zil.c revision 268657
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zap.h>
32#include <sys/arc.h>
33#include <sys/stat.h>
34#include <sys/resource.h>
35#include <sys/zil.h>
36#include <sys/zil_impl.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vdev_impl.h>
39#include <sys/dmu_tx.h>
40#include <sys/dsl_pool.h>
41
42/*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * 	- ZIL header
56 * 	- ZIL blocks
57 * 	- ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */
67
68/*
69 * Disable intent logging replay.  This global ZIL switch affects all pools.
70 */
71int zil_replay_disable = 0;
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_trim_enabled = B_TRUE;
87SYSCTL_DECL(_vfs_zfs_trim);
88TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
89SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
90    "Enable ZFS TRIM");
91
92static kmem_cache_t *zil_lwb_cache;
93
94static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
95
96#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
97    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
98
99
100/*
101 * ziltest is by and large an ugly hack, but very useful in
102 * checking replay without tedious work.
103 * When running ziltest we want to keep all itx's and so maintain
104 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
105 * We subtract TXG_CONCURRENT_STATES to allow for common code.
106 */
107#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
108
109static int
110zil_bp_compare(const void *x1, const void *x2)
111{
112	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
113	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
114
115	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
116		return (-1);
117	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
118		return (1);
119
120	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
121		return (-1);
122	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
123		return (1);
124
125	return (0);
126}
127
128static void
129zil_bp_tree_init(zilog_t *zilog)
130{
131	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
132	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
133}
134
135static void
136zil_bp_tree_fini(zilog_t *zilog)
137{
138	avl_tree_t *t = &zilog->zl_bp_tree;
139	zil_bp_node_t *zn;
140	void *cookie = NULL;
141
142	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
143		kmem_free(zn, sizeof (zil_bp_node_t));
144
145	avl_destroy(t);
146}
147
148int
149zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
150{
151	avl_tree_t *t = &zilog->zl_bp_tree;
152	const dva_t *dva;
153	zil_bp_node_t *zn;
154	avl_index_t where;
155
156	if (BP_IS_EMBEDDED(bp))
157		return (0);
158
159	dva = BP_IDENTITY(bp);
160
161	if (avl_find(t, dva, &where) != NULL)
162		return (SET_ERROR(EEXIST));
163
164	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
165	zn->zn_dva = *dva;
166	avl_insert(t, zn, where);
167
168	return (0);
169}
170
171static zil_header_t *
172zil_header_in_syncing_context(zilog_t *zilog)
173{
174	return ((zil_header_t *)zilog->zl_header);
175}
176
177static void
178zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
179{
180	zio_cksum_t *zc = &bp->blk_cksum;
181
182	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
183	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
184	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
185	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
186}
187
188/*
189 * Read a log block and make sure it's valid.
190 */
191static int
192zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
193    char **end)
194{
195	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
196	uint32_t aflags = ARC_WAIT;
197	arc_buf_t *abuf = NULL;
198	zbookmark_phys_t zb;
199	int error;
200
201	if (zilog->zl_header->zh_claim_txg == 0)
202		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
203
204	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
205		zio_flags |= ZIO_FLAG_SPECULATIVE;
206
207	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
208	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
209
210	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
211	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
212
213	if (error == 0) {
214		zio_cksum_t cksum = bp->blk_cksum;
215
216		/*
217		 * Validate the checksummed log block.
218		 *
219		 * Sequence numbers should be... sequential.  The checksum
220		 * verifier for the next block should be bp's checksum plus 1.
221		 *
222		 * Also check the log chain linkage and size used.
223		 */
224		cksum.zc_word[ZIL_ZC_SEQ]++;
225
226		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
227			zil_chain_t *zilc = abuf->b_data;
228			char *lr = (char *)(zilc + 1);
229			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
230
231			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
232			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
233				error = SET_ERROR(ECKSUM);
234			} else {
235				bcopy(lr, dst, len);
236				*end = (char *)dst + len;
237				*nbp = zilc->zc_next_blk;
238			}
239		} else {
240			char *lr = abuf->b_data;
241			uint64_t size = BP_GET_LSIZE(bp);
242			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
243
244			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
245			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
246			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
247				error = SET_ERROR(ECKSUM);
248			} else {
249				bcopy(lr, dst, zilc->zc_nused);
250				*end = (char *)dst + zilc->zc_nused;
251				*nbp = zilc->zc_next_blk;
252			}
253		}
254
255		VERIFY(arc_buf_remove_ref(abuf, &abuf));
256	}
257
258	return (error);
259}
260
261/*
262 * Read a TX_WRITE log data block.
263 */
264static int
265zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
266{
267	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
268	const blkptr_t *bp = &lr->lr_blkptr;
269	uint32_t aflags = ARC_WAIT;
270	arc_buf_t *abuf = NULL;
271	zbookmark_phys_t zb;
272	int error;
273
274	if (BP_IS_HOLE(bp)) {
275		if (wbuf != NULL)
276			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
277		return (0);
278	}
279
280	if (zilog->zl_header->zh_claim_txg == 0)
281		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
282
283	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
284	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
285
286	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
287	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
288
289	if (error == 0) {
290		if (wbuf != NULL)
291			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
292		(void) arc_buf_remove_ref(abuf, &abuf);
293	}
294
295	return (error);
296}
297
298/*
299 * Parse the intent log, and call parse_func for each valid record within.
300 */
301int
302zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
303    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
304{
305	const zil_header_t *zh = zilog->zl_header;
306	boolean_t claimed = !!zh->zh_claim_txg;
307	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
308	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
309	uint64_t max_blk_seq = 0;
310	uint64_t max_lr_seq = 0;
311	uint64_t blk_count = 0;
312	uint64_t lr_count = 0;
313	blkptr_t blk, next_blk;
314	char *lrbuf, *lrp;
315	int error = 0;
316
317	/*
318	 * Old logs didn't record the maximum zh_claim_lr_seq.
319	 */
320	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
321		claim_lr_seq = UINT64_MAX;
322
323	/*
324	 * Starting at the block pointed to by zh_log we read the log chain.
325	 * For each block in the chain we strongly check that block to
326	 * ensure its validity.  We stop when an invalid block is found.
327	 * For each block pointer in the chain we call parse_blk_func().
328	 * For each record in each valid block we call parse_lr_func().
329	 * If the log has been claimed, stop if we encounter a sequence
330	 * number greater than the highest claimed sequence number.
331	 */
332	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
333	zil_bp_tree_init(zilog);
334
335	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
336		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
337		int reclen;
338		char *end;
339
340		if (blk_seq > claim_blk_seq)
341			break;
342		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
343			break;
344		ASSERT3U(max_blk_seq, <, blk_seq);
345		max_blk_seq = blk_seq;
346		blk_count++;
347
348		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
349			break;
350
351		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
352		if (error != 0)
353			break;
354
355		for (lrp = lrbuf; lrp < end; lrp += reclen) {
356			lr_t *lr = (lr_t *)lrp;
357			reclen = lr->lrc_reclen;
358			ASSERT3U(reclen, >=, sizeof (lr_t));
359			if (lr->lrc_seq > claim_lr_seq)
360				goto done;
361			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
362				goto done;
363			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
364			max_lr_seq = lr->lrc_seq;
365			lr_count++;
366		}
367	}
368done:
369	zilog->zl_parse_error = error;
370	zilog->zl_parse_blk_seq = max_blk_seq;
371	zilog->zl_parse_lr_seq = max_lr_seq;
372	zilog->zl_parse_blk_count = blk_count;
373	zilog->zl_parse_lr_count = lr_count;
374
375	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
376	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
377
378	zil_bp_tree_fini(zilog);
379	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
380
381	return (error);
382}
383
384static int
385zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
386{
387	/*
388	 * Claim log block if not already committed and not already claimed.
389	 * If tx == NULL, just verify that the block is claimable.
390	 */
391	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
392	    zil_bp_tree_add(zilog, bp) != 0)
393		return (0);
394
395	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
396	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
397	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
398}
399
400static int
401zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
402{
403	lr_write_t *lr = (lr_write_t *)lrc;
404	int error;
405
406	if (lrc->lrc_txtype != TX_WRITE)
407		return (0);
408
409	/*
410	 * If the block is not readable, don't claim it.  This can happen
411	 * in normal operation when a log block is written to disk before
412	 * some of the dmu_sync() blocks it points to.  In this case, the
413	 * transaction cannot have been committed to anyone (we would have
414	 * waited for all writes to be stable first), so it is semantically
415	 * correct to declare this the end of the log.
416	 */
417	if (lr->lr_blkptr.blk_birth >= first_txg &&
418	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
419		return (error);
420	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
421}
422
423/* ARGSUSED */
424static int
425zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
426{
427	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
428
429	return (0);
430}
431
432static int
433zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
434{
435	lr_write_t *lr = (lr_write_t *)lrc;
436	blkptr_t *bp = &lr->lr_blkptr;
437
438	/*
439	 * If we previously claimed it, we need to free it.
440	 */
441	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
442	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
443	    !BP_IS_HOLE(bp))
444		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
445
446	return (0);
447}
448
449static lwb_t *
450zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
451{
452	lwb_t *lwb;
453
454	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
455	lwb->lwb_zilog = zilog;
456	lwb->lwb_blk = *bp;
457	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
458	lwb->lwb_max_txg = txg;
459	lwb->lwb_zio = NULL;
460	lwb->lwb_tx = NULL;
461	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
462		lwb->lwb_nused = sizeof (zil_chain_t);
463		lwb->lwb_sz = BP_GET_LSIZE(bp);
464	} else {
465		lwb->lwb_nused = 0;
466		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
467	}
468
469	mutex_enter(&zilog->zl_lock);
470	list_insert_tail(&zilog->zl_lwb_list, lwb);
471	mutex_exit(&zilog->zl_lock);
472
473	return (lwb);
474}
475
476/*
477 * Called when we create in-memory log transactions so that we know
478 * to cleanup the itxs at the end of spa_sync().
479 */
480void
481zilog_dirty(zilog_t *zilog, uint64_t txg)
482{
483	dsl_pool_t *dp = zilog->zl_dmu_pool;
484	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
485
486	if (dsl_dataset_is_snapshot(ds))
487		panic("dirtying snapshot!");
488
489	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
490		/* up the hold count until we can be written out */
491		dmu_buf_add_ref(ds->ds_dbuf, zilog);
492	}
493}
494
495boolean_t
496zilog_is_dirty(zilog_t *zilog)
497{
498	dsl_pool_t *dp = zilog->zl_dmu_pool;
499
500	for (int t = 0; t < TXG_SIZE; t++) {
501		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
502			return (B_TRUE);
503	}
504	return (B_FALSE);
505}
506
507/*
508 * Create an on-disk intent log.
509 */
510static lwb_t *
511zil_create(zilog_t *zilog)
512{
513	const zil_header_t *zh = zilog->zl_header;
514	lwb_t *lwb = NULL;
515	uint64_t txg = 0;
516	dmu_tx_t *tx = NULL;
517	blkptr_t blk;
518	int error = 0;
519
520	/*
521	 * Wait for any previous destroy to complete.
522	 */
523	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
524
525	ASSERT(zh->zh_claim_txg == 0);
526	ASSERT(zh->zh_replay_seq == 0);
527
528	blk = zh->zh_log;
529
530	/*
531	 * Allocate an initial log block if:
532	 *    - there isn't one already
533	 *    - the existing block is the wrong endianess
534	 */
535	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
536		tx = dmu_tx_create(zilog->zl_os);
537		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
538		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
539		txg = dmu_tx_get_txg(tx);
540
541		if (!BP_IS_HOLE(&blk)) {
542			zio_free_zil(zilog->zl_spa, txg, &blk);
543			BP_ZERO(&blk);
544		}
545
546		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
547		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
548
549		if (error == 0)
550			zil_init_log_chain(zilog, &blk);
551	}
552
553	/*
554	 * Allocate a log write buffer (lwb) for the first log block.
555	 */
556	if (error == 0)
557		lwb = zil_alloc_lwb(zilog, &blk, txg);
558
559	/*
560	 * If we just allocated the first log block, commit our transaction
561	 * and wait for zil_sync() to stuff the block poiner into zh_log.
562	 * (zh is part of the MOS, so we cannot modify it in open context.)
563	 */
564	if (tx != NULL) {
565		dmu_tx_commit(tx);
566		txg_wait_synced(zilog->zl_dmu_pool, txg);
567	}
568
569	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
570
571	return (lwb);
572}
573
574/*
575 * In one tx, free all log blocks and clear the log header.
576 * If keep_first is set, then we're replaying a log with no content.
577 * We want to keep the first block, however, so that the first
578 * synchronous transaction doesn't require a txg_wait_synced()
579 * in zil_create().  We don't need to txg_wait_synced() here either
580 * when keep_first is set, because both zil_create() and zil_destroy()
581 * will wait for any in-progress destroys to complete.
582 */
583void
584zil_destroy(zilog_t *zilog, boolean_t keep_first)
585{
586	const zil_header_t *zh = zilog->zl_header;
587	lwb_t *lwb;
588	dmu_tx_t *tx;
589	uint64_t txg;
590
591	/*
592	 * Wait for any previous destroy to complete.
593	 */
594	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
595
596	zilog->zl_old_header = *zh;		/* debugging aid */
597
598	if (BP_IS_HOLE(&zh->zh_log))
599		return;
600
601	tx = dmu_tx_create(zilog->zl_os);
602	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
603	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
604	txg = dmu_tx_get_txg(tx);
605
606	mutex_enter(&zilog->zl_lock);
607
608	ASSERT3U(zilog->zl_destroy_txg, <, txg);
609	zilog->zl_destroy_txg = txg;
610	zilog->zl_keep_first = keep_first;
611
612	if (!list_is_empty(&zilog->zl_lwb_list)) {
613		ASSERT(zh->zh_claim_txg == 0);
614		VERIFY(!keep_first);
615		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
616			list_remove(&zilog->zl_lwb_list, lwb);
617			if (lwb->lwb_buf != NULL)
618				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
619			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
620			kmem_cache_free(zil_lwb_cache, lwb);
621		}
622	} else if (!keep_first) {
623		zil_destroy_sync(zilog, tx);
624	}
625	mutex_exit(&zilog->zl_lock);
626
627	dmu_tx_commit(tx);
628}
629
630void
631zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
632{
633	ASSERT(list_is_empty(&zilog->zl_lwb_list));
634	(void) zil_parse(zilog, zil_free_log_block,
635	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
636}
637
638int
639zil_claim(const char *osname, void *txarg)
640{
641	dmu_tx_t *tx = txarg;
642	uint64_t first_txg = dmu_tx_get_txg(tx);
643	zilog_t *zilog;
644	zil_header_t *zh;
645	objset_t *os;
646	int error;
647
648	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
649	if (error != 0) {
650		cmn_err(CE_WARN, "can't open objset for %s", osname);
651		return (0);
652	}
653
654	zilog = dmu_objset_zil(os);
655	zh = zil_header_in_syncing_context(zilog);
656
657	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
658		if (!BP_IS_HOLE(&zh->zh_log))
659			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
660		BP_ZERO(&zh->zh_log);
661		dsl_dataset_dirty(dmu_objset_ds(os), tx);
662		dmu_objset_disown(os, FTAG);
663		return (0);
664	}
665
666	/*
667	 * Claim all log blocks if we haven't already done so, and remember
668	 * the highest claimed sequence number.  This ensures that if we can
669	 * read only part of the log now (e.g. due to a missing device),
670	 * but we can read the entire log later, we will not try to replay
671	 * or destroy beyond the last block we successfully claimed.
672	 */
673	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
674	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
675		(void) zil_parse(zilog, zil_claim_log_block,
676		    zil_claim_log_record, tx, first_txg);
677		zh->zh_claim_txg = first_txg;
678		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
679		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
680		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
681			zh->zh_flags |= ZIL_REPLAY_NEEDED;
682		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
683		dsl_dataset_dirty(dmu_objset_ds(os), tx);
684	}
685
686	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
687	dmu_objset_disown(os, FTAG);
688	return (0);
689}
690
691/*
692 * Check the log by walking the log chain.
693 * Checksum errors are ok as they indicate the end of the chain.
694 * Any other error (no device or read failure) returns an error.
695 */
696int
697zil_check_log_chain(const char *osname, void *tx)
698{
699	zilog_t *zilog;
700	objset_t *os;
701	blkptr_t *bp;
702	int error;
703
704	ASSERT(tx == NULL);
705
706	error = dmu_objset_hold(osname, FTAG, &os);
707	if (error != 0) {
708		cmn_err(CE_WARN, "can't open objset for %s", osname);
709		return (0);
710	}
711
712	zilog = dmu_objset_zil(os);
713	bp = (blkptr_t *)&zilog->zl_header->zh_log;
714
715	/*
716	 * Check the first block and determine if it's on a log device
717	 * which may have been removed or faulted prior to loading this
718	 * pool.  If so, there's no point in checking the rest of the log
719	 * as its content should have already been synced to the pool.
720	 */
721	if (!BP_IS_HOLE(bp)) {
722		vdev_t *vd;
723		boolean_t valid = B_TRUE;
724
725		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
726		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
727		if (vd->vdev_islog && vdev_is_dead(vd))
728			valid = vdev_log_state_valid(vd);
729		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
730
731		if (!valid) {
732			dmu_objset_rele(os, FTAG);
733			return (0);
734		}
735	}
736
737	/*
738	 * Because tx == NULL, zil_claim_log_block() will not actually claim
739	 * any blocks, but just determine whether it is possible to do so.
740	 * In addition to checking the log chain, zil_claim_log_block()
741	 * will invoke zio_claim() with a done func of spa_claim_notify(),
742	 * which will update spa_max_claim_txg.  See spa_load() for details.
743	 */
744	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
745	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
746
747	dmu_objset_rele(os, FTAG);
748
749	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
750}
751
752static int
753zil_vdev_compare(const void *x1, const void *x2)
754{
755	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
756	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
757
758	if (v1 < v2)
759		return (-1);
760	if (v1 > v2)
761		return (1);
762
763	return (0);
764}
765
766void
767zil_add_block(zilog_t *zilog, const blkptr_t *bp)
768{
769	avl_tree_t *t = &zilog->zl_vdev_tree;
770	avl_index_t where;
771	zil_vdev_node_t *zv, zvsearch;
772	int ndvas = BP_GET_NDVAS(bp);
773	int i;
774
775	if (zfs_nocacheflush)
776		return;
777
778	ASSERT(zilog->zl_writer);
779
780	/*
781	 * Even though we're zl_writer, we still need a lock because the
782	 * zl_get_data() callbacks may have dmu_sync() done callbacks
783	 * that will run concurrently.
784	 */
785	mutex_enter(&zilog->zl_vdev_lock);
786	for (i = 0; i < ndvas; i++) {
787		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
788		if (avl_find(t, &zvsearch, &where) == NULL) {
789			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
790			zv->zv_vdev = zvsearch.zv_vdev;
791			avl_insert(t, zv, where);
792		}
793	}
794	mutex_exit(&zilog->zl_vdev_lock);
795}
796
797static void
798zil_flush_vdevs(zilog_t *zilog)
799{
800	spa_t *spa = zilog->zl_spa;
801	avl_tree_t *t = &zilog->zl_vdev_tree;
802	void *cookie = NULL;
803	zil_vdev_node_t *zv;
804	zio_t *zio;
805
806	ASSERT(zilog->zl_writer);
807
808	/*
809	 * We don't need zl_vdev_lock here because we're the zl_writer,
810	 * and all zl_get_data() callbacks are done.
811	 */
812	if (avl_numnodes(t) == 0)
813		return;
814
815	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
816
817	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
818
819	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
820		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
821		if (vd != NULL)
822			zio_flush(zio, vd);
823		kmem_free(zv, sizeof (*zv));
824	}
825
826	/*
827	 * Wait for all the flushes to complete.  Not all devices actually
828	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
829	 */
830	(void) zio_wait(zio);
831
832	spa_config_exit(spa, SCL_STATE, FTAG);
833}
834
835/*
836 * Function called when a log block write completes
837 */
838static void
839zil_lwb_write_done(zio_t *zio)
840{
841	lwb_t *lwb = zio->io_private;
842	zilog_t *zilog = lwb->lwb_zilog;
843	dmu_tx_t *tx = lwb->lwb_tx;
844
845	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
846	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
847	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
848	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
849	ASSERT(!BP_IS_GANG(zio->io_bp));
850	ASSERT(!BP_IS_HOLE(zio->io_bp));
851	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
852
853	/*
854	 * Ensure the lwb buffer pointer is cleared before releasing
855	 * the txg. If we have had an allocation failure and
856	 * the txg is waiting to sync then we want want zil_sync()
857	 * to remove the lwb so that it's not picked up as the next new
858	 * one in zil_commit_writer(). zil_sync() will only remove
859	 * the lwb if lwb_buf is null.
860	 */
861	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
862	mutex_enter(&zilog->zl_lock);
863	lwb->lwb_buf = NULL;
864	lwb->lwb_tx = NULL;
865	mutex_exit(&zilog->zl_lock);
866
867	/*
868	 * Now that we've written this log block, we have a stable pointer
869	 * to the next block in the chain, so it's OK to let the txg in
870	 * which we allocated the next block sync.
871	 */
872	dmu_tx_commit(tx);
873}
874
875/*
876 * Initialize the io for a log block.
877 */
878static void
879zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
880{
881	zbookmark_phys_t zb;
882
883	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
884	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
885	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
886
887	if (zilog->zl_root_zio == NULL) {
888		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
889		    ZIO_FLAG_CANFAIL);
890	}
891	if (lwb->lwb_zio == NULL) {
892		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
893		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
894		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
895		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
896	}
897}
898
899/*
900 * Define a limited set of intent log block sizes.
901 *
902 * These must be a multiple of 4KB. Note only the amount used (again
903 * aligned to 4KB) actually gets written. However, we can't always just
904 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
905 */
906uint64_t zil_block_buckets[] = {
907    4096,		/* non TX_WRITE */
908    8192+4096,		/* data base */
909    32*1024 + 4096, 	/* NFS writes */
910    UINT64_MAX
911};
912
913/*
914 * Use the slog as long as the logbias is 'latency' and the current commit size
915 * is less than the limit or the total list size is less than 2X the limit.
916 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
917 */
918uint64_t zil_slog_limit = 1024 * 1024;
919#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
920	(((zilog)->zl_cur_used < zil_slog_limit) || \
921	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
922
923/*
924 * Start a log block write and advance to the next log block.
925 * Calls are serialized.
926 */
927static lwb_t *
928zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
929{
930	lwb_t *nlwb = NULL;
931	zil_chain_t *zilc;
932	spa_t *spa = zilog->zl_spa;
933	blkptr_t *bp;
934	dmu_tx_t *tx;
935	uint64_t txg;
936	uint64_t zil_blksz, wsz;
937	int i, error;
938
939	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
940		zilc = (zil_chain_t *)lwb->lwb_buf;
941		bp = &zilc->zc_next_blk;
942	} else {
943		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
944		bp = &zilc->zc_next_blk;
945	}
946
947	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
948
949	/*
950	 * Allocate the next block and save its address in this block
951	 * before writing it in order to establish the log chain.
952	 * Note that if the allocation of nlwb synced before we wrote
953	 * the block that points at it (lwb), we'd leak it if we crashed.
954	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
955	 * We dirty the dataset to ensure that zil_sync() will be called
956	 * to clean up in the event of allocation failure or I/O failure.
957	 */
958	tx = dmu_tx_create(zilog->zl_os);
959	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
960	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
961	txg = dmu_tx_get_txg(tx);
962
963	lwb->lwb_tx = tx;
964
965	/*
966	 * Log blocks are pre-allocated. Here we select the size of the next
967	 * block, based on size used in the last block.
968	 * - first find the smallest bucket that will fit the block from a
969	 *   limited set of block sizes. This is because it's faster to write
970	 *   blocks allocated from the same metaslab as they are adjacent or
971	 *   close.
972	 * - next find the maximum from the new suggested size and an array of
973	 *   previous sizes. This lessens a picket fence effect of wrongly
974	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
975	 *   requests.
976	 *
977	 * Note we only write what is used, but we can't just allocate
978	 * the maximum block size because we can exhaust the available
979	 * pool log space.
980	 */
981	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
982	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
983		continue;
984	zil_blksz = zil_block_buckets[i];
985	if (zil_blksz == UINT64_MAX)
986		zil_blksz = SPA_MAXBLOCKSIZE;
987	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
988	for (i = 0; i < ZIL_PREV_BLKS; i++)
989		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
990	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
991
992	BP_ZERO(bp);
993	/* pass the old blkptr in order to spread log blocks across devs */
994	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
995	    USE_SLOG(zilog));
996	if (error == 0) {
997		ASSERT3U(bp->blk_birth, ==, txg);
998		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
999		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1000
1001		/*
1002		 * Allocate a new log write buffer (lwb).
1003		 */
1004		nlwb = zil_alloc_lwb(zilog, bp, txg);
1005
1006		/* Record the block for later vdev flushing */
1007		zil_add_block(zilog, &lwb->lwb_blk);
1008	}
1009
1010	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1011		/* For Slim ZIL only write what is used. */
1012		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1013		ASSERT3U(wsz, <=, lwb->lwb_sz);
1014		zio_shrink(lwb->lwb_zio, wsz);
1015
1016	} else {
1017		wsz = lwb->lwb_sz;
1018	}
1019
1020	zilc->zc_pad = 0;
1021	zilc->zc_nused = lwb->lwb_nused;
1022	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1023
1024	/*
1025	 * clear unused data for security
1026	 */
1027	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1028
1029	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1030
1031	/*
1032	 * If there was an allocation failure then nlwb will be null which
1033	 * forces a txg_wait_synced().
1034	 */
1035	return (nlwb);
1036}
1037
1038static lwb_t *
1039zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1040{
1041	lr_t *lrc = &itx->itx_lr; /* common log record */
1042	lr_write_t *lrw = (lr_write_t *)lrc;
1043	char *lr_buf;
1044	uint64_t txg = lrc->lrc_txg;
1045	uint64_t reclen = lrc->lrc_reclen;
1046	uint64_t dlen = 0;
1047
1048	if (lwb == NULL)
1049		return (NULL);
1050
1051	ASSERT(lwb->lwb_buf != NULL);
1052	ASSERT(zilog_is_dirty(zilog) ||
1053	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1054
1055	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1056		dlen = P2ROUNDUP_TYPED(
1057		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1058
1059	zilog->zl_cur_used += (reclen + dlen);
1060
1061	zil_lwb_write_init(zilog, lwb);
1062
1063	/*
1064	 * If this record won't fit in the current log block, start a new one.
1065	 */
1066	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1067		lwb = zil_lwb_write_start(zilog, lwb);
1068		if (lwb == NULL)
1069			return (NULL);
1070		zil_lwb_write_init(zilog, lwb);
1071		ASSERT(LWB_EMPTY(lwb));
1072		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1073			txg_wait_synced(zilog->zl_dmu_pool, txg);
1074			return (lwb);
1075		}
1076	}
1077
1078	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1079	bcopy(lrc, lr_buf, reclen);
1080	lrc = (lr_t *)lr_buf;
1081	lrw = (lr_write_t *)lrc;
1082
1083	/*
1084	 * If it's a write, fetch the data or get its blkptr as appropriate.
1085	 */
1086	if (lrc->lrc_txtype == TX_WRITE) {
1087		if (txg > spa_freeze_txg(zilog->zl_spa))
1088			txg_wait_synced(zilog->zl_dmu_pool, txg);
1089		if (itx->itx_wr_state != WR_COPIED) {
1090			char *dbuf;
1091			int error;
1092
1093			if (dlen) {
1094				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1095				dbuf = lr_buf + reclen;
1096				lrw->lr_common.lrc_reclen += dlen;
1097			} else {
1098				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1099				dbuf = NULL;
1100			}
1101			error = zilog->zl_get_data(
1102			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1103			if (error == EIO) {
1104				txg_wait_synced(zilog->zl_dmu_pool, txg);
1105				return (lwb);
1106			}
1107			if (error != 0) {
1108				ASSERT(error == ENOENT || error == EEXIST ||
1109				    error == EALREADY);
1110				return (lwb);
1111			}
1112		}
1113	}
1114
1115	/*
1116	 * We're actually making an entry, so update lrc_seq to be the
1117	 * log record sequence number.  Note that this is generally not
1118	 * equal to the itx sequence number because not all transactions
1119	 * are synchronous, and sometimes spa_sync() gets there first.
1120	 */
1121	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1122	lwb->lwb_nused += reclen + dlen;
1123	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1124	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1125	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1126
1127	return (lwb);
1128}
1129
1130itx_t *
1131zil_itx_create(uint64_t txtype, size_t lrsize)
1132{
1133	itx_t *itx;
1134
1135	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1136
1137	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1138	itx->itx_lr.lrc_txtype = txtype;
1139	itx->itx_lr.lrc_reclen = lrsize;
1140	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1141	itx->itx_lr.lrc_seq = 0;	/* defensive */
1142	itx->itx_sync = B_TRUE;		/* default is synchronous */
1143
1144	return (itx);
1145}
1146
1147void
1148zil_itx_destroy(itx_t *itx)
1149{
1150	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1151}
1152
1153/*
1154 * Free up the sync and async itxs. The itxs_t has already been detached
1155 * so no locks are needed.
1156 */
1157static void
1158zil_itxg_clean(itxs_t *itxs)
1159{
1160	itx_t *itx;
1161	list_t *list;
1162	avl_tree_t *t;
1163	void *cookie;
1164	itx_async_node_t *ian;
1165
1166	list = &itxs->i_sync_list;
1167	while ((itx = list_head(list)) != NULL) {
1168		list_remove(list, itx);
1169		kmem_free(itx, offsetof(itx_t, itx_lr) +
1170		    itx->itx_lr.lrc_reclen);
1171	}
1172
1173	cookie = NULL;
1174	t = &itxs->i_async_tree;
1175	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1176		list = &ian->ia_list;
1177		while ((itx = list_head(list)) != NULL) {
1178			list_remove(list, itx);
1179			kmem_free(itx, offsetof(itx_t, itx_lr) +
1180			    itx->itx_lr.lrc_reclen);
1181		}
1182		list_destroy(list);
1183		kmem_free(ian, sizeof (itx_async_node_t));
1184	}
1185	avl_destroy(t);
1186
1187	kmem_free(itxs, sizeof (itxs_t));
1188}
1189
1190static int
1191zil_aitx_compare(const void *x1, const void *x2)
1192{
1193	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1194	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1195
1196	if (o1 < o2)
1197		return (-1);
1198	if (o1 > o2)
1199		return (1);
1200
1201	return (0);
1202}
1203
1204/*
1205 * Remove all async itx with the given oid.
1206 */
1207static void
1208zil_remove_async(zilog_t *zilog, uint64_t oid)
1209{
1210	uint64_t otxg, txg;
1211	itx_async_node_t *ian;
1212	avl_tree_t *t;
1213	avl_index_t where;
1214	list_t clean_list;
1215	itx_t *itx;
1216
1217	ASSERT(oid != 0);
1218	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1219
1220	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1221		otxg = ZILTEST_TXG;
1222	else
1223		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1224
1225	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1226		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1227
1228		mutex_enter(&itxg->itxg_lock);
1229		if (itxg->itxg_txg != txg) {
1230			mutex_exit(&itxg->itxg_lock);
1231			continue;
1232		}
1233
1234		/*
1235		 * Locate the object node and append its list.
1236		 */
1237		t = &itxg->itxg_itxs->i_async_tree;
1238		ian = avl_find(t, &oid, &where);
1239		if (ian != NULL)
1240			list_move_tail(&clean_list, &ian->ia_list);
1241		mutex_exit(&itxg->itxg_lock);
1242	}
1243	while ((itx = list_head(&clean_list)) != NULL) {
1244		list_remove(&clean_list, itx);
1245		kmem_free(itx, offsetof(itx_t, itx_lr) +
1246		    itx->itx_lr.lrc_reclen);
1247	}
1248	list_destroy(&clean_list);
1249}
1250
1251void
1252zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1253{
1254	uint64_t txg;
1255	itxg_t *itxg;
1256	itxs_t *itxs, *clean = NULL;
1257
1258	/*
1259	 * Object ids can be re-instantiated in the next txg so
1260	 * remove any async transactions to avoid future leaks.
1261	 * This can happen if a fsync occurs on the re-instantiated
1262	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1263	 * the new file data and flushes a write record for the old object.
1264	 */
1265	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1266		zil_remove_async(zilog, itx->itx_oid);
1267
1268	/*
1269	 * Ensure the data of a renamed file is committed before the rename.
1270	 */
1271	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1272		zil_async_to_sync(zilog, itx->itx_oid);
1273
1274	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1275		txg = ZILTEST_TXG;
1276	else
1277		txg = dmu_tx_get_txg(tx);
1278
1279	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1280	mutex_enter(&itxg->itxg_lock);
1281	itxs = itxg->itxg_itxs;
1282	if (itxg->itxg_txg != txg) {
1283		if (itxs != NULL) {
1284			/*
1285			 * The zil_clean callback hasn't got around to cleaning
1286			 * this itxg. Save the itxs for release below.
1287			 * This should be rare.
1288			 */
1289			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1290			itxg->itxg_sod = 0;
1291			clean = itxg->itxg_itxs;
1292		}
1293		ASSERT(itxg->itxg_sod == 0);
1294		itxg->itxg_txg = txg;
1295		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1296
1297		list_create(&itxs->i_sync_list, sizeof (itx_t),
1298		    offsetof(itx_t, itx_node));
1299		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1300		    sizeof (itx_async_node_t),
1301		    offsetof(itx_async_node_t, ia_node));
1302	}
1303	if (itx->itx_sync) {
1304		list_insert_tail(&itxs->i_sync_list, itx);
1305		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1306		itxg->itxg_sod += itx->itx_sod;
1307	} else {
1308		avl_tree_t *t = &itxs->i_async_tree;
1309		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1310		itx_async_node_t *ian;
1311		avl_index_t where;
1312
1313		ian = avl_find(t, &foid, &where);
1314		if (ian == NULL) {
1315			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1316			list_create(&ian->ia_list, sizeof (itx_t),
1317			    offsetof(itx_t, itx_node));
1318			ian->ia_foid = foid;
1319			avl_insert(t, ian, where);
1320		}
1321		list_insert_tail(&ian->ia_list, itx);
1322	}
1323
1324	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1325	zilog_dirty(zilog, txg);
1326	mutex_exit(&itxg->itxg_lock);
1327
1328	/* Release the old itxs now we've dropped the lock */
1329	if (clean != NULL)
1330		zil_itxg_clean(clean);
1331}
1332
1333/*
1334 * If there are any in-memory intent log transactions which have now been
1335 * synced then start up a taskq to free them. We should only do this after we
1336 * have written out the uberblocks (i.e. txg has been comitted) so that
1337 * don't inadvertently clean out in-memory log records that would be required
1338 * by zil_commit().
1339 */
1340void
1341zil_clean(zilog_t *zilog, uint64_t synced_txg)
1342{
1343	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1344	itxs_t *clean_me;
1345
1346	mutex_enter(&itxg->itxg_lock);
1347	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1348		mutex_exit(&itxg->itxg_lock);
1349		return;
1350	}
1351	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1352	ASSERT(itxg->itxg_txg != 0);
1353	ASSERT(zilog->zl_clean_taskq != NULL);
1354	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1355	itxg->itxg_sod = 0;
1356	clean_me = itxg->itxg_itxs;
1357	itxg->itxg_itxs = NULL;
1358	itxg->itxg_txg = 0;
1359	mutex_exit(&itxg->itxg_lock);
1360	/*
1361	 * Preferably start a task queue to free up the old itxs but
1362	 * if taskq_dispatch can't allocate resources to do that then
1363	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1364	 * created a bad performance problem.
1365	 */
1366	if (taskq_dispatch(zilog->zl_clean_taskq,
1367	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1368		zil_itxg_clean(clean_me);
1369}
1370
1371/*
1372 * Get the list of itxs to commit into zl_itx_commit_list.
1373 */
1374static void
1375zil_get_commit_list(zilog_t *zilog)
1376{
1377	uint64_t otxg, txg;
1378	list_t *commit_list = &zilog->zl_itx_commit_list;
1379	uint64_t push_sod = 0;
1380
1381	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1382		otxg = ZILTEST_TXG;
1383	else
1384		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1385
1386	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1387		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1388
1389		mutex_enter(&itxg->itxg_lock);
1390		if (itxg->itxg_txg != txg) {
1391			mutex_exit(&itxg->itxg_lock);
1392			continue;
1393		}
1394
1395		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1396		push_sod += itxg->itxg_sod;
1397		itxg->itxg_sod = 0;
1398
1399		mutex_exit(&itxg->itxg_lock);
1400	}
1401	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1402}
1403
1404/*
1405 * Move the async itxs for a specified object to commit into sync lists.
1406 */
1407static void
1408zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1409{
1410	uint64_t otxg, txg;
1411	itx_async_node_t *ian;
1412	avl_tree_t *t;
1413	avl_index_t where;
1414
1415	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1416		otxg = ZILTEST_TXG;
1417	else
1418		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1419
1420	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1421		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1422
1423		mutex_enter(&itxg->itxg_lock);
1424		if (itxg->itxg_txg != txg) {
1425			mutex_exit(&itxg->itxg_lock);
1426			continue;
1427		}
1428
1429		/*
1430		 * If a foid is specified then find that node and append its
1431		 * list. Otherwise walk the tree appending all the lists
1432		 * to the sync list. We add to the end rather than the
1433		 * beginning to ensure the create has happened.
1434		 */
1435		t = &itxg->itxg_itxs->i_async_tree;
1436		if (foid != 0) {
1437			ian = avl_find(t, &foid, &where);
1438			if (ian != NULL) {
1439				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1440				    &ian->ia_list);
1441			}
1442		} else {
1443			void *cookie = NULL;
1444
1445			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1446				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1447				    &ian->ia_list);
1448				list_destroy(&ian->ia_list);
1449				kmem_free(ian, sizeof (itx_async_node_t));
1450			}
1451		}
1452		mutex_exit(&itxg->itxg_lock);
1453	}
1454}
1455
1456static void
1457zil_commit_writer(zilog_t *zilog)
1458{
1459	uint64_t txg;
1460	itx_t *itx;
1461	lwb_t *lwb;
1462	spa_t *spa = zilog->zl_spa;
1463	int error = 0;
1464
1465	ASSERT(zilog->zl_root_zio == NULL);
1466
1467	mutex_exit(&zilog->zl_lock);
1468
1469	zil_get_commit_list(zilog);
1470
1471	/*
1472	 * Return if there's nothing to commit before we dirty the fs by
1473	 * calling zil_create().
1474	 */
1475	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1476		mutex_enter(&zilog->zl_lock);
1477		return;
1478	}
1479
1480	if (zilog->zl_suspend) {
1481		lwb = NULL;
1482	} else {
1483		lwb = list_tail(&zilog->zl_lwb_list);
1484		if (lwb == NULL)
1485			lwb = zil_create(zilog);
1486	}
1487
1488	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1489	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1490		txg = itx->itx_lr.lrc_txg;
1491		ASSERT(txg);
1492
1493		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1494			lwb = zil_lwb_commit(zilog, itx, lwb);
1495		list_remove(&zilog->zl_itx_commit_list, itx);
1496		kmem_free(itx, offsetof(itx_t, itx_lr)
1497		    + itx->itx_lr.lrc_reclen);
1498	}
1499	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1500
1501	/* write the last block out */
1502	if (lwb != NULL && lwb->lwb_zio != NULL)
1503		lwb = zil_lwb_write_start(zilog, lwb);
1504
1505	zilog->zl_cur_used = 0;
1506
1507	/*
1508	 * Wait if necessary for the log blocks to be on stable storage.
1509	 */
1510	if (zilog->zl_root_zio) {
1511		error = zio_wait(zilog->zl_root_zio);
1512		zilog->zl_root_zio = NULL;
1513		zil_flush_vdevs(zilog);
1514	}
1515
1516	if (error || lwb == NULL)
1517		txg_wait_synced(zilog->zl_dmu_pool, 0);
1518
1519	mutex_enter(&zilog->zl_lock);
1520
1521	/*
1522	 * Remember the highest committed log sequence number for ztest.
1523	 * We only update this value when all the log writes succeeded,
1524	 * because ztest wants to ASSERT that it got the whole log chain.
1525	 */
1526	if (error == 0 && lwb != NULL)
1527		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1528}
1529
1530/*
1531 * Commit zfs transactions to stable storage.
1532 * If foid is 0 push out all transactions, otherwise push only those
1533 * for that object or might reference that object.
1534 *
1535 * itxs are committed in batches. In a heavily stressed zil there will be
1536 * a commit writer thread who is writing out a bunch of itxs to the log
1537 * for a set of committing threads (cthreads) in the same batch as the writer.
1538 * Those cthreads are all waiting on the same cv for that batch.
1539 *
1540 * There will also be a different and growing batch of threads that are
1541 * waiting to commit (qthreads). When the committing batch completes
1542 * a transition occurs such that the cthreads exit and the qthreads become
1543 * cthreads. One of the new cthreads becomes the writer thread for the
1544 * batch. Any new threads arriving become new qthreads.
1545 *
1546 * Only 2 condition variables are needed and there's no transition
1547 * between the two cvs needed. They just flip-flop between qthreads
1548 * and cthreads.
1549 *
1550 * Using this scheme we can efficiently wakeup up only those threads
1551 * that have been committed.
1552 */
1553void
1554zil_commit(zilog_t *zilog, uint64_t foid)
1555{
1556	uint64_t mybatch;
1557
1558	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1559		return;
1560
1561	/* move the async itxs for the foid to the sync queues */
1562	zil_async_to_sync(zilog, foid);
1563
1564	mutex_enter(&zilog->zl_lock);
1565	mybatch = zilog->zl_next_batch;
1566	while (zilog->zl_writer) {
1567		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1568		if (mybatch <= zilog->zl_com_batch) {
1569			mutex_exit(&zilog->zl_lock);
1570			return;
1571		}
1572	}
1573
1574	zilog->zl_next_batch++;
1575	zilog->zl_writer = B_TRUE;
1576	zil_commit_writer(zilog);
1577	zilog->zl_com_batch = mybatch;
1578	zilog->zl_writer = B_FALSE;
1579	mutex_exit(&zilog->zl_lock);
1580
1581	/* wake up one thread to become the next writer */
1582	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1583
1584	/* wake up all threads waiting for this batch to be committed */
1585	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1586}
1587
1588/*
1589 * Called in syncing context to free committed log blocks and update log header.
1590 */
1591void
1592zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1593{
1594	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1595	uint64_t txg = dmu_tx_get_txg(tx);
1596	spa_t *spa = zilog->zl_spa;
1597	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1598	lwb_t *lwb;
1599
1600	/*
1601	 * We don't zero out zl_destroy_txg, so make sure we don't try
1602	 * to destroy it twice.
1603	 */
1604	if (spa_sync_pass(spa) != 1)
1605		return;
1606
1607	mutex_enter(&zilog->zl_lock);
1608
1609	ASSERT(zilog->zl_stop_sync == 0);
1610
1611	if (*replayed_seq != 0) {
1612		ASSERT(zh->zh_replay_seq < *replayed_seq);
1613		zh->zh_replay_seq = *replayed_seq;
1614		*replayed_seq = 0;
1615	}
1616
1617	if (zilog->zl_destroy_txg == txg) {
1618		blkptr_t blk = zh->zh_log;
1619
1620		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1621
1622		bzero(zh, sizeof (zil_header_t));
1623		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1624
1625		if (zilog->zl_keep_first) {
1626			/*
1627			 * If this block was part of log chain that couldn't
1628			 * be claimed because a device was missing during
1629			 * zil_claim(), but that device later returns,
1630			 * then this block could erroneously appear valid.
1631			 * To guard against this, assign a new GUID to the new
1632			 * log chain so it doesn't matter what blk points to.
1633			 */
1634			zil_init_log_chain(zilog, &blk);
1635			zh->zh_log = blk;
1636		}
1637	}
1638
1639	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1640		zh->zh_log = lwb->lwb_blk;
1641		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1642			break;
1643		list_remove(&zilog->zl_lwb_list, lwb);
1644		zio_free_zil(spa, txg, &lwb->lwb_blk);
1645		kmem_cache_free(zil_lwb_cache, lwb);
1646
1647		/*
1648		 * If we don't have anything left in the lwb list then
1649		 * we've had an allocation failure and we need to zero
1650		 * out the zil_header blkptr so that we don't end
1651		 * up freeing the same block twice.
1652		 */
1653		if (list_head(&zilog->zl_lwb_list) == NULL)
1654			BP_ZERO(&zh->zh_log);
1655	}
1656	mutex_exit(&zilog->zl_lock);
1657}
1658
1659void
1660zil_init(void)
1661{
1662	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1663	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1664}
1665
1666void
1667zil_fini(void)
1668{
1669	kmem_cache_destroy(zil_lwb_cache);
1670}
1671
1672void
1673zil_set_sync(zilog_t *zilog, uint64_t sync)
1674{
1675	zilog->zl_sync = sync;
1676}
1677
1678void
1679zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1680{
1681	zilog->zl_logbias = logbias;
1682}
1683
1684zilog_t *
1685zil_alloc(objset_t *os, zil_header_t *zh_phys)
1686{
1687	zilog_t *zilog;
1688
1689	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1690
1691	zilog->zl_header = zh_phys;
1692	zilog->zl_os = os;
1693	zilog->zl_spa = dmu_objset_spa(os);
1694	zilog->zl_dmu_pool = dmu_objset_pool(os);
1695	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1696	zilog->zl_logbias = dmu_objset_logbias(os);
1697	zilog->zl_sync = dmu_objset_syncprop(os);
1698	zilog->zl_next_batch = 1;
1699
1700	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1701
1702	for (int i = 0; i < TXG_SIZE; i++) {
1703		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1704		    MUTEX_DEFAULT, NULL);
1705	}
1706
1707	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1708	    offsetof(lwb_t, lwb_node));
1709
1710	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1711	    offsetof(itx_t, itx_node));
1712
1713	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1714
1715	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1716	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1717
1718	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1719	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1720	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1721	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1722
1723	return (zilog);
1724}
1725
1726void
1727zil_free(zilog_t *zilog)
1728{
1729	zilog->zl_stop_sync = 1;
1730
1731	ASSERT0(zilog->zl_suspend);
1732	ASSERT0(zilog->zl_suspending);
1733
1734	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1735	list_destroy(&zilog->zl_lwb_list);
1736
1737	avl_destroy(&zilog->zl_vdev_tree);
1738	mutex_destroy(&zilog->zl_vdev_lock);
1739
1740	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1741	list_destroy(&zilog->zl_itx_commit_list);
1742
1743	for (int i = 0; i < TXG_SIZE; i++) {
1744		/*
1745		 * It's possible for an itx to be generated that doesn't dirty
1746		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1747		 * callback to remove the entry. We remove those here.
1748		 *
1749		 * Also free up the ziltest itxs.
1750		 */
1751		if (zilog->zl_itxg[i].itxg_itxs)
1752			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1753		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1754	}
1755
1756	mutex_destroy(&zilog->zl_lock);
1757
1758	cv_destroy(&zilog->zl_cv_writer);
1759	cv_destroy(&zilog->zl_cv_suspend);
1760	cv_destroy(&zilog->zl_cv_batch[0]);
1761	cv_destroy(&zilog->zl_cv_batch[1]);
1762
1763	kmem_free(zilog, sizeof (zilog_t));
1764}
1765
1766/*
1767 * Open an intent log.
1768 */
1769zilog_t *
1770zil_open(objset_t *os, zil_get_data_t *get_data)
1771{
1772	zilog_t *zilog = dmu_objset_zil(os);
1773
1774	ASSERT(zilog->zl_clean_taskq == NULL);
1775	ASSERT(zilog->zl_get_data == NULL);
1776	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1777
1778	zilog->zl_get_data = get_data;
1779	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1780	    2, 2, TASKQ_PREPOPULATE);
1781
1782	return (zilog);
1783}
1784
1785/*
1786 * Close an intent log.
1787 */
1788void
1789zil_close(zilog_t *zilog)
1790{
1791	lwb_t *lwb;
1792	uint64_t txg = 0;
1793
1794	zil_commit(zilog, 0); /* commit all itx */
1795
1796	/*
1797	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1798	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1799	 * callbacks have occurred that may clean the zil.  Only then can we
1800	 * destroy the zl_clean_taskq.
1801	 */
1802	mutex_enter(&zilog->zl_lock);
1803	lwb = list_tail(&zilog->zl_lwb_list);
1804	if (lwb != NULL)
1805		txg = lwb->lwb_max_txg;
1806	mutex_exit(&zilog->zl_lock);
1807	if (txg)
1808		txg_wait_synced(zilog->zl_dmu_pool, txg);
1809	ASSERT(!zilog_is_dirty(zilog));
1810
1811	taskq_destroy(zilog->zl_clean_taskq);
1812	zilog->zl_clean_taskq = NULL;
1813	zilog->zl_get_data = NULL;
1814
1815	/*
1816	 * We should have only one LWB left on the list; remove it now.
1817	 */
1818	mutex_enter(&zilog->zl_lock);
1819	lwb = list_head(&zilog->zl_lwb_list);
1820	if (lwb != NULL) {
1821		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1822		list_remove(&zilog->zl_lwb_list, lwb);
1823		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1824		kmem_cache_free(zil_lwb_cache, lwb);
1825	}
1826	mutex_exit(&zilog->zl_lock);
1827}
1828
1829static char *suspend_tag = "zil suspending";
1830
1831/*
1832 * Suspend an intent log.  While in suspended mode, we still honor
1833 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1834 * On old version pools, we suspend the log briefly when taking a
1835 * snapshot so that it will have an empty intent log.
1836 *
1837 * Long holds are not really intended to be used the way we do here --
1838 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1839 * could fail.  Therefore we take pains to only put a long hold if it is
1840 * actually necessary.  Fortunately, it will only be necessary if the
1841 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1842 * will already have a long hold, so we are not really making things any worse.
1843 *
1844 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1845 * zvol_state_t), and use their mechanism to prevent their hold from being
1846 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1847 * very little gain.
1848 *
1849 * if cookiep == NULL, this does both the suspend & resume.
1850 * Otherwise, it returns with the dataset "long held", and the cookie
1851 * should be passed into zil_resume().
1852 */
1853int
1854zil_suspend(const char *osname, void **cookiep)
1855{
1856	objset_t *os;
1857	zilog_t *zilog;
1858	const zil_header_t *zh;
1859	int error;
1860
1861	error = dmu_objset_hold(osname, suspend_tag, &os);
1862	if (error != 0)
1863		return (error);
1864	zilog = dmu_objset_zil(os);
1865
1866	mutex_enter(&zilog->zl_lock);
1867	zh = zilog->zl_header;
1868
1869	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1870		mutex_exit(&zilog->zl_lock);
1871		dmu_objset_rele(os, suspend_tag);
1872		return (SET_ERROR(EBUSY));
1873	}
1874
1875	/*
1876	 * Don't put a long hold in the cases where we can avoid it.  This
1877	 * is when there is no cookie so we are doing a suspend & resume
1878	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1879	 * for the suspend because it's already suspended, or there's no ZIL.
1880	 */
1881	if (cookiep == NULL && !zilog->zl_suspending &&
1882	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1883		mutex_exit(&zilog->zl_lock);
1884		dmu_objset_rele(os, suspend_tag);
1885		return (0);
1886	}
1887
1888	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1889	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1890
1891	zilog->zl_suspend++;
1892
1893	if (zilog->zl_suspend > 1) {
1894		/*
1895		 * Someone else is already suspending it.
1896		 * Just wait for them to finish.
1897		 */
1898
1899		while (zilog->zl_suspending)
1900			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1901		mutex_exit(&zilog->zl_lock);
1902
1903		if (cookiep == NULL)
1904			zil_resume(os);
1905		else
1906			*cookiep = os;
1907		return (0);
1908	}
1909
1910	/*
1911	 * If there is no pointer to an on-disk block, this ZIL must not
1912	 * be active (e.g. filesystem not mounted), so there's nothing
1913	 * to clean up.
1914	 */
1915	if (BP_IS_HOLE(&zh->zh_log)) {
1916		ASSERT(cookiep != NULL); /* fast path already handled */
1917
1918		*cookiep = os;
1919		mutex_exit(&zilog->zl_lock);
1920		return (0);
1921	}
1922
1923	zilog->zl_suspending = B_TRUE;
1924	mutex_exit(&zilog->zl_lock);
1925
1926	zil_commit(zilog, 0);
1927
1928	zil_destroy(zilog, B_FALSE);
1929
1930	mutex_enter(&zilog->zl_lock);
1931	zilog->zl_suspending = B_FALSE;
1932	cv_broadcast(&zilog->zl_cv_suspend);
1933	mutex_exit(&zilog->zl_lock);
1934
1935	if (cookiep == NULL)
1936		zil_resume(os);
1937	else
1938		*cookiep = os;
1939	return (0);
1940}
1941
1942void
1943zil_resume(void *cookie)
1944{
1945	objset_t *os = cookie;
1946	zilog_t *zilog = dmu_objset_zil(os);
1947
1948	mutex_enter(&zilog->zl_lock);
1949	ASSERT(zilog->zl_suspend != 0);
1950	zilog->zl_suspend--;
1951	mutex_exit(&zilog->zl_lock);
1952	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1953	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1954}
1955
1956typedef struct zil_replay_arg {
1957	zil_replay_func_t **zr_replay;
1958	void		*zr_arg;
1959	boolean_t	zr_byteswap;
1960	char		*zr_lr;
1961} zil_replay_arg_t;
1962
1963static int
1964zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1965{
1966	char name[MAXNAMELEN];
1967
1968	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1969
1970	dmu_objset_name(zilog->zl_os, name);
1971
1972	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1973	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1974	    (u_longlong_t)lr->lrc_seq,
1975	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1976	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1977
1978	return (error);
1979}
1980
1981static int
1982zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1983{
1984	zil_replay_arg_t *zr = zra;
1985	const zil_header_t *zh = zilog->zl_header;
1986	uint64_t reclen = lr->lrc_reclen;
1987	uint64_t txtype = lr->lrc_txtype;
1988	int error = 0;
1989
1990	zilog->zl_replaying_seq = lr->lrc_seq;
1991
1992	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1993		return (0);
1994
1995	if (lr->lrc_txg < claim_txg)		/* already committed */
1996		return (0);
1997
1998	/* Strip case-insensitive bit, still present in log record */
1999	txtype &= ~TX_CI;
2000
2001	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2002		return (zil_replay_error(zilog, lr, EINVAL));
2003
2004	/*
2005	 * If this record type can be logged out of order, the object
2006	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2007	 */
2008	if (TX_OOO(txtype)) {
2009		error = dmu_object_info(zilog->zl_os,
2010		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2011		if (error == ENOENT || error == EEXIST)
2012			return (0);
2013	}
2014
2015	/*
2016	 * Make a copy of the data so we can revise and extend it.
2017	 */
2018	bcopy(lr, zr->zr_lr, reclen);
2019
2020	/*
2021	 * If this is a TX_WRITE with a blkptr, suck in the data.
2022	 */
2023	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2024		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2025		    zr->zr_lr + reclen);
2026		if (error != 0)
2027			return (zil_replay_error(zilog, lr, error));
2028	}
2029
2030	/*
2031	 * The log block containing this lr may have been byteswapped
2032	 * so that we can easily examine common fields like lrc_txtype.
2033	 * However, the log is a mix of different record types, and only the
2034	 * replay vectors know how to byteswap their records.  Therefore, if
2035	 * the lr was byteswapped, undo it before invoking the replay vector.
2036	 */
2037	if (zr->zr_byteswap)
2038		byteswap_uint64_array(zr->zr_lr, reclen);
2039
2040	/*
2041	 * We must now do two things atomically: replay this log record,
2042	 * and update the log header sequence number to reflect the fact that
2043	 * we did so. At the end of each replay function the sequence number
2044	 * is updated if we are in replay mode.
2045	 */
2046	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2047	if (error != 0) {
2048		/*
2049		 * The DMU's dnode layer doesn't see removes until the txg
2050		 * commits, so a subsequent claim can spuriously fail with
2051		 * EEXIST. So if we receive any error we try syncing out
2052		 * any removes then retry the transaction.  Note that we
2053		 * specify B_FALSE for byteswap now, so we don't do it twice.
2054		 */
2055		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2056		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2057		if (error != 0)
2058			return (zil_replay_error(zilog, lr, error));
2059	}
2060	return (0);
2061}
2062
2063/* ARGSUSED */
2064static int
2065zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2066{
2067	zilog->zl_replay_blks++;
2068
2069	return (0);
2070}
2071
2072/*
2073 * If this dataset has a non-empty intent log, replay it and destroy it.
2074 */
2075void
2076zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2077{
2078	zilog_t *zilog = dmu_objset_zil(os);
2079	const zil_header_t *zh = zilog->zl_header;
2080	zil_replay_arg_t zr;
2081
2082	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2083		zil_destroy(zilog, B_TRUE);
2084		return;
2085	}
2086	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
2087
2088	zr.zr_replay = replay_func;
2089	zr.zr_arg = arg;
2090	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2091	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2092
2093	/*
2094	 * Wait for in-progress removes to sync before starting replay.
2095	 */
2096	txg_wait_synced(zilog->zl_dmu_pool, 0);
2097
2098	zilog->zl_replay = B_TRUE;
2099	zilog->zl_replay_time = ddi_get_lbolt();
2100	ASSERT(zilog->zl_replay_blks == 0);
2101	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2102	    zh->zh_claim_txg);
2103	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2104
2105	zil_destroy(zilog, B_FALSE);
2106	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2107	zilog->zl_replay = B_FALSE;
2108	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
2109}
2110
2111boolean_t
2112zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2113{
2114	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2115		return (B_TRUE);
2116
2117	if (zilog->zl_replay) {
2118		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2119		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2120		    zilog->zl_replaying_seq;
2121		return (B_TRUE);
2122	}
2123
2124	return (B_FALSE);
2125}
2126
2127/* ARGSUSED */
2128int
2129zil_vdev_offline(const char *osname, void *arg)
2130{
2131	int error;
2132
2133	error = zil_suspend(osname, NULL);
2134	if (error != 0)
2135		return (SET_ERROR(EEXIST));
2136	return (0);
2137}
2138