zfs_vnops.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	if (error == ESRCH)
270		return (SET_ERROR(ENXIO));
271
272	/*
273	 * We could find a hole that begins after the logical end-of-file,
274	 * because dmu_offset_next() only works on whole blocks.  If the
275	 * EOF falls mid-block, then indicate that the "virtual hole"
276	 * at the end of the file begins at the logical EOF, rather than
277	 * at the end of the last block.
278	 */
279	if (noff > file_sz) {
280		ASSERT(hole);
281		noff = file_sz;
282	}
283
284	if (noff < *off)
285		return (error);
286	*off = noff;
287	return (error);
288}
289
290/* ARGSUSED */
291static int
292zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
293    int *rvalp, caller_context_t *ct)
294{
295	offset_t off;
296	int error;
297	zfsvfs_t *zfsvfs;
298	znode_t *zp;
299
300	switch (com) {
301	case _FIOFFS:
302		return (0);
303
304		/*
305		 * The following two ioctls are used by bfu.  Faking out,
306		 * necessary to avoid bfu errors.
307		 */
308	case _FIOGDIO:
309	case _FIOSDIO:
310		return (0);
311
312	case _FIO_SEEK_DATA:
313	case _FIO_SEEK_HOLE:
314#ifdef sun
315		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
316			return (SET_ERROR(EFAULT));
317#else
318		off = *(offset_t *)data;
319#endif
320		zp = VTOZ(vp);
321		zfsvfs = zp->z_zfsvfs;
322		ZFS_ENTER(zfsvfs);
323		ZFS_VERIFY_ZP(zp);
324
325		/* offset parameter is in/out */
326		error = zfs_holey(vp, com, &off);
327		ZFS_EXIT(zfsvfs);
328		if (error)
329			return (error);
330#ifdef sun
331		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
332			return (SET_ERROR(EFAULT));
333#else
334		*(offset_t *)data = off;
335#endif
336		return (0);
337	}
338	return (SET_ERROR(ENOTTY));
339}
340
341static vm_page_t
342page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
343{
344	vm_object_t obj;
345	vm_page_t pp;
346	int64_t end;
347
348	/*
349	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
350	 * aligned boundaries, if the range is not aligned.  As a result a
351	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
352	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
353	 * the whole page would be considred clean despite have some dirty data.
354	 * For this reason we should shrink the range to DEV_BSIZE aligned
355	 * boundaries before calling vm_page_clear_dirty.
356	 */
357	end = rounddown2(off + nbytes, DEV_BSIZE);
358	off = roundup2(off, DEV_BSIZE);
359	nbytes = end - off;
360
361	obj = vp->v_object;
362	zfs_vmobject_assert_wlocked(obj);
363
364	for (;;) {
365		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
366		    pp->valid) {
367			if (vm_page_xbusied(pp)) {
368				/*
369				 * Reference the page before unlocking and
370				 * sleeping so that the page daemon is less
371				 * likely to reclaim it.
372				 */
373				vm_page_reference(pp);
374				vm_page_lock(pp);
375				zfs_vmobject_wunlock(obj);
376				vm_page_busy_sleep(pp, "zfsmwb");
377				zfs_vmobject_wlock(obj);
378				continue;
379			}
380			vm_page_sbusy(pp);
381		} else if (pp == NULL) {
382			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
383			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
384			    VM_ALLOC_SBUSY);
385		} else {
386			ASSERT(pp != NULL && !pp->valid);
387			pp = NULL;
388		}
389
390		if (pp != NULL) {
391			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
392			vm_object_pip_add(obj, 1);
393			pmap_remove_write(pp);
394			if (nbytes != 0)
395				vm_page_clear_dirty(pp, off, nbytes);
396		}
397		break;
398	}
399	return (pp);
400}
401
402static void
403page_unbusy(vm_page_t pp)
404{
405
406	vm_page_sunbusy(pp);
407	vm_object_pip_subtract(pp->object, 1);
408}
409
410static vm_page_t
411page_hold(vnode_t *vp, int64_t start)
412{
413	vm_object_t obj;
414	vm_page_t pp;
415
416	obj = vp->v_object;
417	zfs_vmobject_assert_wlocked(obj);
418
419	for (;;) {
420		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
421		    pp->valid) {
422			if (vm_page_xbusied(pp)) {
423				/*
424				 * Reference the page before unlocking and
425				 * sleeping so that the page daemon is less
426				 * likely to reclaim it.
427				 */
428				vm_page_reference(pp);
429				vm_page_lock(pp);
430				zfs_vmobject_wunlock(obj);
431				vm_page_busy_sleep(pp, "zfsmwb");
432				zfs_vmobject_wlock(obj);
433				continue;
434			}
435
436			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
437			vm_page_lock(pp);
438			vm_page_hold(pp);
439			vm_page_unlock(pp);
440
441		} else
442			pp = NULL;
443		break;
444	}
445	return (pp);
446}
447
448static void
449page_unhold(vm_page_t pp)
450{
451
452	vm_page_lock(pp);
453	vm_page_unhold(pp);
454	vm_page_unlock(pp);
455}
456
457/*
458 * When a file is memory mapped, we must keep the IO data synchronized
459 * between the DMU cache and the memory mapped pages.  What this means:
460 *
461 * On Write:	If we find a memory mapped page, we write to *both*
462 *		the page and the dmu buffer.
463 */
464static void
465update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
466    int segflg, dmu_tx_t *tx)
467{
468	vm_object_t obj;
469	struct sf_buf *sf;
470	caddr_t va;
471	int off;
472
473	ASSERT(segflg != UIO_NOCOPY);
474	ASSERT(vp->v_mount != NULL);
475	obj = vp->v_object;
476	ASSERT(obj != NULL);
477
478	off = start & PAGEOFFSET;
479	zfs_vmobject_wlock(obj);
480	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
481		vm_page_t pp;
482		int nbytes = imin(PAGESIZE - off, len);
483
484		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
485			zfs_vmobject_wunlock(obj);
486
487			va = zfs_map_page(pp, &sf);
488			(void) dmu_read(os, oid, start+off, nbytes,
489			    va+off, DMU_READ_PREFETCH);;
490			zfs_unmap_page(sf);
491
492			zfs_vmobject_wlock(obj);
493			page_unbusy(pp);
494		}
495		len -= nbytes;
496		off = 0;
497	}
498	vm_object_pip_wakeupn(obj, 0);
499	zfs_vmobject_wunlock(obj);
500}
501
502/*
503 * Read with UIO_NOCOPY flag means that sendfile(2) requests
504 * ZFS to populate a range of page cache pages with data.
505 *
506 * NOTE: this function could be optimized to pre-allocate
507 * all pages in advance, drain exclusive busy on all of them,
508 * map them into contiguous KVA region and populate them
509 * in one single dmu_read() call.
510 */
511static int
512mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
513{
514	znode_t *zp = VTOZ(vp);
515	objset_t *os = zp->z_zfsvfs->z_os;
516	struct sf_buf *sf;
517	vm_object_t obj;
518	vm_page_t pp;
519	int64_t start;
520	caddr_t va;
521	int len = nbytes;
522	int off;
523	int error = 0;
524
525	ASSERT(uio->uio_segflg == UIO_NOCOPY);
526	ASSERT(vp->v_mount != NULL);
527	obj = vp->v_object;
528	ASSERT(obj != NULL);
529	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
530
531	zfs_vmobject_wlock(obj);
532	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
533		int bytes = MIN(PAGESIZE, len);
534
535		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
536		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
537		if (pp->valid == 0) {
538			zfs_vmobject_wunlock(obj);
539			va = zfs_map_page(pp, &sf);
540			error = dmu_read(os, zp->z_id, start, bytes, va,
541			    DMU_READ_PREFETCH);
542			if (bytes != PAGESIZE && error == 0)
543				bzero(va + bytes, PAGESIZE - bytes);
544			zfs_unmap_page(sf);
545			zfs_vmobject_wlock(obj);
546			vm_page_sunbusy(pp);
547			vm_page_lock(pp);
548			if (error) {
549				if (pp->wire_count == 0 && pp->valid == 0 &&
550				    !vm_page_busied(pp))
551					vm_page_free(pp);
552			} else {
553				pp->valid = VM_PAGE_BITS_ALL;
554				vm_page_activate(pp);
555			}
556			vm_page_unlock(pp);
557		} else {
558			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
559			vm_page_sunbusy(pp);
560		}
561		if (error)
562			break;
563		uio->uio_resid -= bytes;
564		uio->uio_offset += bytes;
565		len -= bytes;
566	}
567	zfs_vmobject_wunlock(obj);
568	return (error);
569}
570
571/*
572 * When a file is memory mapped, we must keep the IO data synchronized
573 * between the DMU cache and the memory mapped pages.  What this means:
574 *
575 * On Read:	We "read" preferentially from memory mapped pages,
576 *		else we default from the dmu buffer.
577 *
578 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
579 *	 the file is memory mapped.
580 */
581static int
582mappedread(vnode_t *vp, int nbytes, uio_t *uio)
583{
584	znode_t *zp = VTOZ(vp);
585	vm_object_t obj;
586	int64_t start;
587	caddr_t va;
588	int len = nbytes;
589	int off;
590	int error = 0;
591
592	ASSERT(vp->v_mount != NULL);
593	obj = vp->v_object;
594	ASSERT(obj != NULL);
595
596	start = uio->uio_loffset;
597	off = start & PAGEOFFSET;
598	zfs_vmobject_wlock(obj);
599	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
600		vm_page_t pp;
601		uint64_t bytes = MIN(PAGESIZE - off, len);
602
603		if (pp = page_hold(vp, start)) {
604			struct sf_buf *sf;
605			caddr_t va;
606
607			zfs_vmobject_wunlock(obj);
608			va = zfs_map_page(pp, &sf);
609			error = uiomove(va + off, bytes, UIO_READ, uio);
610			zfs_unmap_page(sf);
611			zfs_vmobject_wlock(obj);
612			page_unhold(pp);
613		} else {
614			zfs_vmobject_wunlock(obj);
615			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
616			    uio, bytes);
617			zfs_vmobject_wlock(obj);
618		}
619		len -= bytes;
620		off = 0;
621		if (error)
622			break;
623	}
624	zfs_vmobject_wunlock(obj);
625	return (error);
626}
627
628offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
629
630/*
631 * Read bytes from specified file into supplied buffer.
632 *
633 *	IN:	vp	- vnode of file to be read from.
634 *		uio	- structure supplying read location, range info,
635 *			  and return buffer.
636 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
637 *		cr	- credentials of caller.
638 *		ct	- caller context
639 *
640 *	OUT:	uio	- updated offset and range, buffer filled.
641 *
642 *	RETURN:	0 on success, error code on failure.
643 *
644 * Side Effects:
645 *	vp - atime updated if byte count > 0
646 */
647/* ARGSUSED */
648static int
649zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
650{
651	znode_t		*zp = VTOZ(vp);
652	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
653	ssize_t		n, nbytes;
654	int		error = 0;
655	rl_t		*rl;
656	xuio_t		*xuio = NULL;
657
658	ZFS_ENTER(zfsvfs);
659	ZFS_VERIFY_ZP(zp);
660
661	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
662		ZFS_EXIT(zfsvfs);
663		return (SET_ERROR(EACCES));
664	}
665
666	/*
667	 * Validate file offset
668	 */
669	if (uio->uio_loffset < (offset_t)0) {
670		ZFS_EXIT(zfsvfs);
671		return (SET_ERROR(EINVAL));
672	}
673
674	/*
675	 * Fasttrack empty reads
676	 */
677	if (uio->uio_resid == 0) {
678		ZFS_EXIT(zfsvfs);
679		return (0);
680	}
681
682	/*
683	 * Check for mandatory locks
684	 */
685	if (MANDMODE(zp->z_mode)) {
686		if (error = chklock(vp, FREAD,
687		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
688			ZFS_EXIT(zfsvfs);
689			return (error);
690		}
691	}
692
693	/*
694	 * If we're in FRSYNC mode, sync out this znode before reading it.
695	 */
696	if (zfsvfs->z_log &&
697	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
698		zil_commit(zfsvfs->z_log, zp->z_id);
699
700	/*
701	 * Lock the range against changes.
702	 */
703	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
704
705	/*
706	 * If we are reading past end-of-file we can skip
707	 * to the end; but we might still need to set atime.
708	 */
709	if (uio->uio_loffset >= zp->z_size) {
710		error = 0;
711		goto out;
712	}
713
714	ASSERT(uio->uio_loffset < zp->z_size);
715	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
716
717#ifdef sun
718	if ((uio->uio_extflg == UIO_XUIO) &&
719	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
720		int nblk;
721		int blksz = zp->z_blksz;
722		uint64_t offset = uio->uio_loffset;
723
724		xuio = (xuio_t *)uio;
725		if ((ISP2(blksz))) {
726			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
727			    blksz)) / blksz;
728		} else {
729			ASSERT(offset + n <= blksz);
730			nblk = 1;
731		}
732		(void) dmu_xuio_init(xuio, nblk);
733
734		if (vn_has_cached_data(vp)) {
735			/*
736			 * For simplicity, we always allocate a full buffer
737			 * even if we only expect to read a portion of a block.
738			 */
739			while (--nblk >= 0) {
740				(void) dmu_xuio_add(xuio,
741				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
742				    blksz), 0, blksz);
743			}
744		}
745	}
746#endif	/* sun */
747
748	while (n > 0) {
749		nbytes = MIN(n, zfs_read_chunk_size -
750		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
751
752#ifdef __FreeBSD__
753		if (uio->uio_segflg == UIO_NOCOPY)
754			error = mappedread_sf(vp, nbytes, uio);
755		else
756#endif /* __FreeBSD__ */
757		if (vn_has_cached_data(vp)) {
758			error = mappedread(vp, nbytes, uio);
759		} else {
760			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
761			    uio, nbytes);
762		}
763		if (error) {
764			/* convert checksum errors into IO errors */
765			if (error == ECKSUM)
766				error = SET_ERROR(EIO);
767			break;
768		}
769
770		n -= nbytes;
771	}
772out:
773	zfs_range_unlock(rl);
774
775	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
776	ZFS_EXIT(zfsvfs);
777	return (error);
778}
779
780/*
781 * Write the bytes to a file.
782 *
783 *	IN:	vp	- vnode of file to be written to.
784 *		uio	- structure supplying write location, range info,
785 *			  and data buffer.
786 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
787 *			  set if in append mode.
788 *		cr	- credentials of caller.
789 *		ct	- caller context (NFS/CIFS fem monitor only)
790 *
791 *	OUT:	uio	- updated offset and range.
792 *
793 *	RETURN:	0 on success, error code on failure.
794 *
795 * Timestamps:
796 *	vp - ctime|mtime updated if byte count > 0
797 */
798
799/* ARGSUSED */
800static int
801zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
802{
803	znode_t		*zp = VTOZ(vp);
804	rlim64_t	limit = MAXOFFSET_T;
805	ssize_t		start_resid = uio->uio_resid;
806	ssize_t		tx_bytes;
807	uint64_t	end_size;
808	dmu_tx_t	*tx;
809	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
810	zilog_t		*zilog;
811	offset_t	woff;
812	ssize_t		n, nbytes;
813	rl_t		*rl;
814	int		max_blksz = zfsvfs->z_max_blksz;
815	int		error = 0;
816	arc_buf_t	*abuf;
817	iovec_t		*aiov = NULL;
818	xuio_t		*xuio = NULL;
819	int		i_iov = 0;
820	int		iovcnt = uio->uio_iovcnt;
821	iovec_t		*iovp = uio->uio_iov;
822	int		write_eof;
823	int		count = 0;
824	sa_bulk_attr_t	bulk[4];
825	uint64_t	mtime[2], ctime[2];
826
827	/*
828	 * Fasttrack empty write
829	 */
830	n = start_resid;
831	if (n == 0)
832		return (0);
833
834	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
835		limit = MAXOFFSET_T;
836
837	ZFS_ENTER(zfsvfs);
838	ZFS_VERIFY_ZP(zp);
839
840	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
842	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
843	    &zp->z_size, 8);
844	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
845	    &zp->z_pflags, 8);
846
847	/*
848	 * If immutable or not appending then return EPERM
849	 */
850	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
851	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
852	    (uio->uio_loffset < zp->z_size))) {
853		ZFS_EXIT(zfsvfs);
854		return (SET_ERROR(EPERM));
855	}
856
857	zilog = zfsvfs->z_log;
858
859	/*
860	 * Validate file offset
861	 */
862	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
863	if (woff < 0) {
864		ZFS_EXIT(zfsvfs);
865		return (SET_ERROR(EINVAL));
866	}
867
868	/*
869	 * Check for mandatory locks before calling zfs_range_lock()
870	 * in order to prevent a deadlock with locks set via fcntl().
871	 */
872	if (MANDMODE((mode_t)zp->z_mode) &&
873	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
874		ZFS_EXIT(zfsvfs);
875		return (error);
876	}
877
878#ifdef sun
879	/*
880	 * Pre-fault the pages to ensure slow (eg NFS) pages
881	 * don't hold up txg.
882	 * Skip this if uio contains loaned arc_buf.
883	 */
884	if ((uio->uio_extflg == UIO_XUIO) &&
885	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
886		xuio = (xuio_t *)uio;
887	else
888		uio_prefaultpages(MIN(n, max_blksz), uio);
889#endif	/* sun */
890
891	/*
892	 * If in append mode, set the io offset pointer to eof.
893	 */
894	if (ioflag & FAPPEND) {
895		/*
896		 * Obtain an appending range lock to guarantee file append
897		 * semantics.  We reset the write offset once we have the lock.
898		 */
899		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
900		woff = rl->r_off;
901		if (rl->r_len == UINT64_MAX) {
902			/*
903			 * We overlocked the file because this write will cause
904			 * the file block size to increase.
905			 * Note that zp_size cannot change with this lock held.
906			 */
907			woff = zp->z_size;
908		}
909		uio->uio_loffset = woff;
910	} else {
911		/*
912		 * Note that if the file block size will change as a result of
913		 * this write, then this range lock will lock the entire file
914		 * so that we can re-write the block safely.
915		 */
916		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
917	}
918
919	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
920		zfs_range_unlock(rl);
921		ZFS_EXIT(zfsvfs);
922		return (EFBIG);
923	}
924
925	if (woff >= limit) {
926		zfs_range_unlock(rl);
927		ZFS_EXIT(zfsvfs);
928		return (SET_ERROR(EFBIG));
929	}
930
931	if ((woff + n) > limit || woff > (limit - n))
932		n = limit - woff;
933
934	/* Will this write extend the file length? */
935	write_eof = (woff + n > zp->z_size);
936
937	end_size = MAX(zp->z_size, woff + n);
938
939	/*
940	 * Write the file in reasonable size chunks.  Each chunk is written
941	 * in a separate transaction; this keeps the intent log records small
942	 * and allows us to do more fine-grained space accounting.
943	 */
944	while (n > 0) {
945		abuf = NULL;
946		woff = uio->uio_loffset;
947		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
948		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
949			if (abuf != NULL)
950				dmu_return_arcbuf(abuf);
951			error = SET_ERROR(EDQUOT);
952			break;
953		}
954
955		if (xuio && abuf == NULL) {
956			ASSERT(i_iov < iovcnt);
957			aiov = &iovp[i_iov];
958			abuf = dmu_xuio_arcbuf(xuio, i_iov);
959			dmu_xuio_clear(xuio, i_iov);
960			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
961			    iovec_t *, aiov, arc_buf_t *, abuf);
962			ASSERT((aiov->iov_base == abuf->b_data) ||
963			    ((char *)aiov->iov_base - (char *)abuf->b_data +
964			    aiov->iov_len == arc_buf_size(abuf)));
965			i_iov++;
966		} else if (abuf == NULL && n >= max_blksz &&
967		    woff >= zp->z_size &&
968		    P2PHASE(woff, max_blksz) == 0 &&
969		    zp->z_blksz == max_blksz) {
970			/*
971			 * This write covers a full block.  "Borrow" a buffer
972			 * from the dmu so that we can fill it before we enter
973			 * a transaction.  This avoids the possibility of
974			 * holding up the transaction if the data copy hangs
975			 * up on a pagefault (e.g., from an NFS server mapping).
976			 */
977			size_t cbytes;
978
979			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
980			    max_blksz);
981			ASSERT(abuf != NULL);
982			ASSERT(arc_buf_size(abuf) == max_blksz);
983			if (error = uiocopy(abuf->b_data, max_blksz,
984			    UIO_WRITE, uio, &cbytes)) {
985				dmu_return_arcbuf(abuf);
986				break;
987			}
988			ASSERT(cbytes == max_blksz);
989		}
990
991		/*
992		 * Start a transaction.
993		 */
994		tx = dmu_tx_create(zfsvfs->z_os);
995		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
996		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
997		zfs_sa_upgrade_txholds(tx, zp);
998		error = dmu_tx_assign(tx, TXG_WAIT);
999		if (error) {
1000			dmu_tx_abort(tx);
1001			if (abuf != NULL)
1002				dmu_return_arcbuf(abuf);
1003			break;
1004		}
1005
1006		/*
1007		 * If zfs_range_lock() over-locked we grow the blocksize
1008		 * and then reduce the lock range.  This will only happen
1009		 * on the first iteration since zfs_range_reduce() will
1010		 * shrink down r_len to the appropriate size.
1011		 */
1012		if (rl->r_len == UINT64_MAX) {
1013			uint64_t new_blksz;
1014
1015			if (zp->z_blksz > max_blksz) {
1016				/*
1017				 * File's blocksize is already larger than the
1018				 * "recordsize" property.  Only let it grow to
1019				 * the next power of 2.
1020				 */
1021				ASSERT(!ISP2(zp->z_blksz));
1022				new_blksz = MIN(end_size,
1023				    1 << highbit64(zp->z_blksz));
1024			} else {
1025				new_blksz = MIN(end_size, max_blksz);
1026			}
1027			zfs_grow_blocksize(zp, new_blksz, tx);
1028			zfs_range_reduce(rl, woff, n);
1029		}
1030
1031		/*
1032		 * XXX - should we really limit each write to z_max_blksz?
1033		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1034		 */
1035		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1036
1037		if (woff + nbytes > zp->z_size)
1038			vnode_pager_setsize(vp, woff + nbytes);
1039
1040		if (abuf == NULL) {
1041			tx_bytes = uio->uio_resid;
1042			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1043			    uio, nbytes, tx);
1044			tx_bytes -= uio->uio_resid;
1045		} else {
1046			tx_bytes = nbytes;
1047			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1048			/*
1049			 * If this is not a full block write, but we are
1050			 * extending the file past EOF and this data starts
1051			 * block-aligned, use assign_arcbuf().  Otherwise,
1052			 * write via dmu_write().
1053			 */
1054			if (tx_bytes < max_blksz && (!write_eof ||
1055			    aiov->iov_base != abuf->b_data)) {
1056				ASSERT(xuio);
1057				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1058				    aiov->iov_len, aiov->iov_base, tx);
1059				dmu_return_arcbuf(abuf);
1060				xuio_stat_wbuf_copied();
1061			} else {
1062				ASSERT(xuio || tx_bytes == max_blksz);
1063				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1064				    woff, abuf, tx);
1065			}
1066			ASSERT(tx_bytes <= uio->uio_resid);
1067			uioskip(uio, tx_bytes);
1068		}
1069		if (tx_bytes && vn_has_cached_data(vp)) {
1070			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1071			    zp->z_id, uio->uio_segflg, tx);
1072		}
1073
1074		/*
1075		 * If we made no progress, we're done.  If we made even
1076		 * partial progress, update the znode and ZIL accordingly.
1077		 */
1078		if (tx_bytes == 0) {
1079			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1080			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1081			dmu_tx_commit(tx);
1082			ASSERT(error != 0);
1083			break;
1084		}
1085
1086		/*
1087		 * Clear Set-UID/Set-GID bits on successful write if not
1088		 * privileged and at least one of the excute bits is set.
1089		 *
1090		 * It would be nice to to this after all writes have
1091		 * been done, but that would still expose the ISUID/ISGID
1092		 * to another app after the partial write is committed.
1093		 *
1094		 * Note: we don't call zfs_fuid_map_id() here because
1095		 * user 0 is not an ephemeral uid.
1096		 */
1097		mutex_enter(&zp->z_acl_lock);
1098		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1099		    (S_IXUSR >> 6))) != 0 &&
1100		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1101		    secpolicy_vnode_setid_retain(vp, cr,
1102		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1103			uint64_t newmode;
1104			zp->z_mode &= ~(S_ISUID | S_ISGID);
1105			newmode = zp->z_mode;
1106			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1107			    (void *)&newmode, sizeof (uint64_t), tx);
1108		}
1109		mutex_exit(&zp->z_acl_lock);
1110
1111		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1112		    B_TRUE);
1113
1114		/*
1115		 * Update the file size (zp_size) if it has changed;
1116		 * account for possible concurrent updates.
1117		 */
1118		while ((end_size = zp->z_size) < uio->uio_loffset) {
1119			(void) atomic_cas_64(&zp->z_size, end_size,
1120			    uio->uio_loffset);
1121			ASSERT(error == 0);
1122		}
1123		/*
1124		 * If we are replaying and eof is non zero then force
1125		 * the file size to the specified eof. Note, there's no
1126		 * concurrency during replay.
1127		 */
1128		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1129			zp->z_size = zfsvfs->z_replay_eof;
1130
1131		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1132
1133		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1134		dmu_tx_commit(tx);
1135
1136		if (error != 0)
1137			break;
1138		ASSERT(tx_bytes == nbytes);
1139		n -= nbytes;
1140
1141#ifdef sun
1142		if (!xuio && n > 0)
1143			uio_prefaultpages(MIN(n, max_blksz), uio);
1144#endif	/* sun */
1145	}
1146
1147	zfs_range_unlock(rl);
1148
1149	/*
1150	 * If we're in replay mode, or we made no progress, return error.
1151	 * Otherwise, it's at least a partial write, so it's successful.
1152	 */
1153	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1154		ZFS_EXIT(zfsvfs);
1155		return (error);
1156	}
1157
1158	if (ioflag & (FSYNC | FDSYNC) ||
1159	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1160		zil_commit(zilog, zp->z_id);
1161
1162	ZFS_EXIT(zfsvfs);
1163	return (0);
1164}
1165
1166void
1167zfs_get_done(zgd_t *zgd, int error)
1168{
1169	znode_t *zp = zgd->zgd_private;
1170	objset_t *os = zp->z_zfsvfs->z_os;
1171
1172	if (zgd->zgd_db)
1173		dmu_buf_rele(zgd->zgd_db, zgd);
1174
1175	zfs_range_unlock(zgd->zgd_rl);
1176
1177	/*
1178	 * Release the vnode asynchronously as we currently have the
1179	 * txg stopped from syncing.
1180	 */
1181	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1182
1183	if (error == 0 && zgd->zgd_bp)
1184		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1185
1186	kmem_free(zgd, sizeof (zgd_t));
1187}
1188
1189#ifdef DEBUG
1190static int zil_fault_io = 0;
1191#endif
1192
1193/*
1194 * Get data to generate a TX_WRITE intent log record.
1195 */
1196int
1197zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1198{
1199	zfsvfs_t *zfsvfs = arg;
1200	objset_t *os = zfsvfs->z_os;
1201	znode_t *zp;
1202	uint64_t object = lr->lr_foid;
1203	uint64_t offset = lr->lr_offset;
1204	uint64_t size = lr->lr_length;
1205	blkptr_t *bp = &lr->lr_blkptr;
1206	dmu_buf_t *db;
1207	zgd_t *zgd;
1208	int error = 0;
1209
1210	ASSERT(zio != NULL);
1211	ASSERT(size != 0);
1212
1213	/*
1214	 * Nothing to do if the file has been removed
1215	 */
1216	if (zfs_zget(zfsvfs, object, &zp) != 0)
1217		return (SET_ERROR(ENOENT));
1218	if (zp->z_unlinked) {
1219		/*
1220		 * Release the vnode asynchronously as we currently have the
1221		 * txg stopped from syncing.
1222		 */
1223		VN_RELE_ASYNC(ZTOV(zp),
1224		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1225		return (SET_ERROR(ENOENT));
1226	}
1227
1228	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1229	zgd->zgd_zilog = zfsvfs->z_log;
1230	zgd->zgd_private = zp;
1231
1232	/*
1233	 * Write records come in two flavors: immediate and indirect.
1234	 * For small writes it's cheaper to store the data with the
1235	 * log record (immediate); for large writes it's cheaper to
1236	 * sync the data and get a pointer to it (indirect) so that
1237	 * we don't have to write the data twice.
1238	 */
1239	if (buf != NULL) { /* immediate write */
1240		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1241		/* test for truncation needs to be done while range locked */
1242		if (offset >= zp->z_size) {
1243			error = SET_ERROR(ENOENT);
1244		} else {
1245			error = dmu_read(os, object, offset, size, buf,
1246			    DMU_READ_NO_PREFETCH);
1247		}
1248		ASSERT(error == 0 || error == ENOENT);
1249	} else { /* indirect write */
1250		/*
1251		 * Have to lock the whole block to ensure when it's
1252		 * written out and it's checksum is being calculated
1253		 * that no one can change the data. We need to re-check
1254		 * blocksize after we get the lock in case it's changed!
1255		 */
1256		for (;;) {
1257			uint64_t blkoff;
1258			size = zp->z_blksz;
1259			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1260			offset -= blkoff;
1261			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1262			    RL_READER);
1263			if (zp->z_blksz == size)
1264				break;
1265			offset += blkoff;
1266			zfs_range_unlock(zgd->zgd_rl);
1267		}
1268		/* test for truncation needs to be done while range locked */
1269		if (lr->lr_offset >= zp->z_size)
1270			error = SET_ERROR(ENOENT);
1271#ifdef DEBUG
1272		if (zil_fault_io) {
1273			error = SET_ERROR(EIO);
1274			zil_fault_io = 0;
1275		}
1276#endif
1277		if (error == 0)
1278			error = dmu_buf_hold(os, object, offset, zgd, &db,
1279			    DMU_READ_NO_PREFETCH);
1280
1281		if (error == 0) {
1282			blkptr_t *obp = dmu_buf_get_blkptr(db);
1283			if (obp) {
1284				ASSERT(BP_IS_HOLE(bp));
1285				*bp = *obp;
1286			}
1287
1288			zgd->zgd_db = db;
1289			zgd->zgd_bp = bp;
1290
1291			ASSERT(db->db_offset == offset);
1292			ASSERT(db->db_size == size);
1293
1294			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1295			    zfs_get_done, zgd);
1296			ASSERT(error || lr->lr_length <= zp->z_blksz);
1297
1298			/*
1299			 * On success, we need to wait for the write I/O
1300			 * initiated by dmu_sync() to complete before we can
1301			 * release this dbuf.  We will finish everything up
1302			 * in the zfs_get_done() callback.
1303			 */
1304			if (error == 0)
1305				return (0);
1306
1307			if (error == EALREADY) {
1308				lr->lr_common.lrc_txtype = TX_WRITE2;
1309				error = 0;
1310			}
1311		}
1312	}
1313
1314	zfs_get_done(zgd, error);
1315
1316	return (error);
1317}
1318
1319/*ARGSUSED*/
1320static int
1321zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1322    caller_context_t *ct)
1323{
1324	znode_t *zp = VTOZ(vp);
1325	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1326	int error;
1327
1328	ZFS_ENTER(zfsvfs);
1329	ZFS_VERIFY_ZP(zp);
1330
1331	if (flag & V_ACE_MASK)
1332		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1333	else
1334		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1335
1336	ZFS_EXIT(zfsvfs);
1337	return (error);
1338}
1339
1340/*
1341 * If vnode is for a device return a specfs vnode instead.
1342 */
1343static int
1344specvp_check(vnode_t **vpp, cred_t *cr)
1345{
1346	int error = 0;
1347
1348	if (IS_DEVVP(*vpp)) {
1349		struct vnode *svp;
1350
1351		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1352		VN_RELE(*vpp);
1353		if (svp == NULL)
1354			error = SET_ERROR(ENOSYS);
1355		*vpp = svp;
1356	}
1357	return (error);
1358}
1359
1360
1361/*
1362 * Lookup an entry in a directory, or an extended attribute directory.
1363 * If it exists, return a held vnode reference for it.
1364 *
1365 *	IN:	dvp	- vnode of directory to search.
1366 *		nm	- name of entry to lookup.
1367 *		pnp	- full pathname to lookup [UNUSED].
1368 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1369 *		rdir	- root directory vnode [UNUSED].
1370 *		cr	- credentials of caller.
1371 *		ct	- caller context
1372 *		direntflags - directory lookup flags
1373 *		realpnp - returned pathname.
1374 *
1375 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1376 *
1377 *	RETURN:	0 on success, error code on failure.
1378 *
1379 * Timestamps:
1380 *	NA
1381 */
1382/* ARGSUSED */
1383static int
1384zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1385    int nameiop, cred_t *cr, kthread_t *td, int flags)
1386{
1387	znode_t *zdp = VTOZ(dvp);
1388	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1389	int	error = 0;
1390	int *direntflags = NULL;
1391	void *realpnp = NULL;
1392
1393	/* fast path */
1394	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1395
1396		if (dvp->v_type != VDIR) {
1397			return (SET_ERROR(ENOTDIR));
1398		} else if (zdp->z_sa_hdl == NULL) {
1399			return (SET_ERROR(EIO));
1400		}
1401
1402		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1403			error = zfs_fastaccesschk_execute(zdp, cr);
1404			if (!error) {
1405				*vpp = dvp;
1406				VN_HOLD(*vpp);
1407				return (0);
1408			}
1409			return (error);
1410		} else {
1411			vnode_t *tvp = dnlc_lookup(dvp, nm);
1412
1413			if (tvp) {
1414				error = zfs_fastaccesschk_execute(zdp, cr);
1415				if (error) {
1416					VN_RELE(tvp);
1417					return (error);
1418				}
1419				if (tvp == DNLC_NO_VNODE) {
1420					VN_RELE(tvp);
1421					return (SET_ERROR(ENOENT));
1422				} else {
1423					*vpp = tvp;
1424					return (specvp_check(vpp, cr));
1425				}
1426			}
1427		}
1428	}
1429
1430	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1431
1432	ZFS_ENTER(zfsvfs);
1433	ZFS_VERIFY_ZP(zdp);
1434
1435	*vpp = NULL;
1436
1437	if (flags & LOOKUP_XATTR) {
1438#ifdef TODO
1439		/*
1440		 * If the xattr property is off, refuse the lookup request.
1441		 */
1442		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1443			ZFS_EXIT(zfsvfs);
1444			return (SET_ERROR(EINVAL));
1445		}
1446#endif
1447
1448		/*
1449		 * We don't allow recursive attributes..
1450		 * Maybe someday we will.
1451		 */
1452		if (zdp->z_pflags & ZFS_XATTR) {
1453			ZFS_EXIT(zfsvfs);
1454			return (SET_ERROR(EINVAL));
1455		}
1456
1457		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1458			ZFS_EXIT(zfsvfs);
1459			return (error);
1460		}
1461
1462		/*
1463		 * Do we have permission to get into attribute directory?
1464		 */
1465
1466		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1467		    B_FALSE, cr)) {
1468			VN_RELE(*vpp);
1469			*vpp = NULL;
1470		}
1471
1472		ZFS_EXIT(zfsvfs);
1473		return (error);
1474	}
1475
1476	if (dvp->v_type != VDIR) {
1477		ZFS_EXIT(zfsvfs);
1478		return (SET_ERROR(ENOTDIR));
1479	}
1480
1481	/*
1482	 * Check accessibility of directory.
1483	 */
1484
1485	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1486		ZFS_EXIT(zfsvfs);
1487		return (error);
1488	}
1489
1490	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1491	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1492		ZFS_EXIT(zfsvfs);
1493		return (SET_ERROR(EILSEQ));
1494	}
1495
1496	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1497	if (error == 0)
1498		error = specvp_check(vpp, cr);
1499
1500	/* Translate errors and add SAVENAME when needed. */
1501	if (cnp->cn_flags & ISLASTCN) {
1502		switch (nameiop) {
1503		case CREATE:
1504		case RENAME:
1505			if (error == ENOENT) {
1506				error = EJUSTRETURN;
1507				cnp->cn_flags |= SAVENAME;
1508				break;
1509			}
1510			/* FALLTHROUGH */
1511		case DELETE:
1512			if (error == 0)
1513				cnp->cn_flags |= SAVENAME;
1514			break;
1515		}
1516	}
1517	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1518		int ltype = 0;
1519
1520		if (cnp->cn_flags & ISDOTDOT) {
1521			ltype = VOP_ISLOCKED(dvp);
1522			VOP_UNLOCK(dvp, 0);
1523		}
1524		ZFS_EXIT(zfsvfs);
1525		error = vn_lock(*vpp, cnp->cn_lkflags);
1526		if (cnp->cn_flags & ISDOTDOT)
1527			vn_lock(dvp, ltype | LK_RETRY);
1528		if (error != 0) {
1529			VN_RELE(*vpp);
1530			*vpp = NULL;
1531			return (error);
1532		}
1533	} else {
1534		ZFS_EXIT(zfsvfs);
1535	}
1536
1537#ifdef FREEBSD_NAMECACHE
1538	/*
1539	 * Insert name into cache (as non-existent) if appropriate.
1540	 */
1541	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
1542		cache_enter(dvp, *vpp, cnp);
1543	/*
1544	 * Insert name into cache if appropriate.
1545	 */
1546	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1547		if (!(cnp->cn_flags & ISLASTCN) ||
1548		    (nameiop != DELETE && nameiop != RENAME)) {
1549			cache_enter(dvp, *vpp, cnp);
1550		}
1551	}
1552#endif
1553
1554	return (error);
1555}
1556
1557/*
1558 * Attempt to create a new entry in a directory.  If the entry
1559 * already exists, truncate the file if permissible, else return
1560 * an error.  Return the vp of the created or trunc'd file.
1561 *
1562 *	IN:	dvp	- vnode of directory to put new file entry in.
1563 *		name	- name of new file entry.
1564 *		vap	- attributes of new file.
1565 *		excl	- flag indicating exclusive or non-exclusive mode.
1566 *		mode	- mode to open file with.
1567 *		cr	- credentials of caller.
1568 *		flag	- large file flag [UNUSED].
1569 *		ct	- caller context
1570 *		vsecp	- ACL to be set
1571 *
1572 *	OUT:	vpp	- vnode of created or trunc'd entry.
1573 *
1574 *	RETURN:	0 on success, error code on failure.
1575 *
1576 * Timestamps:
1577 *	dvp - ctime|mtime updated if new entry created
1578 *	 vp - ctime|mtime always, atime if new
1579 */
1580
1581/* ARGSUSED */
1582static int
1583zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1584    vnode_t **vpp, cred_t *cr, kthread_t *td)
1585{
1586	znode_t		*zp, *dzp = VTOZ(dvp);
1587	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1588	zilog_t		*zilog;
1589	objset_t	*os;
1590	zfs_dirlock_t	*dl;
1591	dmu_tx_t	*tx;
1592	int		error;
1593	ksid_t		*ksid;
1594	uid_t		uid;
1595	gid_t		gid = crgetgid(cr);
1596	zfs_acl_ids_t   acl_ids;
1597	boolean_t	fuid_dirtied;
1598	boolean_t	have_acl = B_FALSE;
1599	boolean_t	waited = B_FALSE;
1600	void		*vsecp = NULL;
1601	int		flag = 0;
1602
1603	/*
1604	 * If we have an ephemeral id, ACL, or XVATTR then
1605	 * make sure file system is at proper version
1606	 */
1607
1608	ksid = crgetsid(cr, KSID_OWNER);
1609	if (ksid)
1610		uid = ksid_getid(ksid);
1611	else
1612		uid = crgetuid(cr);
1613
1614	if (zfsvfs->z_use_fuids == B_FALSE &&
1615	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1616	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1617		return (SET_ERROR(EINVAL));
1618
1619	ZFS_ENTER(zfsvfs);
1620	ZFS_VERIFY_ZP(dzp);
1621	os = zfsvfs->z_os;
1622	zilog = zfsvfs->z_log;
1623
1624	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1625	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1626		ZFS_EXIT(zfsvfs);
1627		return (SET_ERROR(EILSEQ));
1628	}
1629
1630	if (vap->va_mask & AT_XVATTR) {
1631		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1632		    crgetuid(cr), cr, vap->va_type)) != 0) {
1633			ZFS_EXIT(zfsvfs);
1634			return (error);
1635		}
1636	}
1637
1638	getnewvnode_reserve(1);
1639
1640top:
1641	*vpp = NULL;
1642
1643	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1644		vap->va_mode &= ~S_ISVTX;
1645
1646	if (*name == '\0') {
1647		/*
1648		 * Null component name refers to the directory itself.
1649		 */
1650		VN_HOLD(dvp);
1651		zp = dzp;
1652		dl = NULL;
1653		error = 0;
1654	} else {
1655		/* possible VN_HOLD(zp) */
1656		int zflg = 0;
1657
1658		if (flag & FIGNORECASE)
1659			zflg |= ZCILOOK;
1660
1661		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1662		    NULL, NULL);
1663		if (error) {
1664			if (have_acl)
1665				zfs_acl_ids_free(&acl_ids);
1666			if (strcmp(name, "..") == 0)
1667				error = SET_ERROR(EISDIR);
1668			getnewvnode_drop_reserve();
1669			ZFS_EXIT(zfsvfs);
1670			return (error);
1671		}
1672	}
1673
1674	if (zp == NULL) {
1675		uint64_t txtype;
1676
1677		/*
1678		 * Create a new file object and update the directory
1679		 * to reference it.
1680		 */
1681		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1682			if (have_acl)
1683				zfs_acl_ids_free(&acl_ids);
1684			goto out;
1685		}
1686
1687		/*
1688		 * We only support the creation of regular files in
1689		 * extended attribute directories.
1690		 */
1691
1692		if ((dzp->z_pflags & ZFS_XATTR) &&
1693		    (vap->va_type != VREG)) {
1694			if (have_acl)
1695				zfs_acl_ids_free(&acl_ids);
1696			error = SET_ERROR(EINVAL);
1697			goto out;
1698		}
1699
1700		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1701		    cr, vsecp, &acl_ids)) != 0)
1702			goto out;
1703		have_acl = B_TRUE;
1704
1705		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1706			zfs_acl_ids_free(&acl_ids);
1707			error = SET_ERROR(EDQUOT);
1708			goto out;
1709		}
1710
1711		tx = dmu_tx_create(os);
1712
1713		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1714		    ZFS_SA_BASE_ATTR_SIZE);
1715
1716		fuid_dirtied = zfsvfs->z_fuid_dirty;
1717		if (fuid_dirtied)
1718			zfs_fuid_txhold(zfsvfs, tx);
1719		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1720		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1721		if (!zfsvfs->z_use_sa &&
1722		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1723			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1724			    0, acl_ids.z_aclp->z_acl_bytes);
1725		}
1726		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1727		if (error) {
1728			zfs_dirent_unlock(dl);
1729			if (error == ERESTART) {
1730				waited = B_TRUE;
1731				dmu_tx_wait(tx);
1732				dmu_tx_abort(tx);
1733				goto top;
1734			}
1735			zfs_acl_ids_free(&acl_ids);
1736			dmu_tx_abort(tx);
1737			getnewvnode_drop_reserve();
1738			ZFS_EXIT(zfsvfs);
1739			return (error);
1740		}
1741		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1742
1743		if (fuid_dirtied)
1744			zfs_fuid_sync(zfsvfs, tx);
1745
1746		(void) zfs_link_create(dl, zp, tx, ZNEW);
1747		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1748		if (flag & FIGNORECASE)
1749			txtype |= TX_CI;
1750		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1751		    vsecp, acl_ids.z_fuidp, vap);
1752		zfs_acl_ids_free(&acl_ids);
1753		dmu_tx_commit(tx);
1754	} else {
1755		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1756
1757		if (have_acl)
1758			zfs_acl_ids_free(&acl_ids);
1759		have_acl = B_FALSE;
1760
1761		/*
1762		 * A directory entry already exists for this name.
1763		 */
1764		/*
1765		 * Can't truncate an existing file if in exclusive mode.
1766		 */
1767		if (excl == EXCL) {
1768			error = SET_ERROR(EEXIST);
1769			goto out;
1770		}
1771		/*
1772		 * Can't open a directory for writing.
1773		 */
1774		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1775			error = SET_ERROR(EISDIR);
1776			goto out;
1777		}
1778		/*
1779		 * Verify requested access to file.
1780		 */
1781		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1782			goto out;
1783		}
1784
1785		mutex_enter(&dzp->z_lock);
1786		dzp->z_seq++;
1787		mutex_exit(&dzp->z_lock);
1788
1789		/*
1790		 * Truncate regular files if requested.
1791		 */
1792		if ((ZTOV(zp)->v_type == VREG) &&
1793		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1794			/* we can't hold any locks when calling zfs_freesp() */
1795			zfs_dirent_unlock(dl);
1796			dl = NULL;
1797			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1798			if (error == 0) {
1799				vnevent_create(ZTOV(zp), ct);
1800			}
1801		}
1802	}
1803out:
1804	getnewvnode_drop_reserve();
1805	if (dl)
1806		zfs_dirent_unlock(dl);
1807
1808	if (error) {
1809		if (zp)
1810			VN_RELE(ZTOV(zp));
1811	} else {
1812		*vpp = ZTOV(zp);
1813		error = specvp_check(vpp, cr);
1814	}
1815
1816	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1817		zil_commit(zilog, 0);
1818
1819	ZFS_EXIT(zfsvfs);
1820	return (error);
1821}
1822
1823/*
1824 * Remove an entry from a directory.
1825 *
1826 *	IN:	dvp	- vnode of directory to remove entry from.
1827 *		name	- name of entry to remove.
1828 *		cr	- credentials of caller.
1829 *		ct	- caller context
1830 *		flags	- case flags
1831 *
1832 *	RETURN:	0 on success, error code on failure.
1833 *
1834 * Timestamps:
1835 *	dvp - ctime|mtime
1836 *	 vp - ctime (if nlink > 0)
1837 */
1838
1839uint64_t null_xattr = 0;
1840
1841/*ARGSUSED*/
1842static int
1843zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1844    int flags)
1845{
1846	znode_t		*zp, *dzp = VTOZ(dvp);
1847	znode_t		*xzp;
1848	vnode_t		*vp;
1849	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1850	zilog_t		*zilog;
1851	uint64_t	acl_obj, xattr_obj;
1852	uint64_t	xattr_obj_unlinked = 0;
1853	uint64_t	obj = 0;
1854	zfs_dirlock_t	*dl;
1855	dmu_tx_t	*tx;
1856	boolean_t	may_delete_now, delete_now = FALSE;
1857	boolean_t	unlinked, toobig = FALSE;
1858	uint64_t	txtype;
1859	pathname_t	*realnmp = NULL;
1860	pathname_t	realnm;
1861	int		error;
1862	int		zflg = ZEXISTS;
1863	boolean_t	waited = B_FALSE;
1864
1865	ZFS_ENTER(zfsvfs);
1866	ZFS_VERIFY_ZP(dzp);
1867	zilog = zfsvfs->z_log;
1868
1869	if (flags & FIGNORECASE) {
1870		zflg |= ZCILOOK;
1871		pn_alloc(&realnm);
1872		realnmp = &realnm;
1873	}
1874
1875top:
1876	xattr_obj = 0;
1877	xzp = NULL;
1878	/*
1879	 * Attempt to lock directory; fail if entry doesn't exist.
1880	 */
1881	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1882	    NULL, realnmp)) {
1883		if (realnmp)
1884			pn_free(realnmp);
1885		ZFS_EXIT(zfsvfs);
1886		return (error);
1887	}
1888
1889	vp = ZTOV(zp);
1890
1891	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1892		goto out;
1893	}
1894
1895	/*
1896	 * Need to use rmdir for removing directories.
1897	 */
1898	if (vp->v_type == VDIR) {
1899		error = SET_ERROR(EPERM);
1900		goto out;
1901	}
1902
1903	vnevent_remove(vp, dvp, name, ct);
1904
1905	if (realnmp)
1906		dnlc_remove(dvp, realnmp->pn_buf);
1907	else
1908		dnlc_remove(dvp, name);
1909
1910	VI_LOCK(vp);
1911	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1912	VI_UNLOCK(vp);
1913
1914	/*
1915	 * We may delete the znode now, or we may put it in the unlinked set;
1916	 * it depends on whether we're the last link, and on whether there are
1917	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1918	 * allow for either case.
1919	 */
1920	obj = zp->z_id;
1921	tx = dmu_tx_create(zfsvfs->z_os);
1922	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1923	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1924	zfs_sa_upgrade_txholds(tx, zp);
1925	zfs_sa_upgrade_txholds(tx, dzp);
1926	if (may_delete_now) {
1927		toobig =
1928		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1929		/* if the file is too big, only hold_free a token amount */
1930		dmu_tx_hold_free(tx, zp->z_id, 0,
1931		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1932	}
1933
1934	/* are there any extended attributes? */
1935	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1936	    &xattr_obj, sizeof (xattr_obj));
1937	if (error == 0 && xattr_obj) {
1938		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1939		ASSERT0(error);
1940		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1941		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1942	}
1943
1944	mutex_enter(&zp->z_lock);
1945	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1946		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1947	mutex_exit(&zp->z_lock);
1948
1949	/* charge as an update -- would be nice not to charge at all */
1950	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1951
1952	/*
1953	 * Mark this transaction as typically resulting in a net free of
1954	 * space, unless object removal will be delayed indefinitely
1955	 * (due to active holds on the vnode due to the file being open).
1956	 */
1957	if (may_delete_now)
1958		dmu_tx_mark_netfree(tx);
1959
1960	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1961	if (error) {
1962		zfs_dirent_unlock(dl);
1963		VN_RELE(vp);
1964		if (xzp)
1965			VN_RELE(ZTOV(xzp));
1966		if (error == ERESTART) {
1967			waited = B_TRUE;
1968			dmu_tx_wait(tx);
1969			dmu_tx_abort(tx);
1970			goto top;
1971		}
1972		if (realnmp)
1973			pn_free(realnmp);
1974		dmu_tx_abort(tx);
1975		ZFS_EXIT(zfsvfs);
1976		return (error);
1977	}
1978
1979	/*
1980	 * Remove the directory entry.
1981	 */
1982	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1983
1984	if (error) {
1985		dmu_tx_commit(tx);
1986		goto out;
1987	}
1988
1989	if (unlinked) {
1990		/*
1991		 * Hold z_lock so that we can make sure that the ACL obj
1992		 * hasn't changed.  Could have been deleted due to
1993		 * zfs_sa_upgrade().
1994		 */
1995		mutex_enter(&zp->z_lock);
1996		VI_LOCK(vp);
1997		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1998		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1999		delete_now = may_delete_now && !toobig &&
2000		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2001		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2002		    acl_obj;
2003		VI_UNLOCK(vp);
2004	}
2005
2006	if (delete_now) {
2007#ifdef __FreeBSD__
2008		panic("zfs_remove: delete_now branch taken");
2009#endif
2010		if (xattr_obj_unlinked) {
2011			ASSERT3U(xzp->z_links, ==, 2);
2012			mutex_enter(&xzp->z_lock);
2013			xzp->z_unlinked = 1;
2014			xzp->z_links = 0;
2015			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2016			    &xzp->z_links, sizeof (xzp->z_links), tx);
2017			ASSERT3U(error,  ==,  0);
2018			mutex_exit(&xzp->z_lock);
2019			zfs_unlinked_add(xzp, tx);
2020
2021			if (zp->z_is_sa)
2022				error = sa_remove(zp->z_sa_hdl,
2023				    SA_ZPL_XATTR(zfsvfs), tx);
2024			else
2025				error = sa_update(zp->z_sa_hdl,
2026				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2027				    sizeof (uint64_t), tx);
2028			ASSERT0(error);
2029		}
2030		VI_LOCK(vp);
2031		vp->v_count--;
2032		ASSERT0(vp->v_count);
2033		VI_UNLOCK(vp);
2034		mutex_exit(&zp->z_lock);
2035		zfs_znode_delete(zp, tx);
2036	} else if (unlinked) {
2037		mutex_exit(&zp->z_lock);
2038		zfs_unlinked_add(zp, tx);
2039#ifdef __FreeBSD__
2040		vp->v_vflag |= VV_NOSYNC;
2041#endif
2042	}
2043
2044	txtype = TX_REMOVE;
2045	if (flags & FIGNORECASE)
2046		txtype |= TX_CI;
2047	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2048
2049	dmu_tx_commit(tx);
2050out:
2051	if (realnmp)
2052		pn_free(realnmp);
2053
2054	zfs_dirent_unlock(dl);
2055
2056	if (!delete_now)
2057		VN_RELE(vp);
2058	if (xzp)
2059		VN_RELE(ZTOV(xzp));
2060
2061	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2062		zil_commit(zilog, 0);
2063
2064	ZFS_EXIT(zfsvfs);
2065	return (error);
2066}
2067
2068/*
2069 * Create a new directory and insert it into dvp using the name
2070 * provided.  Return a pointer to the inserted directory.
2071 *
2072 *	IN:	dvp	- vnode of directory to add subdir to.
2073 *		dirname	- name of new directory.
2074 *		vap	- attributes of new directory.
2075 *		cr	- credentials of caller.
2076 *		ct	- caller context
2077 *		flags	- case flags
2078 *		vsecp	- ACL to be set
2079 *
2080 *	OUT:	vpp	- vnode of created directory.
2081 *
2082 *	RETURN:	0 on success, error code on failure.
2083 *
2084 * Timestamps:
2085 *	dvp - ctime|mtime updated
2086 *	 vp - ctime|mtime|atime updated
2087 */
2088/*ARGSUSED*/
2089static int
2090zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2091    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2092{
2093	znode_t		*zp, *dzp = VTOZ(dvp);
2094	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2095	zilog_t		*zilog;
2096	zfs_dirlock_t	*dl;
2097	uint64_t	txtype;
2098	dmu_tx_t	*tx;
2099	int		error;
2100	int		zf = ZNEW;
2101	ksid_t		*ksid;
2102	uid_t		uid;
2103	gid_t		gid = crgetgid(cr);
2104	zfs_acl_ids_t   acl_ids;
2105	boolean_t	fuid_dirtied;
2106	boolean_t	waited = B_FALSE;
2107
2108	ASSERT(vap->va_type == VDIR);
2109
2110	/*
2111	 * If we have an ephemeral id, ACL, or XVATTR then
2112	 * make sure file system is at proper version
2113	 */
2114
2115	ksid = crgetsid(cr, KSID_OWNER);
2116	if (ksid)
2117		uid = ksid_getid(ksid);
2118	else
2119		uid = crgetuid(cr);
2120	if (zfsvfs->z_use_fuids == B_FALSE &&
2121	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2122	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2123		return (SET_ERROR(EINVAL));
2124
2125	ZFS_ENTER(zfsvfs);
2126	ZFS_VERIFY_ZP(dzp);
2127	zilog = zfsvfs->z_log;
2128
2129	if (dzp->z_pflags & ZFS_XATTR) {
2130		ZFS_EXIT(zfsvfs);
2131		return (SET_ERROR(EINVAL));
2132	}
2133
2134	if (zfsvfs->z_utf8 && u8_validate(dirname,
2135	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2136		ZFS_EXIT(zfsvfs);
2137		return (SET_ERROR(EILSEQ));
2138	}
2139	if (flags & FIGNORECASE)
2140		zf |= ZCILOOK;
2141
2142	if (vap->va_mask & AT_XVATTR) {
2143		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2144		    crgetuid(cr), cr, vap->va_type)) != 0) {
2145			ZFS_EXIT(zfsvfs);
2146			return (error);
2147		}
2148	}
2149
2150	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2151	    vsecp, &acl_ids)) != 0) {
2152		ZFS_EXIT(zfsvfs);
2153		return (error);
2154	}
2155
2156	getnewvnode_reserve(1);
2157
2158	/*
2159	 * First make sure the new directory doesn't exist.
2160	 *
2161	 * Existence is checked first to make sure we don't return
2162	 * EACCES instead of EEXIST which can cause some applications
2163	 * to fail.
2164	 */
2165top:
2166	*vpp = NULL;
2167
2168	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2169	    NULL, NULL)) {
2170		zfs_acl_ids_free(&acl_ids);
2171		getnewvnode_drop_reserve();
2172		ZFS_EXIT(zfsvfs);
2173		return (error);
2174	}
2175
2176	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2177		zfs_acl_ids_free(&acl_ids);
2178		zfs_dirent_unlock(dl);
2179		getnewvnode_drop_reserve();
2180		ZFS_EXIT(zfsvfs);
2181		return (error);
2182	}
2183
2184	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2185		zfs_acl_ids_free(&acl_ids);
2186		zfs_dirent_unlock(dl);
2187		getnewvnode_drop_reserve();
2188		ZFS_EXIT(zfsvfs);
2189		return (SET_ERROR(EDQUOT));
2190	}
2191
2192	/*
2193	 * Add a new entry to the directory.
2194	 */
2195	tx = dmu_tx_create(zfsvfs->z_os);
2196	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2197	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2198	fuid_dirtied = zfsvfs->z_fuid_dirty;
2199	if (fuid_dirtied)
2200		zfs_fuid_txhold(zfsvfs, tx);
2201	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2202		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2203		    acl_ids.z_aclp->z_acl_bytes);
2204	}
2205
2206	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2207	    ZFS_SA_BASE_ATTR_SIZE);
2208
2209	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2210	if (error) {
2211		zfs_dirent_unlock(dl);
2212		if (error == ERESTART) {
2213			waited = B_TRUE;
2214			dmu_tx_wait(tx);
2215			dmu_tx_abort(tx);
2216			goto top;
2217		}
2218		zfs_acl_ids_free(&acl_ids);
2219		dmu_tx_abort(tx);
2220		getnewvnode_drop_reserve();
2221		ZFS_EXIT(zfsvfs);
2222		return (error);
2223	}
2224
2225	/*
2226	 * Create new node.
2227	 */
2228	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2229
2230	if (fuid_dirtied)
2231		zfs_fuid_sync(zfsvfs, tx);
2232
2233	/*
2234	 * Now put new name in parent dir.
2235	 */
2236	(void) zfs_link_create(dl, zp, tx, ZNEW);
2237
2238	*vpp = ZTOV(zp);
2239
2240	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2241	if (flags & FIGNORECASE)
2242		txtype |= TX_CI;
2243	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2244	    acl_ids.z_fuidp, vap);
2245
2246	zfs_acl_ids_free(&acl_ids);
2247
2248	dmu_tx_commit(tx);
2249
2250	getnewvnode_drop_reserve();
2251
2252	zfs_dirent_unlock(dl);
2253
2254	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2255		zil_commit(zilog, 0);
2256
2257	ZFS_EXIT(zfsvfs);
2258	return (0);
2259}
2260
2261/*
2262 * Remove a directory subdir entry.  If the current working
2263 * directory is the same as the subdir to be removed, the
2264 * remove will fail.
2265 *
2266 *	IN:	dvp	- vnode of directory to remove from.
2267 *		name	- name of directory to be removed.
2268 *		cwd	- vnode of current working directory.
2269 *		cr	- credentials of caller.
2270 *		ct	- caller context
2271 *		flags	- case flags
2272 *
2273 *	RETURN:	0 on success, error code on failure.
2274 *
2275 * Timestamps:
2276 *	dvp - ctime|mtime updated
2277 */
2278/*ARGSUSED*/
2279static int
2280zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2281    caller_context_t *ct, int flags)
2282{
2283	znode_t		*dzp = VTOZ(dvp);
2284	znode_t		*zp;
2285	vnode_t		*vp;
2286	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2287	zilog_t		*zilog;
2288	zfs_dirlock_t	*dl;
2289	dmu_tx_t	*tx;
2290	int		error;
2291	int		zflg = ZEXISTS;
2292	boolean_t	waited = B_FALSE;
2293
2294	ZFS_ENTER(zfsvfs);
2295	ZFS_VERIFY_ZP(dzp);
2296	zilog = zfsvfs->z_log;
2297
2298	if (flags & FIGNORECASE)
2299		zflg |= ZCILOOK;
2300top:
2301	zp = NULL;
2302
2303	/*
2304	 * Attempt to lock directory; fail if entry doesn't exist.
2305	 */
2306	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2307	    NULL, NULL)) {
2308		ZFS_EXIT(zfsvfs);
2309		return (error);
2310	}
2311
2312	vp = ZTOV(zp);
2313
2314	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2315		goto out;
2316	}
2317
2318	if (vp->v_type != VDIR) {
2319		error = SET_ERROR(ENOTDIR);
2320		goto out;
2321	}
2322
2323	if (vp == cwd) {
2324		error = SET_ERROR(EINVAL);
2325		goto out;
2326	}
2327
2328	vnevent_rmdir(vp, dvp, name, ct);
2329
2330	/*
2331	 * Grab a lock on the directory to make sure that noone is
2332	 * trying to add (or lookup) entries while we are removing it.
2333	 */
2334	rw_enter(&zp->z_name_lock, RW_WRITER);
2335
2336	/*
2337	 * Grab a lock on the parent pointer to make sure we play well
2338	 * with the treewalk and directory rename code.
2339	 */
2340	rw_enter(&zp->z_parent_lock, RW_WRITER);
2341
2342	tx = dmu_tx_create(zfsvfs->z_os);
2343	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2344	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2345	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2346	zfs_sa_upgrade_txholds(tx, zp);
2347	zfs_sa_upgrade_txholds(tx, dzp);
2348	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2349	if (error) {
2350		rw_exit(&zp->z_parent_lock);
2351		rw_exit(&zp->z_name_lock);
2352		zfs_dirent_unlock(dl);
2353		VN_RELE(vp);
2354		if (error == ERESTART) {
2355			waited = B_TRUE;
2356			dmu_tx_wait(tx);
2357			dmu_tx_abort(tx);
2358			goto top;
2359		}
2360		dmu_tx_abort(tx);
2361		ZFS_EXIT(zfsvfs);
2362		return (error);
2363	}
2364
2365#ifdef FREEBSD_NAMECACHE
2366	cache_purge(dvp);
2367#endif
2368
2369	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2370
2371	if (error == 0) {
2372		uint64_t txtype = TX_RMDIR;
2373		if (flags & FIGNORECASE)
2374			txtype |= TX_CI;
2375		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2376	}
2377
2378	dmu_tx_commit(tx);
2379
2380	rw_exit(&zp->z_parent_lock);
2381	rw_exit(&zp->z_name_lock);
2382#ifdef FREEBSD_NAMECACHE
2383	cache_purge(vp);
2384#endif
2385out:
2386	zfs_dirent_unlock(dl);
2387
2388	VN_RELE(vp);
2389
2390	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2391		zil_commit(zilog, 0);
2392
2393	ZFS_EXIT(zfsvfs);
2394	return (error);
2395}
2396
2397/*
2398 * Read as many directory entries as will fit into the provided
2399 * buffer from the given directory cursor position (specified in
2400 * the uio structure).
2401 *
2402 *	IN:	vp	- vnode of directory to read.
2403 *		uio	- structure supplying read location, range info,
2404 *			  and return buffer.
2405 *		cr	- credentials of caller.
2406 *		ct	- caller context
2407 *		flags	- case flags
2408 *
2409 *	OUT:	uio	- updated offset and range, buffer filled.
2410 *		eofp	- set to true if end-of-file detected.
2411 *
2412 *	RETURN:	0 on success, error code on failure.
2413 *
2414 * Timestamps:
2415 *	vp - atime updated
2416 *
2417 * Note that the low 4 bits of the cookie returned by zap is always zero.
2418 * This allows us to use the low range for "special" directory entries:
2419 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2420 * we use the offset 2 for the '.zfs' directory.
2421 */
2422/* ARGSUSED */
2423static int
2424zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2425{
2426	znode_t		*zp = VTOZ(vp);
2427	iovec_t		*iovp;
2428	edirent_t	*eodp;
2429	dirent64_t	*odp;
2430	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2431	objset_t	*os;
2432	caddr_t		outbuf;
2433	size_t		bufsize;
2434	zap_cursor_t	zc;
2435	zap_attribute_t	zap;
2436	uint_t		bytes_wanted;
2437	uint64_t	offset; /* must be unsigned; checks for < 1 */
2438	uint64_t	parent;
2439	int		local_eof;
2440	int		outcount;
2441	int		error;
2442	uint8_t		prefetch;
2443	boolean_t	check_sysattrs;
2444	uint8_t		type;
2445	int		ncooks;
2446	u_long		*cooks = NULL;
2447	int		flags = 0;
2448
2449	ZFS_ENTER(zfsvfs);
2450	ZFS_VERIFY_ZP(zp);
2451
2452	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2453	    &parent, sizeof (parent))) != 0) {
2454		ZFS_EXIT(zfsvfs);
2455		return (error);
2456	}
2457
2458	/*
2459	 * If we are not given an eof variable,
2460	 * use a local one.
2461	 */
2462	if (eofp == NULL)
2463		eofp = &local_eof;
2464
2465	/*
2466	 * Check for valid iov_len.
2467	 */
2468	if (uio->uio_iov->iov_len <= 0) {
2469		ZFS_EXIT(zfsvfs);
2470		return (SET_ERROR(EINVAL));
2471	}
2472
2473	/*
2474	 * Quit if directory has been removed (posix)
2475	 */
2476	if ((*eofp = zp->z_unlinked) != 0) {
2477		ZFS_EXIT(zfsvfs);
2478		return (0);
2479	}
2480
2481	error = 0;
2482	os = zfsvfs->z_os;
2483	offset = uio->uio_loffset;
2484	prefetch = zp->z_zn_prefetch;
2485
2486	/*
2487	 * Initialize the iterator cursor.
2488	 */
2489	if (offset <= 3) {
2490		/*
2491		 * Start iteration from the beginning of the directory.
2492		 */
2493		zap_cursor_init(&zc, os, zp->z_id);
2494	} else {
2495		/*
2496		 * The offset is a serialized cursor.
2497		 */
2498		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2499	}
2500
2501	/*
2502	 * Get space to change directory entries into fs independent format.
2503	 */
2504	iovp = uio->uio_iov;
2505	bytes_wanted = iovp->iov_len;
2506	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2507		bufsize = bytes_wanted;
2508		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2509		odp = (struct dirent64 *)outbuf;
2510	} else {
2511		bufsize = bytes_wanted;
2512		outbuf = NULL;
2513		odp = (struct dirent64 *)iovp->iov_base;
2514	}
2515	eodp = (struct edirent *)odp;
2516
2517	if (ncookies != NULL) {
2518		/*
2519		 * Minimum entry size is dirent size and 1 byte for a file name.
2520		 */
2521		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2522		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2523		*cookies = cooks;
2524		*ncookies = ncooks;
2525	}
2526	/*
2527	 * If this VFS supports the system attribute view interface; and
2528	 * we're looking at an extended attribute directory; and we care
2529	 * about normalization conflicts on this vfs; then we must check
2530	 * for normalization conflicts with the sysattr name space.
2531	 */
2532#ifdef TODO
2533	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2534	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2535	    (flags & V_RDDIR_ENTFLAGS);
2536#else
2537	check_sysattrs = 0;
2538#endif
2539
2540	/*
2541	 * Transform to file-system independent format
2542	 */
2543	outcount = 0;
2544	while (outcount < bytes_wanted) {
2545		ino64_t objnum;
2546		ushort_t reclen;
2547		off64_t *next = NULL;
2548
2549		/*
2550		 * Special case `.', `..', and `.zfs'.
2551		 */
2552		if (offset == 0) {
2553			(void) strcpy(zap.za_name, ".");
2554			zap.za_normalization_conflict = 0;
2555			objnum = zp->z_id;
2556			type = DT_DIR;
2557		} else if (offset == 1) {
2558			(void) strcpy(zap.za_name, "..");
2559			zap.za_normalization_conflict = 0;
2560			objnum = parent;
2561			type = DT_DIR;
2562		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2563			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2564			zap.za_normalization_conflict = 0;
2565			objnum = ZFSCTL_INO_ROOT;
2566			type = DT_DIR;
2567		} else {
2568			/*
2569			 * Grab next entry.
2570			 */
2571			if (error = zap_cursor_retrieve(&zc, &zap)) {
2572				if ((*eofp = (error == ENOENT)) != 0)
2573					break;
2574				else
2575					goto update;
2576			}
2577
2578			if (zap.za_integer_length != 8 ||
2579			    zap.za_num_integers != 1) {
2580				cmn_err(CE_WARN, "zap_readdir: bad directory "
2581				    "entry, obj = %lld, offset = %lld\n",
2582				    (u_longlong_t)zp->z_id,
2583				    (u_longlong_t)offset);
2584				error = SET_ERROR(ENXIO);
2585				goto update;
2586			}
2587
2588			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2589			/*
2590			 * MacOS X can extract the object type here such as:
2591			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2592			 */
2593			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2594
2595			if (check_sysattrs && !zap.za_normalization_conflict) {
2596#ifdef TODO
2597				zap.za_normalization_conflict =
2598				    xattr_sysattr_casechk(zap.za_name);
2599#else
2600				panic("%s:%u: TODO", __func__, __LINE__);
2601#endif
2602			}
2603		}
2604
2605		if (flags & V_RDDIR_ACCFILTER) {
2606			/*
2607			 * If we have no access at all, don't include
2608			 * this entry in the returned information
2609			 */
2610			znode_t	*ezp;
2611			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2612				goto skip_entry;
2613			if (!zfs_has_access(ezp, cr)) {
2614				VN_RELE(ZTOV(ezp));
2615				goto skip_entry;
2616			}
2617			VN_RELE(ZTOV(ezp));
2618		}
2619
2620		if (flags & V_RDDIR_ENTFLAGS)
2621			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2622		else
2623			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2624
2625		/*
2626		 * Will this entry fit in the buffer?
2627		 */
2628		if (outcount + reclen > bufsize) {
2629			/*
2630			 * Did we manage to fit anything in the buffer?
2631			 */
2632			if (!outcount) {
2633				error = SET_ERROR(EINVAL);
2634				goto update;
2635			}
2636			break;
2637		}
2638		if (flags & V_RDDIR_ENTFLAGS) {
2639			/*
2640			 * Add extended flag entry:
2641			 */
2642			eodp->ed_ino = objnum;
2643			eodp->ed_reclen = reclen;
2644			/* NOTE: ed_off is the offset for the *next* entry */
2645			next = &(eodp->ed_off);
2646			eodp->ed_eflags = zap.za_normalization_conflict ?
2647			    ED_CASE_CONFLICT : 0;
2648			(void) strncpy(eodp->ed_name, zap.za_name,
2649			    EDIRENT_NAMELEN(reclen));
2650			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2651		} else {
2652			/*
2653			 * Add normal entry:
2654			 */
2655			odp->d_ino = objnum;
2656			odp->d_reclen = reclen;
2657			odp->d_namlen = strlen(zap.za_name);
2658			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2659			odp->d_type = type;
2660			odp = (dirent64_t *)((intptr_t)odp + reclen);
2661		}
2662		outcount += reclen;
2663
2664		ASSERT(outcount <= bufsize);
2665
2666		/* Prefetch znode */
2667		if (prefetch)
2668			dmu_prefetch(os, objnum, 0, 0, 0,
2669			    ZIO_PRIORITY_SYNC_READ);
2670
2671	skip_entry:
2672		/*
2673		 * Move to the next entry, fill in the previous offset.
2674		 */
2675		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2676			zap_cursor_advance(&zc);
2677			offset = zap_cursor_serialize(&zc);
2678		} else {
2679			offset += 1;
2680		}
2681
2682		if (cooks != NULL) {
2683			*cooks++ = offset;
2684			ncooks--;
2685			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2686		}
2687	}
2688	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2689
2690	/* Subtract unused cookies */
2691	if (ncookies != NULL)
2692		*ncookies -= ncooks;
2693
2694	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2695		iovp->iov_base += outcount;
2696		iovp->iov_len -= outcount;
2697		uio->uio_resid -= outcount;
2698	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2699		/*
2700		 * Reset the pointer.
2701		 */
2702		offset = uio->uio_loffset;
2703	}
2704
2705update:
2706	zap_cursor_fini(&zc);
2707	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2708		kmem_free(outbuf, bufsize);
2709
2710	if (error == ENOENT)
2711		error = 0;
2712
2713	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2714
2715	uio->uio_loffset = offset;
2716	ZFS_EXIT(zfsvfs);
2717	if (error != 0 && cookies != NULL) {
2718		free(*cookies, M_TEMP);
2719		*cookies = NULL;
2720		*ncookies = 0;
2721	}
2722	return (error);
2723}
2724
2725ulong_t zfs_fsync_sync_cnt = 4;
2726
2727static int
2728zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2729{
2730	znode_t	*zp = VTOZ(vp);
2731	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2732
2733	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2734
2735	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2736		ZFS_ENTER(zfsvfs);
2737		ZFS_VERIFY_ZP(zp);
2738		zil_commit(zfsvfs->z_log, zp->z_id);
2739		ZFS_EXIT(zfsvfs);
2740	}
2741	return (0);
2742}
2743
2744
2745/*
2746 * Get the requested file attributes and place them in the provided
2747 * vattr structure.
2748 *
2749 *	IN:	vp	- vnode of file.
2750 *		vap	- va_mask identifies requested attributes.
2751 *			  If AT_XVATTR set, then optional attrs are requested
2752 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2753 *		cr	- credentials of caller.
2754 *		ct	- caller context
2755 *
2756 *	OUT:	vap	- attribute values.
2757 *
2758 *	RETURN:	0 (always succeeds).
2759 */
2760/* ARGSUSED */
2761static int
2762zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2763    caller_context_t *ct)
2764{
2765	znode_t *zp = VTOZ(vp);
2766	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2767	int	error = 0;
2768	uint32_t blksize;
2769	u_longlong_t nblocks;
2770	uint64_t links;
2771	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2772	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2773	xoptattr_t *xoap = NULL;
2774	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2775	sa_bulk_attr_t bulk[4];
2776	int count = 0;
2777
2778	ZFS_ENTER(zfsvfs);
2779	ZFS_VERIFY_ZP(zp);
2780
2781	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2782
2783	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2784	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2785	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2786	if (vp->v_type == VBLK || vp->v_type == VCHR)
2787		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2788		    &rdev, 8);
2789
2790	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2791		ZFS_EXIT(zfsvfs);
2792		return (error);
2793	}
2794
2795	/*
2796	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2797	 * Also, if we are the owner don't bother, since owner should
2798	 * always be allowed to read basic attributes of file.
2799	 */
2800	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2801	    (vap->va_uid != crgetuid(cr))) {
2802		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2803		    skipaclchk, cr)) {
2804			ZFS_EXIT(zfsvfs);
2805			return (error);
2806		}
2807	}
2808
2809	/*
2810	 * Return all attributes.  It's cheaper to provide the answer
2811	 * than to determine whether we were asked the question.
2812	 */
2813
2814	mutex_enter(&zp->z_lock);
2815	vap->va_type = IFTOVT(zp->z_mode);
2816	vap->va_mode = zp->z_mode & ~S_IFMT;
2817#ifdef sun
2818	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2819#else
2820	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2821#endif
2822	vap->va_nodeid = zp->z_id;
2823	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2824		links = zp->z_links + 1;
2825	else
2826		links = zp->z_links;
2827	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2828	vap->va_size = zp->z_size;
2829#ifdef sun
2830	vap->va_rdev = vp->v_rdev;
2831#else
2832	if (vp->v_type == VBLK || vp->v_type == VCHR)
2833		vap->va_rdev = zfs_cmpldev(rdev);
2834#endif
2835	vap->va_seq = zp->z_seq;
2836	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2837	vap->va_filerev = zp->z_seq;
2838
2839	/*
2840	 * Add in any requested optional attributes and the create time.
2841	 * Also set the corresponding bits in the returned attribute bitmap.
2842	 */
2843	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2844		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2845			xoap->xoa_archive =
2846			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2847			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2848		}
2849
2850		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2851			xoap->xoa_readonly =
2852			    ((zp->z_pflags & ZFS_READONLY) != 0);
2853			XVA_SET_RTN(xvap, XAT_READONLY);
2854		}
2855
2856		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2857			xoap->xoa_system =
2858			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2859			XVA_SET_RTN(xvap, XAT_SYSTEM);
2860		}
2861
2862		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2863			xoap->xoa_hidden =
2864			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2865			XVA_SET_RTN(xvap, XAT_HIDDEN);
2866		}
2867
2868		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2869			xoap->xoa_nounlink =
2870			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2871			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2872		}
2873
2874		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2875			xoap->xoa_immutable =
2876			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2877			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2878		}
2879
2880		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2881			xoap->xoa_appendonly =
2882			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2883			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2884		}
2885
2886		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2887			xoap->xoa_nodump =
2888			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2889			XVA_SET_RTN(xvap, XAT_NODUMP);
2890		}
2891
2892		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2893			xoap->xoa_opaque =
2894			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2895			XVA_SET_RTN(xvap, XAT_OPAQUE);
2896		}
2897
2898		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2899			xoap->xoa_av_quarantined =
2900			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2901			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2902		}
2903
2904		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2905			xoap->xoa_av_modified =
2906			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2907			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2908		}
2909
2910		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2911		    vp->v_type == VREG) {
2912			zfs_sa_get_scanstamp(zp, xvap);
2913		}
2914
2915		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2916			uint64_t times[2];
2917
2918			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2919			    times, sizeof (times));
2920			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2921			XVA_SET_RTN(xvap, XAT_CREATETIME);
2922		}
2923
2924		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2925			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2926			XVA_SET_RTN(xvap, XAT_REPARSE);
2927		}
2928		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2929			xoap->xoa_generation = zp->z_gen;
2930			XVA_SET_RTN(xvap, XAT_GEN);
2931		}
2932
2933		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2934			xoap->xoa_offline =
2935			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2936			XVA_SET_RTN(xvap, XAT_OFFLINE);
2937		}
2938
2939		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2940			xoap->xoa_sparse =
2941			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2942			XVA_SET_RTN(xvap, XAT_SPARSE);
2943		}
2944	}
2945
2946	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2947	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2948	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2949	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2950
2951	mutex_exit(&zp->z_lock);
2952
2953	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2954	vap->va_blksize = blksize;
2955	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2956
2957	if (zp->z_blksz == 0) {
2958		/*
2959		 * Block size hasn't been set; suggest maximal I/O transfers.
2960		 */
2961		vap->va_blksize = zfsvfs->z_max_blksz;
2962	}
2963
2964	ZFS_EXIT(zfsvfs);
2965	return (0);
2966}
2967
2968/*
2969 * Set the file attributes to the values contained in the
2970 * vattr structure.
2971 *
2972 *	IN:	vp	- vnode of file to be modified.
2973 *		vap	- new attribute values.
2974 *			  If AT_XVATTR set, then optional attrs are being set
2975 *		flags	- ATTR_UTIME set if non-default time values provided.
2976 *			- ATTR_NOACLCHECK (CIFS context only).
2977 *		cr	- credentials of caller.
2978 *		ct	- caller context
2979 *
2980 *	RETURN:	0 on success, error code on failure.
2981 *
2982 * Timestamps:
2983 *	vp - ctime updated, mtime updated if size changed.
2984 */
2985/* ARGSUSED */
2986static int
2987zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2988    caller_context_t *ct)
2989{
2990	znode_t		*zp = VTOZ(vp);
2991	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2992	zilog_t		*zilog;
2993	dmu_tx_t	*tx;
2994	vattr_t		oldva;
2995	xvattr_t	tmpxvattr;
2996	uint_t		mask = vap->va_mask;
2997	uint_t		saved_mask = 0;
2998	uint64_t	saved_mode;
2999	int		trim_mask = 0;
3000	uint64_t	new_mode;
3001	uint64_t	new_uid, new_gid;
3002	uint64_t	xattr_obj;
3003	uint64_t	mtime[2], ctime[2];
3004	znode_t		*attrzp;
3005	int		need_policy = FALSE;
3006	int		err, err2;
3007	zfs_fuid_info_t *fuidp = NULL;
3008	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3009	xoptattr_t	*xoap;
3010	zfs_acl_t	*aclp;
3011	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3012	boolean_t	fuid_dirtied = B_FALSE;
3013	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3014	int		count = 0, xattr_count = 0;
3015
3016	if (mask == 0)
3017		return (0);
3018
3019	if (mask & AT_NOSET)
3020		return (SET_ERROR(EINVAL));
3021
3022	ZFS_ENTER(zfsvfs);
3023	ZFS_VERIFY_ZP(zp);
3024
3025	zilog = zfsvfs->z_log;
3026
3027	/*
3028	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3029	 * that file system is at proper version level
3030	 */
3031
3032	if (zfsvfs->z_use_fuids == B_FALSE &&
3033	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3034	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3035	    (mask & AT_XVATTR))) {
3036		ZFS_EXIT(zfsvfs);
3037		return (SET_ERROR(EINVAL));
3038	}
3039
3040	if (mask & AT_SIZE && vp->v_type == VDIR) {
3041		ZFS_EXIT(zfsvfs);
3042		return (SET_ERROR(EISDIR));
3043	}
3044
3045	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3046		ZFS_EXIT(zfsvfs);
3047		return (SET_ERROR(EINVAL));
3048	}
3049
3050	/*
3051	 * If this is an xvattr_t, then get a pointer to the structure of
3052	 * optional attributes.  If this is NULL, then we have a vattr_t.
3053	 */
3054	xoap = xva_getxoptattr(xvap);
3055
3056	xva_init(&tmpxvattr);
3057
3058	/*
3059	 * Immutable files can only alter immutable bit and atime
3060	 */
3061	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3062	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3063	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3064		ZFS_EXIT(zfsvfs);
3065		return (SET_ERROR(EPERM));
3066	}
3067
3068	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3069		ZFS_EXIT(zfsvfs);
3070		return (SET_ERROR(EPERM));
3071	}
3072
3073	/*
3074	 * Verify timestamps doesn't overflow 32 bits.
3075	 * ZFS can handle large timestamps, but 32bit syscalls can't
3076	 * handle times greater than 2039.  This check should be removed
3077	 * once large timestamps are fully supported.
3078	 */
3079	if (mask & (AT_ATIME | AT_MTIME)) {
3080		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3081		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3082			ZFS_EXIT(zfsvfs);
3083			return (SET_ERROR(EOVERFLOW));
3084		}
3085	}
3086
3087top:
3088	attrzp = NULL;
3089	aclp = NULL;
3090
3091	/* Can this be moved to before the top label? */
3092	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3093		ZFS_EXIT(zfsvfs);
3094		return (SET_ERROR(EROFS));
3095	}
3096
3097	/*
3098	 * First validate permissions
3099	 */
3100
3101	if (mask & AT_SIZE) {
3102		/*
3103		 * XXX - Note, we are not providing any open
3104		 * mode flags here (like FNDELAY), so we may
3105		 * block if there are locks present... this
3106		 * should be addressed in openat().
3107		 */
3108		/* XXX - would it be OK to generate a log record here? */
3109		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3110		if (err) {
3111			ZFS_EXIT(zfsvfs);
3112			return (err);
3113		}
3114	}
3115
3116	if (mask & (AT_ATIME|AT_MTIME) ||
3117	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3118	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3119	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3120	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3121	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3122	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3123	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3124		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3125		    skipaclchk, cr);
3126	}
3127
3128	if (mask & (AT_UID|AT_GID)) {
3129		int	idmask = (mask & (AT_UID|AT_GID));
3130		int	take_owner;
3131		int	take_group;
3132
3133		/*
3134		 * NOTE: even if a new mode is being set,
3135		 * we may clear S_ISUID/S_ISGID bits.
3136		 */
3137
3138		if (!(mask & AT_MODE))
3139			vap->va_mode = zp->z_mode;
3140
3141		/*
3142		 * Take ownership or chgrp to group we are a member of
3143		 */
3144
3145		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3146		take_group = (mask & AT_GID) &&
3147		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3148
3149		/*
3150		 * If both AT_UID and AT_GID are set then take_owner and
3151		 * take_group must both be set in order to allow taking
3152		 * ownership.
3153		 *
3154		 * Otherwise, send the check through secpolicy_vnode_setattr()
3155		 *
3156		 */
3157
3158		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3159		    ((idmask == AT_UID) && take_owner) ||
3160		    ((idmask == AT_GID) && take_group)) {
3161			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3162			    skipaclchk, cr) == 0) {
3163				/*
3164				 * Remove setuid/setgid for non-privileged users
3165				 */
3166				secpolicy_setid_clear(vap, vp, cr);
3167				trim_mask = (mask & (AT_UID|AT_GID));
3168			} else {
3169				need_policy =  TRUE;
3170			}
3171		} else {
3172			need_policy =  TRUE;
3173		}
3174	}
3175
3176	mutex_enter(&zp->z_lock);
3177	oldva.va_mode = zp->z_mode;
3178	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3179	if (mask & AT_XVATTR) {
3180		/*
3181		 * Update xvattr mask to include only those attributes
3182		 * that are actually changing.
3183		 *
3184		 * the bits will be restored prior to actually setting
3185		 * the attributes so the caller thinks they were set.
3186		 */
3187		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3188			if (xoap->xoa_appendonly !=
3189			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3190				need_policy = TRUE;
3191			} else {
3192				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3193				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3194			}
3195		}
3196
3197		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3198			if (xoap->xoa_nounlink !=
3199			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3200				need_policy = TRUE;
3201			} else {
3202				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3203				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3204			}
3205		}
3206
3207		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3208			if (xoap->xoa_immutable !=
3209			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3210				need_policy = TRUE;
3211			} else {
3212				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3213				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3214			}
3215		}
3216
3217		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3218			if (xoap->xoa_nodump !=
3219			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3220				need_policy = TRUE;
3221			} else {
3222				XVA_CLR_REQ(xvap, XAT_NODUMP);
3223				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3224			}
3225		}
3226
3227		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3228			if (xoap->xoa_av_modified !=
3229			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3230				need_policy = TRUE;
3231			} else {
3232				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3233				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3234			}
3235		}
3236
3237		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3238			if ((vp->v_type != VREG &&
3239			    xoap->xoa_av_quarantined) ||
3240			    xoap->xoa_av_quarantined !=
3241			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3242				need_policy = TRUE;
3243			} else {
3244				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3245				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3246			}
3247		}
3248
3249		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3250			mutex_exit(&zp->z_lock);
3251			ZFS_EXIT(zfsvfs);
3252			return (SET_ERROR(EPERM));
3253		}
3254
3255		if (need_policy == FALSE &&
3256		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3257		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3258			need_policy = TRUE;
3259		}
3260	}
3261
3262	mutex_exit(&zp->z_lock);
3263
3264	if (mask & AT_MODE) {
3265		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3266			err = secpolicy_setid_setsticky_clear(vp, vap,
3267			    &oldva, cr);
3268			if (err) {
3269				ZFS_EXIT(zfsvfs);
3270				return (err);
3271			}
3272			trim_mask |= AT_MODE;
3273		} else {
3274			need_policy = TRUE;
3275		}
3276	}
3277
3278	if (need_policy) {
3279		/*
3280		 * If trim_mask is set then take ownership
3281		 * has been granted or write_acl is present and user
3282		 * has the ability to modify mode.  In that case remove
3283		 * UID|GID and or MODE from mask so that
3284		 * secpolicy_vnode_setattr() doesn't revoke it.
3285		 */
3286
3287		if (trim_mask) {
3288			saved_mask = vap->va_mask;
3289			vap->va_mask &= ~trim_mask;
3290			if (trim_mask & AT_MODE) {
3291				/*
3292				 * Save the mode, as secpolicy_vnode_setattr()
3293				 * will overwrite it with ova.va_mode.
3294				 */
3295				saved_mode = vap->va_mode;
3296			}
3297		}
3298		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3299		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3300		if (err) {
3301			ZFS_EXIT(zfsvfs);
3302			return (err);
3303		}
3304
3305		if (trim_mask) {
3306			vap->va_mask |= saved_mask;
3307			if (trim_mask & AT_MODE) {
3308				/*
3309				 * Recover the mode after
3310				 * secpolicy_vnode_setattr().
3311				 */
3312				vap->va_mode = saved_mode;
3313			}
3314		}
3315	}
3316
3317	/*
3318	 * secpolicy_vnode_setattr, or take ownership may have
3319	 * changed va_mask
3320	 */
3321	mask = vap->va_mask;
3322
3323	if ((mask & (AT_UID | AT_GID))) {
3324		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3325		    &xattr_obj, sizeof (xattr_obj));
3326
3327		if (err == 0 && xattr_obj) {
3328			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3329			if (err)
3330				goto out2;
3331		}
3332		if (mask & AT_UID) {
3333			new_uid = zfs_fuid_create(zfsvfs,
3334			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3335			if (new_uid != zp->z_uid &&
3336			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3337				if (attrzp)
3338					VN_RELE(ZTOV(attrzp));
3339				err = SET_ERROR(EDQUOT);
3340				goto out2;
3341			}
3342		}
3343
3344		if (mask & AT_GID) {
3345			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3346			    cr, ZFS_GROUP, &fuidp);
3347			if (new_gid != zp->z_gid &&
3348			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3349				if (attrzp)
3350					VN_RELE(ZTOV(attrzp));
3351				err = SET_ERROR(EDQUOT);
3352				goto out2;
3353			}
3354		}
3355	}
3356	tx = dmu_tx_create(zfsvfs->z_os);
3357
3358	if (mask & AT_MODE) {
3359		uint64_t pmode = zp->z_mode;
3360		uint64_t acl_obj;
3361		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3362
3363		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3364		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3365			err = SET_ERROR(EPERM);
3366			goto out;
3367		}
3368
3369		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3370			goto out;
3371
3372		mutex_enter(&zp->z_lock);
3373		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3374			/*
3375			 * Are we upgrading ACL from old V0 format
3376			 * to V1 format?
3377			 */
3378			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3379			    zfs_znode_acl_version(zp) ==
3380			    ZFS_ACL_VERSION_INITIAL) {
3381				dmu_tx_hold_free(tx, acl_obj, 0,
3382				    DMU_OBJECT_END);
3383				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3384				    0, aclp->z_acl_bytes);
3385			} else {
3386				dmu_tx_hold_write(tx, acl_obj, 0,
3387				    aclp->z_acl_bytes);
3388			}
3389		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3390			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3391			    0, aclp->z_acl_bytes);
3392		}
3393		mutex_exit(&zp->z_lock);
3394		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3395	} else {
3396		if ((mask & AT_XVATTR) &&
3397		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3398			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3399		else
3400			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3401	}
3402
3403	if (attrzp) {
3404		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3405	}
3406
3407	fuid_dirtied = zfsvfs->z_fuid_dirty;
3408	if (fuid_dirtied)
3409		zfs_fuid_txhold(zfsvfs, tx);
3410
3411	zfs_sa_upgrade_txholds(tx, zp);
3412
3413	err = dmu_tx_assign(tx, TXG_WAIT);
3414	if (err)
3415		goto out;
3416
3417	count = 0;
3418	/*
3419	 * Set each attribute requested.
3420	 * We group settings according to the locks they need to acquire.
3421	 *
3422	 * Note: you cannot set ctime directly, although it will be
3423	 * updated as a side-effect of calling this function.
3424	 */
3425
3426
3427	if (mask & (AT_UID|AT_GID|AT_MODE))
3428		mutex_enter(&zp->z_acl_lock);
3429	mutex_enter(&zp->z_lock);
3430
3431	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3432	    &zp->z_pflags, sizeof (zp->z_pflags));
3433
3434	if (attrzp) {
3435		if (mask & (AT_UID|AT_GID|AT_MODE))
3436			mutex_enter(&attrzp->z_acl_lock);
3437		mutex_enter(&attrzp->z_lock);
3438		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3439		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3440		    sizeof (attrzp->z_pflags));
3441	}
3442
3443	if (mask & (AT_UID|AT_GID)) {
3444
3445		if (mask & AT_UID) {
3446			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3447			    &new_uid, sizeof (new_uid));
3448			zp->z_uid = new_uid;
3449			if (attrzp) {
3450				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3451				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3452				    sizeof (new_uid));
3453				attrzp->z_uid = new_uid;
3454			}
3455		}
3456
3457		if (mask & AT_GID) {
3458			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3459			    NULL, &new_gid, sizeof (new_gid));
3460			zp->z_gid = new_gid;
3461			if (attrzp) {
3462				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3463				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3464				    sizeof (new_gid));
3465				attrzp->z_gid = new_gid;
3466			}
3467		}
3468		if (!(mask & AT_MODE)) {
3469			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3470			    NULL, &new_mode, sizeof (new_mode));
3471			new_mode = zp->z_mode;
3472		}
3473		err = zfs_acl_chown_setattr(zp);
3474		ASSERT(err == 0);
3475		if (attrzp) {
3476			err = zfs_acl_chown_setattr(attrzp);
3477			ASSERT(err == 0);
3478		}
3479	}
3480
3481	if (mask & AT_MODE) {
3482		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3483		    &new_mode, sizeof (new_mode));
3484		zp->z_mode = new_mode;
3485		ASSERT3U((uintptr_t)aclp, !=, 0);
3486		err = zfs_aclset_common(zp, aclp, cr, tx);
3487		ASSERT0(err);
3488		if (zp->z_acl_cached)
3489			zfs_acl_free(zp->z_acl_cached);
3490		zp->z_acl_cached = aclp;
3491		aclp = NULL;
3492	}
3493
3494
3495	if (mask & AT_ATIME) {
3496		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3497		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3498		    &zp->z_atime, sizeof (zp->z_atime));
3499	}
3500
3501	if (mask & AT_MTIME) {
3502		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3503		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3504		    mtime, sizeof (mtime));
3505	}
3506
3507	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3508	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3509		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3510		    NULL, mtime, sizeof (mtime));
3511		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3512		    &ctime, sizeof (ctime));
3513		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3514		    B_TRUE);
3515	} else if (mask != 0) {
3516		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3517		    &ctime, sizeof (ctime));
3518		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3519		    B_TRUE);
3520		if (attrzp) {
3521			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3522			    SA_ZPL_CTIME(zfsvfs), NULL,
3523			    &ctime, sizeof (ctime));
3524			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3525			    mtime, ctime, B_TRUE);
3526		}
3527	}
3528	/*
3529	 * Do this after setting timestamps to prevent timestamp
3530	 * update from toggling bit
3531	 */
3532
3533	if (xoap && (mask & AT_XVATTR)) {
3534
3535		/*
3536		 * restore trimmed off masks
3537		 * so that return masks can be set for caller.
3538		 */
3539
3540		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3541			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3542		}
3543		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3544			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3545		}
3546		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3547			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3548		}
3549		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3550			XVA_SET_REQ(xvap, XAT_NODUMP);
3551		}
3552		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3553			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3554		}
3555		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3556			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3557		}
3558
3559		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3560			ASSERT(vp->v_type == VREG);
3561
3562		zfs_xvattr_set(zp, xvap, tx);
3563	}
3564
3565	if (fuid_dirtied)
3566		zfs_fuid_sync(zfsvfs, tx);
3567
3568	if (mask != 0)
3569		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3570
3571	mutex_exit(&zp->z_lock);
3572	if (mask & (AT_UID|AT_GID|AT_MODE))
3573		mutex_exit(&zp->z_acl_lock);
3574
3575	if (attrzp) {
3576		if (mask & (AT_UID|AT_GID|AT_MODE))
3577			mutex_exit(&attrzp->z_acl_lock);
3578		mutex_exit(&attrzp->z_lock);
3579	}
3580out:
3581	if (err == 0 && attrzp) {
3582		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3583		    xattr_count, tx);
3584		ASSERT(err2 == 0);
3585	}
3586
3587	if (attrzp)
3588		VN_RELE(ZTOV(attrzp));
3589
3590	if (aclp)
3591		zfs_acl_free(aclp);
3592
3593	if (fuidp) {
3594		zfs_fuid_info_free(fuidp);
3595		fuidp = NULL;
3596	}
3597
3598	if (err) {
3599		dmu_tx_abort(tx);
3600		if (err == ERESTART)
3601			goto top;
3602	} else {
3603		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3604		dmu_tx_commit(tx);
3605	}
3606
3607out2:
3608	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3609		zil_commit(zilog, 0);
3610
3611	ZFS_EXIT(zfsvfs);
3612	return (err);
3613}
3614
3615typedef struct zfs_zlock {
3616	krwlock_t	*zl_rwlock;	/* lock we acquired */
3617	znode_t		*zl_znode;	/* znode we held */
3618	struct zfs_zlock *zl_next;	/* next in list */
3619} zfs_zlock_t;
3620
3621/*
3622 * Drop locks and release vnodes that were held by zfs_rename_lock().
3623 */
3624static void
3625zfs_rename_unlock(zfs_zlock_t **zlpp)
3626{
3627	zfs_zlock_t *zl;
3628
3629	while ((zl = *zlpp) != NULL) {
3630		if (zl->zl_znode != NULL)
3631			VN_RELE(ZTOV(zl->zl_znode));
3632		rw_exit(zl->zl_rwlock);
3633		*zlpp = zl->zl_next;
3634		kmem_free(zl, sizeof (*zl));
3635	}
3636}
3637
3638/*
3639 * Search back through the directory tree, using the ".." entries.
3640 * Lock each directory in the chain to prevent concurrent renames.
3641 * Fail any attempt to move a directory into one of its own descendants.
3642 * XXX - z_parent_lock can overlap with map or grow locks
3643 */
3644static int
3645zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3646{
3647	zfs_zlock_t	*zl;
3648	znode_t		*zp = tdzp;
3649	uint64_t	rootid = zp->z_zfsvfs->z_root;
3650	uint64_t	oidp = zp->z_id;
3651	krwlock_t	*rwlp = &szp->z_parent_lock;
3652	krw_t		rw = RW_WRITER;
3653
3654	/*
3655	 * First pass write-locks szp and compares to zp->z_id.
3656	 * Later passes read-lock zp and compare to zp->z_parent.
3657	 */
3658	do {
3659		if (!rw_tryenter(rwlp, rw)) {
3660			/*
3661			 * Another thread is renaming in this path.
3662			 * Note that if we are a WRITER, we don't have any
3663			 * parent_locks held yet.
3664			 */
3665			if (rw == RW_READER && zp->z_id > szp->z_id) {
3666				/*
3667				 * Drop our locks and restart
3668				 */
3669				zfs_rename_unlock(&zl);
3670				*zlpp = NULL;
3671				zp = tdzp;
3672				oidp = zp->z_id;
3673				rwlp = &szp->z_parent_lock;
3674				rw = RW_WRITER;
3675				continue;
3676			} else {
3677				/*
3678				 * Wait for other thread to drop its locks
3679				 */
3680				rw_enter(rwlp, rw);
3681			}
3682		}
3683
3684		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3685		zl->zl_rwlock = rwlp;
3686		zl->zl_znode = NULL;
3687		zl->zl_next = *zlpp;
3688		*zlpp = zl;
3689
3690		if (oidp == szp->z_id)		/* We're a descendant of szp */
3691			return (SET_ERROR(EINVAL));
3692
3693		if (oidp == rootid)		/* We've hit the top */
3694			return (0);
3695
3696		if (rw == RW_READER) {		/* i.e. not the first pass */
3697			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3698			if (error)
3699				return (error);
3700			zl->zl_znode = zp;
3701		}
3702		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3703		    &oidp, sizeof (oidp));
3704		rwlp = &zp->z_parent_lock;
3705		rw = RW_READER;
3706
3707	} while (zp->z_id != sdzp->z_id);
3708
3709	return (0);
3710}
3711
3712/*
3713 * Move an entry from the provided source directory to the target
3714 * directory.  Change the entry name as indicated.
3715 *
3716 *	IN:	sdvp	- Source directory containing the "old entry".
3717 *		snm	- Old entry name.
3718 *		tdvp	- Target directory to contain the "new entry".
3719 *		tnm	- New entry name.
3720 *		cr	- credentials of caller.
3721 *		ct	- caller context
3722 *		flags	- case flags
3723 *
3724 *	RETURN:	0 on success, error code on failure.
3725 *
3726 * Timestamps:
3727 *	sdvp,tdvp - ctime|mtime updated
3728 */
3729/*ARGSUSED*/
3730static int
3731zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3732    caller_context_t *ct, int flags)
3733{
3734	znode_t		*tdzp, *sdzp, *szp, *tzp;
3735	zfsvfs_t 	*zfsvfs;
3736	zilog_t		*zilog;
3737	vnode_t		*realvp;
3738	zfs_dirlock_t	*sdl, *tdl;
3739	dmu_tx_t	*tx;
3740	zfs_zlock_t	*zl;
3741	int		cmp, serr, terr;
3742	int		error = 0;
3743	int		zflg = 0;
3744	boolean_t	waited = B_FALSE;
3745
3746	tdzp = VTOZ(tdvp);
3747	ZFS_VERIFY_ZP(tdzp);
3748	zfsvfs = tdzp->z_zfsvfs;
3749	ZFS_ENTER(zfsvfs);
3750	zilog = zfsvfs->z_log;
3751	sdzp = VTOZ(sdvp);
3752
3753	/*
3754	 * In case sdzp is not valid, let's be sure to exit from the right
3755	 * zfsvfs_t.
3756	 */
3757	if (sdzp->z_sa_hdl == NULL) {
3758		ZFS_EXIT(zfsvfs);
3759		return (SET_ERROR(EIO));
3760	}
3761
3762	/*
3763	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3764	 * ctldir appear to have the same v_vfsp.
3765	 */
3766	if (sdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3767		ZFS_EXIT(zfsvfs);
3768		return (SET_ERROR(EXDEV));
3769	}
3770
3771	if (zfsvfs->z_utf8 && u8_validate(tnm,
3772	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3773		ZFS_EXIT(zfsvfs);
3774		return (SET_ERROR(EILSEQ));
3775	}
3776
3777	if (flags & FIGNORECASE)
3778		zflg |= ZCILOOK;
3779
3780top:
3781	szp = NULL;
3782	tzp = NULL;
3783	zl = NULL;
3784
3785	/*
3786	 * This is to prevent the creation of links into attribute space
3787	 * by renaming a linked file into/outof an attribute directory.
3788	 * See the comment in zfs_link() for why this is considered bad.
3789	 */
3790	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3791		ZFS_EXIT(zfsvfs);
3792		return (SET_ERROR(EINVAL));
3793	}
3794
3795	/*
3796	 * Lock source and target directory entries.  To prevent deadlock,
3797	 * a lock ordering must be defined.  We lock the directory with
3798	 * the smallest object id first, or if it's a tie, the one with
3799	 * the lexically first name.
3800	 */
3801	if (sdzp->z_id < tdzp->z_id) {
3802		cmp = -1;
3803	} else if (sdzp->z_id > tdzp->z_id) {
3804		cmp = 1;
3805	} else {
3806		/*
3807		 * First compare the two name arguments without
3808		 * considering any case folding.
3809		 */
3810		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3811
3812		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3813		ASSERT(error == 0 || !zfsvfs->z_utf8);
3814		if (cmp == 0) {
3815			/*
3816			 * POSIX: "If the old argument and the new argument
3817			 * both refer to links to the same existing file,
3818			 * the rename() function shall return successfully
3819			 * and perform no other action."
3820			 */
3821			ZFS_EXIT(zfsvfs);
3822			return (0);
3823		}
3824		/*
3825		 * If the file system is case-folding, then we may
3826		 * have some more checking to do.  A case-folding file
3827		 * system is either supporting mixed case sensitivity
3828		 * access or is completely case-insensitive.  Note
3829		 * that the file system is always case preserving.
3830		 *
3831		 * In mixed sensitivity mode case sensitive behavior
3832		 * is the default.  FIGNORECASE must be used to
3833		 * explicitly request case insensitive behavior.
3834		 *
3835		 * If the source and target names provided differ only
3836		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3837		 * we will treat this as a special case in the
3838		 * case-insensitive mode: as long as the source name
3839		 * is an exact match, we will allow this to proceed as
3840		 * a name-change request.
3841		 */
3842		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3843		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3844		    flags & FIGNORECASE)) &&
3845		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3846		    &error) == 0) {
3847			/*
3848			 * case preserving rename request, require exact
3849			 * name matches
3850			 */
3851			zflg |= ZCIEXACT;
3852			zflg &= ~ZCILOOK;
3853		}
3854	}
3855
3856	/*
3857	 * If the source and destination directories are the same, we should
3858	 * grab the z_name_lock of that directory only once.
3859	 */
3860	if (sdzp == tdzp) {
3861		zflg |= ZHAVELOCK;
3862		rw_enter(&sdzp->z_name_lock, RW_READER);
3863	}
3864
3865	if (cmp < 0) {
3866		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3867		    ZEXISTS | zflg, NULL, NULL);
3868		terr = zfs_dirent_lock(&tdl,
3869		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3870	} else {
3871		terr = zfs_dirent_lock(&tdl,
3872		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3873		serr = zfs_dirent_lock(&sdl,
3874		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3875		    NULL, NULL);
3876	}
3877
3878	if (serr) {
3879		/*
3880		 * Source entry invalid or not there.
3881		 */
3882		if (!terr) {
3883			zfs_dirent_unlock(tdl);
3884			if (tzp)
3885				VN_RELE(ZTOV(tzp));
3886		}
3887
3888		if (sdzp == tdzp)
3889			rw_exit(&sdzp->z_name_lock);
3890
3891		/*
3892		 * FreeBSD: In OpenSolaris they only check if rename source is
3893		 * ".." here, because "." is handled in their lookup. This is
3894		 * not the case for FreeBSD, so we check for "." explicitly.
3895		 */
3896		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3897			serr = SET_ERROR(EINVAL);
3898		ZFS_EXIT(zfsvfs);
3899		return (serr);
3900	}
3901	if (terr) {
3902		zfs_dirent_unlock(sdl);
3903		VN_RELE(ZTOV(szp));
3904
3905		if (sdzp == tdzp)
3906			rw_exit(&sdzp->z_name_lock);
3907
3908		if (strcmp(tnm, "..") == 0)
3909			terr = SET_ERROR(EINVAL);
3910		ZFS_EXIT(zfsvfs);
3911		return (terr);
3912	}
3913
3914	/*
3915	 * Must have write access at the source to remove the old entry
3916	 * and write access at the target to create the new entry.
3917	 * Note that if target and source are the same, this can be
3918	 * done in a single check.
3919	 */
3920
3921	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3922		goto out;
3923
3924	if (ZTOV(szp)->v_type == VDIR) {
3925		/*
3926		 * Check to make sure rename is valid.
3927		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3928		 */
3929		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3930			goto out;
3931	}
3932
3933	/*
3934	 * Does target exist?
3935	 */
3936	if (tzp) {
3937		/*
3938		 * Source and target must be the same type.
3939		 */
3940		if (ZTOV(szp)->v_type == VDIR) {
3941			if (ZTOV(tzp)->v_type != VDIR) {
3942				error = SET_ERROR(ENOTDIR);
3943				goto out;
3944			}
3945		} else {
3946			if (ZTOV(tzp)->v_type == VDIR) {
3947				error = SET_ERROR(EISDIR);
3948				goto out;
3949			}
3950		}
3951		/*
3952		 * POSIX dictates that when the source and target
3953		 * entries refer to the same file object, rename
3954		 * must do nothing and exit without error.
3955		 */
3956		if (szp->z_id == tzp->z_id) {
3957			error = 0;
3958			goto out;
3959		}
3960	}
3961
3962	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3963	if (tzp)
3964		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3965
3966	/*
3967	 * notify the target directory if it is not the same
3968	 * as source directory.
3969	 */
3970	if (tdvp != sdvp) {
3971		vnevent_rename_dest_dir(tdvp, ct);
3972	}
3973
3974	tx = dmu_tx_create(zfsvfs->z_os);
3975	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3976	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3977	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3978	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3979	if (sdzp != tdzp) {
3980		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3981		zfs_sa_upgrade_txholds(tx, tdzp);
3982	}
3983	if (tzp) {
3984		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3985		zfs_sa_upgrade_txholds(tx, tzp);
3986	}
3987
3988	zfs_sa_upgrade_txholds(tx, szp);
3989	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3990	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3991	if (error) {
3992		if (zl != NULL)
3993			zfs_rename_unlock(&zl);
3994		zfs_dirent_unlock(sdl);
3995		zfs_dirent_unlock(tdl);
3996
3997		if (sdzp == tdzp)
3998			rw_exit(&sdzp->z_name_lock);
3999
4000		VN_RELE(ZTOV(szp));
4001		if (tzp)
4002			VN_RELE(ZTOV(tzp));
4003		if (error == ERESTART) {
4004			waited = B_TRUE;
4005			dmu_tx_wait(tx);
4006			dmu_tx_abort(tx);
4007			goto top;
4008		}
4009		dmu_tx_abort(tx);
4010		ZFS_EXIT(zfsvfs);
4011		return (error);
4012	}
4013
4014	if (tzp)	/* Attempt to remove the existing target */
4015		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4016
4017	if (error == 0) {
4018		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4019		if (error == 0) {
4020			szp->z_pflags |= ZFS_AV_MODIFIED;
4021
4022			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4023			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4024			ASSERT0(error);
4025
4026			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4027			if (error == 0) {
4028				zfs_log_rename(zilog, tx, TX_RENAME |
4029				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4030				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4031
4032				/*
4033				 * Update path information for the target vnode
4034				 */
4035				vn_renamepath(tdvp, ZTOV(szp), tnm,
4036				    strlen(tnm));
4037			} else {
4038				/*
4039				 * At this point, we have successfully created
4040				 * the target name, but have failed to remove
4041				 * the source name.  Since the create was done
4042				 * with the ZRENAMING flag, there are
4043				 * complications; for one, the link count is
4044				 * wrong.  The easiest way to deal with this
4045				 * is to remove the newly created target, and
4046				 * return the original error.  This must
4047				 * succeed; fortunately, it is very unlikely to
4048				 * fail, since we just created it.
4049				 */
4050				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4051				    ZRENAMING, NULL), ==, 0);
4052			}
4053		}
4054#ifdef FREEBSD_NAMECACHE
4055		if (error == 0) {
4056			cache_purge(sdvp);
4057			cache_purge(tdvp);
4058			cache_purge(ZTOV(szp));
4059			if (tzp)
4060				cache_purge(ZTOV(tzp));
4061		}
4062#endif
4063	}
4064
4065	dmu_tx_commit(tx);
4066out:
4067	if (zl != NULL)
4068		zfs_rename_unlock(&zl);
4069
4070	zfs_dirent_unlock(sdl);
4071	zfs_dirent_unlock(tdl);
4072
4073	if (sdzp == tdzp)
4074		rw_exit(&sdzp->z_name_lock);
4075
4076
4077	VN_RELE(ZTOV(szp));
4078	if (tzp)
4079		VN_RELE(ZTOV(tzp));
4080
4081	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4082		zil_commit(zilog, 0);
4083
4084	ZFS_EXIT(zfsvfs);
4085
4086	return (error);
4087}
4088
4089/*
4090 * Insert the indicated symbolic reference entry into the directory.
4091 *
4092 *	IN:	dvp	- Directory to contain new symbolic link.
4093 *		link	- Name for new symlink entry.
4094 *		vap	- Attributes of new entry.
4095 *		cr	- credentials of caller.
4096 *		ct	- caller context
4097 *		flags	- case flags
4098 *
4099 *	RETURN:	0 on success, error code on failure.
4100 *
4101 * Timestamps:
4102 *	dvp - ctime|mtime updated
4103 */
4104/*ARGSUSED*/
4105static int
4106zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4107    cred_t *cr, kthread_t *td)
4108{
4109	znode_t		*zp, *dzp = VTOZ(dvp);
4110	zfs_dirlock_t	*dl;
4111	dmu_tx_t	*tx;
4112	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4113	zilog_t		*zilog;
4114	uint64_t	len = strlen(link);
4115	int		error;
4116	int		zflg = ZNEW;
4117	zfs_acl_ids_t	acl_ids;
4118	boolean_t	fuid_dirtied;
4119	uint64_t	txtype = TX_SYMLINK;
4120	boolean_t	waited = B_FALSE;
4121	int		flags = 0;
4122
4123	ASSERT(vap->va_type == VLNK);
4124
4125	ZFS_ENTER(zfsvfs);
4126	ZFS_VERIFY_ZP(dzp);
4127	zilog = zfsvfs->z_log;
4128
4129	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4130	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4131		ZFS_EXIT(zfsvfs);
4132		return (SET_ERROR(EILSEQ));
4133	}
4134	if (flags & FIGNORECASE)
4135		zflg |= ZCILOOK;
4136
4137	if (len > MAXPATHLEN) {
4138		ZFS_EXIT(zfsvfs);
4139		return (SET_ERROR(ENAMETOOLONG));
4140	}
4141
4142	if ((error = zfs_acl_ids_create(dzp, 0,
4143	    vap, cr, NULL, &acl_ids)) != 0) {
4144		ZFS_EXIT(zfsvfs);
4145		return (error);
4146	}
4147
4148	getnewvnode_reserve(1);
4149
4150top:
4151	/*
4152	 * Attempt to lock directory; fail if entry already exists.
4153	 */
4154	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4155	if (error) {
4156		zfs_acl_ids_free(&acl_ids);
4157		getnewvnode_drop_reserve();
4158		ZFS_EXIT(zfsvfs);
4159		return (error);
4160	}
4161
4162	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4163		zfs_acl_ids_free(&acl_ids);
4164		zfs_dirent_unlock(dl);
4165		getnewvnode_drop_reserve();
4166		ZFS_EXIT(zfsvfs);
4167		return (error);
4168	}
4169
4170	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4171		zfs_acl_ids_free(&acl_ids);
4172		zfs_dirent_unlock(dl);
4173		getnewvnode_drop_reserve();
4174		ZFS_EXIT(zfsvfs);
4175		return (SET_ERROR(EDQUOT));
4176	}
4177	tx = dmu_tx_create(zfsvfs->z_os);
4178	fuid_dirtied = zfsvfs->z_fuid_dirty;
4179	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4180	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4181	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4182	    ZFS_SA_BASE_ATTR_SIZE + len);
4183	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4184	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4185		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4186		    acl_ids.z_aclp->z_acl_bytes);
4187	}
4188	if (fuid_dirtied)
4189		zfs_fuid_txhold(zfsvfs, tx);
4190	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4191	if (error) {
4192		zfs_dirent_unlock(dl);
4193		if (error == ERESTART) {
4194			waited = B_TRUE;
4195			dmu_tx_wait(tx);
4196			dmu_tx_abort(tx);
4197			goto top;
4198		}
4199		zfs_acl_ids_free(&acl_ids);
4200		dmu_tx_abort(tx);
4201		getnewvnode_drop_reserve();
4202		ZFS_EXIT(zfsvfs);
4203		return (error);
4204	}
4205
4206	/*
4207	 * Create a new object for the symlink.
4208	 * for version 4 ZPL datsets the symlink will be an SA attribute
4209	 */
4210	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4211
4212	if (fuid_dirtied)
4213		zfs_fuid_sync(zfsvfs, tx);
4214
4215	mutex_enter(&zp->z_lock);
4216	if (zp->z_is_sa)
4217		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4218		    link, len, tx);
4219	else
4220		zfs_sa_symlink(zp, link, len, tx);
4221	mutex_exit(&zp->z_lock);
4222
4223	zp->z_size = len;
4224	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4225	    &zp->z_size, sizeof (zp->z_size), tx);
4226	/*
4227	 * Insert the new object into the directory.
4228	 */
4229	(void) zfs_link_create(dl, zp, tx, ZNEW);
4230
4231	if (flags & FIGNORECASE)
4232		txtype |= TX_CI;
4233	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4234	*vpp = ZTOV(zp);
4235
4236	zfs_acl_ids_free(&acl_ids);
4237
4238	dmu_tx_commit(tx);
4239
4240	getnewvnode_drop_reserve();
4241
4242	zfs_dirent_unlock(dl);
4243
4244	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4245		zil_commit(zilog, 0);
4246
4247	ZFS_EXIT(zfsvfs);
4248	return (error);
4249}
4250
4251/*
4252 * Return, in the buffer contained in the provided uio structure,
4253 * the symbolic path referred to by vp.
4254 *
4255 *	IN:	vp	- vnode of symbolic link.
4256 *		uio	- structure to contain the link path.
4257 *		cr	- credentials of caller.
4258 *		ct	- caller context
4259 *
4260 *	OUT:	uio	- structure containing the link path.
4261 *
4262 *	RETURN:	0 on success, error code on failure.
4263 *
4264 * Timestamps:
4265 *	vp - atime updated
4266 */
4267/* ARGSUSED */
4268static int
4269zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4270{
4271	znode_t		*zp = VTOZ(vp);
4272	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4273	int		error;
4274
4275	ZFS_ENTER(zfsvfs);
4276	ZFS_VERIFY_ZP(zp);
4277
4278	mutex_enter(&zp->z_lock);
4279	if (zp->z_is_sa)
4280		error = sa_lookup_uio(zp->z_sa_hdl,
4281		    SA_ZPL_SYMLINK(zfsvfs), uio);
4282	else
4283		error = zfs_sa_readlink(zp, uio);
4284	mutex_exit(&zp->z_lock);
4285
4286	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4287
4288	ZFS_EXIT(zfsvfs);
4289	return (error);
4290}
4291
4292/*
4293 * Insert a new entry into directory tdvp referencing svp.
4294 *
4295 *	IN:	tdvp	- Directory to contain new entry.
4296 *		svp	- vnode of new entry.
4297 *		name	- name of new entry.
4298 *		cr	- credentials of caller.
4299 *		ct	- caller context
4300 *
4301 *	RETURN:	0 on success, error code on failure.
4302 *
4303 * Timestamps:
4304 *	tdvp - ctime|mtime updated
4305 *	 svp - ctime updated
4306 */
4307/* ARGSUSED */
4308static int
4309zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4310    caller_context_t *ct, int flags)
4311{
4312	znode_t		*dzp = VTOZ(tdvp);
4313	znode_t		*tzp, *szp;
4314	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4315	zilog_t		*zilog;
4316	zfs_dirlock_t	*dl;
4317	dmu_tx_t	*tx;
4318	vnode_t		*realvp;
4319	int		error;
4320	int		zf = ZNEW;
4321	uint64_t	parent;
4322	uid_t		owner;
4323	boolean_t	waited = B_FALSE;
4324
4325	ASSERT(tdvp->v_type == VDIR);
4326
4327	ZFS_ENTER(zfsvfs);
4328	ZFS_VERIFY_ZP(dzp);
4329	zilog = zfsvfs->z_log;
4330
4331	if (VOP_REALVP(svp, &realvp, ct) == 0)
4332		svp = realvp;
4333
4334	/*
4335	 * POSIX dictates that we return EPERM here.
4336	 * Better choices include ENOTSUP or EISDIR.
4337	 */
4338	if (svp->v_type == VDIR) {
4339		ZFS_EXIT(zfsvfs);
4340		return (SET_ERROR(EPERM));
4341	}
4342
4343	szp = VTOZ(svp);
4344	ZFS_VERIFY_ZP(szp);
4345
4346	/*
4347	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4348	 * ctldir appear to have the same v_vfsp.
4349	 */
4350	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4351		ZFS_EXIT(zfsvfs);
4352		return (SET_ERROR(EXDEV));
4353	}
4354
4355	/* Prevent links to .zfs/shares files */
4356
4357	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4358	    &parent, sizeof (uint64_t))) != 0) {
4359		ZFS_EXIT(zfsvfs);
4360		return (error);
4361	}
4362	if (parent == zfsvfs->z_shares_dir) {
4363		ZFS_EXIT(zfsvfs);
4364		return (SET_ERROR(EPERM));
4365	}
4366
4367	if (zfsvfs->z_utf8 && u8_validate(name,
4368	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4369		ZFS_EXIT(zfsvfs);
4370		return (SET_ERROR(EILSEQ));
4371	}
4372	if (flags & FIGNORECASE)
4373		zf |= ZCILOOK;
4374
4375	/*
4376	 * We do not support links between attributes and non-attributes
4377	 * because of the potential security risk of creating links
4378	 * into "normal" file space in order to circumvent restrictions
4379	 * imposed in attribute space.
4380	 */
4381	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4382		ZFS_EXIT(zfsvfs);
4383		return (SET_ERROR(EINVAL));
4384	}
4385
4386
4387	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4388	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4389		ZFS_EXIT(zfsvfs);
4390		return (SET_ERROR(EPERM));
4391	}
4392
4393	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4394		ZFS_EXIT(zfsvfs);
4395		return (error);
4396	}
4397
4398top:
4399	/*
4400	 * Attempt to lock directory; fail if entry already exists.
4401	 */
4402	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4403	if (error) {
4404		ZFS_EXIT(zfsvfs);
4405		return (error);
4406	}
4407
4408	tx = dmu_tx_create(zfsvfs->z_os);
4409	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4410	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4411	zfs_sa_upgrade_txholds(tx, szp);
4412	zfs_sa_upgrade_txholds(tx, dzp);
4413	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4414	if (error) {
4415		zfs_dirent_unlock(dl);
4416		if (error == ERESTART) {
4417			waited = B_TRUE;
4418			dmu_tx_wait(tx);
4419			dmu_tx_abort(tx);
4420			goto top;
4421		}
4422		dmu_tx_abort(tx);
4423		ZFS_EXIT(zfsvfs);
4424		return (error);
4425	}
4426
4427	error = zfs_link_create(dl, szp, tx, 0);
4428
4429	if (error == 0) {
4430		uint64_t txtype = TX_LINK;
4431		if (flags & FIGNORECASE)
4432			txtype |= TX_CI;
4433		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4434	}
4435
4436	dmu_tx_commit(tx);
4437
4438	zfs_dirent_unlock(dl);
4439
4440	if (error == 0) {
4441		vnevent_link(svp, ct);
4442	}
4443
4444	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4445		zil_commit(zilog, 0);
4446
4447	ZFS_EXIT(zfsvfs);
4448	return (error);
4449}
4450
4451#ifdef sun
4452/*
4453 * zfs_null_putapage() is used when the file system has been force
4454 * unmounted. It just drops the pages.
4455 */
4456/* ARGSUSED */
4457static int
4458zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4459		size_t *lenp, int flags, cred_t *cr)
4460{
4461	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4462	return (0);
4463}
4464
4465/*
4466 * Push a page out to disk, klustering if possible.
4467 *
4468 *	IN:	vp	- file to push page to.
4469 *		pp	- page to push.
4470 *		flags	- additional flags.
4471 *		cr	- credentials of caller.
4472 *
4473 *	OUT:	offp	- start of range pushed.
4474 *		lenp	- len of range pushed.
4475 *
4476 *	RETURN:	0 on success, error code on failure.
4477 *
4478 * NOTE: callers must have locked the page to be pushed.  On
4479 * exit, the page (and all other pages in the kluster) must be
4480 * unlocked.
4481 */
4482/* ARGSUSED */
4483static int
4484zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4485		size_t *lenp, int flags, cred_t *cr)
4486{
4487	znode_t		*zp = VTOZ(vp);
4488	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4489	dmu_tx_t	*tx;
4490	u_offset_t	off, koff;
4491	size_t		len, klen;
4492	int		err;
4493
4494	off = pp->p_offset;
4495	len = PAGESIZE;
4496	/*
4497	 * If our blocksize is bigger than the page size, try to kluster
4498	 * multiple pages so that we write a full block (thus avoiding
4499	 * a read-modify-write).
4500	 */
4501	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4502		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4503		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4504		ASSERT(koff <= zp->z_size);
4505		if (koff + klen > zp->z_size)
4506			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4507		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4508	}
4509	ASSERT3U(btop(len), ==, btopr(len));
4510
4511	/*
4512	 * Can't push pages past end-of-file.
4513	 */
4514	if (off >= zp->z_size) {
4515		/* ignore all pages */
4516		err = 0;
4517		goto out;
4518	} else if (off + len > zp->z_size) {
4519		int npages = btopr(zp->z_size - off);
4520		page_t *trunc;
4521
4522		page_list_break(&pp, &trunc, npages);
4523		/* ignore pages past end of file */
4524		if (trunc)
4525			pvn_write_done(trunc, flags);
4526		len = zp->z_size - off;
4527	}
4528
4529	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4530	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4531		err = SET_ERROR(EDQUOT);
4532		goto out;
4533	}
4534	tx = dmu_tx_create(zfsvfs->z_os);
4535	dmu_tx_hold_write(tx, zp->z_id, off, len);
4536
4537	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4538	zfs_sa_upgrade_txholds(tx, zp);
4539	err = dmu_tx_assign(tx, TXG_WAIT);
4540	if (err != 0) {
4541		dmu_tx_abort(tx);
4542		goto out;
4543	}
4544
4545	if (zp->z_blksz <= PAGESIZE) {
4546		caddr_t va = zfs_map_page(pp, S_READ);
4547		ASSERT3U(len, <=, PAGESIZE);
4548		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4549		zfs_unmap_page(pp, va);
4550	} else {
4551		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4552	}
4553
4554	if (err == 0) {
4555		uint64_t mtime[2], ctime[2];
4556		sa_bulk_attr_t bulk[3];
4557		int count = 0;
4558
4559		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4560		    &mtime, 16);
4561		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4562		    &ctime, 16);
4563		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4564		    &zp->z_pflags, 8);
4565		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4566		    B_TRUE);
4567		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4568	}
4569	dmu_tx_commit(tx);
4570
4571out:
4572	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4573	if (offp)
4574		*offp = off;
4575	if (lenp)
4576		*lenp = len;
4577
4578	return (err);
4579}
4580
4581/*
4582 * Copy the portion of the file indicated from pages into the file.
4583 * The pages are stored in a page list attached to the files vnode.
4584 *
4585 *	IN:	vp	- vnode of file to push page data to.
4586 *		off	- position in file to put data.
4587 *		len	- amount of data to write.
4588 *		flags	- flags to control the operation.
4589 *		cr	- credentials of caller.
4590 *		ct	- caller context.
4591 *
4592 *	RETURN:	0 on success, error code on failure.
4593 *
4594 * Timestamps:
4595 *	vp - ctime|mtime updated
4596 */
4597/*ARGSUSED*/
4598static int
4599zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4600    caller_context_t *ct)
4601{
4602	znode_t		*zp = VTOZ(vp);
4603	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4604	page_t		*pp;
4605	size_t		io_len;
4606	u_offset_t	io_off;
4607	uint_t		blksz;
4608	rl_t		*rl;
4609	int		error = 0;
4610
4611	ZFS_ENTER(zfsvfs);
4612	ZFS_VERIFY_ZP(zp);
4613
4614	/*
4615	 * Align this request to the file block size in case we kluster.
4616	 * XXX - this can result in pretty aggresive locking, which can
4617	 * impact simultanious read/write access.  One option might be
4618	 * to break up long requests (len == 0) into block-by-block
4619	 * operations to get narrower locking.
4620	 */
4621	blksz = zp->z_blksz;
4622	if (ISP2(blksz))
4623		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4624	else
4625		io_off = 0;
4626	if (len > 0 && ISP2(blksz))
4627		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4628	else
4629		io_len = 0;
4630
4631	if (io_len == 0) {
4632		/*
4633		 * Search the entire vp list for pages >= io_off.
4634		 */
4635		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4636		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4637		goto out;
4638	}
4639	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4640
4641	if (off > zp->z_size) {
4642		/* past end of file */
4643		zfs_range_unlock(rl);
4644		ZFS_EXIT(zfsvfs);
4645		return (0);
4646	}
4647
4648	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4649
4650	for (off = io_off; io_off < off + len; io_off += io_len) {
4651		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4652			pp = page_lookup(vp, io_off,
4653			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4654		} else {
4655			pp = page_lookup_nowait(vp, io_off,
4656			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4657		}
4658
4659		if (pp != NULL && pvn_getdirty(pp, flags)) {
4660			int err;
4661
4662			/*
4663			 * Found a dirty page to push
4664			 */
4665			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4666			if (err)
4667				error = err;
4668		} else {
4669			io_len = PAGESIZE;
4670		}
4671	}
4672out:
4673	zfs_range_unlock(rl);
4674	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4675		zil_commit(zfsvfs->z_log, zp->z_id);
4676	ZFS_EXIT(zfsvfs);
4677	return (error);
4678}
4679#endif	/* sun */
4680
4681/*ARGSUSED*/
4682void
4683zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4684{
4685	znode_t	*zp = VTOZ(vp);
4686	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4687	int error;
4688
4689	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4690	if (zp->z_sa_hdl == NULL) {
4691		/*
4692		 * The fs has been unmounted, or we did a
4693		 * suspend/resume and this file no longer exists.
4694		 */
4695		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4696		vrecycle(vp);
4697		return;
4698	}
4699
4700	mutex_enter(&zp->z_lock);
4701	if (zp->z_unlinked) {
4702		/*
4703		 * Fast path to recycle a vnode of a removed file.
4704		 */
4705		mutex_exit(&zp->z_lock);
4706		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4707		vrecycle(vp);
4708		return;
4709	}
4710	mutex_exit(&zp->z_lock);
4711
4712	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4713		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4714
4715		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4716		zfs_sa_upgrade_txholds(tx, zp);
4717		error = dmu_tx_assign(tx, TXG_WAIT);
4718		if (error) {
4719			dmu_tx_abort(tx);
4720		} else {
4721			mutex_enter(&zp->z_lock);
4722			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4723			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4724			zp->z_atime_dirty = 0;
4725			mutex_exit(&zp->z_lock);
4726			dmu_tx_commit(tx);
4727		}
4728	}
4729	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4730}
4731
4732#ifdef sun
4733/*
4734 * Bounds-check the seek operation.
4735 *
4736 *	IN:	vp	- vnode seeking within
4737 *		ooff	- old file offset
4738 *		noffp	- pointer to new file offset
4739 *		ct	- caller context
4740 *
4741 *	RETURN:	0 on success, EINVAL if new offset invalid.
4742 */
4743/* ARGSUSED */
4744static int
4745zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4746    caller_context_t *ct)
4747{
4748	if (vp->v_type == VDIR)
4749		return (0);
4750	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4751}
4752
4753/*
4754 * Pre-filter the generic locking function to trap attempts to place
4755 * a mandatory lock on a memory mapped file.
4756 */
4757static int
4758zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4759    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4760{
4761	znode_t *zp = VTOZ(vp);
4762	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4763
4764	ZFS_ENTER(zfsvfs);
4765	ZFS_VERIFY_ZP(zp);
4766
4767	/*
4768	 * We are following the UFS semantics with respect to mapcnt
4769	 * here: If we see that the file is mapped already, then we will
4770	 * return an error, but we don't worry about races between this
4771	 * function and zfs_map().
4772	 */
4773	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4774		ZFS_EXIT(zfsvfs);
4775		return (SET_ERROR(EAGAIN));
4776	}
4777	ZFS_EXIT(zfsvfs);
4778	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4779}
4780
4781/*
4782 * If we can't find a page in the cache, we will create a new page
4783 * and fill it with file data.  For efficiency, we may try to fill
4784 * multiple pages at once (klustering) to fill up the supplied page
4785 * list.  Note that the pages to be filled are held with an exclusive
4786 * lock to prevent access by other threads while they are being filled.
4787 */
4788static int
4789zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4790    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4791{
4792	znode_t *zp = VTOZ(vp);
4793	page_t *pp, *cur_pp;
4794	objset_t *os = zp->z_zfsvfs->z_os;
4795	u_offset_t io_off, total;
4796	size_t io_len;
4797	int err;
4798
4799	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4800		/*
4801		 * We only have a single page, don't bother klustering
4802		 */
4803		io_off = off;
4804		io_len = PAGESIZE;
4805		pp = page_create_va(vp, io_off, io_len,
4806		    PG_EXCL | PG_WAIT, seg, addr);
4807	} else {
4808		/*
4809		 * Try to find enough pages to fill the page list
4810		 */
4811		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4812		    &io_len, off, plsz, 0);
4813	}
4814	if (pp == NULL) {
4815		/*
4816		 * The page already exists, nothing to do here.
4817		 */
4818		*pl = NULL;
4819		return (0);
4820	}
4821
4822	/*
4823	 * Fill the pages in the kluster.
4824	 */
4825	cur_pp = pp;
4826	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4827		caddr_t va;
4828
4829		ASSERT3U(io_off, ==, cur_pp->p_offset);
4830		va = zfs_map_page(cur_pp, S_WRITE);
4831		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4832		    DMU_READ_PREFETCH);
4833		zfs_unmap_page(cur_pp, va);
4834		if (err) {
4835			/* On error, toss the entire kluster */
4836			pvn_read_done(pp, B_ERROR);
4837			/* convert checksum errors into IO errors */
4838			if (err == ECKSUM)
4839				err = SET_ERROR(EIO);
4840			return (err);
4841		}
4842		cur_pp = cur_pp->p_next;
4843	}
4844
4845	/*
4846	 * Fill in the page list array from the kluster starting
4847	 * from the desired offset `off'.
4848	 * NOTE: the page list will always be null terminated.
4849	 */
4850	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4851	ASSERT(pl == NULL || (*pl)->p_offset == off);
4852
4853	return (0);
4854}
4855
4856/*
4857 * Return pointers to the pages for the file region [off, off + len]
4858 * in the pl array.  If plsz is greater than len, this function may
4859 * also return page pointers from after the specified region
4860 * (i.e. the region [off, off + plsz]).  These additional pages are
4861 * only returned if they are already in the cache, or were created as
4862 * part of a klustered read.
4863 *
4864 *	IN:	vp	- vnode of file to get data from.
4865 *		off	- position in file to get data from.
4866 *		len	- amount of data to retrieve.
4867 *		plsz	- length of provided page list.
4868 *		seg	- segment to obtain pages for.
4869 *		addr	- virtual address of fault.
4870 *		rw	- mode of created pages.
4871 *		cr	- credentials of caller.
4872 *		ct	- caller context.
4873 *
4874 *	OUT:	protp	- protection mode of created pages.
4875 *		pl	- list of pages created.
4876 *
4877 *	RETURN:	0 on success, error code on failure.
4878 *
4879 * Timestamps:
4880 *	vp - atime updated
4881 */
4882/* ARGSUSED */
4883static int
4884zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4885    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4886    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4887{
4888	znode_t		*zp = VTOZ(vp);
4889	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4890	page_t		**pl0 = pl;
4891	int		err = 0;
4892
4893	/* we do our own caching, faultahead is unnecessary */
4894	if (pl == NULL)
4895		return (0);
4896	else if (len > plsz)
4897		len = plsz;
4898	else
4899		len = P2ROUNDUP(len, PAGESIZE);
4900	ASSERT(plsz >= len);
4901
4902	ZFS_ENTER(zfsvfs);
4903	ZFS_VERIFY_ZP(zp);
4904
4905	if (protp)
4906		*protp = PROT_ALL;
4907
4908	/*
4909	 * Loop through the requested range [off, off + len) looking
4910	 * for pages.  If we don't find a page, we will need to create
4911	 * a new page and fill it with data from the file.
4912	 */
4913	while (len > 0) {
4914		if (*pl = page_lookup(vp, off, SE_SHARED))
4915			*(pl+1) = NULL;
4916		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4917			goto out;
4918		while (*pl) {
4919			ASSERT3U((*pl)->p_offset, ==, off);
4920			off += PAGESIZE;
4921			addr += PAGESIZE;
4922			if (len > 0) {
4923				ASSERT3U(len, >=, PAGESIZE);
4924				len -= PAGESIZE;
4925			}
4926			ASSERT3U(plsz, >=, PAGESIZE);
4927			plsz -= PAGESIZE;
4928			pl++;
4929		}
4930	}
4931
4932	/*
4933	 * Fill out the page array with any pages already in the cache.
4934	 */
4935	while (plsz > 0 &&
4936	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4937			off += PAGESIZE;
4938			plsz -= PAGESIZE;
4939	}
4940out:
4941	if (err) {
4942		/*
4943		 * Release any pages we have previously locked.
4944		 */
4945		while (pl > pl0)
4946			page_unlock(*--pl);
4947	} else {
4948		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4949	}
4950
4951	*pl = NULL;
4952
4953	ZFS_EXIT(zfsvfs);
4954	return (err);
4955}
4956
4957/*
4958 * Request a memory map for a section of a file.  This code interacts
4959 * with common code and the VM system as follows:
4960 *
4961 * - common code calls mmap(), which ends up in smmap_common()
4962 * - this calls VOP_MAP(), which takes you into (say) zfs
4963 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4964 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4965 * - zfs_addmap() updates z_mapcnt
4966 */
4967/*ARGSUSED*/
4968static int
4969zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4970    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4971    caller_context_t *ct)
4972{
4973	znode_t *zp = VTOZ(vp);
4974	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4975	segvn_crargs_t	vn_a;
4976	int		error;
4977
4978	ZFS_ENTER(zfsvfs);
4979	ZFS_VERIFY_ZP(zp);
4980
4981	if ((prot & PROT_WRITE) && (zp->z_pflags &
4982	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4983		ZFS_EXIT(zfsvfs);
4984		return (SET_ERROR(EPERM));
4985	}
4986
4987	if ((prot & (PROT_READ | PROT_EXEC)) &&
4988	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4989		ZFS_EXIT(zfsvfs);
4990		return (SET_ERROR(EACCES));
4991	}
4992
4993	if (vp->v_flag & VNOMAP) {
4994		ZFS_EXIT(zfsvfs);
4995		return (SET_ERROR(ENOSYS));
4996	}
4997
4998	if (off < 0 || len > MAXOFFSET_T - off) {
4999		ZFS_EXIT(zfsvfs);
5000		return (SET_ERROR(ENXIO));
5001	}
5002
5003	if (vp->v_type != VREG) {
5004		ZFS_EXIT(zfsvfs);
5005		return (SET_ERROR(ENODEV));
5006	}
5007
5008	/*
5009	 * If file is locked, disallow mapping.
5010	 */
5011	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5012		ZFS_EXIT(zfsvfs);
5013		return (SET_ERROR(EAGAIN));
5014	}
5015
5016	as_rangelock(as);
5017	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5018	if (error != 0) {
5019		as_rangeunlock(as);
5020		ZFS_EXIT(zfsvfs);
5021		return (error);
5022	}
5023
5024	vn_a.vp = vp;
5025	vn_a.offset = (u_offset_t)off;
5026	vn_a.type = flags & MAP_TYPE;
5027	vn_a.prot = prot;
5028	vn_a.maxprot = maxprot;
5029	vn_a.cred = cr;
5030	vn_a.amp = NULL;
5031	vn_a.flags = flags & ~MAP_TYPE;
5032	vn_a.szc = 0;
5033	vn_a.lgrp_mem_policy_flags = 0;
5034
5035	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5036
5037	as_rangeunlock(as);
5038	ZFS_EXIT(zfsvfs);
5039	return (error);
5040}
5041
5042/* ARGSUSED */
5043static int
5044zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5045    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5046    caller_context_t *ct)
5047{
5048	uint64_t pages = btopr(len);
5049
5050	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5051	return (0);
5052}
5053
5054/*
5055 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5056 * more accurate mtime for the associated file.  Since we don't have a way of
5057 * detecting when the data was actually modified, we have to resort to
5058 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5059 * last page is pushed.  The problem occurs when the msync() call is omitted,
5060 * which by far the most common case:
5061 *
5062 *	open()
5063 *	mmap()
5064 *	<modify memory>
5065 *	munmap()
5066 *	close()
5067 *	<time lapse>
5068 *	putpage() via fsflush
5069 *
5070 * If we wait until fsflush to come along, we can have a modification time that
5071 * is some arbitrary point in the future.  In order to prevent this in the
5072 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5073 * torn down.
5074 */
5075/* ARGSUSED */
5076static int
5077zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5078    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5079    caller_context_t *ct)
5080{
5081	uint64_t pages = btopr(len);
5082
5083	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5084	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5085
5086	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5087	    vn_has_cached_data(vp))
5088		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5089
5090	return (0);
5091}
5092
5093/*
5094 * Free or allocate space in a file.  Currently, this function only
5095 * supports the `F_FREESP' command.  However, this command is somewhat
5096 * misnamed, as its functionality includes the ability to allocate as
5097 * well as free space.
5098 *
5099 *	IN:	vp	- vnode of file to free data in.
5100 *		cmd	- action to take (only F_FREESP supported).
5101 *		bfp	- section of file to free/alloc.
5102 *		flag	- current file open mode flags.
5103 *		offset	- current file offset.
5104 *		cr	- credentials of caller [UNUSED].
5105 *		ct	- caller context.
5106 *
5107 *	RETURN:	0 on success, error code on failure.
5108 *
5109 * Timestamps:
5110 *	vp - ctime|mtime updated
5111 */
5112/* ARGSUSED */
5113static int
5114zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5115    offset_t offset, cred_t *cr, caller_context_t *ct)
5116{
5117	znode_t		*zp = VTOZ(vp);
5118	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5119	uint64_t	off, len;
5120	int		error;
5121
5122	ZFS_ENTER(zfsvfs);
5123	ZFS_VERIFY_ZP(zp);
5124
5125	if (cmd != F_FREESP) {
5126		ZFS_EXIT(zfsvfs);
5127		return (SET_ERROR(EINVAL));
5128	}
5129
5130	if (error = convoff(vp, bfp, 0, offset)) {
5131		ZFS_EXIT(zfsvfs);
5132		return (error);
5133	}
5134
5135	if (bfp->l_len < 0) {
5136		ZFS_EXIT(zfsvfs);
5137		return (SET_ERROR(EINVAL));
5138	}
5139
5140	off = bfp->l_start;
5141	len = bfp->l_len; /* 0 means from off to end of file */
5142
5143	error = zfs_freesp(zp, off, len, flag, TRUE);
5144
5145	ZFS_EXIT(zfsvfs);
5146	return (error);
5147}
5148#endif	/* sun */
5149
5150CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5151CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5152
5153/*ARGSUSED*/
5154static int
5155zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5156{
5157	znode_t		*zp = VTOZ(vp);
5158	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5159	uint32_t	gen;
5160	uint64_t	gen64;
5161	uint64_t	object = zp->z_id;
5162	zfid_short_t	*zfid;
5163	int		size, i, error;
5164
5165	ZFS_ENTER(zfsvfs);
5166	ZFS_VERIFY_ZP(zp);
5167
5168	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5169	    &gen64, sizeof (uint64_t))) != 0) {
5170		ZFS_EXIT(zfsvfs);
5171		return (error);
5172	}
5173
5174	gen = (uint32_t)gen64;
5175
5176	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5177
5178#ifdef illumos
5179	if (fidp->fid_len < size) {
5180		fidp->fid_len = size;
5181		ZFS_EXIT(zfsvfs);
5182		return (SET_ERROR(ENOSPC));
5183	}
5184#else
5185	fidp->fid_len = size;
5186#endif
5187
5188	zfid = (zfid_short_t *)fidp;
5189
5190	zfid->zf_len = size;
5191
5192	for (i = 0; i < sizeof (zfid->zf_object); i++)
5193		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5194
5195	/* Must have a non-zero generation number to distinguish from .zfs */
5196	if (gen == 0)
5197		gen = 1;
5198	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5199		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5200
5201	if (size == LONG_FID_LEN) {
5202		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5203		zfid_long_t	*zlfid;
5204
5205		zlfid = (zfid_long_t *)fidp;
5206
5207		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5208			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5209
5210		/* XXX - this should be the generation number for the objset */
5211		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5212			zlfid->zf_setgen[i] = 0;
5213	}
5214
5215	ZFS_EXIT(zfsvfs);
5216	return (0);
5217}
5218
5219static int
5220zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5221    caller_context_t *ct)
5222{
5223	znode_t		*zp, *xzp;
5224	zfsvfs_t	*zfsvfs;
5225	zfs_dirlock_t	*dl;
5226	int		error;
5227
5228	switch (cmd) {
5229	case _PC_LINK_MAX:
5230		*valp = INT_MAX;
5231		return (0);
5232
5233	case _PC_FILESIZEBITS:
5234		*valp = 64;
5235		return (0);
5236#ifdef sun
5237	case _PC_XATTR_EXISTS:
5238		zp = VTOZ(vp);
5239		zfsvfs = zp->z_zfsvfs;
5240		ZFS_ENTER(zfsvfs);
5241		ZFS_VERIFY_ZP(zp);
5242		*valp = 0;
5243		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5244		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5245		if (error == 0) {
5246			zfs_dirent_unlock(dl);
5247			if (!zfs_dirempty(xzp))
5248				*valp = 1;
5249			VN_RELE(ZTOV(xzp));
5250		} else if (error == ENOENT) {
5251			/*
5252			 * If there aren't extended attributes, it's the
5253			 * same as having zero of them.
5254			 */
5255			error = 0;
5256		}
5257		ZFS_EXIT(zfsvfs);
5258		return (error);
5259
5260	case _PC_SATTR_ENABLED:
5261	case _PC_SATTR_EXISTS:
5262		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5263		    (vp->v_type == VREG || vp->v_type == VDIR);
5264		return (0);
5265
5266	case _PC_ACCESS_FILTERING:
5267		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5268		    vp->v_type == VDIR;
5269		return (0);
5270
5271	case _PC_ACL_ENABLED:
5272		*valp = _ACL_ACE_ENABLED;
5273		return (0);
5274#endif	/* sun */
5275	case _PC_MIN_HOLE_SIZE:
5276		*valp = (int)SPA_MINBLOCKSIZE;
5277		return (0);
5278#ifdef sun
5279	case _PC_TIMESTAMP_RESOLUTION:
5280		/* nanosecond timestamp resolution */
5281		*valp = 1L;
5282		return (0);
5283#endif	/* sun */
5284	case _PC_ACL_EXTENDED:
5285		*valp = 0;
5286		return (0);
5287
5288	case _PC_ACL_NFS4:
5289		*valp = 1;
5290		return (0);
5291
5292	case _PC_ACL_PATH_MAX:
5293		*valp = ACL_MAX_ENTRIES;
5294		return (0);
5295
5296	default:
5297		return (EOPNOTSUPP);
5298	}
5299}
5300
5301/*ARGSUSED*/
5302static int
5303zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5304    caller_context_t *ct)
5305{
5306	znode_t *zp = VTOZ(vp);
5307	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5308	int error;
5309	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5310
5311	ZFS_ENTER(zfsvfs);
5312	ZFS_VERIFY_ZP(zp);
5313	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5314	ZFS_EXIT(zfsvfs);
5315
5316	return (error);
5317}
5318
5319/*ARGSUSED*/
5320int
5321zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5322    caller_context_t *ct)
5323{
5324	znode_t *zp = VTOZ(vp);
5325	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5326	int error;
5327	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5328	zilog_t	*zilog = zfsvfs->z_log;
5329
5330	ZFS_ENTER(zfsvfs);
5331	ZFS_VERIFY_ZP(zp);
5332
5333	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5334
5335	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5336		zil_commit(zilog, 0);
5337
5338	ZFS_EXIT(zfsvfs);
5339	return (error);
5340}
5341
5342#ifdef sun
5343/*
5344 * The smallest read we may consider to loan out an arcbuf.
5345 * This must be a power of 2.
5346 */
5347int zcr_blksz_min = (1 << 10);	/* 1K */
5348/*
5349 * If set to less than the file block size, allow loaning out of an
5350 * arcbuf for a partial block read.  This must be a power of 2.
5351 */
5352int zcr_blksz_max = (1 << 17);	/* 128K */
5353
5354/*ARGSUSED*/
5355static int
5356zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5357    caller_context_t *ct)
5358{
5359	znode_t	*zp = VTOZ(vp);
5360	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5361	int max_blksz = zfsvfs->z_max_blksz;
5362	uio_t *uio = &xuio->xu_uio;
5363	ssize_t size = uio->uio_resid;
5364	offset_t offset = uio->uio_loffset;
5365	int blksz;
5366	int fullblk, i;
5367	arc_buf_t *abuf;
5368	ssize_t maxsize;
5369	int preamble, postamble;
5370
5371	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5372		return (SET_ERROR(EINVAL));
5373
5374	ZFS_ENTER(zfsvfs);
5375	ZFS_VERIFY_ZP(zp);
5376	switch (ioflag) {
5377	case UIO_WRITE:
5378		/*
5379		 * Loan out an arc_buf for write if write size is bigger than
5380		 * max_blksz, and the file's block size is also max_blksz.
5381		 */
5382		blksz = max_blksz;
5383		if (size < blksz || zp->z_blksz != blksz) {
5384			ZFS_EXIT(zfsvfs);
5385			return (SET_ERROR(EINVAL));
5386		}
5387		/*
5388		 * Caller requests buffers for write before knowing where the
5389		 * write offset might be (e.g. NFS TCP write).
5390		 */
5391		if (offset == -1) {
5392			preamble = 0;
5393		} else {
5394			preamble = P2PHASE(offset, blksz);
5395			if (preamble) {
5396				preamble = blksz - preamble;
5397				size -= preamble;
5398			}
5399		}
5400
5401		postamble = P2PHASE(size, blksz);
5402		size -= postamble;
5403
5404		fullblk = size / blksz;
5405		(void) dmu_xuio_init(xuio,
5406		    (preamble != 0) + fullblk + (postamble != 0));
5407		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5408		    int, postamble, int,
5409		    (preamble != 0) + fullblk + (postamble != 0));
5410
5411		/*
5412		 * Have to fix iov base/len for partial buffers.  They
5413		 * currently represent full arc_buf's.
5414		 */
5415		if (preamble) {
5416			/* data begins in the middle of the arc_buf */
5417			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5418			    blksz);
5419			ASSERT(abuf);
5420			(void) dmu_xuio_add(xuio, abuf,
5421			    blksz - preamble, preamble);
5422		}
5423
5424		for (i = 0; i < fullblk; i++) {
5425			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5426			    blksz);
5427			ASSERT(abuf);
5428			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5429		}
5430
5431		if (postamble) {
5432			/* data ends in the middle of the arc_buf */
5433			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5434			    blksz);
5435			ASSERT(abuf);
5436			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5437		}
5438		break;
5439	case UIO_READ:
5440		/*
5441		 * Loan out an arc_buf for read if the read size is larger than
5442		 * the current file block size.  Block alignment is not
5443		 * considered.  Partial arc_buf will be loaned out for read.
5444		 */
5445		blksz = zp->z_blksz;
5446		if (blksz < zcr_blksz_min)
5447			blksz = zcr_blksz_min;
5448		if (blksz > zcr_blksz_max)
5449			blksz = zcr_blksz_max;
5450		/* avoid potential complexity of dealing with it */
5451		if (blksz > max_blksz) {
5452			ZFS_EXIT(zfsvfs);
5453			return (SET_ERROR(EINVAL));
5454		}
5455
5456		maxsize = zp->z_size - uio->uio_loffset;
5457		if (size > maxsize)
5458			size = maxsize;
5459
5460		if (size < blksz || vn_has_cached_data(vp)) {
5461			ZFS_EXIT(zfsvfs);
5462			return (SET_ERROR(EINVAL));
5463		}
5464		break;
5465	default:
5466		ZFS_EXIT(zfsvfs);
5467		return (SET_ERROR(EINVAL));
5468	}
5469
5470	uio->uio_extflg = UIO_XUIO;
5471	XUIO_XUZC_RW(xuio) = ioflag;
5472	ZFS_EXIT(zfsvfs);
5473	return (0);
5474}
5475
5476/*ARGSUSED*/
5477static int
5478zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5479{
5480	int i;
5481	arc_buf_t *abuf;
5482	int ioflag = XUIO_XUZC_RW(xuio);
5483
5484	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5485
5486	i = dmu_xuio_cnt(xuio);
5487	while (i-- > 0) {
5488		abuf = dmu_xuio_arcbuf(xuio, i);
5489		/*
5490		 * if abuf == NULL, it must be a write buffer
5491		 * that has been returned in zfs_write().
5492		 */
5493		if (abuf)
5494			dmu_return_arcbuf(abuf);
5495		ASSERT(abuf || ioflag == UIO_WRITE);
5496	}
5497
5498	dmu_xuio_fini(xuio);
5499	return (0);
5500}
5501
5502/*
5503 * Predeclare these here so that the compiler assumes that
5504 * this is an "old style" function declaration that does
5505 * not include arguments => we won't get type mismatch errors
5506 * in the initializations that follow.
5507 */
5508static int zfs_inval();
5509static int zfs_isdir();
5510
5511static int
5512zfs_inval()
5513{
5514	return (SET_ERROR(EINVAL));
5515}
5516
5517static int
5518zfs_isdir()
5519{
5520	return (SET_ERROR(EISDIR));
5521}
5522/*
5523 * Directory vnode operations template
5524 */
5525vnodeops_t *zfs_dvnodeops;
5526const fs_operation_def_t zfs_dvnodeops_template[] = {
5527	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5528	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5529	VOPNAME_READ,		{ .error = zfs_isdir },
5530	VOPNAME_WRITE,		{ .error = zfs_isdir },
5531	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5532	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5533	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5534	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5535	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5536	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5537	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5538	VOPNAME_LINK,		{ .vop_link = zfs_link },
5539	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5540	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5541	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5542	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5543	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5544	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5545	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5546	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5547	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5548	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5549	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5550	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5551	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5552	NULL,			NULL
5553};
5554
5555/*
5556 * Regular file vnode operations template
5557 */
5558vnodeops_t *zfs_fvnodeops;
5559const fs_operation_def_t zfs_fvnodeops_template[] = {
5560	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5561	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5562	VOPNAME_READ,		{ .vop_read = zfs_read },
5563	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5564	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5565	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5566	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5567	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5568	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5569	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5570	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5571	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5572	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5573	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5574	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5575	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5576	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5577	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5578	VOPNAME_MAP,		{ .vop_map = zfs_map },
5579	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5580	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5581	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5582	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5583	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5584	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5585	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5586	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5587	NULL,			NULL
5588};
5589
5590/*
5591 * Symbolic link vnode operations template
5592 */
5593vnodeops_t *zfs_symvnodeops;
5594const fs_operation_def_t zfs_symvnodeops_template[] = {
5595	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5596	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5597	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5598	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5599	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5600	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5601	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5602	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5603	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5604	NULL,			NULL
5605};
5606
5607/*
5608 * special share hidden files vnode operations template
5609 */
5610vnodeops_t *zfs_sharevnodeops;
5611const fs_operation_def_t zfs_sharevnodeops_template[] = {
5612	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5613	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5614	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5615	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5616	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5617	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5618	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5619	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5620	NULL,			NULL
5621};
5622
5623/*
5624 * Extended attribute directory vnode operations template
5625 *
5626 * This template is identical to the directory vnodes
5627 * operation template except for restricted operations:
5628 *	VOP_MKDIR()
5629 *	VOP_SYMLINK()
5630 *
5631 * Note that there are other restrictions embedded in:
5632 *	zfs_create()	- restrict type to VREG
5633 *	zfs_link()	- no links into/out of attribute space
5634 *	zfs_rename()	- no moves into/out of attribute space
5635 */
5636vnodeops_t *zfs_xdvnodeops;
5637const fs_operation_def_t zfs_xdvnodeops_template[] = {
5638	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5639	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5640	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5641	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5642	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5643	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5644	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5645	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5646	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5647	VOPNAME_LINK,		{ .vop_link = zfs_link },
5648	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5649	VOPNAME_MKDIR,		{ .error = zfs_inval },
5650	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5651	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5652	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5653	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5654	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5655	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5656	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5657	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5658	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5659	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5660	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5661	NULL,			NULL
5662};
5663
5664/*
5665 * Error vnode operations template
5666 */
5667vnodeops_t *zfs_evnodeops;
5668const fs_operation_def_t zfs_evnodeops_template[] = {
5669	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5670	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5671	NULL,			NULL
5672};
5673#endif	/* sun */
5674
5675static int
5676ioflags(int ioflags)
5677{
5678	int flags = 0;
5679
5680	if (ioflags & IO_APPEND)
5681		flags |= FAPPEND;
5682	if (ioflags & IO_NDELAY)
5683        	flags |= FNONBLOCK;
5684	if (ioflags & IO_SYNC)
5685		flags |= (FSYNC | FDSYNC | FRSYNC);
5686
5687	return (flags);
5688}
5689
5690static int
5691zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5692{
5693	znode_t *zp = VTOZ(vp);
5694	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5695	objset_t *os = zp->z_zfsvfs->z_os;
5696	vm_page_t mfirst, mlast, mreq;
5697	vm_object_t object;
5698	caddr_t va;
5699	struct sf_buf *sf;
5700	off_t startoff, endoff;
5701	int i, error;
5702	vm_pindex_t reqstart, reqend;
5703	int pcount, lsize, reqsize, size;
5704
5705	ZFS_ENTER(zfsvfs);
5706	ZFS_VERIFY_ZP(zp);
5707
5708	pcount = OFF_TO_IDX(round_page(count));
5709	mreq = m[reqpage];
5710	object = mreq->object;
5711	error = 0;
5712
5713	KASSERT(vp->v_object == object, ("mismatching object"));
5714
5715	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5716		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5717		reqstart = OFF_TO_IDX(round_page(startoff));
5718		if (reqstart < m[0]->pindex)
5719			reqstart = 0;
5720		else
5721			reqstart = reqstart - m[0]->pindex;
5722		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5723		    zp->z_blksz);
5724		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5725		if (reqend > m[pcount - 1]->pindex)
5726			reqend = m[pcount - 1]->pindex;
5727		reqsize = reqend - m[reqstart]->pindex + 1;
5728		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5729		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5730	} else {
5731		reqstart = reqpage;
5732		reqsize = 1;
5733	}
5734	mfirst = m[reqstart];
5735	mlast = m[reqstart + reqsize - 1];
5736
5737	zfs_vmobject_wlock(object);
5738
5739	for (i = 0; i < reqstart; i++) {
5740		vm_page_lock(m[i]);
5741		vm_page_free(m[i]);
5742		vm_page_unlock(m[i]);
5743	}
5744	for (i = reqstart + reqsize; i < pcount; i++) {
5745		vm_page_lock(m[i]);
5746		vm_page_free(m[i]);
5747		vm_page_unlock(m[i]);
5748	}
5749
5750	if (mreq->valid && reqsize == 1) {
5751		if (mreq->valid != VM_PAGE_BITS_ALL)
5752			vm_page_zero_invalid(mreq, TRUE);
5753		zfs_vmobject_wunlock(object);
5754		ZFS_EXIT(zfsvfs);
5755		return (zfs_vm_pagerret_ok);
5756	}
5757
5758	PCPU_INC(cnt.v_vnodein);
5759	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5760
5761	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5762		for (i = reqstart; i < reqstart + reqsize; i++) {
5763			if (i != reqpage) {
5764				vm_page_lock(m[i]);
5765				vm_page_free(m[i]);
5766				vm_page_unlock(m[i]);
5767			}
5768		}
5769		zfs_vmobject_wunlock(object);
5770		ZFS_EXIT(zfsvfs);
5771		return (zfs_vm_pagerret_bad);
5772	}
5773
5774	lsize = PAGE_SIZE;
5775	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5776		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5777
5778	zfs_vmobject_wunlock(object);
5779
5780	for (i = reqstart; i < reqstart + reqsize; i++) {
5781		size = PAGE_SIZE;
5782		if (i == (reqstart + reqsize - 1))
5783			size = lsize;
5784		va = zfs_map_page(m[i], &sf);
5785		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5786		    size, va, DMU_READ_PREFETCH);
5787		if (size != PAGE_SIZE)
5788			bzero(va + size, PAGE_SIZE - size);
5789		zfs_unmap_page(sf);
5790		if (error != 0)
5791			break;
5792	}
5793
5794	zfs_vmobject_wlock(object);
5795
5796	for (i = reqstart; i < reqstart + reqsize; i++) {
5797		if (!error)
5798			m[i]->valid = VM_PAGE_BITS_ALL;
5799		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5800		if (i != reqpage)
5801			vm_page_readahead_finish(m[i]);
5802	}
5803
5804	zfs_vmobject_wunlock(object);
5805
5806	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5807	ZFS_EXIT(zfsvfs);
5808	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5809}
5810
5811static int
5812zfs_freebsd_getpages(ap)
5813	struct vop_getpages_args /* {
5814		struct vnode *a_vp;
5815		vm_page_t *a_m;
5816		int a_count;
5817		int a_reqpage;
5818		vm_ooffset_t a_offset;
5819	} */ *ap;
5820{
5821
5822	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5823}
5824
5825static int
5826zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5827    int *rtvals)
5828{
5829	znode_t		*zp = VTOZ(vp);
5830	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5831	rl_t		*rl;
5832	dmu_tx_t	*tx;
5833	struct sf_buf	*sf;
5834	vm_object_t	object;
5835	vm_page_t	m;
5836	caddr_t		va;
5837	size_t		tocopy;
5838	size_t		lo_len;
5839	vm_ooffset_t	lo_off;
5840	vm_ooffset_t	off;
5841	uint_t		blksz;
5842	int		ncount;
5843	int		pcount;
5844	int		err;
5845	int		i;
5846
5847	ZFS_ENTER(zfsvfs);
5848	ZFS_VERIFY_ZP(zp);
5849
5850	object = vp->v_object;
5851	pcount = btoc(len);
5852	ncount = pcount;
5853
5854	KASSERT(ma[0]->object == object, ("mismatching object"));
5855	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5856
5857	for (i = 0; i < pcount; i++)
5858		rtvals[i] = zfs_vm_pagerret_error;
5859
5860	off = IDX_TO_OFF(ma[0]->pindex);
5861	blksz = zp->z_blksz;
5862	lo_off = rounddown(off, blksz);
5863	lo_len = roundup(len + (off - lo_off), blksz);
5864	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5865
5866	zfs_vmobject_wlock(object);
5867	if (len + off > object->un_pager.vnp.vnp_size) {
5868		if (object->un_pager.vnp.vnp_size > off) {
5869			int pgoff;
5870
5871			len = object->un_pager.vnp.vnp_size - off;
5872			ncount = btoc(len);
5873			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5874				/*
5875				 * If the object is locked and the following
5876				 * conditions hold, then the page's dirty
5877				 * field cannot be concurrently changed by a
5878				 * pmap operation.
5879				 */
5880				m = ma[ncount - 1];
5881				vm_page_assert_sbusied(m);
5882				KASSERT(!pmap_page_is_write_mapped(m),
5883				    ("zfs_putpages: page %p is not read-only", m));
5884				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5885				    pgoff);
5886			}
5887		} else {
5888			len = 0;
5889			ncount = 0;
5890		}
5891		if (ncount < pcount) {
5892			for (i = ncount; i < pcount; i++) {
5893				rtvals[i] = zfs_vm_pagerret_bad;
5894			}
5895		}
5896	}
5897	zfs_vmobject_wunlock(object);
5898
5899	if (ncount == 0)
5900		goto out;
5901
5902	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5903	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5904		goto out;
5905	}
5906
5907top:
5908	tx = dmu_tx_create(zfsvfs->z_os);
5909	dmu_tx_hold_write(tx, zp->z_id, off, len);
5910
5911	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5912	zfs_sa_upgrade_txholds(tx, zp);
5913	err = dmu_tx_assign(tx, TXG_NOWAIT);
5914	if (err != 0) {
5915		if (err == ERESTART) {
5916			dmu_tx_wait(tx);
5917			dmu_tx_abort(tx);
5918			goto top;
5919		}
5920		dmu_tx_abort(tx);
5921		goto out;
5922	}
5923
5924	if (zp->z_blksz < PAGE_SIZE) {
5925		i = 0;
5926		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5927			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5928			va = zfs_map_page(ma[i], &sf);
5929			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
5930			zfs_unmap_page(sf);
5931		}
5932	} else {
5933		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
5934	}
5935
5936	if (err == 0) {
5937		uint64_t mtime[2], ctime[2];
5938		sa_bulk_attr_t bulk[3];
5939		int count = 0;
5940
5941		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
5942		    &mtime, 16);
5943		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
5944		    &ctime, 16);
5945		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
5946		    &zp->z_pflags, 8);
5947		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
5948		    B_TRUE);
5949		(void)sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
5950		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
5951
5952		zfs_vmobject_wlock(object);
5953		for (i = 0; i < ncount; i++) {
5954			rtvals[i] = zfs_vm_pagerret_ok;
5955			vm_page_undirty(ma[i]);
5956		}
5957		zfs_vmobject_wunlock(object);
5958		PCPU_INC(cnt.v_vnodeout);
5959		PCPU_ADD(cnt.v_vnodepgsout, ncount);
5960	}
5961	dmu_tx_commit(tx);
5962
5963out:
5964	zfs_range_unlock(rl);
5965	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
5966	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5967		zil_commit(zfsvfs->z_log, zp->z_id);
5968	ZFS_EXIT(zfsvfs);
5969	return (rtvals[0]);
5970}
5971
5972int
5973zfs_freebsd_putpages(ap)
5974	struct vop_putpages_args /* {
5975		struct vnode *a_vp;
5976		vm_page_t *a_m;
5977		int a_count;
5978		int a_sync;
5979		int *a_rtvals;
5980		vm_ooffset_t a_offset;
5981	} */ *ap;
5982{
5983
5984	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
5985	    ap->a_rtvals));
5986}
5987
5988static int
5989zfs_freebsd_bmap(ap)
5990	struct vop_bmap_args /* {
5991		struct vnode *a_vp;
5992		daddr_t  a_bn;
5993		struct bufobj **a_bop;
5994		daddr_t *a_bnp;
5995		int *a_runp;
5996		int *a_runb;
5997	} */ *ap;
5998{
5999
6000	if (ap->a_bop != NULL)
6001		*ap->a_bop = &ap->a_vp->v_bufobj;
6002	if (ap->a_bnp != NULL)
6003		*ap->a_bnp = ap->a_bn;
6004	if (ap->a_runp != NULL)
6005		*ap->a_runp = 0;
6006	if (ap->a_runb != NULL)
6007		*ap->a_runb = 0;
6008
6009	return (0);
6010}
6011
6012static int
6013zfs_freebsd_open(ap)
6014	struct vop_open_args /* {
6015		struct vnode *a_vp;
6016		int a_mode;
6017		struct ucred *a_cred;
6018		struct thread *a_td;
6019	} */ *ap;
6020{
6021	vnode_t	*vp = ap->a_vp;
6022	znode_t *zp = VTOZ(vp);
6023	int error;
6024
6025	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
6026	if (error == 0)
6027		vnode_create_vobject(vp, zp->z_size, ap->a_td);
6028	return (error);
6029}
6030
6031static int
6032zfs_freebsd_close(ap)
6033	struct vop_close_args /* {
6034		struct vnode *a_vp;
6035		int  a_fflag;
6036		struct ucred *a_cred;
6037		struct thread *a_td;
6038	} */ *ap;
6039{
6040
6041	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
6042}
6043
6044static int
6045zfs_freebsd_ioctl(ap)
6046	struct vop_ioctl_args /* {
6047		struct vnode *a_vp;
6048		u_long a_command;
6049		caddr_t a_data;
6050		int a_fflag;
6051		struct ucred *cred;
6052		struct thread *td;
6053	} */ *ap;
6054{
6055
6056	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6057	    ap->a_fflag, ap->a_cred, NULL, NULL));
6058}
6059
6060static int
6061zfs_freebsd_read(ap)
6062	struct vop_read_args /* {
6063		struct vnode *a_vp;
6064		struct uio *a_uio;
6065		int a_ioflag;
6066		struct ucred *a_cred;
6067	} */ *ap;
6068{
6069
6070	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6071	    ap->a_cred, NULL));
6072}
6073
6074static int
6075zfs_freebsd_write(ap)
6076	struct vop_write_args /* {
6077		struct vnode *a_vp;
6078		struct uio *a_uio;
6079		int a_ioflag;
6080		struct ucred *a_cred;
6081	} */ *ap;
6082{
6083
6084	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6085	    ap->a_cred, NULL));
6086}
6087
6088static int
6089zfs_freebsd_access(ap)
6090	struct vop_access_args /* {
6091		struct vnode *a_vp;
6092		accmode_t a_accmode;
6093		struct ucred *a_cred;
6094		struct thread *a_td;
6095	} */ *ap;
6096{
6097	vnode_t *vp = ap->a_vp;
6098	znode_t *zp = VTOZ(vp);
6099	accmode_t accmode;
6100	int error = 0;
6101
6102	/*
6103	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6104	 */
6105	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6106	if (accmode != 0)
6107		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6108
6109	/*
6110	 * VADMIN has to be handled by vaccess().
6111	 */
6112	if (error == 0) {
6113		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6114		if (accmode != 0) {
6115			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6116			    zp->z_gid, accmode, ap->a_cred, NULL);
6117		}
6118	}
6119
6120	/*
6121	 * For VEXEC, ensure that at least one execute bit is set for
6122	 * non-directories.
6123	 */
6124	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6125	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6126		error = EACCES;
6127	}
6128
6129	return (error);
6130}
6131
6132static int
6133zfs_freebsd_lookup(ap)
6134	struct vop_lookup_args /* {
6135		struct vnode *a_dvp;
6136		struct vnode **a_vpp;
6137		struct componentname *a_cnp;
6138	} */ *ap;
6139{
6140	struct componentname *cnp = ap->a_cnp;
6141	char nm[NAME_MAX + 1];
6142
6143	ASSERT(cnp->cn_namelen < sizeof(nm));
6144	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6145
6146	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6147	    cnp->cn_cred, cnp->cn_thread, 0));
6148}
6149
6150static int
6151zfs_freebsd_create(ap)
6152	struct vop_create_args /* {
6153		struct vnode *a_dvp;
6154		struct vnode **a_vpp;
6155		struct componentname *a_cnp;
6156		struct vattr *a_vap;
6157	} */ *ap;
6158{
6159	struct componentname *cnp = ap->a_cnp;
6160	vattr_t *vap = ap->a_vap;
6161	int error, mode;
6162
6163	ASSERT(cnp->cn_flags & SAVENAME);
6164
6165	vattr_init_mask(vap);
6166	mode = vap->va_mode & ALLPERMS;
6167
6168	error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6169	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread);
6170#ifdef FREEBSD_NAMECACHE
6171	if (error == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
6172		cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
6173#endif
6174	return (error);
6175}
6176
6177static int
6178zfs_freebsd_remove(ap)
6179	struct vop_remove_args /* {
6180		struct vnode *a_dvp;
6181		struct vnode *a_vp;
6182		struct componentname *a_cnp;
6183	} */ *ap;
6184{
6185
6186	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6187
6188	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6189	    ap->a_cnp->cn_cred, NULL, 0));
6190}
6191
6192static int
6193zfs_freebsd_mkdir(ap)
6194	struct vop_mkdir_args /* {
6195		struct vnode *a_dvp;
6196		struct vnode **a_vpp;
6197		struct componentname *a_cnp;
6198		struct vattr *a_vap;
6199	} */ *ap;
6200{
6201	vattr_t *vap = ap->a_vap;
6202
6203	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6204
6205	vattr_init_mask(vap);
6206
6207	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6208	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6209}
6210
6211static int
6212zfs_freebsd_rmdir(ap)
6213	struct vop_rmdir_args /* {
6214		struct vnode *a_dvp;
6215		struct vnode *a_vp;
6216		struct componentname *a_cnp;
6217	} */ *ap;
6218{
6219	struct componentname *cnp = ap->a_cnp;
6220
6221	ASSERT(cnp->cn_flags & SAVENAME);
6222
6223	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6224}
6225
6226static int
6227zfs_freebsd_readdir(ap)
6228	struct vop_readdir_args /* {
6229		struct vnode *a_vp;
6230		struct uio *a_uio;
6231		struct ucred *a_cred;
6232		int *a_eofflag;
6233		int *a_ncookies;
6234		u_long **a_cookies;
6235	} */ *ap;
6236{
6237
6238	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6239	    ap->a_ncookies, ap->a_cookies));
6240}
6241
6242static int
6243zfs_freebsd_fsync(ap)
6244	struct vop_fsync_args /* {
6245		struct vnode *a_vp;
6246		int a_waitfor;
6247		struct thread *a_td;
6248	} */ *ap;
6249{
6250
6251	vop_stdfsync(ap);
6252	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6253}
6254
6255static int
6256zfs_freebsd_getattr(ap)
6257	struct vop_getattr_args /* {
6258		struct vnode *a_vp;
6259		struct vattr *a_vap;
6260		struct ucred *a_cred;
6261	} */ *ap;
6262{
6263	vattr_t *vap = ap->a_vap;
6264	xvattr_t xvap;
6265	u_long fflags = 0;
6266	int error;
6267
6268	xva_init(&xvap);
6269	xvap.xva_vattr = *vap;
6270	xvap.xva_vattr.va_mask |= AT_XVATTR;
6271
6272	/* Convert chflags into ZFS-type flags. */
6273	/* XXX: what about SF_SETTABLE?. */
6274	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6275	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6276	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6277	XVA_SET_REQ(&xvap, XAT_NODUMP);
6278	XVA_SET_REQ(&xvap, XAT_READONLY);
6279	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6280	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6281	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6282	XVA_SET_REQ(&xvap, XAT_REPARSE);
6283	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6284	XVA_SET_REQ(&xvap, XAT_SPARSE);
6285
6286	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6287	if (error != 0)
6288		return (error);
6289
6290	/* Convert ZFS xattr into chflags. */
6291#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6292	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6293		fflags |= (fflag);					\
6294} while (0)
6295	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6296	    xvap.xva_xoptattrs.xoa_immutable);
6297	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6298	    xvap.xva_xoptattrs.xoa_appendonly);
6299	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6300	    xvap.xva_xoptattrs.xoa_nounlink);
6301	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6302	    xvap.xva_xoptattrs.xoa_archive);
6303	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6304	    xvap.xva_xoptattrs.xoa_nodump);
6305	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6306	    xvap.xva_xoptattrs.xoa_readonly);
6307	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6308	    xvap.xva_xoptattrs.xoa_system);
6309	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6310	    xvap.xva_xoptattrs.xoa_hidden);
6311	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6312	    xvap.xva_xoptattrs.xoa_reparse);
6313	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6314	    xvap.xva_xoptattrs.xoa_offline);
6315	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6316	    xvap.xva_xoptattrs.xoa_sparse);
6317
6318#undef	FLAG_CHECK
6319	*vap = xvap.xva_vattr;
6320	vap->va_flags = fflags;
6321	return (0);
6322}
6323
6324static int
6325zfs_freebsd_setattr(ap)
6326	struct vop_setattr_args /* {
6327		struct vnode *a_vp;
6328		struct vattr *a_vap;
6329		struct ucred *a_cred;
6330	} */ *ap;
6331{
6332	vnode_t *vp = ap->a_vp;
6333	vattr_t *vap = ap->a_vap;
6334	cred_t *cred = ap->a_cred;
6335	xvattr_t xvap;
6336	u_long fflags;
6337	uint64_t zflags;
6338
6339	vattr_init_mask(vap);
6340	vap->va_mask &= ~AT_NOSET;
6341
6342	xva_init(&xvap);
6343	xvap.xva_vattr = *vap;
6344
6345	zflags = VTOZ(vp)->z_pflags;
6346
6347	if (vap->va_flags != VNOVAL) {
6348		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6349		int error;
6350
6351		if (zfsvfs->z_use_fuids == B_FALSE)
6352			return (EOPNOTSUPP);
6353
6354		fflags = vap->va_flags;
6355		/*
6356		 * XXX KDM
6357		 * We need to figure out whether it makes sense to allow
6358		 * UF_REPARSE through, since we don't really have other
6359		 * facilities to handle reparse points and zfs_setattr()
6360		 * doesn't currently allow setting that attribute anyway.
6361		 */
6362		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6363		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6364		     UF_OFFLINE|UF_SPARSE)) != 0)
6365			return (EOPNOTSUPP);
6366		/*
6367		 * Unprivileged processes are not permitted to unset system
6368		 * flags, or modify flags if any system flags are set.
6369		 * Privileged non-jail processes may not modify system flags
6370		 * if securelevel > 0 and any existing system flags are set.
6371		 * Privileged jail processes behave like privileged non-jail
6372		 * processes if the security.jail.chflags_allowed sysctl is
6373		 * is non-zero; otherwise, they behave like unprivileged
6374		 * processes.
6375		 */
6376		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6377		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6378			if (zflags &
6379			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6380				error = securelevel_gt(cred, 0);
6381				if (error != 0)
6382					return (error);
6383			}
6384		} else {
6385			/*
6386			 * Callers may only modify the file flags on objects they
6387			 * have VADMIN rights for.
6388			 */
6389			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6390				return (error);
6391			if (zflags &
6392			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6393				return (EPERM);
6394			}
6395			if (fflags &
6396			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6397				return (EPERM);
6398			}
6399		}
6400
6401#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6402	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6403	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6404		XVA_SET_REQ(&xvap, (xflag));				\
6405		(xfield) = ((fflags & (fflag)) != 0);			\
6406	}								\
6407} while (0)
6408		/* Convert chflags into ZFS-type flags. */
6409		/* XXX: what about SF_SETTABLE?. */
6410		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6411		    xvap.xva_xoptattrs.xoa_immutable);
6412		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6413		    xvap.xva_xoptattrs.xoa_appendonly);
6414		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6415		    xvap.xva_xoptattrs.xoa_nounlink);
6416		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6417		    xvap.xva_xoptattrs.xoa_archive);
6418		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6419		    xvap.xva_xoptattrs.xoa_nodump);
6420		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6421		    xvap.xva_xoptattrs.xoa_readonly);
6422		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6423		    xvap.xva_xoptattrs.xoa_system);
6424		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6425		    xvap.xva_xoptattrs.xoa_hidden);
6426		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6427		    xvap.xva_xoptattrs.xoa_hidden);
6428		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6429		    xvap.xva_xoptattrs.xoa_offline);
6430		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6431		    xvap.xva_xoptattrs.xoa_sparse);
6432#undef	FLAG_CHANGE
6433	}
6434	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6435}
6436
6437static int
6438zfs_freebsd_rename(ap)
6439	struct vop_rename_args  /* {
6440		struct vnode *a_fdvp;
6441		struct vnode *a_fvp;
6442		struct componentname *a_fcnp;
6443		struct vnode *a_tdvp;
6444		struct vnode *a_tvp;
6445		struct componentname *a_tcnp;
6446	} */ *ap;
6447{
6448	vnode_t *fdvp = ap->a_fdvp;
6449	vnode_t *fvp = ap->a_fvp;
6450	vnode_t *tdvp = ap->a_tdvp;
6451	vnode_t *tvp = ap->a_tvp;
6452	int error;
6453
6454	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6455	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6456
6457	/*
6458	 * Check for cross-device rename.
6459	 */
6460	if ((fdvp->v_mount != tdvp->v_mount) ||
6461	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6462		error = EXDEV;
6463	else
6464		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6465		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6466	if (tdvp == tvp)
6467		VN_RELE(tdvp);
6468	else
6469		VN_URELE(tdvp);
6470	if (tvp)
6471		VN_URELE(tvp);
6472	VN_RELE(fdvp);
6473	VN_RELE(fvp);
6474
6475	return (error);
6476}
6477
6478static int
6479zfs_freebsd_symlink(ap)
6480	struct vop_symlink_args /* {
6481		struct vnode *a_dvp;
6482		struct vnode **a_vpp;
6483		struct componentname *a_cnp;
6484		struct vattr *a_vap;
6485		char *a_target;
6486	} */ *ap;
6487{
6488	struct componentname *cnp = ap->a_cnp;
6489	vattr_t *vap = ap->a_vap;
6490
6491	ASSERT(cnp->cn_flags & SAVENAME);
6492
6493	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6494	vattr_init_mask(vap);
6495
6496	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6497	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6498}
6499
6500static int
6501zfs_freebsd_readlink(ap)
6502	struct vop_readlink_args /* {
6503		struct vnode *a_vp;
6504		struct uio *a_uio;
6505		struct ucred *a_cred;
6506	} */ *ap;
6507{
6508
6509	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6510}
6511
6512static int
6513zfs_freebsd_link(ap)
6514	struct vop_link_args /* {
6515		struct vnode *a_tdvp;
6516		struct vnode *a_vp;
6517		struct componentname *a_cnp;
6518	} */ *ap;
6519{
6520	struct componentname *cnp = ap->a_cnp;
6521	vnode_t *vp = ap->a_vp;
6522	vnode_t *tdvp = ap->a_tdvp;
6523
6524	if (tdvp->v_mount != vp->v_mount)
6525		return (EXDEV);
6526
6527	ASSERT(cnp->cn_flags & SAVENAME);
6528
6529	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6530}
6531
6532static int
6533zfs_freebsd_inactive(ap)
6534	struct vop_inactive_args /* {
6535		struct vnode *a_vp;
6536		struct thread *a_td;
6537	} */ *ap;
6538{
6539	vnode_t *vp = ap->a_vp;
6540
6541	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6542	return (0);
6543}
6544
6545static int
6546zfs_freebsd_reclaim(ap)
6547	struct vop_reclaim_args /* {
6548		struct vnode *a_vp;
6549		struct thread *a_td;
6550	} */ *ap;
6551{
6552	vnode_t	*vp = ap->a_vp;
6553	znode_t	*zp = VTOZ(vp);
6554	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6555
6556	ASSERT(zp != NULL);
6557
6558	/* Destroy the vm object and flush associated pages. */
6559	vnode_destroy_vobject(vp);
6560
6561	/*
6562	 * z_teardown_inactive_lock protects from a race with
6563	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6564	 * force unmount.
6565	 */
6566	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6567	if (zp->z_sa_hdl == NULL)
6568		zfs_znode_free(zp);
6569	else
6570		zfs_zinactive(zp);
6571	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6572
6573	vp->v_data = NULL;
6574	return (0);
6575}
6576
6577static int
6578zfs_freebsd_fid(ap)
6579	struct vop_fid_args /* {
6580		struct vnode *a_vp;
6581		struct fid *a_fid;
6582	} */ *ap;
6583{
6584
6585	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6586}
6587
6588static int
6589zfs_freebsd_pathconf(ap)
6590	struct vop_pathconf_args /* {
6591		struct vnode *a_vp;
6592		int a_name;
6593		register_t *a_retval;
6594	} */ *ap;
6595{
6596	ulong_t val;
6597	int error;
6598
6599	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6600	if (error == 0)
6601		*ap->a_retval = val;
6602	else if (error == EOPNOTSUPP)
6603		error = vop_stdpathconf(ap);
6604	return (error);
6605}
6606
6607static int
6608zfs_freebsd_fifo_pathconf(ap)
6609	struct vop_pathconf_args /* {
6610		struct vnode *a_vp;
6611		int a_name;
6612		register_t *a_retval;
6613	} */ *ap;
6614{
6615
6616	switch (ap->a_name) {
6617	case _PC_ACL_EXTENDED:
6618	case _PC_ACL_NFS4:
6619	case _PC_ACL_PATH_MAX:
6620	case _PC_MAC_PRESENT:
6621		return (zfs_freebsd_pathconf(ap));
6622	default:
6623		return (fifo_specops.vop_pathconf(ap));
6624	}
6625}
6626
6627/*
6628 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6629 * extended attribute name:
6630 *
6631 *	NAMESPACE	PREFIX
6632 *	system		freebsd:system:
6633 *	user		(none, can be used to access ZFS fsattr(5) attributes
6634 *			created on Solaris)
6635 */
6636static int
6637zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6638    size_t size)
6639{
6640	const char *namespace, *prefix, *suffix;
6641
6642	/* We don't allow '/' character in attribute name. */
6643	if (strchr(name, '/') != NULL)
6644		return (EINVAL);
6645	/* We don't allow attribute names that start with "freebsd:" string. */
6646	if (strncmp(name, "freebsd:", 8) == 0)
6647		return (EINVAL);
6648
6649	bzero(attrname, size);
6650
6651	switch (attrnamespace) {
6652	case EXTATTR_NAMESPACE_USER:
6653#if 0
6654		prefix = "freebsd:";
6655		namespace = EXTATTR_NAMESPACE_USER_STRING;
6656		suffix = ":";
6657#else
6658		/*
6659		 * This is the default namespace by which we can access all
6660		 * attributes created on Solaris.
6661		 */
6662		prefix = namespace = suffix = "";
6663#endif
6664		break;
6665	case EXTATTR_NAMESPACE_SYSTEM:
6666		prefix = "freebsd:";
6667		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6668		suffix = ":";
6669		break;
6670	case EXTATTR_NAMESPACE_EMPTY:
6671	default:
6672		return (EINVAL);
6673	}
6674	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6675	    name) >= size) {
6676		return (ENAMETOOLONG);
6677	}
6678	return (0);
6679}
6680
6681/*
6682 * Vnode operating to retrieve a named extended attribute.
6683 */
6684static int
6685zfs_getextattr(struct vop_getextattr_args *ap)
6686/*
6687vop_getextattr {
6688	IN struct vnode *a_vp;
6689	IN int a_attrnamespace;
6690	IN const char *a_name;
6691	INOUT struct uio *a_uio;
6692	OUT size_t *a_size;
6693	IN struct ucred *a_cred;
6694	IN struct thread *a_td;
6695};
6696*/
6697{
6698	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6699	struct thread *td = ap->a_td;
6700	struct nameidata nd;
6701	char attrname[255];
6702	struct vattr va;
6703	vnode_t *xvp = NULL, *vp;
6704	int error, flags;
6705
6706	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6707	    ap->a_cred, ap->a_td, VREAD);
6708	if (error != 0)
6709		return (error);
6710
6711	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6712	    sizeof(attrname));
6713	if (error != 0)
6714		return (error);
6715
6716	ZFS_ENTER(zfsvfs);
6717
6718	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6719	    LOOKUP_XATTR);
6720	if (error != 0) {
6721		ZFS_EXIT(zfsvfs);
6722		return (error);
6723	}
6724
6725	flags = FREAD;
6726	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6727	    xvp, td);
6728	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6729	vp = nd.ni_vp;
6730	NDFREE(&nd, NDF_ONLY_PNBUF);
6731	if (error != 0) {
6732		ZFS_EXIT(zfsvfs);
6733		if (error == ENOENT)
6734			error = ENOATTR;
6735		return (error);
6736	}
6737
6738	if (ap->a_size != NULL) {
6739		error = VOP_GETATTR(vp, &va, ap->a_cred);
6740		if (error == 0)
6741			*ap->a_size = (size_t)va.va_size;
6742	} else if (ap->a_uio != NULL)
6743		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6744
6745	VOP_UNLOCK(vp, 0);
6746	vn_close(vp, flags, ap->a_cred, td);
6747	ZFS_EXIT(zfsvfs);
6748
6749	return (error);
6750}
6751
6752/*
6753 * Vnode operation to remove a named attribute.
6754 */
6755int
6756zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6757/*
6758vop_deleteextattr {
6759	IN struct vnode *a_vp;
6760	IN int a_attrnamespace;
6761	IN const char *a_name;
6762	IN struct ucred *a_cred;
6763	IN struct thread *a_td;
6764};
6765*/
6766{
6767	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6768	struct thread *td = ap->a_td;
6769	struct nameidata nd;
6770	char attrname[255];
6771	struct vattr va;
6772	vnode_t *xvp = NULL, *vp;
6773	int error, flags;
6774
6775	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6776	    ap->a_cred, ap->a_td, VWRITE);
6777	if (error != 0)
6778		return (error);
6779
6780	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6781	    sizeof(attrname));
6782	if (error != 0)
6783		return (error);
6784
6785	ZFS_ENTER(zfsvfs);
6786
6787	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6788	    LOOKUP_XATTR);
6789	if (error != 0) {
6790		ZFS_EXIT(zfsvfs);
6791		return (error);
6792	}
6793
6794	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6795	    UIO_SYSSPACE, attrname, xvp, td);
6796	error = namei(&nd);
6797	vp = nd.ni_vp;
6798	if (error != 0) {
6799		ZFS_EXIT(zfsvfs);
6800		NDFREE(&nd, NDF_ONLY_PNBUF);
6801		if (error == ENOENT)
6802			error = ENOATTR;
6803		return (error);
6804	}
6805
6806	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6807	NDFREE(&nd, NDF_ONLY_PNBUF);
6808
6809	vput(nd.ni_dvp);
6810	if (vp == nd.ni_dvp)
6811		vrele(vp);
6812	else
6813		vput(vp);
6814	ZFS_EXIT(zfsvfs);
6815
6816	return (error);
6817}
6818
6819/*
6820 * Vnode operation to set a named attribute.
6821 */
6822static int
6823zfs_setextattr(struct vop_setextattr_args *ap)
6824/*
6825vop_setextattr {
6826	IN struct vnode *a_vp;
6827	IN int a_attrnamespace;
6828	IN const char *a_name;
6829	INOUT struct uio *a_uio;
6830	IN struct ucred *a_cred;
6831	IN struct thread *a_td;
6832};
6833*/
6834{
6835	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6836	struct thread *td = ap->a_td;
6837	struct nameidata nd;
6838	char attrname[255];
6839	struct vattr va;
6840	vnode_t *xvp = NULL, *vp;
6841	int error, flags;
6842
6843	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6844	    ap->a_cred, ap->a_td, VWRITE);
6845	if (error != 0)
6846		return (error);
6847
6848	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6849	    sizeof(attrname));
6850	if (error != 0)
6851		return (error);
6852
6853	ZFS_ENTER(zfsvfs);
6854
6855	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6856	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6857	if (error != 0) {
6858		ZFS_EXIT(zfsvfs);
6859		return (error);
6860	}
6861
6862	flags = FFLAGS(O_WRONLY | O_CREAT);
6863	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6864	    xvp, td);
6865	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6866	vp = nd.ni_vp;
6867	NDFREE(&nd, NDF_ONLY_PNBUF);
6868	if (error != 0) {
6869		ZFS_EXIT(zfsvfs);
6870		return (error);
6871	}
6872
6873	VATTR_NULL(&va);
6874	va.va_size = 0;
6875	error = VOP_SETATTR(vp, &va, ap->a_cred);
6876	if (error == 0)
6877		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6878
6879	VOP_UNLOCK(vp, 0);
6880	vn_close(vp, flags, ap->a_cred, td);
6881	ZFS_EXIT(zfsvfs);
6882
6883	return (error);
6884}
6885
6886/*
6887 * Vnode operation to retrieve extended attributes on a vnode.
6888 */
6889static int
6890zfs_listextattr(struct vop_listextattr_args *ap)
6891/*
6892vop_listextattr {
6893	IN struct vnode *a_vp;
6894	IN int a_attrnamespace;
6895	INOUT struct uio *a_uio;
6896	OUT size_t *a_size;
6897	IN struct ucred *a_cred;
6898	IN struct thread *a_td;
6899};
6900*/
6901{
6902	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6903	struct thread *td = ap->a_td;
6904	struct nameidata nd;
6905	char attrprefix[16];
6906	u_char dirbuf[sizeof(struct dirent)];
6907	struct dirent *dp;
6908	struct iovec aiov;
6909	struct uio auio, *uio = ap->a_uio;
6910	size_t *sizep = ap->a_size;
6911	size_t plen;
6912	vnode_t *xvp = NULL, *vp;
6913	int done, error, eof, pos;
6914
6915	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6916	    ap->a_cred, ap->a_td, VREAD);
6917	if (error != 0)
6918		return (error);
6919
6920	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6921	    sizeof(attrprefix));
6922	if (error != 0)
6923		return (error);
6924	plen = strlen(attrprefix);
6925
6926	ZFS_ENTER(zfsvfs);
6927
6928	if (sizep != NULL)
6929		*sizep = 0;
6930
6931	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6932	    LOOKUP_XATTR);
6933	if (error != 0) {
6934		ZFS_EXIT(zfsvfs);
6935		/*
6936		 * ENOATTR means that the EA directory does not yet exist,
6937		 * i.e. there are no extended attributes there.
6938		 */
6939		if (error == ENOATTR)
6940			error = 0;
6941		return (error);
6942	}
6943
6944	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6945	    UIO_SYSSPACE, ".", xvp, td);
6946	error = namei(&nd);
6947	vp = nd.ni_vp;
6948	NDFREE(&nd, NDF_ONLY_PNBUF);
6949	if (error != 0) {
6950		ZFS_EXIT(zfsvfs);
6951		return (error);
6952	}
6953
6954	auio.uio_iov = &aiov;
6955	auio.uio_iovcnt = 1;
6956	auio.uio_segflg = UIO_SYSSPACE;
6957	auio.uio_td = td;
6958	auio.uio_rw = UIO_READ;
6959	auio.uio_offset = 0;
6960
6961	do {
6962		u_char nlen;
6963
6964		aiov.iov_base = (void *)dirbuf;
6965		aiov.iov_len = sizeof(dirbuf);
6966		auio.uio_resid = sizeof(dirbuf);
6967		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6968		done = sizeof(dirbuf) - auio.uio_resid;
6969		if (error != 0)
6970			break;
6971		for (pos = 0; pos < done;) {
6972			dp = (struct dirent *)(dirbuf + pos);
6973			pos += dp->d_reclen;
6974			/*
6975			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6976			 * is what we get when attribute was created on Solaris.
6977			 */
6978			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6979				continue;
6980			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6981				continue;
6982			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6983				continue;
6984			nlen = dp->d_namlen - plen;
6985			if (sizep != NULL)
6986				*sizep += 1 + nlen;
6987			else if (uio != NULL) {
6988				/*
6989				 * Format of extattr name entry is one byte for
6990				 * length and the rest for name.
6991				 */
6992				error = uiomove(&nlen, 1, uio->uio_rw, uio);
6993				if (error == 0) {
6994					error = uiomove(dp->d_name + plen, nlen,
6995					    uio->uio_rw, uio);
6996				}
6997				if (error != 0)
6998					break;
6999			}
7000		}
7001	} while (!eof && error == 0);
7002
7003	vput(vp);
7004	ZFS_EXIT(zfsvfs);
7005
7006	return (error);
7007}
7008
7009int
7010zfs_freebsd_getacl(ap)
7011	struct vop_getacl_args /* {
7012		struct vnode *vp;
7013		acl_type_t type;
7014		struct acl *aclp;
7015		struct ucred *cred;
7016		struct thread *td;
7017	} */ *ap;
7018{
7019	int		error;
7020	vsecattr_t      vsecattr;
7021
7022	if (ap->a_type != ACL_TYPE_NFS4)
7023		return (EINVAL);
7024
7025	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
7026	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
7027		return (error);
7028
7029	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
7030	if (vsecattr.vsa_aclentp != NULL)
7031		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
7032
7033	return (error);
7034}
7035
7036int
7037zfs_freebsd_setacl(ap)
7038	struct vop_setacl_args /* {
7039		struct vnode *vp;
7040		acl_type_t type;
7041		struct acl *aclp;
7042		struct ucred *cred;
7043		struct thread *td;
7044	} */ *ap;
7045{
7046	int		error;
7047	vsecattr_t      vsecattr;
7048	int		aclbsize;	/* size of acl list in bytes */
7049	aclent_t	*aaclp;
7050
7051	if (ap->a_type != ACL_TYPE_NFS4)
7052		return (EINVAL);
7053
7054	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7055		return (EINVAL);
7056
7057	/*
7058	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7059	 * splitting every entry into two and appending "canonical six"
7060	 * entries at the end.  Don't allow for setting an ACL that would
7061	 * cause chmod(2) to run out of ACL entries.
7062	 */
7063	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7064		return (ENOSPC);
7065
7066	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7067	if (error != 0)
7068		return (error);
7069
7070	vsecattr.vsa_mask = VSA_ACE;
7071	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7072	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7073	aaclp = vsecattr.vsa_aclentp;
7074	vsecattr.vsa_aclentsz = aclbsize;
7075
7076	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7077	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7078	kmem_free(aaclp, aclbsize);
7079
7080	return (error);
7081}
7082
7083int
7084zfs_freebsd_aclcheck(ap)
7085	struct vop_aclcheck_args /* {
7086		struct vnode *vp;
7087		acl_type_t type;
7088		struct acl *aclp;
7089		struct ucred *cred;
7090		struct thread *td;
7091	} */ *ap;
7092{
7093
7094	return (EOPNOTSUPP);
7095}
7096
7097struct vop_vector zfs_vnodeops;
7098struct vop_vector zfs_fifoops;
7099struct vop_vector zfs_shareops;
7100
7101struct vop_vector zfs_vnodeops = {
7102	.vop_default =		&default_vnodeops,
7103	.vop_inactive =		zfs_freebsd_inactive,
7104	.vop_reclaim =		zfs_freebsd_reclaim,
7105	.vop_access =		zfs_freebsd_access,
7106#ifdef FREEBSD_NAMECACHE
7107	.vop_lookup =		vfs_cache_lookup,
7108	.vop_cachedlookup =	zfs_freebsd_lookup,
7109#else
7110	.vop_lookup =		zfs_freebsd_lookup,
7111#endif
7112	.vop_getattr =		zfs_freebsd_getattr,
7113	.vop_setattr =		zfs_freebsd_setattr,
7114	.vop_create =		zfs_freebsd_create,
7115	.vop_mknod =		zfs_freebsd_create,
7116	.vop_mkdir =		zfs_freebsd_mkdir,
7117	.vop_readdir =		zfs_freebsd_readdir,
7118	.vop_fsync =		zfs_freebsd_fsync,
7119	.vop_open =		zfs_freebsd_open,
7120	.vop_close =		zfs_freebsd_close,
7121	.vop_rmdir =		zfs_freebsd_rmdir,
7122	.vop_ioctl =		zfs_freebsd_ioctl,
7123	.vop_link =		zfs_freebsd_link,
7124	.vop_symlink =		zfs_freebsd_symlink,
7125	.vop_readlink =		zfs_freebsd_readlink,
7126	.vop_read =		zfs_freebsd_read,
7127	.vop_write =		zfs_freebsd_write,
7128	.vop_remove =		zfs_freebsd_remove,
7129	.vop_rename =		zfs_freebsd_rename,
7130	.vop_pathconf =		zfs_freebsd_pathconf,
7131	.vop_bmap =		zfs_freebsd_bmap,
7132	.vop_fid =		zfs_freebsd_fid,
7133	.vop_getextattr =	zfs_getextattr,
7134	.vop_deleteextattr =	zfs_deleteextattr,
7135	.vop_setextattr =	zfs_setextattr,
7136	.vop_listextattr =	zfs_listextattr,
7137	.vop_getacl =		zfs_freebsd_getacl,
7138	.vop_setacl =		zfs_freebsd_setacl,
7139	.vop_aclcheck =		zfs_freebsd_aclcheck,
7140	.vop_getpages =		zfs_freebsd_getpages,
7141	.vop_putpages =		zfs_freebsd_putpages,
7142};
7143
7144struct vop_vector zfs_fifoops = {
7145	.vop_default =		&fifo_specops,
7146	.vop_fsync =		zfs_freebsd_fsync,
7147	.vop_access =		zfs_freebsd_access,
7148	.vop_getattr =		zfs_freebsd_getattr,
7149	.vop_inactive =		zfs_freebsd_inactive,
7150	.vop_read =		VOP_PANIC,
7151	.vop_reclaim =		zfs_freebsd_reclaim,
7152	.vop_setattr =		zfs_freebsd_setattr,
7153	.vop_write =		VOP_PANIC,
7154	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7155	.vop_fid =		zfs_freebsd_fid,
7156	.vop_getacl =		zfs_freebsd_getacl,
7157	.vop_setacl =		zfs_freebsd_setacl,
7158	.vop_aclcheck =		zfs_freebsd_aclcheck,
7159};
7160
7161/*
7162 * special share hidden files vnode operations template
7163 */
7164struct vop_vector zfs_shareops = {
7165	.vop_default =		&default_vnodeops,
7166	.vop_access =		zfs_freebsd_access,
7167	.vop_inactive =		zfs_freebsd_inactive,
7168	.vop_reclaim =		zfs_freebsd_reclaim,
7169	.vop_fid =		zfs_freebsd_fid,
7170	.vop_pathconf =		zfs_freebsd_pathconf,
7171};
7172