zil.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zap.h>
32#include <sys/arc.h>
33#include <sys/stat.h>
34#include <sys/resource.h>
35#include <sys/zil.h>
36#include <sys/zil_impl.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vdev_impl.h>
39#include <sys/dmu_tx.h>
40#include <sys/dsl_pool.h>
41
42/*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * 	- ZIL header
56 * 	- ZIL blocks
57 * 	- ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */
67
68/*
69 * Disable intent logging replay.  This global ZIL switch affects all pools.
70 */
71int zil_replay_disable = 0;
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_trim_enabled = B_TRUE;
87SYSCTL_DECL(_vfs_zfs_trim);
88TUNABLE_INT("vfs.zfs.trim.enabled", &zfs_trim_enabled);
89SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
90    "Enable ZFS TRIM");
91
92static kmem_cache_t *zil_lwb_cache;
93
94static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
95
96#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
97    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
98
99
100/*
101 * ziltest is by and large an ugly hack, but very useful in
102 * checking replay without tedious work.
103 * When running ziltest we want to keep all itx's and so maintain
104 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
105 * We subtract TXG_CONCURRENT_STATES to allow for common code.
106 */
107#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
108
109static int
110zil_bp_compare(const void *x1, const void *x2)
111{
112	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
113	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
114
115	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
116		return (-1);
117	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
118		return (1);
119
120	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
121		return (-1);
122	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
123		return (1);
124
125	return (0);
126}
127
128static void
129zil_bp_tree_init(zilog_t *zilog)
130{
131	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
132	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
133}
134
135static void
136zil_bp_tree_fini(zilog_t *zilog)
137{
138	avl_tree_t *t = &zilog->zl_bp_tree;
139	zil_bp_node_t *zn;
140	void *cookie = NULL;
141
142	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
143		kmem_free(zn, sizeof (zil_bp_node_t));
144
145	avl_destroy(t);
146}
147
148int
149zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
150{
151	avl_tree_t *t = &zilog->zl_bp_tree;
152	const dva_t *dva = BP_IDENTITY(bp);
153	zil_bp_node_t *zn;
154	avl_index_t where;
155
156	if (avl_find(t, dva, &where) != NULL)
157		return (SET_ERROR(EEXIST));
158
159	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
160	zn->zn_dva = *dva;
161	avl_insert(t, zn, where);
162
163	return (0);
164}
165
166static zil_header_t *
167zil_header_in_syncing_context(zilog_t *zilog)
168{
169	return ((zil_header_t *)zilog->zl_header);
170}
171
172static void
173zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
174{
175	zio_cksum_t *zc = &bp->blk_cksum;
176
177	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
178	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
179	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
180	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
181}
182
183/*
184 * Read a log block and make sure it's valid.
185 */
186static int
187zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
188    char **end)
189{
190	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
191	uint32_t aflags = ARC_WAIT;
192	arc_buf_t *abuf = NULL;
193	zbookmark_t zb;
194	int error;
195
196	if (zilog->zl_header->zh_claim_txg == 0)
197		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
198
199	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
200		zio_flags |= ZIO_FLAG_SPECULATIVE;
201
202	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
203	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
204
205	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
206	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
207
208	if (error == 0) {
209		zio_cksum_t cksum = bp->blk_cksum;
210
211		/*
212		 * Validate the checksummed log block.
213		 *
214		 * Sequence numbers should be... sequential.  The checksum
215		 * verifier for the next block should be bp's checksum plus 1.
216		 *
217		 * Also check the log chain linkage and size used.
218		 */
219		cksum.zc_word[ZIL_ZC_SEQ]++;
220
221		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
222			zil_chain_t *zilc = abuf->b_data;
223			char *lr = (char *)(zilc + 1);
224			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
225
226			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
227			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
228				error = SET_ERROR(ECKSUM);
229			} else {
230				bcopy(lr, dst, len);
231				*end = (char *)dst + len;
232				*nbp = zilc->zc_next_blk;
233			}
234		} else {
235			char *lr = abuf->b_data;
236			uint64_t size = BP_GET_LSIZE(bp);
237			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
238
239			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
240			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
241			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
242				error = SET_ERROR(ECKSUM);
243			} else {
244				bcopy(lr, dst, zilc->zc_nused);
245				*end = (char *)dst + zilc->zc_nused;
246				*nbp = zilc->zc_next_blk;
247			}
248		}
249
250		VERIFY(arc_buf_remove_ref(abuf, &abuf));
251	}
252
253	return (error);
254}
255
256/*
257 * Read a TX_WRITE log data block.
258 */
259static int
260zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
261{
262	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
263	const blkptr_t *bp = &lr->lr_blkptr;
264	uint32_t aflags = ARC_WAIT;
265	arc_buf_t *abuf = NULL;
266	zbookmark_t zb;
267	int error;
268
269	if (BP_IS_HOLE(bp)) {
270		if (wbuf != NULL)
271			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
272		return (0);
273	}
274
275	if (zilog->zl_header->zh_claim_txg == 0)
276		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
277
278	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
279	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
280
281	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
282	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
283
284	if (error == 0) {
285		if (wbuf != NULL)
286			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
287		(void) arc_buf_remove_ref(abuf, &abuf);
288	}
289
290	return (error);
291}
292
293/*
294 * Parse the intent log, and call parse_func for each valid record within.
295 */
296int
297zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
298    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
299{
300	const zil_header_t *zh = zilog->zl_header;
301	boolean_t claimed = !!zh->zh_claim_txg;
302	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
303	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
304	uint64_t max_blk_seq = 0;
305	uint64_t max_lr_seq = 0;
306	uint64_t blk_count = 0;
307	uint64_t lr_count = 0;
308	blkptr_t blk, next_blk;
309	char *lrbuf, *lrp;
310	int error = 0;
311
312	/*
313	 * Old logs didn't record the maximum zh_claim_lr_seq.
314	 */
315	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
316		claim_lr_seq = UINT64_MAX;
317
318	/*
319	 * Starting at the block pointed to by zh_log we read the log chain.
320	 * For each block in the chain we strongly check that block to
321	 * ensure its validity.  We stop when an invalid block is found.
322	 * For each block pointer in the chain we call parse_blk_func().
323	 * For each record in each valid block we call parse_lr_func().
324	 * If the log has been claimed, stop if we encounter a sequence
325	 * number greater than the highest claimed sequence number.
326	 */
327	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
328	zil_bp_tree_init(zilog);
329
330	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
331		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
332		int reclen;
333		char *end;
334
335		if (blk_seq > claim_blk_seq)
336			break;
337		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
338			break;
339		ASSERT3U(max_blk_seq, <, blk_seq);
340		max_blk_seq = blk_seq;
341		blk_count++;
342
343		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
344			break;
345
346		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
347		if (error != 0)
348			break;
349
350		for (lrp = lrbuf; lrp < end; lrp += reclen) {
351			lr_t *lr = (lr_t *)lrp;
352			reclen = lr->lrc_reclen;
353			ASSERT3U(reclen, >=, sizeof (lr_t));
354			if (lr->lrc_seq > claim_lr_seq)
355				goto done;
356			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
357				goto done;
358			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
359			max_lr_seq = lr->lrc_seq;
360			lr_count++;
361		}
362	}
363done:
364	zilog->zl_parse_error = error;
365	zilog->zl_parse_blk_seq = max_blk_seq;
366	zilog->zl_parse_lr_seq = max_lr_seq;
367	zilog->zl_parse_blk_count = blk_count;
368	zilog->zl_parse_lr_count = lr_count;
369
370	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
371	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
372
373	zil_bp_tree_fini(zilog);
374	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
375
376	return (error);
377}
378
379static int
380zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
381{
382	/*
383	 * Claim log block if not already committed and not already claimed.
384	 * If tx == NULL, just verify that the block is claimable.
385	 */
386	if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
387		return (0);
388
389	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
390	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
391	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
392}
393
394static int
395zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
396{
397	lr_write_t *lr = (lr_write_t *)lrc;
398	int error;
399
400	if (lrc->lrc_txtype != TX_WRITE)
401		return (0);
402
403	/*
404	 * If the block is not readable, don't claim it.  This can happen
405	 * in normal operation when a log block is written to disk before
406	 * some of the dmu_sync() blocks it points to.  In this case, the
407	 * transaction cannot have been committed to anyone (we would have
408	 * waited for all writes to be stable first), so it is semantically
409	 * correct to declare this the end of the log.
410	 */
411	if (lr->lr_blkptr.blk_birth >= first_txg &&
412	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
413		return (error);
414	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
415}
416
417/* ARGSUSED */
418static int
419zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
420{
421	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
422
423	return (0);
424}
425
426static int
427zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
428{
429	lr_write_t *lr = (lr_write_t *)lrc;
430	blkptr_t *bp = &lr->lr_blkptr;
431
432	/*
433	 * If we previously claimed it, we need to free it.
434	 */
435	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
436	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
437		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
438
439	return (0);
440}
441
442static lwb_t *
443zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
444{
445	lwb_t *lwb;
446
447	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
448	lwb->lwb_zilog = zilog;
449	lwb->lwb_blk = *bp;
450	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
451	lwb->lwb_max_txg = txg;
452	lwb->lwb_zio = NULL;
453	lwb->lwb_tx = NULL;
454	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
455		lwb->lwb_nused = sizeof (zil_chain_t);
456		lwb->lwb_sz = BP_GET_LSIZE(bp);
457	} else {
458		lwb->lwb_nused = 0;
459		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
460	}
461
462	mutex_enter(&zilog->zl_lock);
463	list_insert_tail(&zilog->zl_lwb_list, lwb);
464	mutex_exit(&zilog->zl_lock);
465
466	return (lwb);
467}
468
469/*
470 * Called when we create in-memory log transactions so that we know
471 * to cleanup the itxs at the end of spa_sync().
472 */
473void
474zilog_dirty(zilog_t *zilog, uint64_t txg)
475{
476	dsl_pool_t *dp = zilog->zl_dmu_pool;
477	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
478
479	if (dsl_dataset_is_snapshot(ds))
480		panic("dirtying snapshot!");
481
482	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
483		/* up the hold count until we can be written out */
484		dmu_buf_add_ref(ds->ds_dbuf, zilog);
485	}
486}
487
488boolean_t
489zilog_is_dirty(zilog_t *zilog)
490{
491	dsl_pool_t *dp = zilog->zl_dmu_pool;
492
493	for (int t = 0; t < TXG_SIZE; t++) {
494		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
495			return (B_TRUE);
496	}
497	return (B_FALSE);
498}
499
500/*
501 * Create an on-disk intent log.
502 */
503static lwb_t *
504zil_create(zilog_t *zilog)
505{
506	const zil_header_t *zh = zilog->zl_header;
507	lwb_t *lwb = NULL;
508	uint64_t txg = 0;
509	dmu_tx_t *tx = NULL;
510	blkptr_t blk;
511	int error = 0;
512
513	/*
514	 * Wait for any previous destroy to complete.
515	 */
516	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
517
518	ASSERT(zh->zh_claim_txg == 0);
519	ASSERT(zh->zh_replay_seq == 0);
520
521	blk = zh->zh_log;
522
523	/*
524	 * Allocate an initial log block if:
525	 *    - there isn't one already
526	 *    - the existing block is the wrong endianess
527	 */
528	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
529		tx = dmu_tx_create(zilog->zl_os);
530		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
531		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
532		txg = dmu_tx_get_txg(tx);
533
534		if (!BP_IS_HOLE(&blk)) {
535			zio_free_zil(zilog->zl_spa, txg, &blk);
536			BP_ZERO(&blk);
537		}
538
539		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
540		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
541
542		if (error == 0)
543			zil_init_log_chain(zilog, &blk);
544	}
545
546	/*
547	 * Allocate a log write buffer (lwb) for the first log block.
548	 */
549	if (error == 0)
550		lwb = zil_alloc_lwb(zilog, &blk, txg);
551
552	/*
553	 * If we just allocated the first log block, commit our transaction
554	 * and wait for zil_sync() to stuff the block poiner into zh_log.
555	 * (zh is part of the MOS, so we cannot modify it in open context.)
556	 */
557	if (tx != NULL) {
558		dmu_tx_commit(tx);
559		txg_wait_synced(zilog->zl_dmu_pool, txg);
560	}
561
562	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
563
564	return (lwb);
565}
566
567/*
568 * In one tx, free all log blocks and clear the log header.
569 * If keep_first is set, then we're replaying a log with no content.
570 * We want to keep the first block, however, so that the first
571 * synchronous transaction doesn't require a txg_wait_synced()
572 * in zil_create().  We don't need to txg_wait_synced() here either
573 * when keep_first is set, because both zil_create() and zil_destroy()
574 * will wait for any in-progress destroys to complete.
575 */
576void
577zil_destroy(zilog_t *zilog, boolean_t keep_first)
578{
579	const zil_header_t *zh = zilog->zl_header;
580	lwb_t *lwb;
581	dmu_tx_t *tx;
582	uint64_t txg;
583
584	/*
585	 * Wait for any previous destroy to complete.
586	 */
587	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
588
589	zilog->zl_old_header = *zh;		/* debugging aid */
590
591	if (BP_IS_HOLE(&zh->zh_log))
592		return;
593
594	tx = dmu_tx_create(zilog->zl_os);
595	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
596	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
597	txg = dmu_tx_get_txg(tx);
598
599	mutex_enter(&zilog->zl_lock);
600
601	ASSERT3U(zilog->zl_destroy_txg, <, txg);
602	zilog->zl_destroy_txg = txg;
603	zilog->zl_keep_first = keep_first;
604
605	if (!list_is_empty(&zilog->zl_lwb_list)) {
606		ASSERT(zh->zh_claim_txg == 0);
607		VERIFY(!keep_first);
608		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
609			list_remove(&zilog->zl_lwb_list, lwb);
610			if (lwb->lwb_buf != NULL)
611				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
612			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
613			kmem_cache_free(zil_lwb_cache, lwb);
614		}
615	} else if (!keep_first) {
616		zil_destroy_sync(zilog, tx);
617	}
618	mutex_exit(&zilog->zl_lock);
619
620	dmu_tx_commit(tx);
621}
622
623void
624zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
625{
626	ASSERT(list_is_empty(&zilog->zl_lwb_list));
627	(void) zil_parse(zilog, zil_free_log_block,
628	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
629}
630
631int
632zil_claim(const char *osname, void *txarg)
633{
634	dmu_tx_t *tx = txarg;
635	uint64_t first_txg = dmu_tx_get_txg(tx);
636	zilog_t *zilog;
637	zil_header_t *zh;
638	objset_t *os;
639	int error;
640
641	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
642	if (error != 0) {
643		cmn_err(CE_WARN, "can't open objset for %s", osname);
644		return (0);
645	}
646
647	zilog = dmu_objset_zil(os);
648	zh = zil_header_in_syncing_context(zilog);
649
650	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
651		if (!BP_IS_HOLE(&zh->zh_log))
652			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
653		BP_ZERO(&zh->zh_log);
654		dsl_dataset_dirty(dmu_objset_ds(os), tx);
655		dmu_objset_disown(os, FTAG);
656		return (0);
657	}
658
659	/*
660	 * Claim all log blocks if we haven't already done so, and remember
661	 * the highest claimed sequence number.  This ensures that if we can
662	 * read only part of the log now (e.g. due to a missing device),
663	 * but we can read the entire log later, we will not try to replay
664	 * or destroy beyond the last block we successfully claimed.
665	 */
666	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
667	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
668		(void) zil_parse(zilog, zil_claim_log_block,
669		    zil_claim_log_record, tx, first_txg);
670		zh->zh_claim_txg = first_txg;
671		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
672		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
673		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
674			zh->zh_flags |= ZIL_REPLAY_NEEDED;
675		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
676		dsl_dataset_dirty(dmu_objset_ds(os), tx);
677	}
678
679	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
680	dmu_objset_disown(os, FTAG);
681	return (0);
682}
683
684/*
685 * Check the log by walking the log chain.
686 * Checksum errors are ok as they indicate the end of the chain.
687 * Any other error (no device or read failure) returns an error.
688 */
689int
690zil_check_log_chain(const char *osname, void *tx)
691{
692	zilog_t *zilog;
693	objset_t *os;
694	blkptr_t *bp;
695	int error;
696
697	ASSERT(tx == NULL);
698
699	error = dmu_objset_hold(osname, FTAG, &os);
700	if (error != 0) {
701		cmn_err(CE_WARN, "can't open objset for %s", osname);
702		return (0);
703	}
704
705	zilog = dmu_objset_zil(os);
706	bp = (blkptr_t *)&zilog->zl_header->zh_log;
707
708	/*
709	 * Check the first block and determine if it's on a log device
710	 * which may have been removed or faulted prior to loading this
711	 * pool.  If so, there's no point in checking the rest of the log
712	 * as its content should have already been synced to the pool.
713	 */
714	if (!BP_IS_HOLE(bp)) {
715		vdev_t *vd;
716		boolean_t valid = B_TRUE;
717
718		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
719		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
720		if (vd->vdev_islog && vdev_is_dead(vd))
721			valid = vdev_log_state_valid(vd);
722		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
723
724		if (!valid) {
725			dmu_objset_rele(os, FTAG);
726			return (0);
727		}
728	}
729
730	/*
731	 * Because tx == NULL, zil_claim_log_block() will not actually claim
732	 * any blocks, but just determine whether it is possible to do so.
733	 * In addition to checking the log chain, zil_claim_log_block()
734	 * will invoke zio_claim() with a done func of spa_claim_notify(),
735	 * which will update spa_max_claim_txg.  See spa_load() for details.
736	 */
737	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
738	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
739
740	dmu_objset_rele(os, FTAG);
741
742	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
743}
744
745static int
746zil_vdev_compare(const void *x1, const void *x2)
747{
748	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
749	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
750
751	if (v1 < v2)
752		return (-1);
753	if (v1 > v2)
754		return (1);
755
756	return (0);
757}
758
759void
760zil_add_block(zilog_t *zilog, const blkptr_t *bp)
761{
762	avl_tree_t *t = &zilog->zl_vdev_tree;
763	avl_index_t where;
764	zil_vdev_node_t *zv, zvsearch;
765	int ndvas = BP_GET_NDVAS(bp);
766	int i;
767
768	if (zfs_nocacheflush)
769		return;
770
771	ASSERT(zilog->zl_writer);
772
773	/*
774	 * Even though we're zl_writer, we still need a lock because the
775	 * zl_get_data() callbacks may have dmu_sync() done callbacks
776	 * that will run concurrently.
777	 */
778	mutex_enter(&zilog->zl_vdev_lock);
779	for (i = 0; i < ndvas; i++) {
780		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
781		if (avl_find(t, &zvsearch, &where) == NULL) {
782			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
783			zv->zv_vdev = zvsearch.zv_vdev;
784			avl_insert(t, zv, where);
785		}
786	}
787	mutex_exit(&zilog->zl_vdev_lock);
788}
789
790static void
791zil_flush_vdevs(zilog_t *zilog)
792{
793	spa_t *spa = zilog->zl_spa;
794	avl_tree_t *t = &zilog->zl_vdev_tree;
795	void *cookie = NULL;
796	zil_vdev_node_t *zv;
797	zio_t *zio;
798
799	ASSERT(zilog->zl_writer);
800
801	/*
802	 * We don't need zl_vdev_lock here because we're the zl_writer,
803	 * and all zl_get_data() callbacks are done.
804	 */
805	if (avl_numnodes(t) == 0)
806		return;
807
808	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
809
810	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
811
812	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
813		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
814		if (vd != NULL)
815			zio_flush(zio, vd);
816		kmem_free(zv, sizeof (*zv));
817	}
818
819	/*
820	 * Wait for all the flushes to complete.  Not all devices actually
821	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
822	 */
823	(void) zio_wait(zio);
824
825	spa_config_exit(spa, SCL_STATE, FTAG);
826}
827
828/*
829 * Function called when a log block write completes
830 */
831static void
832zil_lwb_write_done(zio_t *zio)
833{
834	lwb_t *lwb = zio->io_private;
835	zilog_t *zilog = lwb->lwb_zilog;
836	dmu_tx_t *tx = lwb->lwb_tx;
837
838	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
839	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
840	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
841	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
842	ASSERT(!BP_IS_GANG(zio->io_bp));
843	ASSERT(!BP_IS_HOLE(zio->io_bp));
844	ASSERT(zio->io_bp->blk_fill == 0);
845
846	/*
847	 * Ensure the lwb buffer pointer is cleared before releasing
848	 * the txg. If we have had an allocation failure and
849	 * the txg is waiting to sync then we want want zil_sync()
850	 * to remove the lwb so that it's not picked up as the next new
851	 * one in zil_commit_writer(). zil_sync() will only remove
852	 * the lwb if lwb_buf is null.
853	 */
854	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
855	mutex_enter(&zilog->zl_lock);
856	lwb->lwb_buf = NULL;
857	lwb->lwb_tx = NULL;
858	mutex_exit(&zilog->zl_lock);
859
860	/*
861	 * Now that we've written this log block, we have a stable pointer
862	 * to the next block in the chain, so it's OK to let the txg in
863	 * which we allocated the next block sync.
864	 */
865	dmu_tx_commit(tx);
866}
867
868/*
869 * Initialize the io for a log block.
870 */
871static void
872zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
873{
874	zbookmark_t zb;
875
876	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
877	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
878	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
879
880	if (zilog->zl_root_zio == NULL) {
881		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
882		    ZIO_FLAG_CANFAIL);
883	}
884	if (lwb->lwb_zio == NULL) {
885		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
886		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
887		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
888		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
889	}
890}
891
892/*
893 * Define a limited set of intent log block sizes.
894 *
895 * These must be a multiple of 4KB. Note only the amount used (again
896 * aligned to 4KB) actually gets written. However, we can't always just
897 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
898 */
899uint64_t zil_block_buckets[] = {
900    4096,		/* non TX_WRITE */
901    8192+4096,		/* data base */
902    32*1024 + 4096, 	/* NFS writes */
903    UINT64_MAX
904};
905
906/*
907 * Use the slog as long as the logbias is 'latency' and the current commit size
908 * is less than the limit or the total list size is less than 2X the limit.
909 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
910 */
911uint64_t zil_slog_limit = 1024 * 1024;
912#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
913	(((zilog)->zl_cur_used < zil_slog_limit) || \
914	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
915
916/*
917 * Start a log block write and advance to the next log block.
918 * Calls are serialized.
919 */
920static lwb_t *
921zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
922{
923	lwb_t *nlwb = NULL;
924	zil_chain_t *zilc;
925	spa_t *spa = zilog->zl_spa;
926	blkptr_t *bp;
927	dmu_tx_t *tx;
928	uint64_t txg;
929	uint64_t zil_blksz, wsz;
930	int i, error;
931
932	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
933		zilc = (zil_chain_t *)lwb->lwb_buf;
934		bp = &zilc->zc_next_blk;
935	} else {
936		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
937		bp = &zilc->zc_next_blk;
938	}
939
940	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
941
942	/*
943	 * Allocate the next block and save its address in this block
944	 * before writing it in order to establish the log chain.
945	 * Note that if the allocation of nlwb synced before we wrote
946	 * the block that points at it (lwb), we'd leak it if we crashed.
947	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
948	 * We dirty the dataset to ensure that zil_sync() will be called
949	 * to clean up in the event of allocation failure or I/O failure.
950	 */
951	tx = dmu_tx_create(zilog->zl_os);
952	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
953	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
954	txg = dmu_tx_get_txg(tx);
955
956	lwb->lwb_tx = tx;
957
958	/*
959	 * Log blocks are pre-allocated. Here we select the size of the next
960	 * block, based on size used in the last block.
961	 * - first find the smallest bucket that will fit the block from a
962	 *   limited set of block sizes. This is because it's faster to write
963	 *   blocks allocated from the same metaslab as they are adjacent or
964	 *   close.
965	 * - next find the maximum from the new suggested size and an array of
966	 *   previous sizes. This lessens a picket fence effect of wrongly
967	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
968	 *   requests.
969	 *
970	 * Note we only write what is used, but we can't just allocate
971	 * the maximum block size because we can exhaust the available
972	 * pool log space.
973	 */
974	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
975	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
976		continue;
977	zil_blksz = zil_block_buckets[i];
978	if (zil_blksz == UINT64_MAX)
979		zil_blksz = SPA_MAXBLOCKSIZE;
980	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
981	for (i = 0; i < ZIL_PREV_BLKS; i++)
982		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
983	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
984
985	BP_ZERO(bp);
986	/* pass the old blkptr in order to spread log blocks across devs */
987	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
988	    USE_SLOG(zilog));
989	if (error == 0) {
990		ASSERT3U(bp->blk_birth, ==, txg);
991		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
992		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
993
994		/*
995		 * Allocate a new log write buffer (lwb).
996		 */
997		nlwb = zil_alloc_lwb(zilog, bp, txg);
998
999		/* Record the block for later vdev flushing */
1000		zil_add_block(zilog, &lwb->lwb_blk);
1001	}
1002
1003	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1004		/* For Slim ZIL only write what is used. */
1005		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1006		ASSERT3U(wsz, <=, lwb->lwb_sz);
1007		zio_shrink(lwb->lwb_zio, wsz);
1008
1009	} else {
1010		wsz = lwb->lwb_sz;
1011	}
1012
1013	zilc->zc_pad = 0;
1014	zilc->zc_nused = lwb->lwb_nused;
1015	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1016
1017	/*
1018	 * clear unused data for security
1019	 */
1020	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1021
1022	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1023
1024	/*
1025	 * If there was an allocation failure then nlwb will be null which
1026	 * forces a txg_wait_synced().
1027	 */
1028	return (nlwb);
1029}
1030
1031static lwb_t *
1032zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1033{
1034	lr_t *lrc = &itx->itx_lr; /* common log record */
1035	lr_write_t *lrw = (lr_write_t *)lrc;
1036	char *lr_buf;
1037	uint64_t txg = lrc->lrc_txg;
1038	uint64_t reclen = lrc->lrc_reclen;
1039	uint64_t dlen = 0;
1040
1041	if (lwb == NULL)
1042		return (NULL);
1043
1044	ASSERT(lwb->lwb_buf != NULL);
1045	ASSERT(zilog_is_dirty(zilog) ||
1046	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1047
1048	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1049		dlen = P2ROUNDUP_TYPED(
1050		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1051
1052	zilog->zl_cur_used += (reclen + dlen);
1053
1054	zil_lwb_write_init(zilog, lwb);
1055
1056	/*
1057	 * If this record won't fit in the current log block, start a new one.
1058	 */
1059	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1060		lwb = zil_lwb_write_start(zilog, lwb);
1061		if (lwb == NULL)
1062			return (NULL);
1063		zil_lwb_write_init(zilog, lwb);
1064		ASSERT(LWB_EMPTY(lwb));
1065		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1066			txg_wait_synced(zilog->zl_dmu_pool, txg);
1067			return (lwb);
1068		}
1069	}
1070
1071	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1072	bcopy(lrc, lr_buf, reclen);
1073	lrc = (lr_t *)lr_buf;
1074	lrw = (lr_write_t *)lrc;
1075
1076	/*
1077	 * If it's a write, fetch the data or get its blkptr as appropriate.
1078	 */
1079	if (lrc->lrc_txtype == TX_WRITE) {
1080		if (txg > spa_freeze_txg(zilog->zl_spa))
1081			txg_wait_synced(zilog->zl_dmu_pool, txg);
1082		if (itx->itx_wr_state != WR_COPIED) {
1083			char *dbuf;
1084			int error;
1085
1086			if (dlen) {
1087				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1088				dbuf = lr_buf + reclen;
1089				lrw->lr_common.lrc_reclen += dlen;
1090			} else {
1091				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1092				dbuf = NULL;
1093			}
1094			error = zilog->zl_get_data(
1095			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1096			if (error == EIO) {
1097				txg_wait_synced(zilog->zl_dmu_pool, txg);
1098				return (lwb);
1099			}
1100			if (error != 0) {
1101				ASSERT(error == ENOENT || error == EEXIST ||
1102				    error == EALREADY);
1103				return (lwb);
1104			}
1105		}
1106	}
1107
1108	/*
1109	 * We're actually making an entry, so update lrc_seq to be the
1110	 * log record sequence number.  Note that this is generally not
1111	 * equal to the itx sequence number because not all transactions
1112	 * are synchronous, and sometimes spa_sync() gets there first.
1113	 */
1114	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1115	lwb->lwb_nused += reclen + dlen;
1116	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1117	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1118	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1119
1120	return (lwb);
1121}
1122
1123itx_t *
1124zil_itx_create(uint64_t txtype, size_t lrsize)
1125{
1126	itx_t *itx;
1127
1128	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1129
1130	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1131	itx->itx_lr.lrc_txtype = txtype;
1132	itx->itx_lr.lrc_reclen = lrsize;
1133	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1134	itx->itx_lr.lrc_seq = 0;	/* defensive */
1135	itx->itx_sync = B_TRUE;		/* default is synchronous */
1136
1137	return (itx);
1138}
1139
1140void
1141zil_itx_destroy(itx_t *itx)
1142{
1143	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1144}
1145
1146/*
1147 * Free up the sync and async itxs. The itxs_t has already been detached
1148 * so no locks are needed.
1149 */
1150static void
1151zil_itxg_clean(itxs_t *itxs)
1152{
1153	itx_t *itx;
1154	list_t *list;
1155	avl_tree_t *t;
1156	void *cookie;
1157	itx_async_node_t *ian;
1158
1159	list = &itxs->i_sync_list;
1160	while ((itx = list_head(list)) != NULL) {
1161		list_remove(list, itx);
1162		kmem_free(itx, offsetof(itx_t, itx_lr) +
1163		    itx->itx_lr.lrc_reclen);
1164	}
1165
1166	cookie = NULL;
1167	t = &itxs->i_async_tree;
1168	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1169		list = &ian->ia_list;
1170		while ((itx = list_head(list)) != NULL) {
1171			list_remove(list, itx);
1172			kmem_free(itx, offsetof(itx_t, itx_lr) +
1173			    itx->itx_lr.lrc_reclen);
1174		}
1175		list_destroy(list);
1176		kmem_free(ian, sizeof (itx_async_node_t));
1177	}
1178	avl_destroy(t);
1179
1180	kmem_free(itxs, sizeof (itxs_t));
1181}
1182
1183static int
1184zil_aitx_compare(const void *x1, const void *x2)
1185{
1186	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1187	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1188
1189	if (o1 < o2)
1190		return (-1);
1191	if (o1 > o2)
1192		return (1);
1193
1194	return (0);
1195}
1196
1197/*
1198 * Remove all async itx with the given oid.
1199 */
1200static void
1201zil_remove_async(zilog_t *zilog, uint64_t oid)
1202{
1203	uint64_t otxg, txg;
1204	itx_async_node_t *ian;
1205	avl_tree_t *t;
1206	avl_index_t where;
1207	list_t clean_list;
1208	itx_t *itx;
1209
1210	ASSERT(oid != 0);
1211	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1212
1213	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1214		otxg = ZILTEST_TXG;
1215	else
1216		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1217
1218	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1219		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1220
1221		mutex_enter(&itxg->itxg_lock);
1222		if (itxg->itxg_txg != txg) {
1223			mutex_exit(&itxg->itxg_lock);
1224			continue;
1225		}
1226
1227		/*
1228		 * Locate the object node and append its list.
1229		 */
1230		t = &itxg->itxg_itxs->i_async_tree;
1231		ian = avl_find(t, &oid, &where);
1232		if (ian != NULL)
1233			list_move_tail(&clean_list, &ian->ia_list);
1234		mutex_exit(&itxg->itxg_lock);
1235	}
1236	while ((itx = list_head(&clean_list)) != NULL) {
1237		list_remove(&clean_list, itx);
1238		kmem_free(itx, offsetof(itx_t, itx_lr) +
1239		    itx->itx_lr.lrc_reclen);
1240	}
1241	list_destroy(&clean_list);
1242}
1243
1244void
1245zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1246{
1247	uint64_t txg;
1248	itxg_t *itxg;
1249	itxs_t *itxs, *clean = NULL;
1250
1251	/*
1252	 * Object ids can be re-instantiated in the next txg so
1253	 * remove any async transactions to avoid future leaks.
1254	 * This can happen if a fsync occurs on the re-instantiated
1255	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1256	 * the new file data and flushes a write record for the old object.
1257	 */
1258	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1259		zil_remove_async(zilog, itx->itx_oid);
1260
1261	/*
1262	 * Ensure the data of a renamed file is committed before the rename.
1263	 */
1264	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1265		zil_async_to_sync(zilog, itx->itx_oid);
1266
1267	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1268		txg = ZILTEST_TXG;
1269	else
1270		txg = dmu_tx_get_txg(tx);
1271
1272	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1273	mutex_enter(&itxg->itxg_lock);
1274	itxs = itxg->itxg_itxs;
1275	if (itxg->itxg_txg != txg) {
1276		if (itxs != NULL) {
1277			/*
1278			 * The zil_clean callback hasn't got around to cleaning
1279			 * this itxg. Save the itxs for release below.
1280			 * This should be rare.
1281			 */
1282			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1283			itxg->itxg_sod = 0;
1284			clean = itxg->itxg_itxs;
1285		}
1286		ASSERT(itxg->itxg_sod == 0);
1287		itxg->itxg_txg = txg;
1288		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1289
1290		list_create(&itxs->i_sync_list, sizeof (itx_t),
1291		    offsetof(itx_t, itx_node));
1292		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1293		    sizeof (itx_async_node_t),
1294		    offsetof(itx_async_node_t, ia_node));
1295	}
1296	if (itx->itx_sync) {
1297		list_insert_tail(&itxs->i_sync_list, itx);
1298		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1299		itxg->itxg_sod += itx->itx_sod;
1300	} else {
1301		avl_tree_t *t = &itxs->i_async_tree;
1302		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1303		itx_async_node_t *ian;
1304		avl_index_t where;
1305
1306		ian = avl_find(t, &foid, &where);
1307		if (ian == NULL) {
1308			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1309			list_create(&ian->ia_list, sizeof (itx_t),
1310			    offsetof(itx_t, itx_node));
1311			ian->ia_foid = foid;
1312			avl_insert(t, ian, where);
1313		}
1314		list_insert_tail(&ian->ia_list, itx);
1315	}
1316
1317	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1318	zilog_dirty(zilog, txg);
1319	mutex_exit(&itxg->itxg_lock);
1320
1321	/* Release the old itxs now we've dropped the lock */
1322	if (clean != NULL)
1323		zil_itxg_clean(clean);
1324}
1325
1326/*
1327 * If there are any in-memory intent log transactions which have now been
1328 * synced then start up a taskq to free them. We should only do this after we
1329 * have written out the uberblocks (i.e. txg has been comitted) so that
1330 * don't inadvertently clean out in-memory log records that would be required
1331 * by zil_commit().
1332 */
1333void
1334zil_clean(zilog_t *zilog, uint64_t synced_txg)
1335{
1336	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1337	itxs_t *clean_me;
1338
1339	mutex_enter(&itxg->itxg_lock);
1340	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1341		mutex_exit(&itxg->itxg_lock);
1342		return;
1343	}
1344	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1345	ASSERT(itxg->itxg_txg != 0);
1346	ASSERT(zilog->zl_clean_taskq != NULL);
1347	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1348	itxg->itxg_sod = 0;
1349	clean_me = itxg->itxg_itxs;
1350	itxg->itxg_itxs = NULL;
1351	itxg->itxg_txg = 0;
1352	mutex_exit(&itxg->itxg_lock);
1353	/*
1354	 * Preferably start a task queue to free up the old itxs but
1355	 * if taskq_dispatch can't allocate resources to do that then
1356	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1357	 * created a bad performance problem.
1358	 */
1359	if (taskq_dispatch(zilog->zl_clean_taskq,
1360	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1361		zil_itxg_clean(clean_me);
1362}
1363
1364/*
1365 * Get the list of itxs to commit into zl_itx_commit_list.
1366 */
1367static void
1368zil_get_commit_list(zilog_t *zilog)
1369{
1370	uint64_t otxg, txg;
1371	list_t *commit_list = &zilog->zl_itx_commit_list;
1372	uint64_t push_sod = 0;
1373
1374	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1375		otxg = ZILTEST_TXG;
1376	else
1377		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1378
1379	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1380		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1381
1382		mutex_enter(&itxg->itxg_lock);
1383		if (itxg->itxg_txg != txg) {
1384			mutex_exit(&itxg->itxg_lock);
1385			continue;
1386		}
1387
1388		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1389		push_sod += itxg->itxg_sod;
1390		itxg->itxg_sod = 0;
1391
1392		mutex_exit(&itxg->itxg_lock);
1393	}
1394	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1395}
1396
1397/*
1398 * Move the async itxs for a specified object to commit into sync lists.
1399 */
1400static void
1401zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1402{
1403	uint64_t otxg, txg;
1404	itx_async_node_t *ian;
1405	avl_tree_t *t;
1406	avl_index_t where;
1407
1408	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1409		otxg = ZILTEST_TXG;
1410	else
1411		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1412
1413	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1414		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1415
1416		mutex_enter(&itxg->itxg_lock);
1417		if (itxg->itxg_txg != txg) {
1418			mutex_exit(&itxg->itxg_lock);
1419			continue;
1420		}
1421
1422		/*
1423		 * If a foid is specified then find that node and append its
1424		 * list. Otherwise walk the tree appending all the lists
1425		 * to the sync list. We add to the end rather than the
1426		 * beginning to ensure the create has happened.
1427		 */
1428		t = &itxg->itxg_itxs->i_async_tree;
1429		if (foid != 0) {
1430			ian = avl_find(t, &foid, &where);
1431			if (ian != NULL) {
1432				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1433				    &ian->ia_list);
1434			}
1435		} else {
1436			void *cookie = NULL;
1437
1438			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1439				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1440				    &ian->ia_list);
1441				list_destroy(&ian->ia_list);
1442				kmem_free(ian, sizeof (itx_async_node_t));
1443			}
1444		}
1445		mutex_exit(&itxg->itxg_lock);
1446	}
1447}
1448
1449static void
1450zil_commit_writer(zilog_t *zilog)
1451{
1452	uint64_t txg;
1453	itx_t *itx;
1454	lwb_t *lwb;
1455	spa_t *spa = zilog->zl_spa;
1456	int error = 0;
1457
1458	ASSERT(zilog->zl_root_zio == NULL);
1459
1460	mutex_exit(&zilog->zl_lock);
1461
1462	zil_get_commit_list(zilog);
1463
1464	/*
1465	 * Return if there's nothing to commit before we dirty the fs by
1466	 * calling zil_create().
1467	 */
1468	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1469		mutex_enter(&zilog->zl_lock);
1470		return;
1471	}
1472
1473	if (zilog->zl_suspend) {
1474		lwb = NULL;
1475	} else {
1476		lwb = list_tail(&zilog->zl_lwb_list);
1477		if (lwb == NULL)
1478			lwb = zil_create(zilog);
1479	}
1480
1481	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1482	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1483		txg = itx->itx_lr.lrc_txg;
1484		ASSERT(txg);
1485
1486		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1487			lwb = zil_lwb_commit(zilog, itx, lwb);
1488		list_remove(&zilog->zl_itx_commit_list, itx);
1489		kmem_free(itx, offsetof(itx_t, itx_lr)
1490		    + itx->itx_lr.lrc_reclen);
1491	}
1492	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1493
1494	/* write the last block out */
1495	if (lwb != NULL && lwb->lwb_zio != NULL)
1496		lwb = zil_lwb_write_start(zilog, lwb);
1497
1498	zilog->zl_cur_used = 0;
1499
1500	/*
1501	 * Wait if necessary for the log blocks to be on stable storage.
1502	 */
1503	if (zilog->zl_root_zio) {
1504		error = zio_wait(zilog->zl_root_zio);
1505		zilog->zl_root_zio = NULL;
1506		zil_flush_vdevs(zilog);
1507	}
1508
1509	if (error || lwb == NULL)
1510		txg_wait_synced(zilog->zl_dmu_pool, 0);
1511
1512	mutex_enter(&zilog->zl_lock);
1513
1514	/*
1515	 * Remember the highest committed log sequence number for ztest.
1516	 * We only update this value when all the log writes succeeded,
1517	 * because ztest wants to ASSERT that it got the whole log chain.
1518	 */
1519	if (error == 0 && lwb != NULL)
1520		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1521}
1522
1523/*
1524 * Commit zfs transactions to stable storage.
1525 * If foid is 0 push out all transactions, otherwise push only those
1526 * for that object or might reference that object.
1527 *
1528 * itxs are committed in batches. In a heavily stressed zil there will be
1529 * a commit writer thread who is writing out a bunch of itxs to the log
1530 * for a set of committing threads (cthreads) in the same batch as the writer.
1531 * Those cthreads are all waiting on the same cv for that batch.
1532 *
1533 * There will also be a different and growing batch of threads that are
1534 * waiting to commit (qthreads). When the committing batch completes
1535 * a transition occurs such that the cthreads exit and the qthreads become
1536 * cthreads. One of the new cthreads becomes the writer thread for the
1537 * batch. Any new threads arriving become new qthreads.
1538 *
1539 * Only 2 condition variables are needed and there's no transition
1540 * between the two cvs needed. They just flip-flop between qthreads
1541 * and cthreads.
1542 *
1543 * Using this scheme we can efficiently wakeup up only those threads
1544 * that have been committed.
1545 */
1546void
1547zil_commit(zilog_t *zilog, uint64_t foid)
1548{
1549	uint64_t mybatch;
1550
1551	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1552		return;
1553
1554	/* move the async itxs for the foid to the sync queues */
1555	zil_async_to_sync(zilog, foid);
1556
1557	mutex_enter(&zilog->zl_lock);
1558	mybatch = zilog->zl_next_batch;
1559	while (zilog->zl_writer) {
1560		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1561		if (mybatch <= zilog->zl_com_batch) {
1562			mutex_exit(&zilog->zl_lock);
1563			return;
1564		}
1565	}
1566
1567	zilog->zl_next_batch++;
1568	zilog->zl_writer = B_TRUE;
1569	zil_commit_writer(zilog);
1570	zilog->zl_com_batch = mybatch;
1571	zilog->zl_writer = B_FALSE;
1572	mutex_exit(&zilog->zl_lock);
1573
1574	/* wake up one thread to become the next writer */
1575	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1576
1577	/* wake up all threads waiting for this batch to be committed */
1578	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1579}
1580
1581/*
1582 * Called in syncing context to free committed log blocks and update log header.
1583 */
1584void
1585zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1586{
1587	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1588	uint64_t txg = dmu_tx_get_txg(tx);
1589	spa_t *spa = zilog->zl_spa;
1590	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1591	lwb_t *lwb;
1592
1593	/*
1594	 * We don't zero out zl_destroy_txg, so make sure we don't try
1595	 * to destroy it twice.
1596	 */
1597	if (spa_sync_pass(spa) != 1)
1598		return;
1599
1600	mutex_enter(&zilog->zl_lock);
1601
1602	ASSERT(zilog->zl_stop_sync == 0);
1603
1604	if (*replayed_seq != 0) {
1605		ASSERT(zh->zh_replay_seq < *replayed_seq);
1606		zh->zh_replay_seq = *replayed_seq;
1607		*replayed_seq = 0;
1608	}
1609
1610	if (zilog->zl_destroy_txg == txg) {
1611		blkptr_t blk = zh->zh_log;
1612
1613		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1614
1615		bzero(zh, sizeof (zil_header_t));
1616		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1617
1618		if (zilog->zl_keep_first) {
1619			/*
1620			 * If this block was part of log chain that couldn't
1621			 * be claimed because a device was missing during
1622			 * zil_claim(), but that device later returns,
1623			 * then this block could erroneously appear valid.
1624			 * To guard against this, assign a new GUID to the new
1625			 * log chain so it doesn't matter what blk points to.
1626			 */
1627			zil_init_log_chain(zilog, &blk);
1628			zh->zh_log = blk;
1629		}
1630	}
1631
1632	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1633		zh->zh_log = lwb->lwb_blk;
1634		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1635			break;
1636		list_remove(&zilog->zl_lwb_list, lwb);
1637		zio_free_zil(spa, txg, &lwb->lwb_blk);
1638		kmem_cache_free(zil_lwb_cache, lwb);
1639
1640		/*
1641		 * If we don't have anything left in the lwb list then
1642		 * we've had an allocation failure and we need to zero
1643		 * out the zil_header blkptr so that we don't end
1644		 * up freeing the same block twice.
1645		 */
1646		if (list_head(&zilog->zl_lwb_list) == NULL)
1647			BP_ZERO(&zh->zh_log);
1648	}
1649	mutex_exit(&zilog->zl_lock);
1650}
1651
1652void
1653zil_init(void)
1654{
1655	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1656	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1657}
1658
1659void
1660zil_fini(void)
1661{
1662	kmem_cache_destroy(zil_lwb_cache);
1663}
1664
1665void
1666zil_set_sync(zilog_t *zilog, uint64_t sync)
1667{
1668	zilog->zl_sync = sync;
1669}
1670
1671void
1672zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1673{
1674	zilog->zl_logbias = logbias;
1675}
1676
1677zilog_t *
1678zil_alloc(objset_t *os, zil_header_t *zh_phys)
1679{
1680	zilog_t *zilog;
1681
1682	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1683
1684	zilog->zl_header = zh_phys;
1685	zilog->zl_os = os;
1686	zilog->zl_spa = dmu_objset_spa(os);
1687	zilog->zl_dmu_pool = dmu_objset_pool(os);
1688	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1689	zilog->zl_logbias = dmu_objset_logbias(os);
1690	zilog->zl_sync = dmu_objset_syncprop(os);
1691	zilog->zl_next_batch = 1;
1692
1693	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1694
1695	for (int i = 0; i < TXG_SIZE; i++) {
1696		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1697		    MUTEX_DEFAULT, NULL);
1698	}
1699
1700	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1701	    offsetof(lwb_t, lwb_node));
1702
1703	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1704	    offsetof(itx_t, itx_node));
1705
1706	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1707
1708	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1709	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1710
1711	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1712	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1713	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1714	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1715
1716	return (zilog);
1717}
1718
1719void
1720zil_free(zilog_t *zilog)
1721{
1722	zilog->zl_stop_sync = 1;
1723
1724	ASSERT0(zilog->zl_suspend);
1725	ASSERT0(zilog->zl_suspending);
1726
1727	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1728	list_destroy(&zilog->zl_lwb_list);
1729
1730	avl_destroy(&zilog->zl_vdev_tree);
1731	mutex_destroy(&zilog->zl_vdev_lock);
1732
1733	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1734	list_destroy(&zilog->zl_itx_commit_list);
1735
1736	for (int i = 0; i < TXG_SIZE; i++) {
1737		/*
1738		 * It's possible for an itx to be generated that doesn't dirty
1739		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1740		 * callback to remove the entry. We remove those here.
1741		 *
1742		 * Also free up the ziltest itxs.
1743		 */
1744		if (zilog->zl_itxg[i].itxg_itxs)
1745			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1746		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1747	}
1748
1749	mutex_destroy(&zilog->zl_lock);
1750
1751	cv_destroy(&zilog->zl_cv_writer);
1752	cv_destroy(&zilog->zl_cv_suspend);
1753	cv_destroy(&zilog->zl_cv_batch[0]);
1754	cv_destroy(&zilog->zl_cv_batch[1]);
1755
1756	kmem_free(zilog, sizeof (zilog_t));
1757}
1758
1759/*
1760 * Open an intent log.
1761 */
1762zilog_t *
1763zil_open(objset_t *os, zil_get_data_t *get_data)
1764{
1765	zilog_t *zilog = dmu_objset_zil(os);
1766
1767	ASSERT(zilog->zl_clean_taskq == NULL);
1768	ASSERT(zilog->zl_get_data == NULL);
1769	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1770
1771	zilog->zl_get_data = get_data;
1772	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1773	    2, 2, TASKQ_PREPOPULATE);
1774
1775	return (zilog);
1776}
1777
1778/*
1779 * Close an intent log.
1780 */
1781void
1782zil_close(zilog_t *zilog)
1783{
1784	lwb_t *lwb;
1785	uint64_t txg = 0;
1786
1787	zil_commit(zilog, 0); /* commit all itx */
1788
1789	/*
1790	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1791	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1792	 * callbacks have occurred that may clean the zil.  Only then can we
1793	 * destroy the zl_clean_taskq.
1794	 */
1795	mutex_enter(&zilog->zl_lock);
1796	lwb = list_tail(&zilog->zl_lwb_list);
1797	if (lwb != NULL)
1798		txg = lwb->lwb_max_txg;
1799	mutex_exit(&zilog->zl_lock);
1800	if (txg)
1801		txg_wait_synced(zilog->zl_dmu_pool, txg);
1802	ASSERT(!zilog_is_dirty(zilog));
1803
1804	taskq_destroy(zilog->zl_clean_taskq);
1805	zilog->zl_clean_taskq = NULL;
1806	zilog->zl_get_data = NULL;
1807
1808	/*
1809	 * We should have only one LWB left on the list; remove it now.
1810	 */
1811	mutex_enter(&zilog->zl_lock);
1812	lwb = list_head(&zilog->zl_lwb_list);
1813	if (lwb != NULL) {
1814		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1815		list_remove(&zilog->zl_lwb_list, lwb);
1816		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1817		kmem_cache_free(zil_lwb_cache, lwb);
1818	}
1819	mutex_exit(&zilog->zl_lock);
1820}
1821
1822static char *suspend_tag = "zil suspending";
1823
1824/*
1825 * Suspend an intent log.  While in suspended mode, we still honor
1826 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1827 * On old version pools, we suspend the log briefly when taking a
1828 * snapshot so that it will have an empty intent log.
1829 *
1830 * Long holds are not really intended to be used the way we do here --
1831 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1832 * could fail.  Therefore we take pains to only put a long hold if it is
1833 * actually necessary.  Fortunately, it will only be necessary if the
1834 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1835 * will already have a long hold, so we are not really making things any worse.
1836 *
1837 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1838 * zvol_state_t), and use their mechanism to prevent their hold from being
1839 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1840 * very little gain.
1841 *
1842 * if cookiep == NULL, this does both the suspend & resume.
1843 * Otherwise, it returns with the dataset "long held", and the cookie
1844 * should be passed into zil_resume().
1845 */
1846int
1847zil_suspend(const char *osname, void **cookiep)
1848{
1849	objset_t *os;
1850	zilog_t *zilog;
1851	const zil_header_t *zh;
1852	int error;
1853
1854	error = dmu_objset_hold(osname, suspend_tag, &os);
1855	if (error != 0)
1856		return (error);
1857	zilog = dmu_objset_zil(os);
1858
1859	mutex_enter(&zilog->zl_lock);
1860	zh = zilog->zl_header;
1861
1862	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1863		mutex_exit(&zilog->zl_lock);
1864		dmu_objset_rele(os, suspend_tag);
1865		return (SET_ERROR(EBUSY));
1866	}
1867
1868	/*
1869	 * Don't put a long hold in the cases where we can avoid it.  This
1870	 * is when there is no cookie so we are doing a suspend & resume
1871	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1872	 * for the suspend because it's already suspended, or there's no ZIL.
1873	 */
1874	if (cookiep == NULL && !zilog->zl_suspending &&
1875	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1876		mutex_exit(&zilog->zl_lock);
1877		dmu_objset_rele(os, suspend_tag);
1878		return (0);
1879	}
1880
1881	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1882	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1883
1884	zilog->zl_suspend++;
1885
1886	if (zilog->zl_suspend > 1) {
1887		/*
1888		 * Someone else is already suspending it.
1889		 * Just wait for them to finish.
1890		 */
1891
1892		while (zilog->zl_suspending)
1893			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1894		mutex_exit(&zilog->zl_lock);
1895
1896		if (cookiep == NULL)
1897			zil_resume(os);
1898		else
1899			*cookiep = os;
1900		return (0);
1901	}
1902
1903	/*
1904	 * If there is no pointer to an on-disk block, this ZIL must not
1905	 * be active (e.g. filesystem not mounted), so there's nothing
1906	 * to clean up.
1907	 */
1908	if (BP_IS_HOLE(&zh->zh_log)) {
1909		ASSERT(cookiep != NULL); /* fast path already handled */
1910
1911		*cookiep = os;
1912		mutex_exit(&zilog->zl_lock);
1913		return (0);
1914	}
1915
1916	zilog->zl_suspending = B_TRUE;
1917	mutex_exit(&zilog->zl_lock);
1918
1919	zil_commit(zilog, 0);
1920
1921	zil_destroy(zilog, B_FALSE);
1922
1923	mutex_enter(&zilog->zl_lock);
1924	zilog->zl_suspending = B_FALSE;
1925	cv_broadcast(&zilog->zl_cv_suspend);
1926	mutex_exit(&zilog->zl_lock);
1927
1928	if (cookiep == NULL)
1929		zil_resume(os);
1930	else
1931		*cookiep = os;
1932	return (0);
1933}
1934
1935void
1936zil_resume(void *cookie)
1937{
1938	objset_t *os = cookie;
1939	zilog_t *zilog = dmu_objset_zil(os);
1940
1941	mutex_enter(&zilog->zl_lock);
1942	ASSERT(zilog->zl_suspend != 0);
1943	zilog->zl_suspend--;
1944	mutex_exit(&zilog->zl_lock);
1945	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1946	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1947}
1948
1949typedef struct zil_replay_arg {
1950	zil_replay_func_t **zr_replay;
1951	void		*zr_arg;
1952	boolean_t	zr_byteswap;
1953	char		*zr_lr;
1954} zil_replay_arg_t;
1955
1956static int
1957zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1958{
1959	char name[MAXNAMELEN];
1960
1961	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1962
1963	dmu_objset_name(zilog->zl_os, name);
1964
1965	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1966	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1967	    (u_longlong_t)lr->lrc_seq,
1968	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1969	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1970
1971	return (error);
1972}
1973
1974static int
1975zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1976{
1977	zil_replay_arg_t *zr = zra;
1978	const zil_header_t *zh = zilog->zl_header;
1979	uint64_t reclen = lr->lrc_reclen;
1980	uint64_t txtype = lr->lrc_txtype;
1981	int error = 0;
1982
1983	zilog->zl_replaying_seq = lr->lrc_seq;
1984
1985	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1986		return (0);
1987
1988	if (lr->lrc_txg < claim_txg)		/* already committed */
1989		return (0);
1990
1991	/* Strip case-insensitive bit, still present in log record */
1992	txtype &= ~TX_CI;
1993
1994	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1995		return (zil_replay_error(zilog, lr, EINVAL));
1996
1997	/*
1998	 * If this record type can be logged out of order, the object
1999	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2000	 */
2001	if (TX_OOO(txtype)) {
2002		error = dmu_object_info(zilog->zl_os,
2003		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2004		if (error == ENOENT || error == EEXIST)
2005			return (0);
2006	}
2007
2008	/*
2009	 * Make a copy of the data so we can revise and extend it.
2010	 */
2011	bcopy(lr, zr->zr_lr, reclen);
2012
2013	/*
2014	 * If this is a TX_WRITE with a blkptr, suck in the data.
2015	 */
2016	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2017		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2018		    zr->zr_lr + reclen);
2019		if (error != 0)
2020			return (zil_replay_error(zilog, lr, error));
2021	}
2022
2023	/*
2024	 * The log block containing this lr may have been byteswapped
2025	 * so that we can easily examine common fields like lrc_txtype.
2026	 * However, the log is a mix of different record types, and only the
2027	 * replay vectors know how to byteswap their records.  Therefore, if
2028	 * the lr was byteswapped, undo it before invoking the replay vector.
2029	 */
2030	if (zr->zr_byteswap)
2031		byteswap_uint64_array(zr->zr_lr, reclen);
2032
2033	/*
2034	 * We must now do two things atomically: replay this log record,
2035	 * and update the log header sequence number to reflect the fact that
2036	 * we did so. At the end of each replay function the sequence number
2037	 * is updated if we are in replay mode.
2038	 */
2039	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2040	if (error != 0) {
2041		/*
2042		 * The DMU's dnode layer doesn't see removes until the txg
2043		 * commits, so a subsequent claim can spuriously fail with
2044		 * EEXIST. So if we receive any error we try syncing out
2045		 * any removes then retry the transaction.  Note that we
2046		 * specify B_FALSE for byteswap now, so we don't do it twice.
2047		 */
2048		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2049		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2050		if (error != 0)
2051			return (zil_replay_error(zilog, lr, error));
2052	}
2053	return (0);
2054}
2055
2056/* ARGSUSED */
2057static int
2058zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2059{
2060	zilog->zl_replay_blks++;
2061
2062	return (0);
2063}
2064
2065/*
2066 * If this dataset has a non-empty intent log, replay it and destroy it.
2067 */
2068void
2069zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2070{
2071	zilog_t *zilog = dmu_objset_zil(os);
2072	const zil_header_t *zh = zilog->zl_header;
2073	zil_replay_arg_t zr;
2074
2075	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2076		zil_destroy(zilog, B_TRUE);
2077		return;
2078	}
2079	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
2080
2081	zr.zr_replay = replay_func;
2082	zr.zr_arg = arg;
2083	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2084	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2085
2086	/*
2087	 * Wait for in-progress removes to sync before starting replay.
2088	 */
2089	txg_wait_synced(zilog->zl_dmu_pool, 0);
2090
2091	zilog->zl_replay = B_TRUE;
2092	zilog->zl_replay_time = ddi_get_lbolt();
2093	ASSERT(zilog->zl_replay_blks == 0);
2094	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2095	    zh->zh_claim_txg);
2096	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2097
2098	zil_destroy(zilog, B_FALSE);
2099	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2100	zilog->zl_replay = B_FALSE;
2101	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
2102}
2103
2104boolean_t
2105zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2106{
2107	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2108		return (B_TRUE);
2109
2110	if (zilog->zl_replay) {
2111		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2112		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2113		    zilog->zl_replaying_seq;
2114		return (B_TRUE);
2115	}
2116
2117	return (B_FALSE);
2118}
2119
2120/* ARGSUSED */
2121int
2122zil_vdev_offline(const char *osname, void *arg)
2123{
2124	int error;
2125
2126	error = zil_suspend(osname, NULL);
2127	if (error != 0)
2128		return (SET_ERROR(EEXIST));
2129	return (0);
2130}
2131