zil.c revision 288569
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zap.h>
32#include <sys/arc.h>
33#include <sys/stat.h>
34#include <sys/resource.h>
35#include <sys/zil.h>
36#include <sys/zil_impl.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vdev_impl.h>
39#include <sys/dmu_tx.h>
40#include <sys/dsl_pool.h>
41
42/*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * 	- ZIL header
56 * 	- ZIL blocks
57 * 	- ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */
67
68/*
69 * Disable intent logging replay.  This global ZIL switch affects all pools.
70 */
71int zil_replay_disable = 0;
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_trim_enabled = B_TRUE;
87SYSCTL_DECL(_vfs_zfs_trim);
88TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
89SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
90    "Enable ZFS TRIM");
91
92static kmem_cache_t *zil_lwb_cache;
93
94static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
95
96#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
97    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
98
99
100/*
101 * ziltest is by and large an ugly hack, but very useful in
102 * checking replay without tedious work.
103 * When running ziltest we want to keep all itx's and so maintain
104 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
105 * We subtract TXG_CONCURRENT_STATES to allow for common code.
106 */
107#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
108
109static int
110zil_bp_compare(const void *x1, const void *x2)
111{
112	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
113	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
114
115	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
116		return (-1);
117	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
118		return (1);
119
120	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
121		return (-1);
122	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
123		return (1);
124
125	return (0);
126}
127
128static void
129zil_bp_tree_init(zilog_t *zilog)
130{
131	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
132	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
133}
134
135static void
136zil_bp_tree_fini(zilog_t *zilog)
137{
138	avl_tree_t *t = &zilog->zl_bp_tree;
139	zil_bp_node_t *zn;
140	void *cookie = NULL;
141
142	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
143		kmem_free(zn, sizeof (zil_bp_node_t));
144
145	avl_destroy(t);
146}
147
148int
149zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
150{
151	avl_tree_t *t = &zilog->zl_bp_tree;
152	const dva_t *dva;
153	zil_bp_node_t *zn;
154	avl_index_t where;
155
156	if (BP_IS_EMBEDDED(bp))
157		return (0);
158
159	dva = BP_IDENTITY(bp);
160
161	if (avl_find(t, dva, &where) != NULL)
162		return (SET_ERROR(EEXIST));
163
164	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
165	zn->zn_dva = *dva;
166	avl_insert(t, zn, where);
167
168	return (0);
169}
170
171static zil_header_t *
172zil_header_in_syncing_context(zilog_t *zilog)
173{
174	return ((zil_header_t *)zilog->zl_header);
175}
176
177static void
178zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
179{
180	zio_cksum_t *zc = &bp->blk_cksum;
181
182	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
183	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
184	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
185	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
186}
187
188/*
189 * Read a log block and make sure it's valid.
190 */
191static int
192zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
193    char **end)
194{
195	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
196	arc_flags_t aflags = ARC_FLAG_WAIT;
197	arc_buf_t *abuf = NULL;
198	zbookmark_phys_t zb;
199	int error;
200
201	if (zilog->zl_header->zh_claim_txg == 0)
202		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
203
204	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
205		zio_flags |= ZIO_FLAG_SPECULATIVE;
206
207	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
208	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
209
210	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
211	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
212
213	if (error == 0) {
214		zio_cksum_t cksum = bp->blk_cksum;
215
216		/*
217		 * Validate the checksummed log block.
218		 *
219		 * Sequence numbers should be... sequential.  The checksum
220		 * verifier for the next block should be bp's checksum plus 1.
221		 *
222		 * Also check the log chain linkage and size used.
223		 */
224		cksum.zc_word[ZIL_ZC_SEQ]++;
225
226		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
227			zil_chain_t *zilc = abuf->b_data;
228			char *lr = (char *)(zilc + 1);
229			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
230
231			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
232			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
233				error = SET_ERROR(ECKSUM);
234			} else {
235				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
236				bcopy(lr, dst, len);
237				*end = (char *)dst + len;
238				*nbp = zilc->zc_next_blk;
239			}
240		} else {
241			char *lr = abuf->b_data;
242			uint64_t size = BP_GET_LSIZE(bp);
243			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
244
245			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
246			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
247			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
248				error = SET_ERROR(ECKSUM);
249			} else {
250				ASSERT3U(zilc->zc_nused, <=,
251				    SPA_OLD_MAXBLOCKSIZE);
252				bcopy(lr, dst, zilc->zc_nused);
253				*end = (char *)dst + zilc->zc_nused;
254				*nbp = zilc->zc_next_blk;
255			}
256		}
257
258		VERIFY(arc_buf_remove_ref(abuf, &abuf));
259	}
260
261	return (error);
262}
263
264/*
265 * Read a TX_WRITE log data block.
266 */
267static int
268zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
269{
270	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
271	const blkptr_t *bp = &lr->lr_blkptr;
272	arc_flags_t aflags = ARC_FLAG_WAIT;
273	arc_buf_t *abuf = NULL;
274	zbookmark_phys_t zb;
275	int error;
276
277	if (BP_IS_HOLE(bp)) {
278		if (wbuf != NULL)
279			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
280		return (0);
281	}
282
283	if (zilog->zl_header->zh_claim_txg == 0)
284		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
285
286	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
287	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
288
289	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
290	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
291
292	if (error == 0) {
293		if (wbuf != NULL)
294			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
295		(void) arc_buf_remove_ref(abuf, &abuf);
296	}
297
298	return (error);
299}
300
301/*
302 * Parse the intent log, and call parse_func for each valid record within.
303 */
304int
305zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
306    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
307{
308	const zil_header_t *zh = zilog->zl_header;
309	boolean_t claimed = !!zh->zh_claim_txg;
310	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
311	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
312	uint64_t max_blk_seq = 0;
313	uint64_t max_lr_seq = 0;
314	uint64_t blk_count = 0;
315	uint64_t lr_count = 0;
316	blkptr_t blk, next_blk;
317	char *lrbuf, *lrp;
318	int error = 0;
319
320	/*
321	 * Old logs didn't record the maximum zh_claim_lr_seq.
322	 */
323	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
324		claim_lr_seq = UINT64_MAX;
325
326	/*
327	 * Starting at the block pointed to by zh_log we read the log chain.
328	 * For each block in the chain we strongly check that block to
329	 * ensure its validity.  We stop when an invalid block is found.
330	 * For each block pointer in the chain we call parse_blk_func().
331	 * For each record in each valid block we call parse_lr_func().
332	 * If the log has been claimed, stop if we encounter a sequence
333	 * number greater than the highest claimed sequence number.
334	 */
335	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
336	zil_bp_tree_init(zilog);
337
338	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
339		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
340		int reclen;
341		char *end;
342
343		if (blk_seq > claim_blk_seq)
344			break;
345		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
346			break;
347		ASSERT3U(max_blk_seq, <, blk_seq);
348		max_blk_seq = blk_seq;
349		blk_count++;
350
351		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
352			break;
353
354		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
355		if (error != 0)
356			break;
357
358		for (lrp = lrbuf; lrp < end; lrp += reclen) {
359			lr_t *lr = (lr_t *)lrp;
360			reclen = lr->lrc_reclen;
361			ASSERT3U(reclen, >=, sizeof (lr_t));
362			if (lr->lrc_seq > claim_lr_seq)
363				goto done;
364			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
365				goto done;
366			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
367			max_lr_seq = lr->lrc_seq;
368			lr_count++;
369		}
370	}
371done:
372	zilog->zl_parse_error = error;
373	zilog->zl_parse_blk_seq = max_blk_seq;
374	zilog->zl_parse_lr_seq = max_lr_seq;
375	zilog->zl_parse_blk_count = blk_count;
376	zilog->zl_parse_lr_count = lr_count;
377
378	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
379	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
380
381	zil_bp_tree_fini(zilog);
382	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
383
384	return (error);
385}
386
387static int
388zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
389{
390	/*
391	 * Claim log block if not already committed and not already claimed.
392	 * If tx == NULL, just verify that the block is claimable.
393	 */
394	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
395	    zil_bp_tree_add(zilog, bp) != 0)
396		return (0);
397
398	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
399	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
400	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
401}
402
403static int
404zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
405{
406	lr_write_t *lr = (lr_write_t *)lrc;
407	int error;
408
409	if (lrc->lrc_txtype != TX_WRITE)
410		return (0);
411
412	/*
413	 * If the block is not readable, don't claim it.  This can happen
414	 * in normal operation when a log block is written to disk before
415	 * some of the dmu_sync() blocks it points to.  In this case, the
416	 * transaction cannot have been committed to anyone (we would have
417	 * waited for all writes to be stable first), so it is semantically
418	 * correct to declare this the end of the log.
419	 */
420	if (lr->lr_blkptr.blk_birth >= first_txg &&
421	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
422		return (error);
423	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
424}
425
426/* ARGSUSED */
427static int
428zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
429{
430	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
431
432	return (0);
433}
434
435static int
436zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
437{
438	lr_write_t *lr = (lr_write_t *)lrc;
439	blkptr_t *bp = &lr->lr_blkptr;
440
441	/*
442	 * If we previously claimed it, we need to free it.
443	 */
444	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
445	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
446	    !BP_IS_HOLE(bp))
447		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
448
449	return (0);
450}
451
452static lwb_t *
453zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
454{
455	lwb_t *lwb;
456
457	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
458	lwb->lwb_zilog = zilog;
459	lwb->lwb_blk = *bp;
460	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
461	lwb->lwb_max_txg = txg;
462	lwb->lwb_zio = NULL;
463	lwb->lwb_tx = NULL;
464	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
465		lwb->lwb_nused = sizeof (zil_chain_t);
466		lwb->lwb_sz = BP_GET_LSIZE(bp);
467	} else {
468		lwb->lwb_nused = 0;
469		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
470	}
471
472	mutex_enter(&zilog->zl_lock);
473	list_insert_tail(&zilog->zl_lwb_list, lwb);
474	mutex_exit(&zilog->zl_lock);
475
476	return (lwb);
477}
478
479/*
480 * Called when we create in-memory log transactions so that we know
481 * to cleanup the itxs at the end of spa_sync().
482 */
483void
484zilog_dirty(zilog_t *zilog, uint64_t txg)
485{
486	dsl_pool_t *dp = zilog->zl_dmu_pool;
487	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
488
489	if (ds->ds_is_snapshot)
490		panic("dirtying snapshot!");
491
492	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
493		/* up the hold count until we can be written out */
494		dmu_buf_add_ref(ds->ds_dbuf, zilog);
495	}
496}
497
498boolean_t
499zilog_is_dirty(zilog_t *zilog)
500{
501	dsl_pool_t *dp = zilog->zl_dmu_pool;
502
503	for (int t = 0; t < TXG_SIZE; t++) {
504		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
505			return (B_TRUE);
506	}
507	return (B_FALSE);
508}
509
510/*
511 * Create an on-disk intent log.
512 */
513static lwb_t *
514zil_create(zilog_t *zilog)
515{
516	const zil_header_t *zh = zilog->zl_header;
517	lwb_t *lwb = NULL;
518	uint64_t txg = 0;
519	dmu_tx_t *tx = NULL;
520	blkptr_t blk;
521	int error = 0;
522
523	/*
524	 * Wait for any previous destroy to complete.
525	 */
526	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
527
528	ASSERT(zh->zh_claim_txg == 0);
529	ASSERT(zh->zh_replay_seq == 0);
530
531	blk = zh->zh_log;
532
533	/*
534	 * Allocate an initial log block if:
535	 *    - there isn't one already
536	 *    - the existing block is the wrong endianess
537	 */
538	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
539		tx = dmu_tx_create(zilog->zl_os);
540		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
541		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
542		txg = dmu_tx_get_txg(tx);
543
544		if (!BP_IS_HOLE(&blk)) {
545			zio_free_zil(zilog->zl_spa, txg, &blk);
546			BP_ZERO(&blk);
547		}
548
549		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
550		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
551
552		if (error == 0)
553			zil_init_log_chain(zilog, &blk);
554	}
555
556	/*
557	 * Allocate a log write buffer (lwb) for the first log block.
558	 */
559	if (error == 0)
560		lwb = zil_alloc_lwb(zilog, &blk, txg);
561
562	/*
563	 * If we just allocated the first log block, commit our transaction
564	 * and wait for zil_sync() to stuff the block poiner into zh_log.
565	 * (zh is part of the MOS, so we cannot modify it in open context.)
566	 */
567	if (tx != NULL) {
568		dmu_tx_commit(tx);
569		txg_wait_synced(zilog->zl_dmu_pool, txg);
570	}
571
572	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
573
574	return (lwb);
575}
576
577/*
578 * In one tx, free all log blocks and clear the log header.
579 * If keep_first is set, then we're replaying a log with no content.
580 * We want to keep the first block, however, so that the first
581 * synchronous transaction doesn't require a txg_wait_synced()
582 * in zil_create().  We don't need to txg_wait_synced() here either
583 * when keep_first is set, because both zil_create() and zil_destroy()
584 * will wait for any in-progress destroys to complete.
585 */
586void
587zil_destroy(zilog_t *zilog, boolean_t keep_first)
588{
589	const zil_header_t *zh = zilog->zl_header;
590	lwb_t *lwb;
591	dmu_tx_t *tx;
592	uint64_t txg;
593
594	/*
595	 * Wait for any previous destroy to complete.
596	 */
597	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
598
599	zilog->zl_old_header = *zh;		/* debugging aid */
600
601	if (BP_IS_HOLE(&zh->zh_log))
602		return;
603
604	tx = dmu_tx_create(zilog->zl_os);
605	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
606	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
607	txg = dmu_tx_get_txg(tx);
608
609	mutex_enter(&zilog->zl_lock);
610
611	ASSERT3U(zilog->zl_destroy_txg, <, txg);
612	zilog->zl_destroy_txg = txg;
613	zilog->zl_keep_first = keep_first;
614
615	if (!list_is_empty(&zilog->zl_lwb_list)) {
616		ASSERT(zh->zh_claim_txg == 0);
617		VERIFY(!keep_first);
618		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
619			list_remove(&zilog->zl_lwb_list, lwb);
620			if (lwb->lwb_buf != NULL)
621				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
622			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
623			kmem_cache_free(zil_lwb_cache, lwb);
624		}
625	} else if (!keep_first) {
626		zil_destroy_sync(zilog, tx);
627	}
628	mutex_exit(&zilog->zl_lock);
629
630	dmu_tx_commit(tx);
631}
632
633void
634zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
635{
636	ASSERT(list_is_empty(&zilog->zl_lwb_list));
637	(void) zil_parse(zilog, zil_free_log_block,
638	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
639}
640
641int
642zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
643{
644	dmu_tx_t *tx = txarg;
645	uint64_t first_txg = dmu_tx_get_txg(tx);
646	zilog_t *zilog;
647	zil_header_t *zh;
648	objset_t *os;
649	int error;
650
651	error = dmu_objset_own_obj(dp, ds->ds_object,
652	    DMU_OST_ANY, B_FALSE, FTAG, &os);
653	if (error != 0) {
654		/*
655		 * EBUSY indicates that the objset is inconsistent, in which
656		 * case it can not have a ZIL.
657		 */
658		if (error != EBUSY) {
659			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
660			    (unsigned long long)ds->ds_object, error);
661		}
662		return (0);
663	}
664
665	zilog = dmu_objset_zil(os);
666	zh = zil_header_in_syncing_context(zilog);
667
668	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
669		if (!BP_IS_HOLE(&zh->zh_log))
670			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
671		BP_ZERO(&zh->zh_log);
672		dsl_dataset_dirty(dmu_objset_ds(os), tx);
673		dmu_objset_disown(os, FTAG);
674		return (0);
675	}
676
677	/*
678	 * Claim all log blocks if we haven't already done so, and remember
679	 * the highest claimed sequence number.  This ensures that if we can
680	 * read only part of the log now (e.g. due to a missing device),
681	 * but we can read the entire log later, we will not try to replay
682	 * or destroy beyond the last block we successfully claimed.
683	 */
684	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
685	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
686		(void) zil_parse(zilog, zil_claim_log_block,
687		    zil_claim_log_record, tx, first_txg);
688		zh->zh_claim_txg = first_txg;
689		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
690		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
691		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
692			zh->zh_flags |= ZIL_REPLAY_NEEDED;
693		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
694		dsl_dataset_dirty(dmu_objset_ds(os), tx);
695	}
696
697	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
698	dmu_objset_disown(os, FTAG);
699	return (0);
700}
701
702/*
703 * Check the log by walking the log chain.
704 * Checksum errors are ok as they indicate the end of the chain.
705 * Any other error (no device or read failure) returns an error.
706 */
707/* ARGSUSED */
708int
709zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
710{
711	zilog_t *zilog;
712	objset_t *os;
713	blkptr_t *bp;
714	int error;
715
716	ASSERT(tx == NULL);
717
718	error = dmu_objset_from_ds(ds, &os);
719	if (error != 0) {
720		cmn_err(CE_WARN, "can't open objset %llu, error %d",
721		    (unsigned long long)ds->ds_object, error);
722		return (0);
723	}
724
725	zilog = dmu_objset_zil(os);
726	bp = (blkptr_t *)&zilog->zl_header->zh_log;
727
728	/*
729	 * Check the first block and determine if it's on a log device
730	 * which may have been removed or faulted prior to loading this
731	 * pool.  If so, there's no point in checking the rest of the log
732	 * as its content should have already been synced to the pool.
733	 */
734	if (!BP_IS_HOLE(bp)) {
735		vdev_t *vd;
736		boolean_t valid = B_TRUE;
737
738		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
739		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
740		if (vd->vdev_islog && vdev_is_dead(vd))
741			valid = vdev_log_state_valid(vd);
742		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
743
744		if (!valid)
745			return (0);
746	}
747
748	/*
749	 * Because tx == NULL, zil_claim_log_block() will not actually claim
750	 * any blocks, but just determine whether it is possible to do so.
751	 * In addition to checking the log chain, zil_claim_log_block()
752	 * will invoke zio_claim() with a done func of spa_claim_notify(),
753	 * which will update spa_max_claim_txg.  See spa_load() for details.
754	 */
755	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
756	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
757
758	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
759}
760
761static int
762zil_vdev_compare(const void *x1, const void *x2)
763{
764	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
765	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
766
767	if (v1 < v2)
768		return (-1);
769	if (v1 > v2)
770		return (1);
771
772	return (0);
773}
774
775void
776zil_add_block(zilog_t *zilog, const blkptr_t *bp)
777{
778	avl_tree_t *t = &zilog->zl_vdev_tree;
779	avl_index_t where;
780	zil_vdev_node_t *zv, zvsearch;
781	int ndvas = BP_GET_NDVAS(bp);
782	int i;
783
784	if (zfs_nocacheflush)
785		return;
786
787	ASSERT(zilog->zl_writer);
788
789	/*
790	 * Even though we're zl_writer, we still need a lock because the
791	 * zl_get_data() callbacks may have dmu_sync() done callbacks
792	 * that will run concurrently.
793	 */
794	mutex_enter(&zilog->zl_vdev_lock);
795	for (i = 0; i < ndvas; i++) {
796		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
797		if (avl_find(t, &zvsearch, &where) == NULL) {
798			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
799			zv->zv_vdev = zvsearch.zv_vdev;
800			avl_insert(t, zv, where);
801		}
802	}
803	mutex_exit(&zilog->zl_vdev_lock);
804}
805
806static void
807zil_flush_vdevs(zilog_t *zilog)
808{
809	spa_t *spa = zilog->zl_spa;
810	avl_tree_t *t = &zilog->zl_vdev_tree;
811	void *cookie = NULL;
812	zil_vdev_node_t *zv;
813	zio_t *zio;
814
815	ASSERT(zilog->zl_writer);
816
817	/*
818	 * We don't need zl_vdev_lock here because we're the zl_writer,
819	 * and all zl_get_data() callbacks are done.
820	 */
821	if (avl_numnodes(t) == 0)
822		return;
823
824	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
825
826	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
827
828	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
829		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
830		if (vd != NULL)
831			zio_flush(zio, vd);
832		kmem_free(zv, sizeof (*zv));
833	}
834
835	/*
836	 * Wait for all the flushes to complete.  Not all devices actually
837	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
838	 */
839	(void) zio_wait(zio);
840
841	spa_config_exit(spa, SCL_STATE, FTAG);
842}
843
844/*
845 * Function called when a log block write completes
846 */
847static void
848zil_lwb_write_done(zio_t *zio)
849{
850	lwb_t *lwb = zio->io_private;
851	zilog_t *zilog = lwb->lwb_zilog;
852	dmu_tx_t *tx = lwb->lwb_tx;
853
854	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
855	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
856	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
857	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
858	ASSERT(!BP_IS_GANG(zio->io_bp));
859	ASSERT(!BP_IS_HOLE(zio->io_bp));
860	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
861
862	/*
863	 * Ensure the lwb buffer pointer is cleared before releasing
864	 * the txg. If we have had an allocation failure and
865	 * the txg is waiting to sync then we want want zil_sync()
866	 * to remove the lwb so that it's not picked up as the next new
867	 * one in zil_commit_writer(). zil_sync() will only remove
868	 * the lwb if lwb_buf is null.
869	 */
870	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
871	mutex_enter(&zilog->zl_lock);
872	lwb->lwb_buf = NULL;
873	lwb->lwb_tx = NULL;
874	mutex_exit(&zilog->zl_lock);
875
876	/*
877	 * Now that we've written this log block, we have a stable pointer
878	 * to the next block in the chain, so it's OK to let the txg in
879	 * which we allocated the next block sync.
880	 */
881	dmu_tx_commit(tx);
882}
883
884/*
885 * Initialize the io for a log block.
886 */
887static void
888zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
889{
890	zbookmark_phys_t zb;
891
892	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
893	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
894	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
895
896	if (zilog->zl_root_zio == NULL) {
897		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
898		    ZIO_FLAG_CANFAIL);
899	}
900	if (lwb->lwb_zio == NULL) {
901		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
902		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
903		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
904		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
905	}
906}
907
908/*
909 * Define a limited set of intent log block sizes.
910 *
911 * These must be a multiple of 4KB. Note only the amount used (again
912 * aligned to 4KB) actually gets written. However, we can't always just
913 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
914 */
915uint64_t zil_block_buckets[] = {
916    4096,		/* non TX_WRITE */
917    8192+4096,		/* data base */
918    32*1024 + 4096, 	/* NFS writes */
919    UINT64_MAX
920};
921
922/*
923 * Use the slog as long as the logbias is 'latency' and the current commit size
924 * is less than the limit or the total list size is less than 2X the limit.
925 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
926 */
927uint64_t zil_slog_limit = 1024 * 1024;
928#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
929	(((zilog)->zl_cur_used < zil_slog_limit) || \
930	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
931
932/*
933 * Start a log block write and advance to the next log block.
934 * Calls are serialized.
935 */
936static lwb_t *
937zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
938{
939	lwb_t *nlwb = NULL;
940	zil_chain_t *zilc;
941	spa_t *spa = zilog->zl_spa;
942	blkptr_t *bp;
943	dmu_tx_t *tx;
944	uint64_t txg;
945	uint64_t zil_blksz, wsz;
946	int i, error;
947
948	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
949		zilc = (zil_chain_t *)lwb->lwb_buf;
950		bp = &zilc->zc_next_blk;
951	} else {
952		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
953		bp = &zilc->zc_next_blk;
954	}
955
956	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
957
958	/*
959	 * Allocate the next block and save its address in this block
960	 * before writing it in order to establish the log chain.
961	 * Note that if the allocation of nlwb synced before we wrote
962	 * the block that points at it (lwb), we'd leak it if we crashed.
963	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
964	 * We dirty the dataset to ensure that zil_sync() will be called
965	 * to clean up in the event of allocation failure or I/O failure.
966	 */
967	tx = dmu_tx_create(zilog->zl_os);
968	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
969	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
970	txg = dmu_tx_get_txg(tx);
971
972	lwb->lwb_tx = tx;
973
974	/*
975	 * Log blocks are pre-allocated. Here we select the size of the next
976	 * block, based on size used in the last block.
977	 * - first find the smallest bucket that will fit the block from a
978	 *   limited set of block sizes. This is because it's faster to write
979	 *   blocks allocated from the same metaslab as they are adjacent or
980	 *   close.
981	 * - next find the maximum from the new suggested size and an array of
982	 *   previous sizes. This lessens a picket fence effect of wrongly
983	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
984	 *   requests.
985	 *
986	 * Note we only write what is used, but we can't just allocate
987	 * the maximum block size because we can exhaust the available
988	 * pool log space.
989	 */
990	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
991	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
992		continue;
993	zil_blksz = zil_block_buckets[i];
994	if (zil_blksz == UINT64_MAX)
995		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
996	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
997	for (i = 0; i < ZIL_PREV_BLKS; i++)
998		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
999	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1000
1001	BP_ZERO(bp);
1002	/* pass the old blkptr in order to spread log blocks across devs */
1003	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1004	    USE_SLOG(zilog));
1005	if (error == 0) {
1006		ASSERT3U(bp->blk_birth, ==, txg);
1007		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1008		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1009
1010		/*
1011		 * Allocate a new log write buffer (lwb).
1012		 */
1013		nlwb = zil_alloc_lwb(zilog, bp, txg);
1014
1015		/* Record the block for later vdev flushing */
1016		zil_add_block(zilog, &lwb->lwb_blk);
1017	}
1018
1019	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1020		/* For Slim ZIL only write what is used. */
1021		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1022		ASSERT3U(wsz, <=, lwb->lwb_sz);
1023		zio_shrink(lwb->lwb_zio, wsz);
1024
1025	} else {
1026		wsz = lwb->lwb_sz;
1027	}
1028
1029	zilc->zc_pad = 0;
1030	zilc->zc_nused = lwb->lwb_nused;
1031	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1032
1033	/*
1034	 * clear unused data for security
1035	 */
1036	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1037
1038	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1039
1040	/*
1041	 * If there was an allocation failure then nlwb will be null which
1042	 * forces a txg_wait_synced().
1043	 */
1044	return (nlwb);
1045}
1046
1047static lwb_t *
1048zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1049{
1050	lr_t *lrc = &itx->itx_lr; /* common log record */
1051	lr_write_t *lrw = (lr_write_t *)lrc;
1052	char *lr_buf;
1053	uint64_t txg = lrc->lrc_txg;
1054	uint64_t reclen = lrc->lrc_reclen;
1055	uint64_t dlen = 0;
1056
1057	if (lwb == NULL)
1058		return (NULL);
1059
1060	ASSERT(lwb->lwb_buf != NULL);
1061	ASSERT(zilog_is_dirty(zilog) ||
1062	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1063
1064	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1065		dlen = P2ROUNDUP_TYPED(
1066		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1067
1068	zilog->zl_cur_used += (reclen + dlen);
1069
1070	zil_lwb_write_init(zilog, lwb);
1071
1072	/*
1073	 * If this record won't fit in the current log block, start a new one.
1074	 */
1075	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1076		lwb = zil_lwb_write_start(zilog, lwb);
1077		if (lwb == NULL)
1078			return (NULL);
1079		zil_lwb_write_init(zilog, lwb);
1080		ASSERT(LWB_EMPTY(lwb));
1081		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1082			txg_wait_synced(zilog->zl_dmu_pool, txg);
1083			return (lwb);
1084		}
1085	}
1086
1087	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1088	bcopy(lrc, lr_buf, reclen);
1089	lrc = (lr_t *)lr_buf;
1090	lrw = (lr_write_t *)lrc;
1091
1092	/*
1093	 * If it's a write, fetch the data or get its blkptr as appropriate.
1094	 */
1095	if (lrc->lrc_txtype == TX_WRITE) {
1096		if (txg > spa_freeze_txg(zilog->zl_spa))
1097			txg_wait_synced(zilog->zl_dmu_pool, txg);
1098		if (itx->itx_wr_state != WR_COPIED) {
1099			char *dbuf;
1100			int error;
1101
1102			if (dlen) {
1103				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1104				dbuf = lr_buf + reclen;
1105				lrw->lr_common.lrc_reclen += dlen;
1106			} else {
1107				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1108				dbuf = NULL;
1109			}
1110			error = zilog->zl_get_data(
1111			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1112			if (error == EIO) {
1113				txg_wait_synced(zilog->zl_dmu_pool, txg);
1114				return (lwb);
1115			}
1116			if (error != 0) {
1117				ASSERT(error == ENOENT || error == EEXIST ||
1118				    error == EALREADY);
1119				return (lwb);
1120			}
1121		}
1122	}
1123
1124	/*
1125	 * We're actually making an entry, so update lrc_seq to be the
1126	 * log record sequence number.  Note that this is generally not
1127	 * equal to the itx sequence number because not all transactions
1128	 * are synchronous, and sometimes spa_sync() gets there first.
1129	 */
1130	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1131	lwb->lwb_nused += reclen + dlen;
1132	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1133	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1134	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1135
1136	return (lwb);
1137}
1138
1139itx_t *
1140zil_itx_create(uint64_t txtype, size_t lrsize)
1141{
1142	itx_t *itx;
1143
1144	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1145
1146	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1147	itx->itx_lr.lrc_txtype = txtype;
1148	itx->itx_lr.lrc_reclen = lrsize;
1149	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1150	itx->itx_lr.lrc_seq = 0;	/* defensive */
1151	itx->itx_sync = B_TRUE;		/* default is synchronous */
1152
1153	return (itx);
1154}
1155
1156void
1157zil_itx_destroy(itx_t *itx)
1158{
1159	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1160}
1161
1162/*
1163 * Free up the sync and async itxs. The itxs_t has already been detached
1164 * so no locks are needed.
1165 */
1166static void
1167zil_itxg_clean(itxs_t *itxs)
1168{
1169	itx_t *itx;
1170	list_t *list;
1171	avl_tree_t *t;
1172	void *cookie;
1173	itx_async_node_t *ian;
1174
1175	list = &itxs->i_sync_list;
1176	while ((itx = list_head(list)) != NULL) {
1177		list_remove(list, itx);
1178		kmem_free(itx, offsetof(itx_t, itx_lr) +
1179		    itx->itx_lr.lrc_reclen);
1180	}
1181
1182	cookie = NULL;
1183	t = &itxs->i_async_tree;
1184	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1185		list = &ian->ia_list;
1186		while ((itx = list_head(list)) != NULL) {
1187			list_remove(list, itx);
1188			kmem_free(itx, offsetof(itx_t, itx_lr) +
1189			    itx->itx_lr.lrc_reclen);
1190		}
1191		list_destroy(list);
1192		kmem_free(ian, sizeof (itx_async_node_t));
1193	}
1194	avl_destroy(t);
1195
1196	kmem_free(itxs, sizeof (itxs_t));
1197}
1198
1199static int
1200zil_aitx_compare(const void *x1, const void *x2)
1201{
1202	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1203	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1204
1205	if (o1 < o2)
1206		return (-1);
1207	if (o1 > o2)
1208		return (1);
1209
1210	return (0);
1211}
1212
1213/*
1214 * Remove all async itx with the given oid.
1215 */
1216static void
1217zil_remove_async(zilog_t *zilog, uint64_t oid)
1218{
1219	uint64_t otxg, txg;
1220	itx_async_node_t *ian;
1221	avl_tree_t *t;
1222	avl_index_t where;
1223	list_t clean_list;
1224	itx_t *itx;
1225
1226	ASSERT(oid != 0);
1227	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1228
1229	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1230		otxg = ZILTEST_TXG;
1231	else
1232		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1233
1234	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1235		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1236
1237		mutex_enter(&itxg->itxg_lock);
1238		if (itxg->itxg_txg != txg) {
1239			mutex_exit(&itxg->itxg_lock);
1240			continue;
1241		}
1242
1243		/*
1244		 * Locate the object node and append its list.
1245		 */
1246		t = &itxg->itxg_itxs->i_async_tree;
1247		ian = avl_find(t, &oid, &where);
1248		if (ian != NULL)
1249			list_move_tail(&clean_list, &ian->ia_list);
1250		mutex_exit(&itxg->itxg_lock);
1251	}
1252	while ((itx = list_head(&clean_list)) != NULL) {
1253		list_remove(&clean_list, itx);
1254		kmem_free(itx, offsetof(itx_t, itx_lr) +
1255		    itx->itx_lr.lrc_reclen);
1256	}
1257	list_destroy(&clean_list);
1258}
1259
1260void
1261zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1262{
1263	uint64_t txg;
1264	itxg_t *itxg;
1265	itxs_t *itxs, *clean = NULL;
1266
1267	/*
1268	 * Object ids can be re-instantiated in the next txg so
1269	 * remove any async transactions to avoid future leaks.
1270	 * This can happen if a fsync occurs on the re-instantiated
1271	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1272	 * the new file data and flushes a write record for the old object.
1273	 */
1274	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1275		zil_remove_async(zilog, itx->itx_oid);
1276
1277	/*
1278	 * Ensure the data of a renamed file is committed before the rename.
1279	 */
1280	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1281		zil_async_to_sync(zilog, itx->itx_oid);
1282
1283	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1284		txg = ZILTEST_TXG;
1285	else
1286		txg = dmu_tx_get_txg(tx);
1287
1288	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1289	mutex_enter(&itxg->itxg_lock);
1290	itxs = itxg->itxg_itxs;
1291	if (itxg->itxg_txg != txg) {
1292		if (itxs != NULL) {
1293			/*
1294			 * The zil_clean callback hasn't got around to cleaning
1295			 * this itxg. Save the itxs for release below.
1296			 * This should be rare.
1297			 */
1298			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1299			itxg->itxg_sod = 0;
1300			clean = itxg->itxg_itxs;
1301		}
1302		ASSERT(itxg->itxg_sod == 0);
1303		itxg->itxg_txg = txg;
1304		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1305
1306		list_create(&itxs->i_sync_list, sizeof (itx_t),
1307		    offsetof(itx_t, itx_node));
1308		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1309		    sizeof (itx_async_node_t),
1310		    offsetof(itx_async_node_t, ia_node));
1311	}
1312	if (itx->itx_sync) {
1313		list_insert_tail(&itxs->i_sync_list, itx);
1314		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1315		itxg->itxg_sod += itx->itx_sod;
1316	} else {
1317		avl_tree_t *t = &itxs->i_async_tree;
1318		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1319		itx_async_node_t *ian;
1320		avl_index_t where;
1321
1322		ian = avl_find(t, &foid, &where);
1323		if (ian == NULL) {
1324			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1325			list_create(&ian->ia_list, sizeof (itx_t),
1326			    offsetof(itx_t, itx_node));
1327			ian->ia_foid = foid;
1328			avl_insert(t, ian, where);
1329		}
1330		list_insert_tail(&ian->ia_list, itx);
1331	}
1332
1333	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1334	zilog_dirty(zilog, txg);
1335	mutex_exit(&itxg->itxg_lock);
1336
1337	/* Release the old itxs now we've dropped the lock */
1338	if (clean != NULL)
1339		zil_itxg_clean(clean);
1340}
1341
1342/*
1343 * If there are any in-memory intent log transactions which have now been
1344 * synced then start up a taskq to free them. We should only do this after we
1345 * have written out the uberblocks (i.e. txg has been comitted) so that
1346 * don't inadvertently clean out in-memory log records that would be required
1347 * by zil_commit().
1348 */
1349void
1350zil_clean(zilog_t *zilog, uint64_t synced_txg)
1351{
1352	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1353	itxs_t *clean_me;
1354
1355	mutex_enter(&itxg->itxg_lock);
1356	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1357		mutex_exit(&itxg->itxg_lock);
1358		return;
1359	}
1360	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1361	ASSERT(itxg->itxg_txg != 0);
1362	ASSERT(zilog->zl_clean_taskq != NULL);
1363	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1364	itxg->itxg_sod = 0;
1365	clean_me = itxg->itxg_itxs;
1366	itxg->itxg_itxs = NULL;
1367	itxg->itxg_txg = 0;
1368	mutex_exit(&itxg->itxg_lock);
1369	/*
1370	 * Preferably start a task queue to free up the old itxs but
1371	 * if taskq_dispatch can't allocate resources to do that then
1372	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1373	 * created a bad performance problem.
1374	 */
1375	if (taskq_dispatch(zilog->zl_clean_taskq,
1376	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1377		zil_itxg_clean(clean_me);
1378}
1379
1380/*
1381 * Get the list of itxs to commit into zl_itx_commit_list.
1382 */
1383static void
1384zil_get_commit_list(zilog_t *zilog)
1385{
1386	uint64_t otxg, txg;
1387	list_t *commit_list = &zilog->zl_itx_commit_list;
1388	uint64_t push_sod = 0;
1389
1390	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1391		otxg = ZILTEST_TXG;
1392	else
1393		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1394
1395	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1396		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1397
1398		mutex_enter(&itxg->itxg_lock);
1399		if (itxg->itxg_txg != txg) {
1400			mutex_exit(&itxg->itxg_lock);
1401			continue;
1402		}
1403
1404		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1405		push_sod += itxg->itxg_sod;
1406		itxg->itxg_sod = 0;
1407
1408		mutex_exit(&itxg->itxg_lock);
1409	}
1410	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1411}
1412
1413/*
1414 * Move the async itxs for a specified object to commit into sync lists.
1415 */
1416static void
1417zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1418{
1419	uint64_t otxg, txg;
1420	itx_async_node_t *ian;
1421	avl_tree_t *t;
1422	avl_index_t where;
1423
1424	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1425		otxg = ZILTEST_TXG;
1426	else
1427		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1428
1429	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1430		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1431
1432		mutex_enter(&itxg->itxg_lock);
1433		if (itxg->itxg_txg != txg) {
1434			mutex_exit(&itxg->itxg_lock);
1435			continue;
1436		}
1437
1438		/*
1439		 * If a foid is specified then find that node and append its
1440		 * list. Otherwise walk the tree appending all the lists
1441		 * to the sync list. We add to the end rather than the
1442		 * beginning to ensure the create has happened.
1443		 */
1444		t = &itxg->itxg_itxs->i_async_tree;
1445		if (foid != 0) {
1446			ian = avl_find(t, &foid, &where);
1447			if (ian != NULL) {
1448				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1449				    &ian->ia_list);
1450			}
1451		} else {
1452			void *cookie = NULL;
1453
1454			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1455				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1456				    &ian->ia_list);
1457				list_destroy(&ian->ia_list);
1458				kmem_free(ian, sizeof (itx_async_node_t));
1459			}
1460		}
1461		mutex_exit(&itxg->itxg_lock);
1462	}
1463}
1464
1465static void
1466zil_commit_writer(zilog_t *zilog)
1467{
1468	uint64_t txg;
1469	itx_t *itx;
1470	lwb_t *lwb;
1471	spa_t *spa = zilog->zl_spa;
1472	int error = 0;
1473
1474	ASSERT(zilog->zl_root_zio == NULL);
1475
1476	mutex_exit(&zilog->zl_lock);
1477
1478	zil_get_commit_list(zilog);
1479
1480	/*
1481	 * Return if there's nothing to commit before we dirty the fs by
1482	 * calling zil_create().
1483	 */
1484	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1485		mutex_enter(&zilog->zl_lock);
1486		return;
1487	}
1488
1489	if (zilog->zl_suspend) {
1490		lwb = NULL;
1491	} else {
1492		lwb = list_tail(&zilog->zl_lwb_list);
1493		if (lwb == NULL)
1494			lwb = zil_create(zilog);
1495	}
1496
1497	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1498	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1499		txg = itx->itx_lr.lrc_txg;
1500		ASSERT(txg);
1501
1502		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1503			lwb = zil_lwb_commit(zilog, itx, lwb);
1504		list_remove(&zilog->zl_itx_commit_list, itx);
1505		kmem_free(itx, offsetof(itx_t, itx_lr)
1506		    + itx->itx_lr.lrc_reclen);
1507	}
1508	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1509
1510	/* write the last block out */
1511	if (lwb != NULL && lwb->lwb_zio != NULL)
1512		lwb = zil_lwb_write_start(zilog, lwb);
1513
1514	zilog->zl_cur_used = 0;
1515
1516	/*
1517	 * Wait if necessary for the log blocks to be on stable storage.
1518	 */
1519	if (zilog->zl_root_zio) {
1520		error = zio_wait(zilog->zl_root_zio);
1521		zilog->zl_root_zio = NULL;
1522		zil_flush_vdevs(zilog);
1523	}
1524
1525	if (error || lwb == NULL)
1526		txg_wait_synced(zilog->zl_dmu_pool, 0);
1527
1528	mutex_enter(&zilog->zl_lock);
1529
1530	/*
1531	 * Remember the highest committed log sequence number for ztest.
1532	 * We only update this value when all the log writes succeeded,
1533	 * because ztest wants to ASSERT that it got the whole log chain.
1534	 */
1535	if (error == 0 && lwb != NULL)
1536		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1537}
1538
1539/*
1540 * Commit zfs transactions to stable storage.
1541 * If foid is 0 push out all transactions, otherwise push only those
1542 * for that object or might reference that object.
1543 *
1544 * itxs are committed in batches. In a heavily stressed zil there will be
1545 * a commit writer thread who is writing out a bunch of itxs to the log
1546 * for a set of committing threads (cthreads) in the same batch as the writer.
1547 * Those cthreads are all waiting on the same cv for that batch.
1548 *
1549 * There will also be a different and growing batch of threads that are
1550 * waiting to commit (qthreads). When the committing batch completes
1551 * a transition occurs such that the cthreads exit and the qthreads become
1552 * cthreads. One of the new cthreads becomes the writer thread for the
1553 * batch. Any new threads arriving become new qthreads.
1554 *
1555 * Only 2 condition variables are needed and there's no transition
1556 * between the two cvs needed. They just flip-flop between qthreads
1557 * and cthreads.
1558 *
1559 * Using this scheme we can efficiently wakeup up only those threads
1560 * that have been committed.
1561 */
1562void
1563zil_commit(zilog_t *zilog, uint64_t foid)
1564{
1565	uint64_t mybatch;
1566
1567	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1568		return;
1569
1570	/* move the async itxs for the foid to the sync queues */
1571	zil_async_to_sync(zilog, foid);
1572
1573	mutex_enter(&zilog->zl_lock);
1574	mybatch = zilog->zl_next_batch;
1575	while (zilog->zl_writer) {
1576		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1577		if (mybatch <= zilog->zl_com_batch) {
1578			mutex_exit(&zilog->zl_lock);
1579			return;
1580		}
1581	}
1582
1583	zilog->zl_next_batch++;
1584	zilog->zl_writer = B_TRUE;
1585	zil_commit_writer(zilog);
1586	zilog->zl_com_batch = mybatch;
1587	zilog->zl_writer = B_FALSE;
1588	mutex_exit(&zilog->zl_lock);
1589
1590	/* wake up one thread to become the next writer */
1591	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1592
1593	/* wake up all threads waiting for this batch to be committed */
1594	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1595}
1596
1597/*
1598 * Called in syncing context to free committed log blocks and update log header.
1599 */
1600void
1601zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1602{
1603	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1604	uint64_t txg = dmu_tx_get_txg(tx);
1605	spa_t *spa = zilog->zl_spa;
1606	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1607	lwb_t *lwb;
1608
1609	/*
1610	 * We don't zero out zl_destroy_txg, so make sure we don't try
1611	 * to destroy it twice.
1612	 */
1613	if (spa_sync_pass(spa) != 1)
1614		return;
1615
1616	mutex_enter(&zilog->zl_lock);
1617
1618	ASSERT(zilog->zl_stop_sync == 0);
1619
1620	if (*replayed_seq != 0) {
1621		ASSERT(zh->zh_replay_seq < *replayed_seq);
1622		zh->zh_replay_seq = *replayed_seq;
1623		*replayed_seq = 0;
1624	}
1625
1626	if (zilog->zl_destroy_txg == txg) {
1627		blkptr_t blk = zh->zh_log;
1628
1629		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1630
1631		bzero(zh, sizeof (zil_header_t));
1632		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1633
1634		if (zilog->zl_keep_first) {
1635			/*
1636			 * If this block was part of log chain that couldn't
1637			 * be claimed because a device was missing during
1638			 * zil_claim(), but that device later returns,
1639			 * then this block could erroneously appear valid.
1640			 * To guard against this, assign a new GUID to the new
1641			 * log chain so it doesn't matter what blk points to.
1642			 */
1643			zil_init_log_chain(zilog, &blk);
1644			zh->zh_log = blk;
1645		}
1646	}
1647
1648	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1649		zh->zh_log = lwb->lwb_blk;
1650		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1651			break;
1652		list_remove(&zilog->zl_lwb_list, lwb);
1653		zio_free_zil(spa, txg, &lwb->lwb_blk);
1654		kmem_cache_free(zil_lwb_cache, lwb);
1655
1656		/*
1657		 * If we don't have anything left in the lwb list then
1658		 * we've had an allocation failure and we need to zero
1659		 * out the zil_header blkptr so that we don't end
1660		 * up freeing the same block twice.
1661		 */
1662		if (list_head(&zilog->zl_lwb_list) == NULL)
1663			BP_ZERO(&zh->zh_log);
1664	}
1665	mutex_exit(&zilog->zl_lock);
1666}
1667
1668void
1669zil_init(void)
1670{
1671	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1672	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1673}
1674
1675void
1676zil_fini(void)
1677{
1678	kmem_cache_destroy(zil_lwb_cache);
1679}
1680
1681void
1682zil_set_sync(zilog_t *zilog, uint64_t sync)
1683{
1684	zilog->zl_sync = sync;
1685}
1686
1687void
1688zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1689{
1690	zilog->zl_logbias = logbias;
1691}
1692
1693zilog_t *
1694zil_alloc(objset_t *os, zil_header_t *zh_phys)
1695{
1696	zilog_t *zilog;
1697
1698	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1699
1700	zilog->zl_header = zh_phys;
1701	zilog->zl_os = os;
1702	zilog->zl_spa = dmu_objset_spa(os);
1703	zilog->zl_dmu_pool = dmu_objset_pool(os);
1704	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1705	zilog->zl_logbias = dmu_objset_logbias(os);
1706	zilog->zl_sync = dmu_objset_syncprop(os);
1707	zilog->zl_next_batch = 1;
1708
1709	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1710
1711	for (int i = 0; i < TXG_SIZE; i++) {
1712		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1713		    MUTEX_DEFAULT, NULL);
1714	}
1715
1716	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1717	    offsetof(lwb_t, lwb_node));
1718
1719	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1720	    offsetof(itx_t, itx_node));
1721
1722	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1723
1724	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1725	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1726
1727	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1728	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1729	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1730	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1731
1732	return (zilog);
1733}
1734
1735void
1736zil_free(zilog_t *zilog)
1737{
1738	zilog->zl_stop_sync = 1;
1739
1740	ASSERT0(zilog->zl_suspend);
1741	ASSERT0(zilog->zl_suspending);
1742
1743	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1744	list_destroy(&zilog->zl_lwb_list);
1745
1746	avl_destroy(&zilog->zl_vdev_tree);
1747	mutex_destroy(&zilog->zl_vdev_lock);
1748
1749	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1750	list_destroy(&zilog->zl_itx_commit_list);
1751
1752	for (int i = 0; i < TXG_SIZE; i++) {
1753		/*
1754		 * It's possible for an itx to be generated that doesn't dirty
1755		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1756		 * callback to remove the entry. We remove those here.
1757		 *
1758		 * Also free up the ziltest itxs.
1759		 */
1760		if (zilog->zl_itxg[i].itxg_itxs)
1761			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1762		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1763	}
1764
1765	mutex_destroy(&zilog->zl_lock);
1766
1767	cv_destroy(&zilog->zl_cv_writer);
1768	cv_destroy(&zilog->zl_cv_suspend);
1769	cv_destroy(&zilog->zl_cv_batch[0]);
1770	cv_destroy(&zilog->zl_cv_batch[1]);
1771
1772	kmem_free(zilog, sizeof (zilog_t));
1773}
1774
1775/*
1776 * Open an intent log.
1777 */
1778zilog_t *
1779zil_open(objset_t *os, zil_get_data_t *get_data)
1780{
1781	zilog_t *zilog = dmu_objset_zil(os);
1782
1783	ASSERT(zilog->zl_clean_taskq == NULL);
1784	ASSERT(zilog->zl_get_data == NULL);
1785	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1786
1787	zilog->zl_get_data = get_data;
1788	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1789	    2, 2, TASKQ_PREPOPULATE);
1790
1791	return (zilog);
1792}
1793
1794/*
1795 * Close an intent log.
1796 */
1797void
1798zil_close(zilog_t *zilog)
1799{
1800	lwb_t *lwb;
1801	uint64_t txg = 0;
1802
1803	zil_commit(zilog, 0); /* commit all itx */
1804
1805	/*
1806	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1807	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1808	 * callbacks have occurred that may clean the zil.  Only then can we
1809	 * destroy the zl_clean_taskq.
1810	 */
1811	mutex_enter(&zilog->zl_lock);
1812	lwb = list_tail(&zilog->zl_lwb_list);
1813	if (lwb != NULL)
1814		txg = lwb->lwb_max_txg;
1815	mutex_exit(&zilog->zl_lock);
1816	if (txg)
1817		txg_wait_synced(zilog->zl_dmu_pool, txg);
1818	ASSERT(!zilog_is_dirty(zilog));
1819
1820	taskq_destroy(zilog->zl_clean_taskq);
1821	zilog->zl_clean_taskq = NULL;
1822	zilog->zl_get_data = NULL;
1823
1824	/*
1825	 * We should have only one LWB left on the list; remove it now.
1826	 */
1827	mutex_enter(&zilog->zl_lock);
1828	lwb = list_head(&zilog->zl_lwb_list);
1829	if (lwb != NULL) {
1830		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1831		list_remove(&zilog->zl_lwb_list, lwb);
1832		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1833		kmem_cache_free(zil_lwb_cache, lwb);
1834	}
1835	mutex_exit(&zilog->zl_lock);
1836}
1837
1838static char *suspend_tag = "zil suspending";
1839
1840/*
1841 * Suspend an intent log.  While in suspended mode, we still honor
1842 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1843 * On old version pools, we suspend the log briefly when taking a
1844 * snapshot so that it will have an empty intent log.
1845 *
1846 * Long holds are not really intended to be used the way we do here --
1847 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1848 * could fail.  Therefore we take pains to only put a long hold if it is
1849 * actually necessary.  Fortunately, it will only be necessary if the
1850 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1851 * will already have a long hold, so we are not really making things any worse.
1852 *
1853 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1854 * zvol_state_t), and use their mechanism to prevent their hold from being
1855 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1856 * very little gain.
1857 *
1858 * if cookiep == NULL, this does both the suspend & resume.
1859 * Otherwise, it returns with the dataset "long held", and the cookie
1860 * should be passed into zil_resume().
1861 */
1862int
1863zil_suspend(const char *osname, void **cookiep)
1864{
1865	objset_t *os;
1866	zilog_t *zilog;
1867	const zil_header_t *zh;
1868	int error;
1869
1870	error = dmu_objset_hold(osname, suspend_tag, &os);
1871	if (error != 0)
1872		return (error);
1873	zilog = dmu_objset_zil(os);
1874
1875	mutex_enter(&zilog->zl_lock);
1876	zh = zilog->zl_header;
1877
1878	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1879		mutex_exit(&zilog->zl_lock);
1880		dmu_objset_rele(os, suspend_tag);
1881		return (SET_ERROR(EBUSY));
1882	}
1883
1884	/*
1885	 * Don't put a long hold in the cases where we can avoid it.  This
1886	 * is when there is no cookie so we are doing a suspend & resume
1887	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1888	 * for the suspend because it's already suspended, or there's no ZIL.
1889	 */
1890	if (cookiep == NULL && !zilog->zl_suspending &&
1891	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1892		mutex_exit(&zilog->zl_lock);
1893		dmu_objset_rele(os, suspend_tag);
1894		return (0);
1895	}
1896
1897	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1898	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1899
1900	zilog->zl_suspend++;
1901
1902	if (zilog->zl_suspend > 1) {
1903		/*
1904		 * Someone else is already suspending it.
1905		 * Just wait for them to finish.
1906		 */
1907
1908		while (zilog->zl_suspending)
1909			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1910		mutex_exit(&zilog->zl_lock);
1911
1912		if (cookiep == NULL)
1913			zil_resume(os);
1914		else
1915			*cookiep = os;
1916		return (0);
1917	}
1918
1919	/*
1920	 * If there is no pointer to an on-disk block, this ZIL must not
1921	 * be active (e.g. filesystem not mounted), so there's nothing
1922	 * to clean up.
1923	 */
1924	if (BP_IS_HOLE(&zh->zh_log)) {
1925		ASSERT(cookiep != NULL); /* fast path already handled */
1926
1927		*cookiep = os;
1928		mutex_exit(&zilog->zl_lock);
1929		return (0);
1930	}
1931
1932	zilog->zl_suspending = B_TRUE;
1933	mutex_exit(&zilog->zl_lock);
1934
1935	zil_commit(zilog, 0);
1936
1937	zil_destroy(zilog, B_FALSE);
1938
1939	mutex_enter(&zilog->zl_lock);
1940	zilog->zl_suspending = B_FALSE;
1941	cv_broadcast(&zilog->zl_cv_suspend);
1942	mutex_exit(&zilog->zl_lock);
1943
1944	if (cookiep == NULL)
1945		zil_resume(os);
1946	else
1947		*cookiep = os;
1948	return (0);
1949}
1950
1951void
1952zil_resume(void *cookie)
1953{
1954	objset_t *os = cookie;
1955	zilog_t *zilog = dmu_objset_zil(os);
1956
1957	mutex_enter(&zilog->zl_lock);
1958	ASSERT(zilog->zl_suspend != 0);
1959	zilog->zl_suspend--;
1960	mutex_exit(&zilog->zl_lock);
1961	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1962	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1963}
1964
1965typedef struct zil_replay_arg {
1966	zil_replay_func_t **zr_replay;
1967	void		*zr_arg;
1968	boolean_t	zr_byteswap;
1969	char		*zr_lr;
1970} zil_replay_arg_t;
1971
1972static int
1973zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1974{
1975	char name[MAXNAMELEN];
1976
1977	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1978
1979	dmu_objset_name(zilog->zl_os, name);
1980
1981	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1982	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1983	    (u_longlong_t)lr->lrc_seq,
1984	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1985	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1986
1987	return (error);
1988}
1989
1990static int
1991zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1992{
1993	zil_replay_arg_t *zr = zra;
1994	const zil_header_t *zh = zilog->zl_header;
1995	uint64_t reclen = lr->lrc_reclen;
1996	uint64_t txtype = lr->lrc_txtype;
1997	int error = 0;
1998
1999	zilog->zl_replaying_seq = lr->lrc_seq;
2000
2001	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2002		return (0);
2003
2004	if (lr->lrc_txg < claim_txg)		/* already committed */
2005		return (0);
2006
2007	/* Strip case-insensitive bit, still present in log record */
2008	txtype &= ~TX_CI;
2009
2010	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2011		return (zil_replay_error(zilog, lr, EINVAL));
2012
2013	/*
2014	 * If this record type can be logged out of order, the object
2015	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2016	 */
2017	if (TX_OOO(txtype)) {
2018		error = dmu_object_info(zilog->zl_os,
2019		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2020		if (error == ENOENT || error == EEXIST)
2021			return (0);
2022	}
2023
2024	/*
2025	 * Make a copy of the data so we can revise and extend it.
2026	 */
2027	bcopy(lr, zr->zr_lr, reclen);
2028
2029	/*
2030	 * If this is a TX_WRITE with a blkptr, suck in the data.
2031	 */
2032	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2033		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2034		    zr->zr_lr + reclen);
2035		if (error != 0)
2036			return (zil_replay_error(zilog, lr, error));
2037	}
2038
2039	/*
2040	 * The log block containing this lr may have been byteswapped
2041	 * so that we can easily examine common fields like lrc_txtype.
2042	 * However, the log is a mix of different record types, and only the
2043	 * replay vectors know how to byteswap their records.  Therefore, if
2044	 * the lr was byteswapped, undo it before invoking the replay vector.
2045	 */
2046	if (zr->zr_byteswap)
2047		byteswap_uint64_array(zr->zr_lr, reclen);
2048
2049	/*
2050	 * We must now do two things atomically: replay this log record,
2051	 * and update the log header sequence number to reflect the fact that
2052	 * we did so. At the end of each replay function the sequence number
2053	 * is updated if we are in replay mode.
2054	 */
2055	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2056	if (error != 0) {
2057		/*
2058		 * The DMU's dnode layer doesn't see removes until the txg
2059		 * commits, so a subsequent claim can spuriously fail with
2060		 * EEXIST. So if we receive any error we try syncing out
2061		 * any removes then retry the transaction.  Note that we
2062		 * specify B_FALSE for byteswap now, so we don't do it twice.
2063		 */
2064		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2065		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2066		if (error != 0)
2067			return (zil_replay_error(zilog, lr, error));
2068	}
2069	return (0);
2070}
2071
2072/* ARGSUSED */
2073static int
2074zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2075{
2076	zilog->zl_replay_blks++;
2077
2078	return (0);
2079}
2080
2081/*
2082 * If this dataset has a non-empty intent log, replay it and destroy it.
2083 */
2084void
2085zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2086{
2087	zilog_t *zilog = dmu_objset_zil(os);
2088	const zil_header_t *zh = zilog->zl_header;
2089	zil_replay_arg_t zr;
2090
2091	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2092		zil_destroy(zilog, B_TRUE);
2093		return;
2094	}
2095	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
2096
2097	zr.zr_replay = replay_func;
2098	zr.zr_arg = arg;
2099	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2100	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2101
2102	/*
2103	 * Wait for in-progress removes to sync before starting replay.
2104	 */
2105	txg_wait_synced(zilog->zl_dmu_pool, 0);
2106
2107	zilog->zl_replay = B_TRUE;
2108	zilog->zl_replay_time = ddi_get_lbolt();
2109	ASSERT(zilog->zl_replay_blks == 0);
2110	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2111	    zh->zh_claim_txg);
2112	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2113
2114	zil_destroy(zilog, B_FALSE);
2115	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2116	zilog->zl_replay = B_FALSE;
2117	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
2118}
2119
2120boolean_t
2121zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2122{
2123	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2124		return (B_TRUE);
2125
2126	if (zilog->zl_replay) {
2127		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2128		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2129		    zilog->zl_replaying_seq;
2130		return (B_TRUE);
2131	}
2132
2133	return (B_FALSE);
2134}
2135
2136/* ARGSUSED */
2137int
2138zil_vdev_offline(const char *osname, void *arg)
2139{
2140	int error;
2141
2142	error = zil_suspend(osname, NULL);
2143	if (error != 0)
2144		return (SET_ERROR(EEXIST));
2145	return (0);
2146}
2147