145}
2146