zfs_vnops.c revision 276899
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	if (error == ESRCH)
270		return (SET_ERROR(ENXIO));
271
272	/*
273	 * We could find a hole that begins after the logical end-of-file,
274	 * because dmu_offset_next() only works on whole blocks.  If the
275	 * EOF falls mid-block, then indicate that the "virtual hole"
276	 * at the end of the file begins at the logical EOF, rather than
277	 * at the end of the last block.
278	 */
279	if (noff > file_sz) {
280		ASSERT(hole);
281		noff = file_sz;
282	}
283
284	if (noff < *off)
285		return (error);
286	*off = noff;
287	return (error);
288}
289
290/* ARGSUSED */
291static int
292zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
293    int *rvalp, caller_context_t *ct)
294{
295	offset_t off;
296	int error;
297	zfsvfs_t *zfsvfs;
298	znode_t *zp;
299
300	switch (com) {
301	case _FIOFFS:
302		return (0);
303
304		/*
305		 * The following two ioctls are used by bfu.  Faking out,
306		 * necessary to avoid bfu errors.
307		 */
308	case _FIOGDIO:
309	case _FIOSDIO:
310		return (0);
311
312	case _FIO_SEEK_DATA:
313	case _FIO_SEEK_HOLE:
314#ifdef sun
315		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
316			return (SET_ERROR(EFAULT));
317#else
318		off = *(offset_t *)data;
319#endif
320		zp = VTOZ(vp);
321		zfsvfs = zp->z_zfsvfs;
322		ZFS_ENTER(zfsvfs);
323		ZFS_VERIFY_ZP(zp);
324
325		/* offset parameter is in/out */
326		error = zfs_holey(vp, com, &off);
327		ZFS_EXIT(zfsvfs);
328		if (error)
329			return (error);
330#ifdef sun
331		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
332			return (SET_ERROR(EFAULT));
333#else
334		*(offset_t *)data = off;
335#endif
336		return (0);
337	}
338	return (SET_ERROR(ENOTTY));
339}
340
341static vm_page_t
342page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
343{
344	vm_object_t obj;
345	vm_page_t pp;
346	int64_t end;
347
348	/*
349	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
350	 * aligned boundaries, if the range is not aligned.  As a result a
351	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
352	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
353	 * the whole page would be considred clean despite have some dirty data.
354	 * For this reason we should shrink the range to DEV_BSIZE aligned
355	 * boundaries before calling vm_page_clear_dirty.
356	 */
357	end = rounddown2(off + nbytes, DEV_BSIZE);
358	off = roundup2(off, DEV_BSIZE);
359	nbytes = end - off;
360
361	obj = vp->v_object;
362	zfs_vmobject_assert_wlocked(obj);
363
364	for (;;) {
365		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
366		    pp->valid) {
367			if (vm_page_xbusied(pp)) {
368				/*
369				 * Reference the page before unlocking and
370				 * sleeping so that the page daemon is less
371				 * likely to reclaim it.
372				 */
373				vm_page_reference(pp);
374				vm_page_lock(pp);
375				zfs_vmobject_wunlock(obj);
376				vm_page_busy_sleep(pp, "zfsmwb");
377				zfs_vmobject_wlock(obj);
378				continue;
379			}
380			vm_page_sbusy(pp);
381		} else if (pp == NULL) {
382			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
383			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
384			    VM_ALLOC_SBUSY);
385		} else {
386			ASSERT(pp != NULL && !pp->valid);
387			pp = NULL;
388		}
389
390		if (pp != NULL) {
391			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
392			vm_object_pip_add(obj, 1);
393			pmap_remove_write(pp);
394			if (nbytes != 0)
395				vm_page_clear_dirty(pp, off, nbytes);
396		}
397		break;
398	}
399	return (pp);
400}
401
402static void
403page_unbusy(vm_page_t pp)
404{
405
406	vm_page_sunbusy(pp);
407	vm_object_pip_subtract(pp->object, 1);
408}
409
410static vm_page_t
411page_hold(vnode_t *vp, int64_t start)
412{
413	vm_object_t obj;
414	vm_page_t pp;
415
416	obj = vp->v_object;
417	zfs_vmobject_assert_wlocked(obj);
418
419	for (;;) {
420		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
421		    pp->valid) {
422			if (vm_page_xbusied(pp)) {
423				/*
424				 * Reference the page before unlocking and
425				 * sleeping so that the page daemon is less
426				 * likely to reclaim it.
427				 */
428				vm_page_reference(pp);
429				vm_page_lock(pp);
430				zfs_vmobject_wunlock(obj);
431				vm_page_busy_sleep(pp, "zfsmwb");
432				zfs_vmobject_wlock(obj);
433				continue;
434			}
435
436			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
437			vm_page_lock(pp);
438			vm_page_hold(pp);
439			vm_page_unlock(pp);
440
441		} else
442			pp = NULL;
443		break;
444	}
445	return (pp);
446}
447
448static void
449page_unhold(vm_page_t pp)
450{
451
452	vm_page_lock(pp);
453	vm_page_unhold(pp);
454	vm_page_unlock(pp);
455}
456
457/*
458 * When a file is memory mapped, we must keep the IO data synchronized
459 * between the DMU cache and the memory mapped pages.  What this means:
460 *
461 * On Write:	If we find a memory mapped page, we write to *both*
462 *		the page and the dmu buffer.
463 */
464static void
465update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
466    int segflg, dmu_tx_t *tx)
467{
468	vm_object_t obj;
469	struct sf_buf *sf;
470	caddr_t va;
471	int off;
472
473	ASSERT(segflg != UIO_NOCOPY);
474	ASSERT(vp->v_mount != NULL);
475	obj = vp->v_object;
476	ASSERT(obj != NULL);
477
478	off = start & PAGEOFFSET;
479	zfs_vmobject_wlock(obj);
480	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
481		vm_page_t pp;
482		int nbytes = imin(PAGESIZE - off, len);
483
484		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
485			zfs_vmobject_wunlock(obj);
486
487			va = zfs_map_page(pp, &sf);
488			(void) dmu_read(os, oid, start+off, nbytes,
489			    va+off, DMU_READ_PREFETCH);;
490			zfs_unmap_page(sf);
491
492			zfs_vmobject_wlock(obj);
493			page_unbusy(pp);
494		}
495		len -= nbytes;
496		off = 0;
497	}
498	vm_object_pip_wakeupn(obj, 0);
499	zfs_vmobject_wunlock(obj);
500}
501
502/*
503 * Read with UIO_NOCOPY flag means that sendfile(2) requests
504 * ZFS to populate a range of page cache pages with data.
505 *
506 * NOTE: this function could be optimized to pre-allocate
507 * all pages in advance, drain exclusive busy on all of them,
508 * map them into contiguous KVA region and populate them
509 * in one single dmu_read() call.
510 */
511static int
512mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
513{
514	znode_t *zp = VTOZ(vp);
515	objset_t *os = zp->z_zfsvfs->z_os;
516	struct sf_buf *sf;
517	vm_object_t obj;
518	vm_page_t pp;
519	int64_t start;
520	caddr_t va;
521	int len = nbytes;
522	int off;
523	int error = 0;
524
525	ASSERT(uio->uio_segflg == UIO_NOCOPY);
526	ASSERT(vp->v_mount != NULL);
527	obj = vp->v_object;
528	ASSERT(obj != NULL);
529	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
530
531	zfs_vmobject_wlock(obj);
532	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
533		int bytes = MIN(PAGESIZE, len);
534
535		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
536		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
537		if (pp->valid == 0) {
538			zfs_vmobject_wunlock(obj);
539			va = zfs_map_page(pp, &sf);
540			error = dmu_read(os, zp->z_id, start, bytes, va,
541			    DMU_READ_PREFETCH);
542			if (bytes != PAGESIZE && error == 0)
543				bzero(va + bytes, PAGESIZE - bytes);
544			zfs_unmap_page(sf);
545			zfs_vmobject_wlock(obj);
546			vm_page_sunbusy(pp);
547			vm_page_lock(pp);
548			if (error) {
549				if (pp->wire_count == 0 && pp->valid == 0 &&
550				    !vm_page_busied(pp))
551					vm_page_free(pp);
552			} else {
553				pp->valid = VM_PAGE_BITS_ALL;
554				vm_page_activate(pp);
555			}
556			vm_page_unlock(pp);
557		} else {
558			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
559			vm_page_sunbusy(pp);
560		}
561		if (error)
562			break;
563		uio->uio_resid -= bytes;
564		uio->uio_offset += bytes;
565		len -= bytes;
566	}
567	zfs_vmobject_wunlock(obj);
568	return (error);
569}
570
571/*
572 * When a file is memory mapped, we must keep the IO data synchronized
573 * between the DMU cache and the memory mapped pages.  What this means:
574 *
575 * On Read:	We "read" preferentially from memory mapped pages,
576 *		else we default from the dmu buffer.
577 *
578 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
579 *	 the file is memory mapped.
580 */
581static int
582mappedread(vnode_t *vp, int nbytes, uio_t *uio)
583{
584	znode_t *zp = VTOZ(vp);
585	vm_object_t obj;
586	int64_t start;
587	caddr_t va;
588	int len = nbytes;
589	int off;
590	int error = 0;
591
592	ASSERT(vp->v_mount != NULL);
593	obj = vp->v_object;
594	ASSERT(obj != NULL);
595
596	start = uio->uio_loffset;
597	off = start & PAGEOFFSET;
598	zfs_vmobject_wlock(obj);
599	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
600		vm_page_t pp;
601		uint64_t bytes = MIN(PAGESIZE - off, len);
602
603		if (pp = page_hold(vp, start)) {
604			struct sf_buf *sf;
605			caddr_t va;
606
607			zfs_vmobject_wunlock(obj);
608			va = zfs_map_page(pp, &sf);
609			error = uiomove(va + off, bytes, UIO_READ, uio);
610			zfs_unmap_page(sf);
611			zfs_vmobject_wlock(obj);
612			page_unhold(pp);
613		} else {
614			zfs_vmobject_wunlock(obj);
615			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
616			    uio, bytes);
617			zfs_vmobject_wlock(obj);
618		}
619		len -= bytes;
620		off = 0;
621		if (error)
622			break;
623	}
624	zfs_vmobject_wunlock(obj);
625	return (error);
626}
627
628offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
629
630/*
631 * Read bytes from specified file into supplied buffer.
632 *
633 *	IN:	vp	- vnode of file to be read from.
634 *		uio	- structure supplying read location, range info,
635 *			  and return buffer.
636 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
637 *		cr	- credentials of caller.
638 *		ct	- caller context
639 *
640 *	OUT:	uio	- updated offset and range, buffer filled.
641 *
642 *	RETURN:	0 on success, error code on failure.
643 *
644 * Side Effects:
645 *	vp - atime updated if byte count > 0
646 */
647/* ARGSUSED */
648static int
649zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
650{
651	znode_t		*zp = VTOZ(vp);
652	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
653	ssize_t		n, nbytes;
654	int		error = 0;
655	rl_t		*rl;
656	xuio_t		*xuio = NULL;
657
658	ZFS_ENTER(zfsvfs);
659	ZFS_VERIFY_ZP(zp);
660
661	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
662		ZFS_EXIT(zfsvfs);
663		return (SET_ERROR(EACCES));
664	}
665
666	/*
667	 * Validate file offset
668	 */
669	if (uio->uio_loffset < (offset_t)0) {
670		ZFS_EXIT(zfsvfs);
671		return (SET_ERROR(EINVAL));
672	}
673
674	/*
675	 * Fasttrack empty reads
676	 */
677	if (uio->uio_resid == 0) {
678		ZFS_EXIT(zfsvfs);
679		return (0);
680	}
681
682	/*
683	 * Check for mandatory locks
684	 */
685	if (MANDMODE(zp->z_mode)) {
686		if (error = chklock(vp, FREAD,
687		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
688			ZFS_EXIT(zfsvfs);
689			return (error);
690		}
691	}
692
693	/*
694	 * If we're in FRSYNC mode, sync out this znode before reading it.
695	 */
696	if (zfsvfs->z_log &&
697	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
698		zil_commit(zfsvfs->z_log, zp->z_id);
699
700	/*
701	 * Lock the range against changes.
702	 */
703	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
704
705	/*
706	 * If we are reading past end-of-file we can skip
707	 * to the end; but we might still need to set atime.
708	 */
709	if (uio->uio_loffset >= zp->z_size) {
710		error = 0;
711		goto out;
712	}
713
714	ASSERT(uio->uio_loffset < zp->z_size);
715	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
716
717#ifdef sun
718	if ((uio->uio_extflg == UIO_XUIO) &&
719	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
720		int nblk;
721		int blksz = zp->z_blksz;
722		uint64_t offset = uio->uio_loffset;
723
724		xuio = (xuio_t *)uio;
725		if ((ISP2(blksz))) {
726			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
727			    blksz)) / blksz;
728		} else {
729			ASSERT(offset + n <= blksz);
730			nblk = 1;
731		}
732		(void) dmu_xuio_init(xuio, nblk);
733
734		if (vn_has_cached_data(vp)) {
735			/*
736			 * For simplicity, we always allocate a full buffer
737			 * even if we only expect to read a portion of a block.
738			 */
739			while (--nblk >= 0) {
740				(void) dmu_xuio_add(xuio,
741				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
742				    blksz), 0, blksz);
743			}
744		}
745	}
746#endif	/* sun */
747
748	while (n > 0) {
749		nbytes = MIN(n, zfs_read_chunk_size -
750		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
751
752#ifdef __FreeBSD__
753		if (uio->uio_segflg == UIO_NOCOPY)
754			error = mappedread_sf(vp, nbytes, uio);
755		else
756#endif /* __FreeBSD__ */
757		if (vn_has_cached_data(vp)) {
758			error = mappedread(vp, nbytes, uio);
759		} else {
760			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
761			    uio, nbytes);
762		}
763		if (error) {
764			/* convert checksum errors into IO errors */
765			if (error == ECKSUM)
766				error = SET_ERROR(EIO);
767			break;
768		}
769
770		n -= nbytes;
771	}
772out:
773	zfs_range_unlock(rl);
774
775	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
776	ZFS_EXIT(zfsvfs);
777	return (error);
778}
779
780/*
781 * Write the bytes to a file.
782 *
783 *	IN:	vp	- vnode of file to be written to.
784 *		uio	- structure supplying write location, range info,
785 *			  and data buffer.
786 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
787 *			  set if in append mode.
788 *		cr	- credentials of caller.
789 *		ct	- caller context (NFS/CIFS fem monitor only)
790 *
791 *	OUT:	uio	- updated offset and range.
792 *
793 *	RETURN:	0 on success, error code on failure.
794 *
795 * Timestamps:
796 *	vp - ctime|mtime updated if byte count > 0
797 */
798
799/* ARGSUSED */
800static int
801zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
802{
803	znode_t		*zp = VTOZ(vp);
804	rlim64_t	limit = MAXOFFSET_T;
805	ssize_t		start_resid = uio->uio_resid;
806	ssize_t		tx_bytes;
807	uint64_t	end_size;
808	dmu_tx_t	*tx;
809	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
810	zilog_t		*zilog;
811	offset_t	woff;
812	ssize_t		n, nbytes;
813	rl_t		*rl;
814	int		max_blksz = zfsvfs->z_max_blksz;
815	int		error = 0;
816	arc_buf_t	*abuf;
817	iovec_t		*aiov = NULL;
818	xuio_t		*xuio = NULL;
819	int		i_iov = 0;
820	int		iovcnt = uio->uio_iovcnt;
821	iovec_t		*iovp = uio->uio_iov;
822	int		write_eof;
823	int		count = 0;
824	sa_bulk_attr_t	bulk[4];
825	uint64_t	mtime[2], ctime[2];
826
827	/*
828	 * Fasttrack empty write
829	 */
830	n = start_resid;
831	if (n == 0)
832		return (0);
833
834	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
835		limit = MAXOFFSET_T;
836
837	ZFS_ENTER(zfsvfs);
838	ZFS_VERIFY_ZP(zp);
839
840	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
842	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
843	    &zp->z_size, 8);
844	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
845	    &zp->z_pflags, 8);
846
847	/*
848	 * If immutable or not appending then return EPERM
849	 */
850	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
851	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
852	    (uio->uio_loffset < zp->z_size))) {
853		ZFS_EXIT(zfsvfs);
854		return (SET_ERROR(EPERM));
855	}
856
857	zilog = zfsvfs->z_log;
858
859	/*
860	 * Validate file offset
861	 */
862	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
863	if (woff < 0) {
864		ZFS_EXIT(zfsvfs);
865		return (SET_ERROR(EINVAL));
866	}
867
868	/*
869	 * Check for mandatory locks before calling zfs_range_lock()
870	 * in order to prevent a deadlock with locks set via fcntl().
871	 */
872	if (MANDMODE((mode_t)zp->z_mode) &&
873	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
874		ZFS_EXIT(zfsvfs);
875		return (error);
876	}
877
878#ifdef sun
879	/*
880	 * Pre-fault the pages to ensure slow (eg NFS) pages
881	 * don't hold up txg.
882	 * Skip this if uio contains loaned arc_buf.
883	 */
884	if ((uio->uio_extflg == UIO_XUIO) &&
885	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
886		xuio = (xuio_t *)uio;
887	else
888		uio_prefaultpages(MIN(n, max_blksz), uio);
889#endif	/* sun */
890
891	/*
892	 * If in append mode, set the io offset pointer to eof.
893	 */
894	if (ioflag & FAPPEND) {
895		/*
896		 * Obtain an appending range lock to guarantee file append
897		 * semantics.  We reset the write offset once we have the lock.
898		 */
899		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
900		woff = rl->r_off;
901		if (rl->r_len == UINT64_MAX) {
902			/*
903			 * We overlocked the file because this write will cause
904			 * the file block size to increase.
905			 * Note that zp_size cannot change with this lock held.
906			 */
907			woff = zp->z_size;
908		}
909		uio->uio_loffset = woff;
910	} else {
911		/*
912		 * Note that if the file block size will change as a result of
913		 * this write, then this range lock will lock the entire file
914		 * so that we can re-write the block safely.
915		 */
916		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
917	}
918
919	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
920		zfs_range_unlock(rl);
921		ZFS_EXIT(zfsvfs);
922		return (EFBIG);
923	}
924
925	if (woff >= limit) {
926		zfs_range_unlock(rl);
927		ZFS_EXIT(zfsvfs);
928		return (SET_ERROR(EFBIG));
929	}
930
931	if ((woff + n) > limit || woff > (limit - n))
932		n = limit - woff;
933
934	/* Will this write extend the file length? */
935	write_eof = (woff + n > zp->z_size);
936
937	end_size = MAX(zp->z_size, woff + n);
938
939	/*
940	 * Write the file in reasonable size chunks.  Each chunk is written
941	 * in a separate transaction; this keeps the intent log records small
942	 * and allows us to do more fine-grained space accounting.
943	 */
944	while (n > 0) {
945		abuf = NULL;
946		woff = uio->uio_loffset;
947		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
948		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
949			if (abuf != NULL)
950				dmu_return_arcbuf(abuf);
951			error = SET_ERROR(EDQUOT);
952			break;
953		}
954
955		if (xuio && abuf == NULL) {
956			ASSERT(i_iov < iovcnt);
957			aiov = &iovp[i_iov];
958			abuf = dmu_xuio_arcbuf(xuio, i_iov);
959			dmu_xuio_clear(xuio, i_iov);
960			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
961			    iovec_t *, aiov, arc_buf_t *, abuf);
962			ASSERT((aiov->iov_base == abuf->b_data) ||
963			    ((char *)aiov->iov_base - (char *)abuf->b_data +
964			    aiov->iov_len == arc_buf_size(abuf)));
965			i_iov++;
966		} else if (abuf == NULL && n >= max_blksz &&
967		    woff >= zp->z_size &&
968		    P2PHASE(woff, max_blksz) == 0 &&
969		    zp->z_blksz == max_blksz) {
970			/*
971			 * This write covers a full block.  "Borrow" a buffer
972			 * from the dmu so that we can fill it before we enter
973			 * a transaction.  This avoids the possibility of
974			 * holding up the transaction if the data copy hangs
975			 * up on a pagefault (e.g., from an NFS server mapping).
976			 */
977			size_t cbytes;
978
979			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
980			    max_blksz);
981			ASSERT(abuf != NULL);
982			ASSERT(arc_buf_size(abuf) == max_blksz);
983			if (error = uiocopy(abuf->b_data, max_blksz,
984			    UIO_WRITE, uio, &cbytes)) {
985				dmu_return_arcbuf(abuf);
986				break;
987			}
988			ASSERT(cbytes == max_blksz);
989		}
990
991		/*
992		 * Start a transaction.
993		 */
994		tx = dmu_tx_create(zfsvfs->z_os);
995		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
996		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
997		zfs_sa_upgrade_txholds(tx, zp);
998		error = dmu_tx_assign(tx, TXG_WAIT);
999		if (error) {
1000			dmu_tx_abort(tx);
1001			if (abuf != NULL)
1002				dmu_return_arcbuf(abuf);
1003			break;
1004		}
1005
1006		/*
1007		 * If zfs_range_lock() over-locked we grow the blocksize
1008		 * and then reduce the lock range.  This will only happen
1009		 * on the first iteration since zfs_range_reduce() will
1010		 * shrink down r_len to the appropriate size.
1011		 */
1012		if (rl->r_len == UINT64_MAX) {
1013			uint64_t new_blksz;
1014
1015			if (zp->z_blksz > max_blksz) {
1016				/*
1017				 * File's blocksize is already larger than the
1018				 * "recordsize" property.  Only let it grow to
1019				 * the next power of 2.
1020				 */
1021				ASSERT(!ISP2(zp->z_blksz));
1022				new_blksz = MIN(end_size,
1023				    1 << highbit64(zp->z_blksz));
1024			} else {
1025				new_blksz = MIN(end_size, max_blksz);
1026			}
1027			zfs_grow_blocksize(zp, new_blksz, tx);
1028			zfs_range_reduce(rl, woff, n);
1029		}
1030
1031		/*
1032		 * XXX - should we really limit each write to z_max_blksz?
1033		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1034		 */
1035		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1036
1037		if (woff + nbytes > zp->z_size)
1038			vnode_pager_setsize(vp, woff + nbytes);
1039
1040		if (abuf == NULL) {
1041			tx_bytes = uio->uio_resid;
1042			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1043			    uio, nbytes, tx);
1044			tx_bytes -= uio->uio_resid;
1045		} else {
1046			tx_bytes = nbytes;
1047			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1048			/*
1049			 * If this is not a full block write, but we are
1050			 * extending the file past EOF and this data starts
1051			 * block-aligned, use assign_arcbuf().  Otherwise,
1052			 * write via dmu_write().
1053			 */
1054			if (tx_bytes < max_blksz && (!write_eof ||
1055			    aiov->iov_base != abuf->b_data)) {
1056				ASSERT(xuio);
1057				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1058				    aiov->iov_len, aiov->iov_base, tx);
1059				dmu_return_arcbuf(abuf);
1060				xuio_stat_wbuf_copied();
1061			} else {
1062				ASSERT(xuio || tx_bytes == max_blksz);
1063				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1064				    woff, abuf, tx);
1065			}
1066			ASSERT(tx_bytes <= uio->uio_resid);
1067			uioskip(uio, tx_bytes);
1068		}
1069		if (tx_bytes && vn_has_cached_data(vp)) {
1070			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1071			    zp->z_id, uio->uio_segflg, tx);
1072		}
1073
1074		/*
1075		 * If we made no progress, we're done.  If we made even
1076		 * partial progress, update the znode and ZIL accordingly.
1077		 */
1078		if (tx_bytes == 0) {
1079			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1080			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1081			dmu_tx_commit(tx);
1082			ASSERT(error != 0);
1083			break;
1084		}
1085
1086		/*
1087		 * Clear Set-UID/Set-GID bits on successful write if not
1088		 * privileged and at least one of the excute bits is set.
1089		 *
1090		 * It would be nice to to this after all writes have
1091		 * been done, but that would still expose the ISUID/ISGID
1092		 * to another app after the partial write is committed.
1093		 *
1094		 * Note: we don't call zfs_fuid_map_id() here because
1095		 * user 0 is not an ephemeral uid.
1096		 */
1097		mutex_enter(&zp->z_acl_lock);
1098		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1099		    (S_IXUSR >> 6))) != 0 &&
1100		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1101		    secpolicy_vnode_setid_retain(vp, cr,
1102		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1103			uint64_t newmode;
1104			zp->z_mode &= ~(S_ISUID | S_ISGID);
1105			newmode = zp->z_mode;
1106			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1107			    (void *)&newmode, sizeof (uint64_t), tx);
1108		}
1109		mutex_exit(&zp->z_acl_lock);
1110
1111		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1112		    B_TRUE);
1113
1114		/*
1115		 * Update the file size (zp_size) if it has changed;
1116		 * account for possible concurrent updates.
1117		 */
1118		while ((end_size = zp->z_size) < uio->uio_loffset) {
1119			(void) atomic_cas_64(&zp->z_size, end_size,
1120			    uio->uio_loffset);
1121			ASSERT(error == 0);
1122		}
1123		/*
1124		 * If we are replaying and eof is non zero then force
1125		 * the file size to the specified eof. Note, there's no
1126		 * concurrency during replay.
1127		 */
1128		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1129			zp->z_size = zfsvfs->z_replay_eof;
1130
1131		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1132
1133		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1134		dmu_tx_commit(tx);
1135
1136		if (error != 0)
1137			break;
1138		ASSERT(tx_bytes == nbytes);
1139		n -= nbytes;
1140
1141#ifdef sun
1142		if (!xuio && n > 0)
1143			uio_prefaultpages(MIN(n, max_blksz), uio);
1144#endif	/* sun */
1145	}
1146
1147	zfs_range_unlock(rl);
1148
1149	/*
1150	 * If we're in replay mode, or we made no progress, return error.
1151	 * Otherwise, it's at least a partial write, so it's successful.
1152	 */
1153	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1154		ZFS_EXIT(zfsvfs);
1155		return (error);
1156	}
1157
1158	if (ioflag & (FSYNC | FDSYNC) ||
1159	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1160		zil_commit(zilog, zp->z_id);
1161
1162	ZFS_EXIT(zfsvfs);
1163	return (0);
1164}
1165
1166void
1167zfs_get_done(zgd_t *zgd, int error)
1168{
1169	znode_t *zp = zgd->zgd_private;
1170	objset_t *os = zp->z_zfsvfs->z_os;
1171
1172	if (zgd->zgd_db)
1173		dmu_buf_rele(zgd->zgd_db, zgd);
1174
1175	zfs_range_unlock(zgd->zgd_rl);
1176
1177	/*
1178	 * Release the vnode asynchronously as we currently have the
1179	 * txg stopped from syncing.
1180	 */
1181	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1182
1183	if (error == 0 && zgd->zgd_bp)
1184		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1185
1186	kmem_free(zgd, sizeof (zgd_t));
1187}
1188
1189#ifdef DEBUG
1190static int zil_fault_io = 0;
1191#endif
1192
1193/*
1194 * Get data to generate a TX_WRITE intent log record.
1195 */
1196int
1197zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1198{
1199	zfsvfs_t *zfsvfs = arg;
1200	objset_t *os = zfsvfs->z_os;
1201	znode_t *zp;
1202	uint64_t object = lr->lr_foid;
1203	uint64_t offset = lr->lr_offset;
1204	uint64_t size = lr->lr_length;
1205	blkptr_t *bp = &lr->lr_blkptr;
1206	dmu_buf_t *db;
1207	zgd_t *zgd;
1208	int error = 0;
1209
1210	ASSERT(zio != NULL);
1211	ASSERT(size != 0);
1212
1213	/*
1214	 * Nothing to do if the file has been removed
1215	 */
1216	if (zfs_zget(zfsvfs, object, &zp) != 0)
1217		return (SET_ERROR(ENOENT));
1218	if (zp->z_unlinked) {
1219		/*
1220		 * Release the vnode asynchronously as we currently have the
1221		 * txg stopped from syncing.
1222		 */
1223		VN_RELE_ASYNC(ZTOV(zp),
1224		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1225		return (SET_ERROR(ENOENT));
1226	}
1227
1228	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1229	zgd->zgd_zilog = zfsvfs->z_log;
1230	zgd->zgd_private = zp;
1231
1232	/*
1233	 * Write records come in two flavors: immediate and indirect.
1234	 * For small writes it's cheaper to store the data with the
1235	 * log record (immediate); for large writes it's cheaper to
1236	 * sync the data and get a pointer to it (indirect) so that
1237	 * we don't have to write the data twice.
1238	 */
1239	if (buf != NULL) { /* immediate write */
1240		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1241		/* test for truncation needs to be done while range locked */
1242		if (offset >= zp->z_size) {
1243			error = SET_ERROR(ENOENT);
1244		} else {
1245			error = dmu_read(os, object, offset, size, buf,
1246			    DMU_READ_NO_PREFETCH);
1247		}
1248		ASSERT(error == 0 || error == ENOENT);
1249	} else { /* indirect write */
1250		/*
1251		 * Have to lock the whole block to ensure when it's
1252		 * written out and it's checksum is being calculated
1253		 * that no one can change the data. We need to re-check
1254		 * blocksize after we get the lock in case it's changed!
1255		 */
1256		for (;;) {
1257			uint64_t blkoff;
1258			size = zp->z_blksz;
1259			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1260			offset -= blkoff;
1261			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1262			    RL_READER);
1263			if (zp->z_blksz == size)
1264				break;
1265			offset += blkoff;
1266			zfs_range_unlock(zgd->zgd_rl);
1267		}
1268		/* test for truncation needs to be done while range locked */
1269		if (lr->lr_offset >= zp->z_size)
1270			error = SET_ERROR(ENOENT);
1271#ifdef DEBUG
1272		if (zil_fault_io) {
1273			error = SET_ERROR(EIO);
1274			zil_fault_io = 0;
1275		}
1276#endif
1277		if (error == 0)
1278			error = dmu_buf_hold(os, object, offset, zgd, &db,
1279			    DMU_READ_NO_PREFETCH);
1280
1281		if (error == 0) {
1282			blkptr_t *obp = dmu_buf_get_blkptr(db);
1283			if (obp) {
1284				ASSERT(BP_IS_HOLE(bp));
1285				*bp = *obp;
1286			}
1287
1288			zgd->zgd_db = db;
1289			zgd->zgd_bp = bp;
1290
1291			ASSERT(db->db_offset == offset);
1292			ASSERT(db->db_size == size);
1293
1294			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1295			    zfs_get_done, zgd);
1296			ASSERT(error || lr->lr_length <= zp->z_blksz);
1297
1298			/*
1299			 * On success, we need to wait for the write I/O
1300			 * initiated by dmu_sync() to complete before we can
1301			 * release this dbuf.  We will finish everything up
1302			 * in the zfs_get_done() callback.
1303			 */
1304			if (error == 0)
1305				return (0);
1306
1307			if (error == EALREADY) {
1308				lr->lr_common.lrc_txtype = TX_WRITE2;
1309				error = 0;
1310			}
1311		}
1312	}
1313
1314	zfs_get_done(zgd, error);
1315
1316	return (error);
1317}
1318
1319/*ARGSUSED*/
1320static int
1321zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1322    caller_context_t *ct)
1323{
1324	znode_t *zp = VTOZ(vp);
1325	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1326	int error;
1327
1328	ZFS_ENTER(zfsvfs);
1329	ZFS_VERIFY_ZP(zp);
1330
1331	if (flag & V_ACE_MASK)
1332		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1333	else
1334		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1335
1336	ZFS_EXIT(zfsvfs);
1337	return (error);
1338}
1339
1340/*
1341 * If vnode is for a device return a specfs vnode instead.
1342 */
1343static int
1344specvp_check(vnode_t **vpp, cred_t *cr)
1345{
1346	int error = 0;
1347
1348	if (IS_DEVVP(*vpp)) {
1349		struct vnode *svp;
1350
1351		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1352		VN_RELE(*vpp);
1353		if (svp == NULL)
1354			error = SET_ERROR(ENOSYS);
1355		*vpp = svp;
1356	}
1357	return (error);
1358}
1359
1360
1361/*
1362 * Lookup an entry in a directory, or an extended attribute directory.
1363 * If it exists, return a held vnode reference for it.
1364 *
1365 *	IN:	dvp	- vnode of directory to search.
1366 *		nm	- name of entry to lookup.
1367 *		pnp	- full pathname to lookup [UNUSED].
1368 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1369 *		rdir	- root directory vnode [UNUSED].
1370 *		cr	- credentials of caller.
1371 *		ct	- caller context
1372 *		direntflags - directory lookup flags
1373 *		realpnp - returned pathname.
1374 *
1375 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1376 *
1377 *	RETURN:	0 on success, error code on failure.
1378 *
1379 * Timestamps:
1380 *	NA
1381 */
1382/* ARGSUSED */
1383static int
1384zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1385    int nameiop, cred_t *cr, kthread_t *td, int flags)
1386{
1387	znode_t *zdp = VTOZ(dvp);
1388	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1389	int	error = 0;
1390	int *direntflags = NULL;
1391	void *realpnp = NULL;
1392
1393	/* fast path */
1394	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1395
1396		if (dvp->v_type != VDIR) {
1397			return (SET_ERROR(ENOTDIR));
1398		} else if (zdp->z_sa_hdl == NULL) {
1399			return (SET_ERROR(EIO));
1400		}
1401
1402		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1403			error = zfs_fastaccesschk_execute(zdp, cr);
1404			if (!error) {
1405				*vpp = dvp;
1406				VN_HOLD(*vpp);
1407				return (0);
1408			}
1409			return (error);
1410		} else {
1411			vnode_t *tvp = dnlc_lookup(dvp, nm);
1412
1413			if (tvp) {
1414				error = zfs_fastaccesschk_execute(zdp, cr);
1415				if (error) {
1416					VN_RELE(tvp);
1417					return (error);
1418				}
1419				if (tvp == DNLC_NO_VNODE) {
1420					VN_RELE(tvp);
1421					return (SET_ERROR(ENOENT));
1422				} else {
1423					*vpp = tvp;
1424					return (specvp_check(vpp, cr));
1425				}
1426			}
1427		}
1428	}
1429
1430	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1431
1432	ZFS_ENTER(zfsvfs);
1433	ZFS_VERIFY_ZP(zdp);
1434
1435	*vpp = NULL;
1436
1437	if (flags & LOOKUP_XATTR) {
1438#ifdef TODO
1439		/*
1440		 * If the xattr property is off, refuse the lookup request.
1441		 */
1442		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1443			ZFS_EXIT(zfsvfs);
1444			return (SET_ERROR(EINVAL));
1445		}
1446#endif
1447
1448		/*
1449		 * We don't allow recursive attributes..
1450		 * Maybe someday we will.
1451		 */
1452		if (zdp->z_pflags & ZFS_XATTR) {
1453			ZFS_EXIT(zfsvfs);
1454			return (SET_ERROR(EINVAL));
1455		}
1456
1457		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1458			ZFS_EXIT(zfsvfs);
1459			return (error);
1460		}
1461
1462		/*
1463		 * Do we have permission to get into attribute directory?
1464		 */
1465
1466		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1467		    B_FALSE, cr)) {
1468			VN_RELE(*vpp);
1469			*vpp = NULL;
1470		}
1471
1472		ZFS_EXIT(zfsvfs);
1473		return (error);
1474	}
1475
1476	if (dvp->v_type != VDIR) {
1477		ZFS_EXIT(zfsvfs);
1478		return (SET_ERROR(ENOTDIR));
1479	}
1480
1481	/*
1482	 * Check accessibility of directory.
1483	 */
1484
1485	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1486		ZFS_EXIT(zfsvfs);
1487		return (error);
1488	}
1489
1490	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1491	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1492		ZFS_EXIT(zfsvfs);
1493		return (SET_ERROR(EILSEQ));
1494	}
1495
1496	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1497	if (error == 0)
1498		error = specvp_check(vpp, cr);
1499
1500	/* Translate errors and add SAVENAME when needed. */
1501	if (cnp->cn_flags & ISLASTCN) {
1502		switch (nameiop) {
1503		case CREATE:
1504		case RENAME:
1505			if (error == ENOENT) {
1506				error = EJUSTRETURN;
1507				cnp->cn_flags |= SAVENAME;
1508				break;
1509			}
1510			/* FALLTHROUGH */
1511		case DELETE:
1512			if (error == 0)
1513				cnp->cn_flags |= SAVENAME;
1514			break;
1515		}
1516	}
1517	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1518		int ltype = 0;
1519
1520		if (cnp->cn_flags & ISDOTDOT) {
1521			ltype = VOP_ISLOCKED(dvp);
1522			VOP_UNLOCK(dvp, 0);
1523		}
1524		ZFS_EXIT(zfsvfs);
1525		error = vn_lock(*vpp, cnp->cn_lkflags);
1526		if (cnp->cn_flags & ISDOTDOT)
1527			vn_lock(dvp, ltype | LK_RETRY);
1528		if (error != 0) {
1529			VN_RELE(*vpp);
1530			*vpp = NULL;
1531			return (error);
1532		}
1533	} else {
1534		ZFS_EXIT(zfsvfs);
1535	}
1536
1537#ifdef FREEBSD_NAMECACHE
1538	/*
1539	 * Insert name into cache (as non-existent) if appropriate.
1540	 */
1541	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0)
1542		cache_enter(dvp, *vpp, cnp);
1543	/*
1544	 * Insert name into cache if appropriate.
1545	 */
1546	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1547		if (!(cnp->cn_flags & ISLASTCN) ||
1548		    (nameiop != DELETE && nameiop != RENAME)) {
1549			cache_enter(dvp, *vpp, cnp);
1550		}
1551	}
1552#endif
1553
1554	return (error);
1555}
1556
1557/*
1558 * Attempt to create a new entry in a directory.  If the entry
1559 * already exists, truncate the file if permissible, else return
1560 * an error.  Return the vp of the created or trunc'd file.
1561 *
1562 *	IN:	dvp	- vnode of directory to put new file entry in.
1563 *		name	- name of new file entry.
1564 *		vap	- attributes of new file.
1565 *		excl	- flag indicating exclusive or non-exclusive mode.
1566 *		mode	- mode to open file with.
1567 *		cr	- credentials of caller.
1568 *		flag	- large file flag [UNUSED].
1569 *		ct	- caller context
1570 *		vsecp	- ACL to be set
1571 *
1572 *	OUT:	vpp	- vnode of created or trunc'd entry.
1573 *
1574 *	RETURN:	0 on success, error code on failure.
1575 *
1576 * Timestamps:
1577 *	dvp - ctime|mtime updated if new entry created
1578 *	 vp - ctime|mtime always, atime if new
1579 */
1580
1581/* ARGSUSED */
1582static int
1583zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1584    vnode_t **vpp, cred_t *cr, kthread_t *td)
1585{
1586	znode_t		*zp, *dzp = VTOZ(dvp);
1587	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1588	zilog_t		*zilog;
1589	objset_t	*os;
1590	zfs_dirlock_t	*dl;
1591	dmu_tx_t	*tx;
1592	int		error;
1593	ksid_t		*ksid;
1594	uid_t		uid;
1595	gid_t		gid = crgetgid(cr);
1596	zfs_acl_ids_t   acl_ids;
1597	boolean_t	fuid_dirtied;
1598	boolean_t	have_acl = B_FALSE;
1599	boolean_t	waited = B_FALSE;
1600	void		*vsecp = NULL;
1601	int		flag = 0;
1602
1603	/*
1604	 * If we have an ephemeral id, ACL, or XVATTR then
1605	 * make sure file system is at proper version
1606	 */
1607
1608	ksid = crgetsid(cr, KSID_OWNER);
1609	if (ksid)
1610		uid = ksid_getid(ksid);
1611	else
1612		uid = crgetuid(cr);
1613
1614	if (zfsvfs->z_use_fuids == B_FALSE &&
1615	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1616	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1617		return (SET_ERROR(EINVAL));
1618
1619	ZFS_ENTER(zfsvfs);
1620	ZFS_VERIFY_ZP(dzp);
1621	os = zfsvfs->z_os;
1622	zilog = zfsvfs->z_log;
1623
1624	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1625	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1626		ZFS_EXIT(zfsvfs);
1627		return (SET_ERROR(EILSEQ));
1628	}
1629
1630	if (vap->va_mask & AT_XVATTR) {
1631		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1632		    crgetuid(cr), cr, vap->va_type)) != 0) {
1633			ZFS_EXIT(zfsvfs);
1634			return (error);
1635		}
1636	}
1637
1638	getnewvnode_reserve(1);
1639
1640top:
1641	*vpp = NULL;
1642
1643	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1644		vap->va_mode &= ~S_ISVTX;
1645
1646	if (*name == '\0') {
1647		/*
1648		 * Null component name refers to the directory itself.
1649		 */
1650		VN_HOLD(dvp);
1651		zp = dzp;
1652		dl = NULL;
1653		error = 0;
1654	} else {
1655		/* possible VN_HOLD(zp) */
1656		int zflg = 0;
1657
1658		if (flag & FIGNORECASE)
1659			zflg |= ZCILOOK;
1660
1661		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1662		    NULL, NULL);
1663		if (error) {
1664			if (have_acl)
1665				zfs_acl_ids_free(&acl_ids);
1666			if (strcmp(name, "..") == 0)
1667				error = SET_ERROR(EISDIR);
1668			getnewvnode_drop_reserve();
1669			ZFS_EXIT(zfsvfs);
1670			return (error);
1671		}
1672	}
1673
1674	if (zp == NULL) {
1675		uint64_t txtype;
1676
1677		/*
1678		 * Create a new file object and update the directory
1679		 * to reference it.
1680		 */
1681		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1682			if (have_acl)
1683				zfs_acl_ids_free(&acl_ids);
1684			goto out;
1685		}
1686
1687		/*
1688		 * We only support the creation of regular files in
1689		 * extended attribute directories.
1690		 */
1691
1692		if ((dzp->z_pflags & ZFS_XATTR) &&
1693		    (vap->va_type != VREG)) {
1694			if (have_acl)
1695				zfs_acl_ids_free(&acl_ids);
1696			error = SET_ERROR(EINVAL);
1697			goto out;
1698		}
1699
1700		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1701		    cr, vsecp, &acl_ids)) != 0)
1702			goto out;
1703		have_acl = B_TRUE;
1704
1705		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1706			zfs_acl_ids_free(&acl_ids);
1707			error = SET_ERROR(EDQUOT);
1708			goto out;
1709		}
1710
1711		tx = dmu_tx_create(os);
1712
1713		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1714		    ZFS_SA_BASE_ATTR_SIZE);
1715
1716		fuid_dirtied = zfsvfs->z_fuid_dirty;
1717		if (fuid_dirtied)
1718			zfs_fuid_txhold(zfsvfs, tx);
1719		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1720		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1721		if (!zfsvfs->z_use_sa &&
1722		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1723			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1724			    0, acl_ids.z_aclp->z_acl_bytes);
1725		}
1726		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1727		if (error) {
1728			zfs_dirent_unlock(dl);
1729			if (error == ERESTART) {
1730				waited = B_TRUE;
1731				dmu_tx_wait(tx);
1732				dmu_tx_abort(tx);
1733				goto top;
1734			}
1735			zfs_acl_ids_free(&acl_ids);
1736			dmu_tx_abort(tx);
1737			getnewvnode_drop_reserve();
1738			ZFS_EXIT(zfsvfs);
1739			return (error);
1740		}
1741		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1742
1743		if (fuid_dirtied)
1744			zfs_fuid_sync(zfsvfs, tx);
1745
1746		(void) zfs_link_create(dl, zp, tx, ZNEW);
1747		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1748		if (flag & FIGNORECASE)
1749			txtype |= TX_CI;
1750		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1751		    vsecp, acl_ids.z_fuidp, vap);
1752		zfs_acl_ids_free(&acl_ids);
1753		dmu_tx_commit(tx);
1754	} else {
1755		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1756
1757		if (have_acl)
1758			zfs_acl_ids_free(&acl_ids);
1759		have_acl = B_FALSE;
1760
1761		/*
1762		 * A directory entry already exists for this name.
1763		 */
1764		/*
1765		 * Can't truncate an existing file if in exclusive mode.
1766		 */
1767		if (excl == EXCL) {
1768			error = SET_ERROR(EEXIST);
1769			goto out;
1770		}
1771		/*
1772		 * Can't open a directory for writing.
1773		 */
1774		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1775			error = SET_ERROR(EISDIR);
1776			goto out;
1777		}
1778		/*
1779		 * Verify requested access to file.
1780		 */
1781		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1782			goto out;
1783		}
1784
1785		mutex_enter(&dzp->z_lock);
1786		dzp->z_seq++;
1787		mutex_exit(&dzp->z_lock);
1788
1789		/*
1790		 * Truncate regular files if requested.
1791		 */
1792		if ((ZTOV(zp)->v_type == VREG) &&
1793		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1794			/* we can't hold any locks when calling zfs_freesp() */
1795			zfs_dirent_unlock(dl);
1796			dl = NULL;
1797			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1798			if (error == 0) {
1799				vnevent_create(ZTOV(zp), ct);
1800			}
1801		}
1802	}
1803out:
1804	getnewvnode_drop_reserve();
1805	if (dl)
1806		zfs_dirent_unlock(dl);
1807
1808	if (error) {
1809		if (zp)
1810			VN_RELE(ZTOV(zp));
1811	} else {
1812		*vpp = ZTOV(zp);
1813		error = specvp_check(vpp, cr);
1814	}
1815
1816	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1817		zil_commit(zilog, 0);
1818
1819	ZFS_EXIT(zfsvfs);
1820	return (error);
1821}
1822
1823/*
1824 * Remove an entry from a directory.
1825 *
1826 *	IN:	dvp	- vnode of directory to remove entry from.
1827 *		name	- name of entry to remove.
1828 *		cr	- credentials of caller.
1829 *		ct	- caller context
1830 *		flags	- case flags
1831 *
1832 *	RETURN:	0 on success, error code on failure.
1833 *
1834 * Timestamps:
1835 *	dvp - ctime|mtime
1836 *	 vp - ctime (if nlink > 0)
1837 */
1838
1839uint64_t null_xattr = 0;
1840
1841/*ARGSUSED*/
1842static int
1843zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1844    int flags)
1845{
1846	znode_t		*zp, *dzp = VTOZ(dvp);
1847	znode_t		*xzp;
1848	vnode_t		*vp;
1849	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1850	zilog_t		*zilog;
1851	uint64_t	acl_obj, xattr_obj;
1852	uint64_t	xattr_obj_unlinked = 0;
1853	uint64_t	obj = 0;
1854	zfs_dirlock_t	*dl;
1855	dmu_tx_t	*tx;
1856	boolean_t	may_delete_now, delete_now = FALSE;
1857	boolean_t	unlinked, toobig = FALSE;
1858	uint64_t	txtype;
1859	pathname_t	*realnmp = NULL;
1860	pathname_t	realnm;
1861	int		error;
1862	int		zflg = ZEXISTS;
1863	boolean_t	waited = B_FALSE;
1864
1865	ZFS_ENTER(zfsvfs);
1866	ZFS_VERIFY_ZP(dzp);
1867	zilog = zfsvfs->z_log;
1868
1869	if (flags & FIGNORECASE) {
1870		zflg |= ZCILOOK;
1871		pn_alloc(&realnm);
1872		realnmp = &realnm;
1873	}
1874
1875top:
1876	xattr_obj = 0;
1877	xzp = NULL;
1878	/*
1879	 * Attempt to lock directory; fail if entry doesn't exist.
1880	 */
1881	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1882	    NULL, realnmp)) {
1883		if (realnmp)
1884			pn_free(realnmp);
1885		ZFS_EXIT(zfsvfs);
1886		return (error);
1887	}
1888
1889	vp = ZTOV(zp);
1890
1891	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1892		goto out;
1893	}
1894
1895	/*
1896	 * Need to use rmdir for removing directories.
1897	 */
1898	if (vp->v_type == VDIR) {
1899		error = SET_ERROR(EPERM);
1900		goto out;
1901	}
1902
1903	vnevent_remove(vp, dvp, name, ct);
1904
1905	if (realnmp)
1906		dnlc_remove(dvp, realnmp->pn_buf);
1907	else
1908		dnlc_remove(dvp, name);
1909
1910	VI_LOCK(vp);
1911	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1912	VI_UNLOCK(vp);
1913
1914	/*
1915	 * We may delete the znode now, or we may put it in the unlinked set;
1916	 * it depends on whether we're the last link, and on whether there are
1917	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1918	 * allow for either case.
1919	 */
1920	obj = zp->z_id;
1921	tx = dmu_tx_create(zfsvfs->z_os);
1922	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1923	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1924	zfs_sa_upgrade_txholds(tx, zp);
1925	zfs_sa_upgrade_txholds(tx, dzp);
1926	if (may_delete_now) {
1927		toobig =
1928		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1929		/* if the file is too big, only hold_free a token amount */
1930		dmu_tx_hold_free(tx, zp->z_id, 0,
1931		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1932	}
1933
1934	/* are there any extended attributes? */
1935	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1936	    &xattr_obj, sizeof (xattr_obj));
1937	if (error == 0 && xattr_obj) {
1938		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1939		ASSERT0(error);
1940		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1941		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1942	}
1943
1944	mutex_enter(&zp->z_lock);
1945	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1946		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1947	mutex_exit(&zp->z_lock);
1948
1949	/* charge as an update -- would be nice not to charge at all */
1950	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1951
1952	/*
1953	 * Mark this transaction as typically resulting in a net free of
1954	 * space, unless object removal will be delayed indefinitely
1955	 * (due to active holds on the vnode due to the file being open).
1956	 */
1957	if (may_delete_now)
1958		dmu_tx_mark_netfree(tx);
1959
1960	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1961	if (error) {
1962		zfs_dirent_unlock(dl);
1963		VN_RELE(vp);
1964		if (xzp)
1965			VN_RELE(ZTOV(xzp));
1966		if (error == ERESTART) {
1967			waited = B_TRUE;
1968			dmu_tx_wait(tx);
1969			dmu_tx_abort(tx);
1970			goto top;
1971		}
1972		if (realnmp)
1973			pn_free(realnmp);
1974		dmu_tx_abort(tx);
1975		ZFS_EXIT(zfsvfs);
1976		return (error);
1977	}
1978
1979	/*
1980	 * Remove the directory entry.
1981	 */
1982	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1983
1984	if (error) {
1985		dmu_tx_commit(tx);
1986		goto out;
1987	}
1988
1989	if (unlinked) {
1990		/*
1991		 * Hold z_lock so that we can make sure that the ACL obj
1992		 * hasn't changed.  Could have been deleted due to
1993		 * zfs_sa_upgrade().
1994		 */
1995		mutex_enter(&zp->z_lock);
1996		VI_LOCK(vp);
1997		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1998		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1999		delete_now = may_delete_now && !toobig &&
2000		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2001		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2002		    acl_obj;
2003		VI_UNLOCK(vp);
2004	}
2005
2006	if (delete_now) {
2007#ifdef __FreeBSD__
2008		panic("zfs_remove: delete_now branch taken");
2009#endif
2010		if (xattr_obj_unlinked) {
2011			ASSERT3U(xzp->z_links, ==, 2);
2012			mutex_enter(&xzp->z_lock);
2013			xzp->z_unlinked = 1;
2014			xzp->z_links = 0;
2015			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2016			    &xzp->z_links, sizeof (xzp->z_links), tx);
2017			ASSERT3U(error,  ==,  0);
2018			mutex_exit(&xzp->z_lock);
2019			zfs_unlinked_add(xzp, tx);
2020
2021			if (zp->z_is_sa)
2022				error = sa_remove(zp->z_sa_hdl,
2023				    SA_ZPL_XATTR(zfsvfs), tx);
2024			else
2025				error = sa_update(zp->z_sa_hdl,
2026				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2027				    sizeof (uint64_t), tx);
2028			ASSERT0(error);
2029		}
2030		VI_LOCK(vp);
2031		vp->v_count--;
2032		ASSERT0(vp->v_count);
2033		VI_UNLOCK(vp);
2034		mutex_exit(&zp->z_lock);
2035		zfs_znode_delete(zp, tx);
2036	} else if (unlinked) {
2037		mutex_exit(&zp->z_lock);
2038		zfs_unlinked_add(zp, tx);
2039#ifdef __FreeBSD__
2040		vp->v_vflag |= VV_NOSYNC;
2041#endif
2042	}
2043
2044	txtype = TX_REMOVE;
2045	if (flags & FIGNORECASE)
2046		txtype |= TX_CI;
2047	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2048
2049	dmu_tx_commit(tx);
2050out:
2051	if (realnmp)
2052		pn_free(realnmp);
2053
2054	zfs_dirent_unlock(dl);
2055
2056	if (!delete_now)
2057		VN_RELE(vp);
2058	if (xzp)
2059		VN_RELE(ZTOV(xzp));
2060
2061	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2062		zil_commit(zilog, 0);
2063
2064	ZFS_EXIT(zfsvfs);
2065	return (error);
2066}
2067
2068/*
2069 * Create a new directory and insert it into dvp using the name
2070 * provided.  Return a pointer to the inserted directory.
2071 *
2072 *	IN:	dvp	- vnode of directory to add subdir to.
2073 *		dirname	- name of new directory.
2074 *		vap	- attributes of new directory.
2075 *		cr	- credentials of caller.
2076 *		ct	- caller context
2077 *		flags	- case flags
2078 *		vsecp	- ACL to be set
2079 *
2080 *	OUT:	vpp	- vnode of created directory.
2081 *
2082 *	RETURN:	0 on success, error code on failure.
2083 *
2084 * Timestamps:
2085 *	dvp - ctime|mtime updated
2086 *	 vp - ctime|mtime|atime updated
2087 */
2088/*ARGSUSED*/
2089static int
2090zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2091    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2092{
2093	znode_t		*zp, *dzp = VTOZ(dvp);
2094	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2095	zilog_t		*zilog;
2096	zfs_dirlock_t	*dl;
2097	uint64_t	txtype;
2098	dmu_tx_t	*tx;
2099	int		error;
2100	int		zf = ZNEW;
2101	ksid_t		*ksid;
2102	uid_t		uid;
2103	gid_t		gid = crgetgid(cr);
2104	zfs_acl_ids_t   acl_ids;
2105	boolean_t	fuid_dirtied;
2106	boolean_t	waited = B_FALSE;
2107
2108	ASSERT(vap->va_type == VDIR);
2109
2110	/*
2111	 * If we have an ephemeral id, ACL, or XVATTR then
2112	 * make sure file system is at proper version
2113	 */
2114
2115	ksid = crgetsid(cr, KSID_OWNER);
2116	if (ksid)
2117		uid = ksid_getid(ksid);
2118	else
2119		uid = crgetuid(cr);
2120	if (zfsvfs->z_use_fuids == B_FALSE &&
2121	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2122	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2123		return (SET_ERROR(EINVAL));
2124
2125	ZFS_ENTER(zfsvfs);
2126	ZFS_VERIFY_ZP(dzp);
2127	zilog = zfsvfs->z_log;
2128
2129	if (dzp->z_pflags & ZFS_XATTR) {
2130		ZFS_EXIT(zfsvfs);
2131		return (SET_ERROR(EINVAL));
2132	}
2133
2134	if (zfsvfs->z_utf8 && u8_validate(dirname,
2135	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2136		ZFS_EXIT(zfsvfs);
2137		return (SET_ERROR(EILSEQ));
2138	}
2139	if (flags & FIGNORECASE)
2140		zf |= ZCILOOK;
2141
2142	if (vap->va_mask & AT_XVATTR) {
2143		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2144		    crgetuid(cr), cr, vap->va_type)) != 0) {
2145			ZFS_EXIT(zfsvfs);
2146			return (error);
2147		}
2148	}
2149
2150	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2151	    vsecp, &acl_ids)) != 0) {
2152		ZFS_EXIT(zfsvfs);
2153		return (error);
2154	}
2155
2156	getnewvnode_reserve(1);
2157
2158	/*
2159	 * First make sure the new directory doesn't exist.
2160	 *
2161	 * Existence is checked first to make sure we don't return
2162	 * EACCES instead of EEXIST which can cause some applications
2163	 * to fail.
2164	 */
2165top:
2166	*vpp = NULL;
2167
2168	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2169	    NULL, NULL)) {
2170		zfs_acl_ids_free(&acl_ids);
2171		getnewvnode_drop_reserve();
2172		ZFS_EXIT(zfsvfs);
2173		return (error);
2174	}
2175
2176	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2177		zfs_acl_ids_free(&acl_ids);
2178		zfs_dirent_unlock(dl);
2179		getnewvnode_drop_reserve();
2180		ZFS_EXIT(zfsvfs);
2181		return (error);
2182	}
2183
2184	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2185		zfs_acl_ids_free(&acl_ids);
2186		zfs_dirent_unlock(dl);
2187		getnewvnode_drop_reserve();
2188		ZFS_EXIT(zfsvfs);
2189		return (SET_ERROR(EDQUOT));
2190	}
2191
2192	/*
2193	 * Add a new entry to the directory.
2194	 */
2195	tx = dmu_tx_create(zfsvfs->z_os);
2196	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2197	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2198	fuid_dirtied = zfsvfs->z_fuid_dirty;
2199	if (fuid_dirtied)
2200		zfs_fuid_txhold(zfsvfs, tx);
2201	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2202		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2203		    acl_ids.z_aclp->z_acl_bytes);
2204	}
2205
2206	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2207	    ZFS_SA_BASE_ATTR_SIZE);
2208
2209	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2210	if (error) {
2211		zfs_dirent_unlock(dl);
2212		if (error == ERESTART) {
2213			waited = B_TRUE;
2214			dmu_tx_wait(tx);
2215			dmu_tx_abort(tx);
2216			goto top;
2217		}
2218		zfs_acl_ids_free(&acl_ids);
2219		dmu_tx_abort(tx);
2220		getnewvnode_drop_reserve();
2221		ZFS_EXIT(zfsvfs);
2222		return (error);
2223	}
2224
2225	/*
2226	 * Create new node.
2227	 */
2228	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2229
2230	if (fuid_dirtied)
2231		zfs_fuid_sync(zfsvfs, tx);
2232
2233	/*
2234	 * Now put new name in parent dir.
2235	 */
2236	(void) zfs_link_create(dl, zp, tx, ZNEW);
2237
2238	*vpp = ZTOV(zp);
2239
2240	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2241	if (flags & FIGNORECASE)
2242		txtype |= TX_CI;
2243	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2244	    acl_ids.z_fuidp, vap);
2245
2246	zfs_acl_ids_free(&acl_ids);
2247
2248	dmu_tx_commit(tx);
2249
2250	getnewvnode_drop_reserve();
2251
2252	zfs_dirent_unlock(dl);
2253
2254	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2255		zil_commit(zilog, 0);
2256
2257	ZFS_EXIT(zfsvfs);
2258	return (0);
2259}
2260
2261/*
2262 * Remove a directory subdir entry.  If the current working
2263 * directory is the same as the subdir to be removed, the
2264 * remove will fail.
2265 *
2266 *	IN:	dvp	- vnode of directory to remove from.
2267 *		name	- name of directory to be removed.
2268 *		cwd	- vnode of current working directory.
2269 *		cr	- credentials of caller.
2270 *		ct	- caller context
2271 *		flags	- case flags
2272 *
2273 *	RETURN:	0 on success, error code on failure.
2274 *
2275 * Timestamps:
2276 *	dvp - ctime|mtime updated
2277 */
2278/*ARGSUSED*/
2279static int
2280zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2281    caller_context_t *ct, int flags)
2282{
2283	znode_t		*dzp = VTOZ(dvp);
2284	znode_t		*zp;
2285	vnode_t		*vp;
2286	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2287	zilog_t		*zilog;
2288	zfs_dirlock_t	*dl;
2289	dmu_tx_t	*tx;
2290	int		error;
2291	int		zflg = ZEXISTS;
2292	boolean_t	waited = B_FALSE;
2293
2294	ZFS_ENTER(zfsvfs);
2295	ZFS_VERIFY_ZP(dzp);
2296	zilog = zfsvfs->z_log;
2297
2298	if (flags & FIGNORECASE)
2299		zflg |= ZCILOOK;
2300top:
2301	zp = NULL;
2302
2303	/*
2304	 * Attempt to lock directory; fail if entry doesn't exist.
2305	 */
2306	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2307	    NULL, NULL)) {
2308		ZFS_EXIT(zfsvfs);
2309		return (error);
2310	}
2311
2312	vp = ZTOV(zp);
2313
2314	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2315		goto out;
2316	}
2317
2318	if (vp->v_type != VDIR) {
2319		error = SET_ERROR(ENOTDIR);
2320		goto out;
2321	}
2322
2323	if (vp == cwd) {
2324		error = SET_ERROR(EINVAL);
2325		goto out;
2326	}
2327
2328	vnevent_rmdir(vp, dvp, name, ct);
2329
2330	/*
2331	 * Grab a lock on the directory to make sure that noone is
2332	 * trying to add (or lookup) entries while we are removing it.
2333	 */
2334	rw_enter(&zp->z_name_lock, RW_WRITER);
2335
2336	/*
2337	 * Grab a lock on the parent pointer to make sure we play well
2338	 * with the treewalk and directory rename code.
2339	 */
2340	rw_enter(&zp->z_parent_lock, RW_WRITER);
2341
2342	tx = dmu_tx_create(zfsvfs->z_os);
2343	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2344	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2345	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2346	zfs_sa_upgrade_txholds(tx, zp);
2347	zfs_sa_upgrade_txholds(tx, dzp);
2348	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2349	if (error) {
2350		rw_exit(&zp->z_parent_lock);
2351		rw_exit(&zp->z_name_lock);
2352		zfs_dirent_unlock(dl);
2353		VN_RELE(vp);
2354		if (error == ERESTART) {
2355			waited = B_TRUE;
2356			dmu_tx_wait(tx);
2357			dmu_tx_abort(tx);
2358			goto top;
2359		}
2360		dmu_tx_abort(tx);
2361		ZFS_EXIT(zfsvfs);
2362		return (error);
2363	}
2364
2365#ifdef FREEBSD_NAMECACHE
2366	cache_purge(dvp);
2367#endif
2368
2369	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2370
2371	if (error == 0) {
2372		uint64_t txtype = TX_RMDIR;
2373		if (flags & FIGNORECASE)
2374			txtype |= TX_CI;
2375		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2376	}
2377
2378	dmu_tx_commit(tx);
2379
2380	rw_exit(&zp->z_parent_lock);
2381	rw_exit(&zp->z_name_lock);
2382#ifdef FREEBSD_NAMECACHE
2383	cache_purge(vp);
2384#endif
2385out:
2386	zfs_dirent_unlock(dl);
2387
2388	VN_RELE(vp);
2389
2390	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2391		zil_commit(zilog, 0);
2392
2393	ZFS_EXIT(zfsvfs);
2394	return (error);
2395}
2396
2397/*
2398 * Read as many directory entries as will fit into the provided
2399 * buffer from the given directory cursor position (specified in
2400 * the uio structure).
2401 *
2402 *	IN:	vp	- vnode of directory to read.
2403 *		uio	- structure supplying read location, range info,
2404 *			  and return buffer.
2405 *		cr	- credentials of caller.
2406 *		ct	- caller context
2407 *		flags	- case flags
2408 *
2409 *	OUT:	uio	- updated offset and range, buffer filled.
2410 *		eofp	- set to true if end-of-file detected.
2411 *
2412 *	RETURN:	0 on success, error code on failure.
2413 *
2414 * Timestamps:
2415 *	vp - atime updated
2416 *
2417 * Note that the low 4 bits of the cookie returned by zap is always zero.
2418 * This allows us to use the low range for "special" directory entries:
2419 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2420 * we use the offset 2 for the '.zfs' directory.
2421 */
2422/* ARGSUSED */
2423static int
2424zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2425{
2426	znode_t		*zp = VTOZ(vp);
2427	iovec_t		*iovp;
2428	edirent_t	*eodp;
2429	dirent64_t	*odp;
2430	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2431	objset_t	*os;
2432	caddr_t		outbuf;
2433	size_t		bufsize;
2434	zap_cursor_t	zc;
2435	zap_attribute_t	zap;
2436	uint_t		bytes_wanted;
2437	uint64_t	offset; /* must be unsigned; checks for < 1 */
2438	uint64_t	parent;
2439	int		local_eof;
2440	int		outcount;
2441	int		error;
2442	uint8_t		prefetch;
2443	boolean_t	check_sysattrs;
2444	uint8_t		type;
2445	int		ncooks;
2446	u_long		*cooks = NULL;
2447	int		flags = 0;
2448
2449	ZFS_ENTER(zfsvfs);
2450	ZFS_VERIFY_ZP(zp);
2451
2452	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2453	    &parent, sizeof (parent))) != 0) {
2454		ZFS_EXIT(zfsvfs);
2455		return (error);
2456	}
2457
2458	/*
2459	 * If we are not given an eof variable,
2460	 * use a local one.
2461	 */
2462	if (eofp == NULL)
2463		eofp = &local_eof;
2464
2465	/*
2466	 * Check for valid iov_len.
2467	 */
2468	if (uio->uio_iov->iov_len <= 0) {
2469		ZFS_EXIT(zfsvfs);
2470		return (SET_ERROR(EINVAL));
2471	}
2472
2473	/*
2474	 * Quit if directory has been removed (posix)
2475	 */
2476	if ((*eofp = zp->z_unlinked) != 0) {
2477		ZFS_EXIT(zfsvfs);
2478		return (0);
2479	}
2480
2481	error = 0;
2482	os = zfsvfs->z_os;
2483	offset = uio->uio_loffset;
2484	prefetch = zp->z_zn_prefetch;
2485
2486	/*
2487	 * Initialize the iterator cursor.
2488	 */
2489	if (offset <= 3) {
2490		/*
2491		 * Start iteration from the beginning of the directory.
2492		 */
2493		zap_cursor_init(&zc, os, zp->z_id);
2494	} else {
2495		/*
2496		 * The offset is a serialized cursor.
2497		 */
2498		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2499	}
2500
2501	/*
2502	 * Get space to change directory entries into fs independent format.
2503	 */
2504	iovp = uio->uio_iov;
2505	bytes_wanted = iovp->iov_len;
2506	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2507		bufsize = bytes_wanted;
2508		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2509		odp = (struct dirent64 *)outbuf;
2510	} else {
2511		bufsize = bytes_wanted;
2512		outbuf = NULL;
2513		odp = (struct dirent64 *)iovp->iov_base;
2514	}
2515	eodp = (struct edirent *)odp;
2516
2517	if (ncookies != NULL) {
2518		/*
2519		 * Minimum entry size is dirent size and 1 byte for a file name.
2520		 */
2521		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2522		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2523		*cookies = cooks;
2524		*ncookies = ncooks;
2525	}
2526	/*
2527	 * If this VFS supports the system attribute view interface; and
2528	 * we're looking at an extended attribute directory; and we care
2529	 * about normalization conflicts on this vfs; then we must check
2530	 * for normalization conflicts with the sysattr name space.
2531	 */
2532#ifdef TODO
2533	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2534	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2535	    (flags & V_RDDIR_ENTFLAGS);
2536#else
2537	check_sysattrs = 0;
2538#endif
2539
2540	/*
2541	 * Transform to file-system independent format
2542	 */
2543	outcount = 0;
2544	while (outcount < bytes_wanted) {
2545		ino64_t objnum;
2546		ushort_t reclen;
2547		off64_t *next = NULL;
2548
2549		/*
2550		 * Special case `.', `..', and `.zfs'.
2551		 */
2552		if (offset == 0) {
2553			(void) strcpy(zap.za_name, ".");
2554			zap.za_normalization_conflict = 0;
2555			objnum = zp->z_id;
2556			type = DT_DIR;
2557		} else if (offset == 1) {
2558			(void) strcpy(zap.za_name, "..");
2559			zap.za_normalization_conflict = 0;
2560			objnum = parent;
2561			type = DT_DIR;
2562		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2563			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2564			zap.za_normalization_conflict = 0;
2565			objnum = ZFSCTL_INO_ROOT;
2566			type = DT_DIR;
2567		} else {
2568			/*
2569			 * Grab next entry.
2570			 */
2571			if (error = zap_cursor_retrieve(&zc, &zap)) {
2572				if ((*eofp = (error == ENOENT)) != 0)
2573					break;
2574				else
2575					goto update;
2576			}
2577
2578			if (zap.za_integer_length != 8 ||
2579			    zap.za_num_integers != 1) {
2580				cmn_err(CE_WARN, "zap_readdir: bad directory "
2581				    "entry, obj = %lld, offset = %lld\n",
2582				    (u_longlong_t)zp->z_id,
2583				    (u_longlong_t)offset);
2584				error = SET_ERROR(ENXIO);
2585				goto update;
2586			}
2587
2588			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2589			/*
2590			 * MacOS X can extract the object type here such as:
2591			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2592			 */
2593			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2594
2595			if (check_sysattrs && !zap.za_normalization_conflict) {
2596#ifdef TODO
2597				zap.za_normalization_conflict =
2598				    xattr_sysattr_casechk(zap.za_name);
2599#else
2600				panic("%s:%u: TODO", __func__, __LINE__);
2601#endif
2602			}
2603		}
2604
2605		if (flags & V_RDDIR_ACCFILTER) {
2606			/*
2607			 * If we have no access at all, don't include
2608			 * this entry in the returned information
2609			 */
2610			znode_t	*ezp;
2611			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2612				goto skip_entry;
2613			if (!zfs_has_access(ezp, cr)) {
2614				VN_RELE(ZTOV(ezp));
2615				goto skip_entry;
2616			}
2617			VN_RELE(ZTOV(ezp));
2618		}
2619
2620		if (flags & V_RDDIR_ENTFLAGS)
2621			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2622		else
2623			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2624
2625		/*
2626		 * Will this entry fit in the buffer?
2627		 */
2628		if (outcount + reclen > bufsize) {
2629			/*
2630			 * Did we manage to fit anything in the buffer?
2631			 */
2632			if (!outcount) {
2633				error = SET_ERROR(EINVAL);
2634				goto update;
2635			}
2636			break;
2637		}
2638		if (flags & V_RDDIR_ENTFLAGS) {
2639			/*
2640			 * Add extended flag entry:
2641			 */
2642			eodp->ed_ino = objnum;
2643			eodp->ed_reclen = reclen;
2644			/* NOTE: ed_off is the offset for the *next* entry */
2645			next = &(eodp->ed_off);
2646			eodp->ed_eflags = zap.za_normalization_conflict ?
2647			    ED_CASE_CONFLICT : 0;
2648			(void) strncpy(eodp->ed_name, zap.za_name,
2649			    EDIRENT_NAMELEN(reclen));
2650			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2651		} else {
2652			/*
2653			 * Add normal entry:
2654			 */
2655			odp->d_ino = objnum;
2656			odp->d_reclen = reclen;
2657			odp->d_namlen = strlen(zap.za_name);
2658			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2659			odp->d_type = type;
2660			odp = (dirent64_t *)((intptr_t)odp + reclen);
2661		}
2662		outcount += reclen;
2663
2664		ASSERT(outcount <= bufsize);
2665
2666		/* Prefetch znode */
2667		if (prefetch)
2668			dmu_prefetch(os, objnum, 0, 0);
2669
2670	skip_entry:
2671		/*
2672		 * Move to the next entry, fill in the previous offset.
2673		 */
2674		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2675			zap_cursor_advance(&zc);
2676			offset = zap_cursor_serialize(&zc);
2677		} else {
2678			offset += 1;
2679		}
2680
2681		if (cooks != NULL) {
2682			*cooks++ = offset;
2683			ncooks--;
2684			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2685		}
2686	}
2687	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2688
2689	/* Subtract unused cookies */
2690	if (ncookies != NULL)
2691		*ncookies -= ncooks;
2692
2693	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2694		iovp->iov_base += outcount;
2695		iovp->iov_len -= outcount;
2696		uio->uio_resid -= outcount;
2697	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2698		/*
2699		 * Reset the pointer.
2700		 */
2701		offset = uio->uio_loffset;
2702	}
2703
2704update:
2705	zap_cursor_fini(&zc);
2706	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2707		kmem_free(outbuf, bufsize);
2708
2709	if (error == ENOENT)
2710		error = 0;
2711
2712	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2713
2714	uio->uio_loffset = offset;
2715	ZFS_EXIT(zfsvfs);
2716	if (error != 0 && cookies != NULL) {
2717		free(*cookies, M_TEMP);
2718		*cookies = NULL;
2719		*ncookies = 0;
2720	}
2721	return (error);
2722}
2723
2724ulong_t zfs_fsync_sync_cnt = 4;
2725
2726static int
2727zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2728{
2729	znode_t	*zp = VTOZ(vp);
2730	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2731
2732	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2733
2734	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2735		ZFS_ENTER(zfsvfs);
2736		ZFS_VERIFY_ZP(zp);
2737		zil_commit(zfsvfs->z_log, zp->z_id);
2738		ZFS_EXIT(zfsvfs);
2739	}
2740	return (0);
2741}
2742
2743
2744/*
2745 * Get the requested file attributes and place them in the provided
2746 * vattr structure.
2747 *
2748 *	IN:	vp	- vnode of file.
2749 *		vap	- va_mask identifies requested attributes.
2750 *			  If AT_XVATTR set, then optional attrs are requested
2751 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2752 *		cr	- credentials of caller.
2753 *		ct	- caller context
2754 *
2755 *	OUT:	vap	- attribute values.
2756 *
2757 *	RETURN:	0 (always succeeds).
2758 */
2759/* ARGSUSED */
2760static int
2761zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2762    caller_context_t *ct)
2763{
2764	znode_t *zp = VTOZ(vp);
2765	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2766	int	error = 0;
2767	uint32_t blksize;
2768	u_longlong_t nblocks;
2769	uint64_t links;
2770	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2771	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2772	xoptattr_t *xoap = NULL;
2773	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2774	sa_bulk_attr_t bulk[4];
2775	int count = 0;
2776
2777	ZFS_ENTER(zfsvfs);
2778	ZFS_VERIFY_ZP(zp);
2779
2780	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2781
2782	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2783	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2784	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2785	if (vp->v_type == VBLK || vp->v_type == VCHR)
2786		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2787		    &rdev, 8);
2788
2789	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2790		ZFS_EXIT(zfsvfs);
2791		return (error);
2792	}
2793
2794	/*
2795	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2796	 * Also, if we are the owner don't bother, since owner should
2797	 * always be allowed to read basic attributes of file.
2798	 */
2799	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2800	    (vap->va_uid != crgetuid(cr))) {
2801		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2802		    skipaclchk, cr)) {
2803			ZFS_EXIT(zfsvfs);
2804			return (error);
2805		}
2806	}
2807
2808	/*
2809	 * Return all attributes.  It's cheaper to provide the answer
2810	 * than to determine whether we were asked the question.
2811	 */
2812
2813	mutex_enter(&zp->z_lock);
2814	vap->va_type = IFTOVT(zp->z_mode);
2815	vap->va_mode = zp->z_mode & ~S_IFMT;
2816#ifdef sun
2817	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2818#else
2819	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2820#endif
2821	vap->va_nodeid = zp->z_id;
2822	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2823		links = zp->z_links + 1;
2824	else
2825		links = zp->z_links;
2826	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2827	vap->va_size = zp->z_size;
2828#ifdef sun
2829	vap->va_rdev = vp->v_rdev;
2830#else
2831	if (vp->v_type == VBLK || vp->v_type == VCHR)
2832		vap->va_rdev = zfs_cmpldev(rdev);
2833#endif
2834	vap->va_seq = zp->z_seq;
2835	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2836	vap->va_filerev = zp->z_seq;
2837
2838	/*
2839	 * Add in any requested optional attributes and the create time.
2840	 * Also set the corresponding bits in the returned attribute bitmap.
2841	 */
2842	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2843		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2844			xoap->xoa_archive =
2845			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2846			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2847		}
2848
2849		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2850			xoap->xoa_readonly =
2851			    ((zp->z_pflags & ZFS_READONLY) != 0);
2852			XVA_SET_RTN(xvap, XAT_READONLY);
2853		}
2854
2855		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2856			xoap->xoa_system =
2857			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2858			XVA_SET_RTN(xvap, XAT_SYSTEM);
2859		}
2860
2861		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2862			xoap->xoa_hidden =
2863			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2864			XVA_SET_RTN(xvap, XAT_HIDDEN);
2865		}
2866
2867		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2868			xoap->xoa_nounlink =
2869			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2870			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2871		}
2872
2873		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2874			xoap->xoa_immutable =
2875			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2876			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2877		}
2878
2879		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2880			xoap->xoa_appendonly =
2881			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2882			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2883		}
2884
2885		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2886			xoap->xoa_nodump =
2887			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2888			XVA_SET_RTN(xvap, XAT_NODUMP);
2889		}
2890
2891		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2892			xoap->xoa_opaque =
2893			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2894			XVA_SET_RTN(xvap, XAT_OPAQUE);
2895		}
2896
2897		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2898			xoap->xoa_av_quarantined =
2899			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2900			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2901		}
2902
2903		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2904			xoap->xoa_av_modified =
2905			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2906			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2907		}
2908
2909		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2910		    vp->v_type == VREG) {
2911			zfs_sa_get_scanstamp(zp, xvap);
2912		}
2913
2914		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2915			uint64_t times[2];
2916
2917			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2918			    times, sizeof (times));
2919			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2920			XVA_SET_RTN(xvap, XAT_CREATETIME);
2921		}
2922
2923		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2924			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2925			XVA_SET_RTN(xvap, XAT_REPARSE);
2926		}
2927		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2928			xoap->xoa_generation = zp->z_gen;
2929			XVA_SET_RTN(xvap, XAT_GEN);
2930		}
2931
2932		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2933			xoap->xoa_offline =
2934			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2935			XVA_SET_RTN(xvap, XAT_OFFLINE);
2936		}
2937
2938		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2939			xoap->xoa_sparse =
2940			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2941			XVA_SET_RTN(xvap, XAT_SPARSE);
2942		}
2943	}
2944
2945	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2946	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2947	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2948	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2949
2950	mutex_exit(&zp->z_lock);
2951
2952	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2953	vap->va_blksize = blksize;
2954	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2955
2956	if (zp->z_blksz == 0) {
2957		/*
2958		 * Block size hasn't been set; suggest maximal I/O transfers.
2959		 */
2960		vap->va_blksize = zfsvfs->z_max_blksz;
2961	}
2962
2963	ZFS_EXIT(zfsvfs);
2964	return (0);
2965}
2966
2967/*
2968 * Set the file attributes to the values contained in the
2969 * vattr structure.
2970 *
2971 *	IN:	vp	- vnode of file to be modified.
2972 *		vap	- new attribute values.
2973 *			  If AT_XVATTR set, then optional attrs are being set
2974 *		flags	- ATTR_UTIME set if non-default time values provided.
2975 *			- ATTR_NOACLCHECK (CIFS context only).
2976 *		cr	- credentials of caller.
2977 *		ct	- caller context
2978 *
2979 *	RETURN:	0 on success, error code on failure.
2980 *
2981 * Timestamps:
2982 *	vp - ctime updated, mtime updated if size changed.
2983 */
2984/* ARGSUSED */
2985static int
2986zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2987    caller_context_t *ct)
2988{
2989	znode_t		*zp = VTOZ(vp);
2990	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2991	zilog_t		*zilog;
2992	dmu_tx_t	*tx;
2993	vattr_t		oldva;
2994	xvattr_t	tmpxvattr;
2995	uint_t		mask = vap->va_mask;
2996	uint_t		saved_mask = 0;
2997	uint64_t	saved_mode;
2998	int		trim_mask = 0;
2999	uint64_t	new_mode;
3000	uint64_t	new_uid, new_gid;
3001	uint64_t	xattr_obj;
3002	uint64_t	mtime[2], ctime[2];
3003	znode_t		*attrzp;
3004	int		need_policy = FALSE;
3005	int		err, err2;
3006	zfs_fuid_info_t *fuidp = NULL;
3007	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
3008	xoptattr_t	*xoap;
3009	zfs_acl_t	*aclp;
3010	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
3011	boolean_t	fuid_dirtied = B_FALSE;
3012	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3013	int		count = 0, xattr_count = 0;
3014
3015	if (mask == 0)
3016		return (0);
3017
3018	if (mask & AT_NOSET)
3019		return (SET_ERROR(EINVAL));
3020
3021	ZFS_ENTER(zfsvfs);
3022	ZFS_VERIFY_ZP(zp);
3023
3024	zilog = zfsvfs->z_log;
3025
3026	/*
3027	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3028	 * that file system is at proper version level
3029	 */
3030
3031	if (zfsvfs->z_use_fuids == B_FALSE &&
3032	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3033	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3034	    (mask & AT_XVATTR))) {
3035		ZFS_EXIT(zfsvfs);
3036		return (SET_ERROR(EINVAL));
3037	}
3038
3039	if (mask & AT_SIZE && vp->v_type == VDIR) {
3040		ZFS_EXIT(zfsvfs);
3041		return (SET_ERROR(EISDIR));
3042	}
3043
3044	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3045		ZFS_EXIT(zfsvfs);
3046		return (SET_ERROR(EINVAL));
3047	}
3048
3049	/*
3050	 * If this is an xvattr_t, then get a pointer to the structure of
3051	 * optional attributes.  If this is NULL, then we have a vattr_t.
3052	 */
3053	xoap = xva_getxoptattr(xvap);
3054
3055	xva_init(&tmpxvattr);
3056
3057	/*
3058	 * Immutable files can only alter immutable bit and atime
3059	 */
3060	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3061	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3062	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3063		ZFS_EXIT(zfsvfs);
3064		return (SET_ERROR(EPERM));
3065	}
3066
3067	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3068		ZFS_EXIT(zfsvfs);
3069		return (SET_ERROR(EPERM));
3070	}
3071
3072	/*
3073	 * Verify timestamps doesn't overflow 32 bits.
3074	 * ZFS can handle large timestamps, but 32bit syscalls can't
3075	 * handle times greater than 2039.  This check should be removed
3076	 * once large timestamps are fully supported.
3077	 */
3078	if (mask & (AT_ATIME | AT_MTIME)) {
3079		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3080		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3081			ZFS_EXIT(zfsvfs);
3082			return (SET_ERROR(EOVERFLOW));
3083		}
3084	}
3085
3086top:
3087	attrzp = NULL;
3088	aclp = NULL;
3089
3090	/* Can this be moved to before the top label? */
3091	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3092		ZFS_EXIT(zfsvfs);
3093		return (SET_ERROR(EROFS));
3094	}
3095
3096	/*
3097	 * First validate permissions
3098	 */
3099
3100	if (mask & AT_SIZE) {
3101		/*
3102		 * XXX - Note, we are not providing any open
3103		 * mode flags here (like FNDELAY), so we may
3104		 * block if there are locks present... this
3105		 * should be addressed in openat().
3106		 */
3107		/* XXX - would it be OK to generate a log record here? */
3108		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3109		if (err) {
3110			ZFS_EXIT(zfsvfs);
3111			return (err);
3112		}
3113	}
3114
3115	if (mask & (AT_ATIME|AT_MTIME) ||
3116	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3117	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3118	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3119	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3120	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3121	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3122	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3123		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3124		    skipaclchk, cr);
3125	}
3126
3127	if (mask & (AT_UID|AT_GID)) {
3128		int	idmask = (mask & (AT_UID|AT_GID));
3129		int	take_owner;
3130		int	take_group;
3131
3132		/*
3133		 * NOTE: even if a new mode is being set,
3134		 * we may clear S_ISUID/S_ISGID bits.
3135		 */
3136
3137		if (!(mask & AT_MODE))
3138			vap->va_mode = zp->z_mode;
3139
3140		/*
3141		 * Take ownership or chgrp to group we are a member of
3142		 */
3143
3144		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3145		take_group = (mask & AT_GID) &&
3146		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3147
3148		/*
3149		 * If both AT_UID and AT_GID are set then take_owner and
3150		 * take_group must both be set in order to allow taking
3151		 * ownership.
3152		 *
3153		 * Otherwise, send the check through secpolicy_vnode_setattr()
3154		 *
3155		 */
3156
3157		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3158		    ((idmask == AT_UID) && take_owner) ||
3159		    ((idmask == AT_GID) && take_group)) {
3160			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3161			    skipaclchk, cr) == 0) {
3162				/*
3163				 * Remove setuid/setgid for non-privileged users
3164				 */
3165				secpolicy_setid_clear(vap, vp, cr);
3166				trim_mask = (mask & (AT_UID|AT_GID));
3167			} else {
3168				need_policy =  TRUE;
3169			}
3170		} else {
3171			need_policy =  TRUE;
3172		}
3173	}
3174
3175	mutex_enter(&zp->z_lock);
3176	oldva.va_mode = zp->z_mode;
3177	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3178	if (mask & AT_XVATTR) {
3179		/*
3180		 * Update xvattr mask to include only those attributes
3181		 * that are actually changing.
3182		 *
3183		 * the bits will be restored prior to actually setting
3184		 * the attributes so the caller thinks they were set.
3185		 */
3186		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3187			if (xoap->xoa_appendonly !=
3188			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3189				need_policy = TRUE;
3190			} else {
3191				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3192				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3193			}
3194		}
3195
3196		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3197			if (xoap->xoa_nounlink !=
3198			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3199				need_policy = TRUE;
3200			} else {
3201				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3202				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3203			}
3204		}
3205
3206		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3207			if (xoap->xoa_immutable !=
3208			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3209				need_policy = TRUE;
3210			} else {
3211				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3212				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3213			}
3214		}
3215
3216		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3217			if (xoap->xoa_nodump !=
3218			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3219				need_policy = TRUE;
3220			} else {
3221				XVA_CLR_REQ(xvap, XAT_NODUMP);
3222				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3223			}
3224		}
3225
3226		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3227			if (xoap->xoa_av_modified !=
3228			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3229				need_policy = TRUE;
3230			} else {
3231				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3232				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3233			}
3234		}
3235
3236		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3237			if ((vp->v_type != VREG &&
3238			    xoap->xoa_av_quarantined) ||
3239			    xoap->xoa_av_quarantined !=
3240			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3241				need_policy = TRUE;
3242			} else {
3243				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3244				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3245			}
3246		}
3247
3248		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3249			mutex_exit(&zp->z_lock);
3250			ZFS_EXIT(zfsvfs);
3251			return (SET_ERROR(EPERM));
3252		}
3253
3254		if (need_policy == FALSE &&
3255		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3256		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3257			need_policy = TRUE;
3258		}
3259	}
3260
3261	mutex_exit(&zp->z_lock);
3262
3263	if (mask & AT_MODE) {
3264		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3265			err = secpolicy_setid_setsticky_clear(vp, vap,
3266			    &oldva, cr);
3267			if (err) {
3268				ZFS_EXIT(zfsvfs);
3269				return (err);
3270			}
3271			trim_mask |= AT_MODE;
3272		} else {
3273			need_policy = TRUE;
3274		}
3275	}
3276
3277	if (need_policy) {
3278		/*
3279		 * If trim_mask is set then take ownership
3280		 * has been granted or write_acl is present and user
3281		 * has the ability to modify mode.  In that case remove
3282		 * UID|GID and or MODE from mask so that
3283		 * secpolicy_vnode_setattr() doesn't revoke it.
3284		 */
3285
3286		if (trim_mask) {
3287			saved_mask = vap->va_mask;
3288			vap->va_mask &= ~trim_mask;
3289			if (trim_mask & AT_MODE) {
3290				/*
3291				 * Save the mode, as secpolicy_vnode_setattr()
3292				 * will overwrite it with ova.va_mode.
3293				 */
3294				saved_mode = vap->va_mode;
3295			}
3296		}
3297		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3298		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3299		if (err) {
3300			ZFS_EXIT(zfsvfs);
3301			return (err);
3302		}
3303
3304		if (trim_mask) {
3305			vap->va_mask |= saved_mask;
3306			if (trim_mask & AT_MODE) {
3307				/*
3308				 * Recover the mode after
3309				 * secpolicy_vnode_setattr().
3310				 */
3311				vap->va_mode = saved_mode;
3312			}
3313		}
3314	}
3315
3316	/*
3317	 * secpolicy_vnode_setattr, or take ownership may have
3318	 * changed va_mask
3319	 */
3320	mask = vap->va_mask;
3321
3322	if ((mask & (AT_UID | AT_GID))) {
3323		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3324		    &xattr_obj, sizeof (xattr_obj));
3325
3326		if (err == 0 && xattr_obj) {
3327			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3328			if (err)
3329				goto out2;
3330		}
3331		if (mask & AT_UID) {
3332			new_uid = zfs_fuid_create(zfsvfs,
3333			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3334			if (new_uid != zp->z_uid &&
3335			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3336				if (attrzp)
3337					VN_RELE(ZTOV(attrzp));
3338				err = SET_ERROR(EDQUOT);
3339				goto out2;
3340			}
3341		}
3342
3343		if (mask & AT_GID) {
3344			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3345			    cr, ZFS_GROUP, &fuidp);
3346			if (new_gid != zp->z_gid &&
3347			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3348				if (attrzp)
3349					VN_RELE(ZTOV(attrzp));
3350				err = SET_ERROR(EDQUOT);
3351				goto out2;
3352			}
3353		}
3354	}
3355	tx = dmu_tx_create(zfsvfs->z_os);
3356
3357	if (mask & AT_MODE) {
3358		uint64_t pmode = zp->z_mode;
3359		uint64_t acl_obj;
3360		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3361
3362		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3363		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3364			err = SET_ERROR(EPERM);
3365			goto out;
3366		}
3367
3368		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3369			goto out;
3370
3371		mutex_enter(&zp->z_lock);
3372		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3373			/*
3374			 * Are we upgrading ACL from old V0 format
3375			 * to V1 format?
3376			 */
3377			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3378			    zfs_znode_acl_version(zp) ==
3379			    ZFS_ACL_VERSION_INITIAL) {
3380				dmu_tx_hold_free(tx, acl_obj, 0,
3381				    DMU_OBJECT_END);
3382				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3383				    0, aclp->z_acl_bytes);
3384			} else {
3385				dmu_tx_hold_write(tx, acl_obj, 0,
3386				    aclp->z_acl_bytes);
3387			}
3388		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3389			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3390			    0, aclp->z_acl_bytes);
3391		}
3392		mutex_exit(&zp->z_lock);
3393		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3394	} else {
3395		if ((mask & AT_XVATTR) &&
3396		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3397			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3398		else
3399			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3400	}
3401
3402	if (attrzp) {
3403		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3404	}
3405
3406	fuid_dirtied = zfsvfs->z_fuid_dirty;
3407	if (fuid_dirtied)
3408		zfs_fuid_txhold(zfsvfs, tx);
3409
3410	zfs_sa_upgrade_txholds(tx, zp);
3411
3412	err = dmu_tx_assign(tx, TXG_WAIT);
3413	if (err)
3414		goto out;
3415
3416	count = 0;
3417	/*
3418	 * Set each attribute requested.
3419	 * We group settings according to the locks they need to acquire.
3420	 *
3421	 * Note: you cannot set ctime directly, although it will be
3422	 * updated as a side-effect of calling this function.
3423	 */
3424
3425
3426	if (mask & (AT_UID|AT_GID|AT_MODE))
3427		mutex_enter(&zp->z_acl_lock);
3428	mutex_enter(&zp->z_lock);
3429
3430	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3431	    &zp->z_pflags, sizeof (zp->z_pflags));
3432
3433	if (attrzp) {
3434		if (mask & (AT_UID|AT_GID|AT_MODE))
3435			mutex_enter(&attrzp->z_acl_lock);
3436		mutex_enter(&attrzp->z_lock);
3437		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3438		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3439		    sizeof (attrzp->z_pflags));
3440	}
3441
3442	if (mask & (AT_UID|AT_GID)) {
3443
3444		if (mask & AT_UID) {
3445			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3446			    &new_uid, sizeof (new_uid));
3447			zp->z_uid = new_uid;
3448			if (attrzp) {
3449				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3450				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3451				    sizeof (new_uid));
3452				attrzp->z_uid = new_uid;
3453			}
3454		}
3455
3456		if (mask & AT_GID) {
3457			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3458			    NULL, &new_gid, sizeof (new_gid));
3459			zp->z_gid = new_gid;
3460			if (attrzp) {
3461				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3462				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3463				    sizeof (new_gid));
3464				attrzp->z_gid = new_gid;
3465			}
3466		}
3467		if (!(mask & AT_MODE)) {
3468			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3469			    NULL, &new_mode, sizeof (new_mode));
3470			new_mode = zp->z_mode;
3471		}
3472		err = zfs_acl_chown_setattr(zp);
3473		ASSERT(err == 0);
3474		if (attrzp) {
3475			err = zfs_acl_chown_setattr(attrzp);
3476			ASSERT(err == 0);
3477		}
3478	}
3479
3480	if (mask & AT_MODE) {
3481		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3482		    &new_mode, sizeof (new_mode));
3483		zp->z_mode = new_mode;
3484		ASSERT3U((uintptr_t)aclp, !=, 0);
3485		err = zfs_aclset_common(zp, aclp, cr, tx);
3486		ASSERT0(err);
3487		if (zp->z_acl_cached)
3488			zfs_acl_free(zp->z_acl_cached);
3489		zp->z_acl_cached = aclp;
3490		aclp = NULL;
3491	}
3492
3493
3494	if (mask & AT_ATIME) {
3495		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3496		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3497		    &zp->z_atime, sizeof (zp->z_atime));
3498	}
3499
3500	if (mask & AT_MTIME) {
3501		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3502		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3503		    mtime, sizeof (mtime));
3504	}
3505
3506	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3507	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3508		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3509		    NULL, mtime, sizeof (mtime));
3510		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3511		    &ctime, sizeof (ctime));
3512		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3513		    B_TRUE);
3514	} else if (mask != 0) {
3515		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3516		    &ctime, sizeof (ctime));
3517		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3518		    B_TRUE);
3519		if (attrzp) {
3520			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3521			    SA_ZPL_CTIME(zfsvfs), NULL,
3522			    &ctime, sizeof (ctime));
3523			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3524			    mtime, ctime, B_TRUE);
3525		}
3526	}
3527	/*
3528	 * Do this after setting timestamps to prevent timestamp
3529	 * update from toggling bit
3530	 */
3531
3532	if (xoap && (mask & AT_XVATTR)) {
3533
3534		/*
3535		 * restore trimmed off masks
3536		 * so that return masks can be set for caller.
3537		 */
3538
3539		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3540			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3541		}
3542		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3543			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3544		}
3545		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3546			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3547		}
3548		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3549			XVA_SET_REQ(xvap, XAT_NODUMP);
3550		}
3551		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3552			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3553		}
3554		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3555			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3556		}
3557
3558		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3559			ASSERT(vp->v_type == VREG);
3560
3561		zfs_xvattr_set(zp, xvap, tx);
3562	}
3563
3564	if (fuid_dirtied)
3565		zfs_fuid_sync(zfsvfs, tx);
3566
3567	if (mask != 0)
3568		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3569
3570	mutex_exit(&zp->z_lock);
3571	if (mask & (AT_UID|AT_GID|AT_MODE))
3572		mutex_exit(&zp->z_acl_lock);
3573
3574	if (attrzp) {
3575		if (mask & (AT_UID|AT_GID|AT_MODE))
3576			mutex_exit(&attrzp->z_acl_lock);
3577		mutex_exit(&attrzp->z_lock);
3578	}
3579out:
3580	if (err == 0 && attrzp) {
3581		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3582		    xattr_count, tx);
3583		ASSERT(err2 == 0);
3584	}
3585
3586	if (attrzp)
3587		VN_RELE(ZTOV(attrzp));
3588
3589	if (aclp)
3590		zfs_acl_free(aclp);
3591
3592	if (fuidp) {
3593		zfs_fuid_info_free(fuidp);
3594		fuidp = NULL;
3595	}
3596
3597	if (err) {
3598		dmu_tx_abort(tx);
3599		if (err == ERESTART)
3600			goto top;
3601	} else {
3602		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3603		dmu_tx_commit(tx);
3604	}
3605
3606out2:
3607	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3608		zil_commit(zilog, 0);
3609
3610	ZFS_EXIT(zfsvfs);
3611	return (err);
3612}
3613
3614typedef struct zfs_zlock {
3615	krwlock_t	*zl_rwlock;	/* lock we acquired */
3616	znode_t		*zl_znode;	/* znode we held */
3617	struct zfs_zlock *zl_next;	/* next in list */
3618} zfs_zlock_t;
3619
3620/*
3621 * Drop locks and release vnodes that were held by zfs_rename_lock().
3622 */
3623static void
3624zfs_rename_unlock(zfs_zlock_t **zlpp)
3625{
3626	zfs_zlock_t *zl;
3627
3628	while ((zl = *zlpp) != NULL) {
3629		if (zl->zl_znode != NULL)
3630			VN_RELE(ZTOV(zl->zl_znode));
3631		rw_exit(zl->zl_rwlock);
3632		*zlpp = zl->zl_next;
3633		kmem_free(zl, sizeof (*zl));
3634	}
3635}
3636
3637/*
3638 * Search back through the directory tree, using the ".." entries.
3639 * Lock each directory in the chain to prevent concurrent renames.
3640 * Fail any attempt to move a directory into one of its own descendants.
3641 * XXX - z_parent_lock can overlap with map or grow locks
3642 */
3643static int
3644zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3645{
3646	zfs_zlock_t	*zl;
3647	znode_t		*zp = tdzp;
3648	uint64_t	rootid = zp->z_zfsvfs->z_root;
3649	uint64_t	oidp = zp->z_id;
3650	krwlock_t	*rwlp = &szp->z_parent_lock;
3651	krw_t		rw = RW_WRITER;
3652
3653	/*
3654	 * First pass write-locks szp and compares to zp->z_id.
3655	 * Later passes read-lock zp and compare to zp->z_parent.
3656	 */
3657	do {
3658		if (!rw_tryenter(rwlp, rw)) {
3659			/*
3660			 * Another thread is renaming in this path.
3661			 * Note that if we are a WRITER, we don't have any
3662			 * parent_locks held yet.
3663			 */
3664			if (rw == RW_READER && zp->z_id > szp->z_id) {
3665				/*
3666				 * Drop our locks and restart
3667				 */
3668				zfs_rename_unlock(&zl);
3669				*zlpp = NULL;
3670				zp = tdzp;
3671				oidp = zp->z_id;
3672				rwlp = &szp->z_parent_lock;
3673				rw = RW_WRITER;
3674				continue;
3675			} else {
3676				/*
3677				 * Wait for other thread to drop its locks
3678				 */
3679				rw_enter(rwlp, rw);
3680			}
3681		}
3682
3683		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3684		zl->zl_rwlock = rwlp;
3685		zl->zl_znode = NULL;
3686		zl->zl_next = *zlpp;
3687		*zlpp = zl;
3688
3689		if (oidp == szp->z_id)		/* We're a descendant of szp */
3690			return (SET_ERROR(EINVAL));
3691
3692		if (oidp == rootid)		/* We've hit the top */
3693			return (0);
3694
3695		if (rw == RW_READER) {		/* i.e. not the first pass */
3696			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3697			if (error)
3698				return (error);
3699			zl->zl_znode = zp;
3700		}
3701		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3702		    &oidp, sizeof (oidp));
3703		rwlp = &zp->z_parent_lock;
3704		rw = RW_READER;
3705
3706	} while (zp->z_id != sdzp->z_id);
3707
3708	return (0);
3709}
3710
3711/*
3712 * Move an entry from the provided source directory to the target
3713 * directory.  Change the entry name as indicated.
3714 *
3715 *	IN:	sdvp	- Source directory containing the "old entry".
3716 *		snm	- Old entry name.
3717 *		tdvp	- Target directory to contain the "new entry".
3718 *		tnm	- New entry name.
3719 *		cr	- credentials of caller.
3720 *		ct	- caller context
3721 *		flags	- case flags
3722 *
3723 *	RETURN:	0 on success, error code on failure.
3724 *
3725 * Timestamps:
3726 *	sdvp,tdvp - ctime|mtime updated
3727 */
3728/*ARGSUSED*/
3729static int
3730zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3731    caller_context_t *ct, int flags)
3732{
3733	znode_t		*tdzp, *sdzp, *szp, *tzp;
3734	zfsvfs_t 	*zfsvfs;
3735	zilog_t		*zilog;
3736	vnode_t		*realvp;
3737	zfs_dirlock_t	*sdl, *tdl;
3738	dmu_tx_t	*tx;
3739	zfs_zlock_t	*zl;
3740	int		cmp, serr, terr;
3741	int		error = 0;
3742	int		zflg = 0;
3743	boolean_t	waited = B_FALSE;
3744
3745	tdzp = VTOZ(tdvp);
3746	ZFS_VERIFY_ZP(tdzp);
3747	zfsvfs = tdzp->z_zfsvfs;
3748	ZFS_ENTER(zfsvfs);
3749	zilog = zfsvfs->z_log;
3750	sdzp = VTOZ(sdvp);
3751
3752	/*
3753	 * In case sdzp is not valid, let's be sure to exit from the right
3754	 * zfsvfs_t.
3755	 */
3756	if (sdzp->z_sa_hdl == NULL) {
3757		ZFS_EXIT(zfsvfs);
3758		return (SET_ERROR(EIO));
3759	}
3760
3761	/*
3762	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3763	 * ctldir appear to have the same v_vfsp.
3764	 */
3765	if (sdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3766		ZFS_EXIT(zfsvfs);
3767		return (SET_ERROR(EXDEV));
3768	}
3769
3770	if (zfsvfs->z_utf8 && u8_validate(tnm,
3771	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3772		ZFS_EXIT(zfsvfs);
3773		return (SET_ERROR(EILSEQ));
3774	}
3775
3776	if (flags & FIGNORECASE)
3777		zflg |= ZCILOOK;
3778
3779top:
3780	szp = NULL;
3781	tzp = NULL;
3782	zl = NULL;
3783
3784	/*
3785	 * This is to prevent the creation of links into attribute space
3786	 * by renaming a linked file into/outof an attribute directory.
3787	 * See the comment in zfs_link() for why this is considered bad.
3788	 */
3789	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3790		ZFS_EXIT(zfsvfs);
3791		return (SET_ERROR(EINVAL));
3792	}
3793
3794	/*
3795	 * Lock source and target directory entries.  To prevent deadlock,
3796	 * a lock ordering must be defined.  We lock the directory with
3797	 * the smallest object id first, or if it's a tie, the one with
3798	 * the lexically first name.
3799	 */
3800	if (sdzp->z_id < tdzp->z_id) {
3801		cmp = -1;
3802	} else if (sdzp->z_id > tdzp->z_id) {
3803		cmp = 1;
3804	} else {
3805		/*
3806		 * First compare the two name arguments without
3807		 * considering any case folding.
3808		 */
3809		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3810
3811		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3812		ASSERT(error == 0 || !zfsvfs->z_utf8);
3813		if (cmp == 0) {
3814			/*
3815			 * POSIX: "If the old argument and the new argument
3816			 * both refer to links to the same existing file,
3817			 * the rename() function shall return successfully
3818			 * and perform no other action."
3819			 */
3820			ZFS_EXIT(zfsvfs);
3821			return (0);
3822		}
3823		/*
3824		 * If the file system is case-folding, then we may
3825		 * have some more checking to do.  A case-folding file
3826		 * system is either supporting mixed case sensitivity
3827		 * access or is completely case-insensitive.  Note
3828		 * that the file system is always case preserving.
3829		 *
3830		 * In mixed sensitivity mode case sensitive behavior
3831		 * is the default.  FIGNORECASE must be used to
3832		 * explicitly request case insensitive behavior.
3833		 *
3834		 * If the source and target names provided differ only
3835		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3836		 * we will treat this as a special case in the
3837		 * case-insensitive mode: as long as the source name
3838		 * is an exact match, we will allow this to proceed as
3839		 * a name-change request.
3840		 */
3841		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3842		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3843		    flags & FIGNORECASE)) &&
3844		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3845		    &error) == 0) {
3846			/*
3847			 * case preserving rename request, require exact
3848			 * name matches
3849			 */
3850			zflg |= ZCIEXACT;
3851			zflg &= ~ZCILOOK;
3852		}
3853	}
3854
3855	/*
3856	 * If the source and destination directories are the same, we should
3857	 * grab the z_name_lock of that directory only once.
3858	 */
3859	if (sdzp == tdzp) {
3860		zflg |= ZHAVELOCK;
3861		rw_enter(&sdzp->z_name_lock, RW_READER);
3862	}
3863
3864	if (cmp < 0) {
3865		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3866		    ZEXISTS | zflg, NULL, NULL);
3867		terr = zfs_dirent_lock(&tdl,
3868		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3869	} else {
3870		terr = zfs_dirent_lock(&tdl,
3871		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3872		serr = zfs_dirent_lock(&sdl,
3873		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3874		    NULL, NULL);
3875	}
3876
3877	if (serr) {
3878		/*
3879		 * Source entry invalid or not there.
3880		 */
3881		if (!terr) {
3882			zfs_dirent_unlock(tdl);
3883			if (tzp)
3884				VN_RELE(ZTOV(tzp));
3885		}
3886
3887		if (sdzp == tdzp)
3888			rw_exit(&sdzp->z_name_lock);
3889
3890		/*
3891		 * FreeBSD: In OpenSolaris they only check if rename source is
3892		 * ".." here, because "." is handled in their lookup. This is
3893		 * not the case for FreeBSD, so we check for "." explicitly.
3894		 */
3895		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3896			serr = SET_ERROR(EINVAL);
3897		ZFS_EXIT(zfsvfs);
3898		return (serr);
3899	}
3900	if (terr) {
3901		zfs_dirent_unlock(sdl);
3902		VN_RELE(ZTOV(szp));
3903
3904		if (sdzp == tdzp)
3905			rw_exit(&sdzp->z_name_lock);
3906
3907		if (strcmp(tnm, "..") == 0)
3908			terr = SET_ERROR(EINVAL);
3909		ZFS_EXIT(zfsvfs);
3910		return (terr);
3911	}
3912
3913	/*
3914	 * Must have write access at the source to remove the old entry
3915	 * and write access at the target to create the new entry.
3916	 * Note that if target and source are the same, this can be
3917	 * done in a single check.
3918	 */
3919
3920	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3921		goto out;
3922
3923	if (ZTOV(szp)->v_type == VDIR) {
3924		/*
3925		 * Check to make sure rename is valid.
3926		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3927		 */
3928		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3929			goto out;
3930	}
3931
3932	/*
3933	 * Does target exist?
3934	 */
3935	if (tzp) {
3936		/*
3937		 * Source and target must be the same type.
3938		 */
3939		if (ZTOV(szp)->v_type == VDIR) {
3940			if (ZTOV(tzp)->v_type != VDIR) {
3941				error = SET_ERROR(ENOTDIR);
3942				goto out;
3943			}
3944		} else {
3945			if (ZTOV(tzp)->v_type == VDIR) {
3946				error = SET_ERROR(EISDIR);
3947				goto out;
3948			}
3949		}
3950		/*
3951		 * POSIX dictates that when the source and target
3952		 * entries refer to the same file object, rename
3953		 * must do nothing and exit without error.
3954		 */
3955		if (szp->z_id == tzp->z_id) {
3956			error = 0;
3957			goto out;
3958		}
3959	}
3960
3961	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3962	if (tzp)
3963		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3964
3965	/*
3966	 * notify the target directory if it is not the same
3967	 * as source directory.
3968	 */
3969	if (tdvp != sdvp) {
3970		vnevent_rename_dest_dir(tdvp, ct);
3971	}
3972
3973	tx = dmu_tx_create(zfsvfs->z_os);
3974	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3975	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3976	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3977	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3978	if (sdzp != tdzp) {
3979		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3980		zfs_sa_upgrade_txholds(tx, tdzp);
3981	}
3982	if (tzp) {
3983		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3984		zfs_sa_upgrade_txholds(tx, tzp);
3985	}
3986
3987	zfs_sa_upgrade_txholds(tx, szp);
3988	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3989	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3990	if (error) {
3991		if (zl != NULL)
3992			zfs_rename_unlock(&zl);
3993		zfs_dirent_unlock(sdl);
3994		zfs_dirent_unlock(tdl);
3995
3996		if (sdzp == tdzp)
3997			rw_exit(&sdzp->z_name_lock);
3998
3999		VN_RELE(ZTOV(szp));
4000		if (tzp)
4001			VN_RELE(ZTOV(tzp));
4002		if (error == ERESTART) {
4003			waited = B_TRUE;
4004			dmu_tx_wait(tx);
4005			dmu_tx_abort(tx);
4006			goto top;
4007		}
4008		dmu_tx_abort(tx);
4009		ZFS_EXIT(zfsvfs);
4010		return (error);
4011	}
4012
4013	if (tzp)	/* Attempt to remove the existing target */
4014		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4015
4016	if (error == 0) {
4017		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4018		if (error == 0) {
4019			szp->z_pflags |= ZFS_AV_MODIFIED;
4020
4021			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4022			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4023			ASSERT0(error);
4024
4025			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4026			if (error == 0) {
4027				zfs_log_rename(zilog, tx, TX_RENAME |
4028				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4029				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4030
4031				/*
4032				 * Update path information for the target vnode
4033				 */
4034				vn_renamepath(tdvp, ZTOV(szp), tnm,
4035				    strlen(tnm));
4036			} else {
4037				/*
4038				 * At this point, we have successfully created
4039				 * the target name, but have failed to remove
4040				 * the source name.  Since the create was done
4041				 * with the ZRENAMING flag, there are
4042				 * complications; for one, the link count is
4043				 * wrong.  The easiest way to deal with this
4044				 * is to remove the newly created target, and
4045				 * return the original error.  This must
4046				 * succeed; fortunately, it is very unlikely to
4047				 * fail, since we just created it.
4048				 */
4049				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4050				    ZRENAMING, NULL), ==, 0);
4051			}
4052		}
4053#ifdef FREEBSD_NAMECACHE
4054		if (error == 0) {
4055			cache_purge(sdvp);
4056			cache_purge(tdvp);
4057			cache_purge(ZTOV(szp));
4058			if (tzp)
4059				cache_purge(ZTOV(tzp));
4060		}
4061#endif
4062	}
4063
4064	dmu_tx_commit(tx);
4065out:
4066	if (zl != NULL)
4067		zfs_rename_unlock(&zl);
4068
4069	zfs_dirent_unlock(sdl);
4070	zfs_dirent_unlock(tdl);
4071
4072	if (sdzp == tdzp)
4073		rw_exit(&sdzp->z_name_lock);
4074
4075
4076	VN_RELE(ZTOV(szp));
4077	if (tzp)
4078		VN_RELE(ZTOV(tzp));
4079
4080	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4081		zil_commit(zilog, 0);
4082
4083	ZFS_EXIT(zfsvfs);
4084
4085	return (error);
4086}
4087
4088/*
4089 * Insert the indicated symbolic reference entry into the directory.
4090 *
4091 *	IN:	dvp	- Directory to contain new symbolic link.
4092 *		link	- Name for new symlink entry.
4093 *		vap	- Attributes of new entry.
4094 *		cr	- credentials of caller.
4095 *		ct	- caller context
4096 *		flags	- case flags
4097 *
4098 *	RETURN:	0 on success, error code on failure.
4099 *
4100 * Timestamps:
4101 *	dvp - ctime|mtime updated
4102 */
4103/*ARGSUSED*/
4104static int
4105zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4106    cred_t *cr, kthread_t *td)
4107{
4108	znode_t		*zp, *dzp = VTOZ(dvp);
4109	zfs_dirlock_t	*dl;
4110	dmu_tx_t	*tx;
4111	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4112	zilog_t		*zilog;
4113	uint64_t	len = strlen(link);
4114	int		error;
4115	int		zflg = ZNEW;
4116	zfs_acl_ids_t	acl_ids;
4117	boolean_t	fuid_dirtied;
4118	uint64_t	txtype = TX_SYMLINK;
4119	boolean_t	waited = B_FALSE;
4120	int		flags = 0;
4121
4122	ASSERT(vap->va_type == VLNK);
4123
4124	ZFS_ENTER(zfsvfs);
4125	ZFS_VERIFY_ZP(dzp);
4126	zilog = zfsvfs->z_log;
4127
4128	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4129	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4130		ZFS_EXIT(zfsvfs);
4131		return (SET_ERROR(EILSEQ));
4132	}
4133	if (flags & FIGNORECASE)
4134		zflg |= ZCILOOK;
4135
4136	if (len > MAXPATHLEN) {
4137		ZFS_EXIT(zfsvfs);
4138		return (SET_ERROR(ENAMETOOLONG));
4139	}
4140
4141	if ((error = zfs_acl_ids_create(dzp, 0,
4142	    vap, cr, NULL, &acl_ids)) != 0) {
4143		ZFS_EXIT(zfsvfs);
4144		return (error);
4145	}
4146
4147	getnewvnode_reserve(1);
4148
4149top:
4150	/*
4151	 * Attempt to lock directory; fail if entry already exists.
4152	 */
4153	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4154	if (error) {
4155		zfs_acl_ids_free(&acl_ids);
4156		getnewvnode_drop_reserve();
4157		ZFS_EXIT(zfsvfs);
4158		return (error);
4159	}
4160
4161	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4162		zfs_acl_ids_free(&acl_ids);
4163		zfs_dirent_unlock(dl);
4164		getnewvnode_drop_reserve();
4165		ZFS_EXIT(zfsvfs);
4166		return (error);
4167	}
4168
4169	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4170		zfs_acl_ids_free(&acl_ids);
4171		zfs_dirent_unlock(dl);
4172		getnewvnode_drop_reserve();
4173		ZFS_EXIT(zfsvfs);
4174		return (SET_ERROR(EDQUOT));
4175	}
4176	tx = dmu_tx_create(zfsvfs->z_os);
4177	fuid_dirtied = zfsvfs->z_fuid_dirty;
4178	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4179	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4180	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4181	    ZFS_SA_BASE_ATTR_SIZE + len);
4182	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4183	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4184		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4185		    acl_ids.z_aclp->z_acl_bytes);
4186	}
4187	if (fuid_dirtied)
4188		zfs_fuid_txhold(zfsvfs, tx);
4189	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4190	if (error) {
4191		zfs_dirent_unlock(dl);
4192		if (error == ERESTART) {
4193			waited = B_TRUE;
4194			dmu_tx_wait(tx);
4195			dmu_tx_abort(tx);
4196			goto top;
4197		}
4198		zfs_acl_ids_free(&acl_ids);
4199		dmu_tx_abort(tx);
4200		getnewvnode_drop_reserve();
4201		ZFS_EXIT(zfsvfs);
4202		return (error);
4203	}
4204
4205	/*
4206	 * Create a new object for the symlink.
4207	 * for version 4 ZPL datsets the symlink will be an SA attribute
4208	 */
4209	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4210
4211	if (fuid_dirtied)
4212		zfs_fuid_sync(zfsvfs, tx);
4213
4214	mutex_enter(&zp->z_lock);
4215	if (zp->z_is_sa)
4216		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4217		    link, len, tx);
4218	else
4219		zfs_sa_symlink(zp, link, len, tx);
4220	mutex_exit(&zp->z_lock);
4221
4222	zp->z_size = len;
4223	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4224	    &zp->z_size, sizeof (zp->z_size), tx);
4225	/*
4226	 * Insert the new object into the directory.
4227	 */
4228	(void) zfs_link_create(dl, zp, tx, ZNEW);
4229
4230	if (flags & FIGNORECASE)
4231		txtype |= TX_CI;
4232	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4233	*vpp = ZTOV(zp);
4234
4235	zfs_acl_ids_free(&acl_ids);
4236
4237	dmu_tx_commit(tx);
4238
4239	getnewvnode_drop_reserve();
4240
4241	zfs_dirent_unlock(dl);
4242
4243	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4244		zil_commit(zilog, 0);
4245
4246	ZFS_EXIT(zfsvfs);
4247	return (error);
4248}
4249
4250/*
4251 * Return, in the buffer contained in the provided uio structure,
4252 * the symbolic path referred to by vp.
4253 *
4254 *	IN:	vp	- vnode of symbolic link.
4255 *		uio	- structure to contain the link path.
4256 *		cr	- credentials of caller.
4257 *		ct	- caller context
4258 *
4259 *	OUT:	uio	- structure containing the link path.
4260 *
4261 *	RETURN:	0 on success, error code on failure.
4262 *
4263 * Timestamps:
4264 *	vp - atime updated
4265 */
4266/* ARGSUSED */
4267static int
4268zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4269{
4270	znode_t		*zp = VTOZ(vp);
4271	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4272	int		error;
4273
4274	ZFS_ENTER(zfsvfs);
4275	ZFS_VERIFY_ZP(zp);
4276
4277	mutex_enter(&zp->z_lock);
4278	if (zp->z_is_sa)
4279		error = sa_lookup_uio(zp->z_sa_hdl,
4280		    SA_ZPL_SYMLINK(zfsvfs), uio);
4281	else
4282		error = zfs_sa_readlink(zp, uio);
4283	mutex_exit(&zp->z_lock);
4284
4285	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4286
4287	ZFS_EXIT(zfsvfs);
4288	return (error);
4289}
4290
4291/*
4292 * Insert a new entry into directory tdvp referencing svp.
4293 *
4294 *	IN:	tdvp	- Directory to contain new entry.
4295 *		svp	- vnode of new entry.
4296 *		name	- name of new entry.
4297 *		cr	- credentials of caller.
4298 *		ct	- caller context
4299 *
4300 *	RETURN:	0 on success, error code on failure.
4301 *
4302 * Timestamps:
4303 *	tdvp - ctime|mtime updated
4304 *	 svp - ctime updated
4305 */
4306/* ARGSUSED */
4307static int
4308zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4309    caller_context_t *ct, int flags)
4310{
4311	znode_t		*dzp = VTOZ(tdvp);
4312	znode_t		*tzp, *szp;
4313	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4314	zilog_t		*zilog;
4315	zfs_dirlock_t	*dl;
4316	dmu_tx_t	*tx;
4317	vnode_t		*realvp;
4318	int		error;
4319	int		zf = ZNEW;
4320	uint64_t	parent;
4321	uid_t		owner;
4322	boolean_t	waited = B_FALSE;
4323
4324	ASSERT(tdvp->v_type == VDIR);
4325
4326	ZFS_ENTER(zfsvfs);
4327	ZFS_VERIFY_ZP(dzp);
4328	zilog = zfsvfs->z_log;
4329
4330	if (VOP_REALVP(svp, &realvp, ct) == 0)
4331		svp = realvp;
4332
4333	/*
4334	 * POSIX dictates that we return EPERM here.
4335	 * Better choices include ENOTSUP or EISDIR.
4336	 */
4337	if (svp->v_type == VDIR) {
4338		ZFS_EXIT(zfsvfs);
4339		return (SET_ERROR(EPERM));
4340	}
4341
4342	szp = VTOZ(svp);
4343	ZFS_VERIFY_ZP(szp);
4344
4345	/*
4346	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4347	 * ctldir appear to have the same v_vfsp.
4348	 */
4349	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4350		ZFS_EXIT(zfsvfs);
4351		return (SET_ERROR(EXDEV));
4352	}
4353
4354	/* Prevent links to .zfs/shares files */
4355
4356	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4357	    &parent, sizeof (uint64_t))) != 0) {
4358		ZFS_EXIT(zfsvfs);
4359		return (error);
4360	}
4361	if (parent == zfsvfs->z_shares_dir) {
4362		ZFS_EXIT(zfsvfs);
4363		return (SET_ERROR(EPERM));
4364	}
4365
4366	if (zfsvfs->z_utf8 && u8_validate(name,
4367	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4368		ZFS_EXIT(zfsvfs);
4369		return (SET_ERROR(EILSEQ));
4370	}
4371	if (flags & FIGNORECASE)
4372		zf |= ZCILOOK;
4373
4374	/*
4375	 * We do not support links between attributes and non-attributes
4376	 * because of the potential security risk of creating links
4377	 * into "normal" file space in order to circumvent restrictions
4378	 * imposed in attribute space.
4379	 */
4380	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4381		ZFS_EXIT(zfsvfs);
4382		return (SET_ERROR(EINVAL));
4383	}
4384
4385
4386	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4387	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4388		ZFS_EXIT(zfsvfs);
4389		return (SET_ERROR(EPERM));
4390	}
4391
4392	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4393		ZFS_EXIT(zfsvfs);
4394		return (error);
4395	}
4396
4397top:
4398	/*
4399	 * Attempt to lock directory; fail if entry already exists.
4400	 */
4401	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4402	if (error) {
4403		ZFS_EXIT(zfsvfs);
4404		return (error);
4405	}
4406
4407	tx = dmu_tx_create(zfsvfs->z_os);
4408	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4409	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4410	zfs_sa_upgrade_txholds(tx, szp);
4411	zfs_sa_upgrade_txholds(tx, dzp);
4412	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4413	if (error) {
4414		zfs_dirent_unlock(dl);
4415		if (error == ERESTART) {
4416			waited = B_TRUE;
4417			dmu_tx_wait(tx);
4418			dmu_tx_abort(tx);
4419			goto top;
4420		}
4421		dmu_tx_abort(tx);
4422		ZFS_EXIT(zfsvfs);
4423		return (error);
4424	}
4425
4426	error = zfs_link_create(dl, szp, tx, 0);
4427
4428	if (error == 0) {
4429		uint64_t txtype = TX_LINK;
4430		if (flags & FIGNORECASE)
4431			txtype |= TX_CI;
4432		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4433	}
4434
4435	dmu_tx_commit(tx);
4436
4437	zfs_dirent_unlock(dl);
4438
4439	if (error == 0) {
4440		vnevent_link(svp, ct);
4441	}
4442
4443	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4444		zil_commit(zilog, 0);
4445
4446	ZFS_EXIT(zfsvfs);
4447	return (error);
4448}
4449
4450#ifdef sun
4451/*
4452 * zfs_null_putapage() is used when the file system has been force
4453 * unmounted. It just drops the pages.
4454 */
4455/* ARGSUSED */
4456static int
4457zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4458		size_t *lenp, int flags, cred_t *cr)
4459{
4460	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4461	return (0);
4462}
4463
4464/*
4465 * Push a page out to disk, klustering if possible.
4466 *
4467 *	IN:	vp	- file to push page to.
4468 *		pp	- page to push.
4469 *		flags	- additional flags.
4470 *		cr	- credentials of caller.
4471 *
4472 *	OUT:	offp	- start of range pushed.
4473 *		lenp	- len of range pushed.
4474 *
4475 *	RETURN:	0 on success, error code on failure.
4476 *
4477 * NOTE: callers must have locked the page to be pushed.  On
4478 * exit, the page (and all other pages in the kluster) must be
4479 * unlocked.
4480 */
4481/* ARGSUSED */
4482static int
4483zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4484		size_t *lenp, int flags, cred_t *cr)
4485{
4486	znode_t		*zp = VTOZ(vp);
4487	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4488	dmu_tx_t	*tx;
4489	u_offset_t	off, koff;
4490	size_t		len, klen;
4491	int		err;
4492
4493	off = pp->p_offset;
4494	len = PAGESIZE;
4495	/*
4496	 * If our blocksize is bigger than the page size, try to kluster
4497	 * multiple pages so that we write a full block (thus avoiding
4498	 * a read-modify-write).
4499	 */
4500	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4501		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4502		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4503		ASSERT(koff <= zp->z_size);
4504		if (koff + klen > zp->z_size)
4505			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4506		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4507	}
4508	ASSERT3U(btop(len), ==, btopr(len));
4509
4510	/*
4511	 * Can't push pages past end-of-file.
4512	 */
4513	if (off >= zp->z_size) {
4514		/* ignore all pages */
4515		err = 0;
4516		goto out;
4517	} else if (off + len > zp->z_size) {
4518		int npages = btopr(zp->z_size - off);
4519		page_t *trunc;
4520
4521		page_list_break(&pp, &trunc, npages);
4522		/* ignore pages past end of file */
4523		if (trunc)
4524			pvn_write_done(trunc, flags);
4525		len = zp->z_size - off;
4526	}
4527
4528	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4529	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4530		err = SET_ERROR(EDQUOT);
4531		goto out;
4532	}
4533	tx = dmu_tx_create(zfsvfs->z_os);
4534	dmu_tx_hold_write(tx, zp->z_id, off, len);
4535
4536	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4537	zfs_sa_upgrade_txholds(tx, zp);
4538	err = dmu_tx_assign(tx, TXG_WAIT);
4539	if (err != 0) {
4540		dmu_tx_abort(tx);
4541		goto out;
4542	}
4543
4544	if (zp->z_blksz <= PAGESIZE) {
4545		caddr_t va = zfs_map_page(pp, S_READ);
4546		ASSERT3U(len, <=, PAGESIZE);
4547		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4548		zfs_unmap_page(pp, va);
4549	} else {
4550		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4551	}
4552
4553	if (err == 0) {
4554		uint64_t mtime[2], ctime[2];
4555		sa_bulk_attr_t bulk[3];
4556		int count = 0;
4557
4558		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4559		    &mtime, 16);
4560		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4561		    &ctime, 16);
4562		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4563		    &zp->z_pflags, 8);
4564		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4565		    B_TRUE);
4566		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4567	}
4568	dmu_tx_commit(tx);
4569
4570out:
4571	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4572	if (offp)
4573		*offp = off;
4574	if (lenp)
4575		*lenp = len;
4576
4577	return (err);
4578}
4579
4580/*
4581 * Copy the portion of the file indicated from pages into the file.
4582 * The pages are stored in a page list attached to the files vnode.
4583 *
4584 *	IN:	vp	- vnode of file to push page data to.
4585 *		off	- position in file to put data.
4586 *		len	- amount of data to write.
4587 *		flags	- flags to control the operation.
4588 *		cr	- credentials of caller.
4589 *		ct	- caller context.
4590 *
4591 *	RETURN:	0 on success, error code on failure.
4592 *
4593 * Timestamps:
4594 *	vp - ctime|mtime updated
4595 */
4596/*ARGSUSED*/
4597static int
4598zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4599    caller_context_t *ct)
4600{
4601	znode_t		*zp = VTOZ(vp);
4602	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4603	page_t		*pp;
4604	size_t		io_len;
4605	u_offset_t	io_off;
4606	uint_t		blksz;
4607	rl_t		*rl;
4608	int		error = 0;
4609
4610	ZFS_ENTER(zfsvfs);
4611	ZFS_VERIFY_ZP(zp);
4612
4613	/*
4614	 * Align this request to the file block size in case we kluster.
4615	 * XXX - this can result in pretty aggresive locking, which can
4616	 * impact simultanious read/write access.  One option might be
4617	 * to break up long requests (len == 0) into block-by-block
4618	 * operations to get narrower locking.
4619	 */
4620	blksz = zp->z_blksz;
4621	if (ISP2(blksz))
4622		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4623	else
4624		io_off = 0;
4625	if (len > 0 && ISP2(blksz))
4626		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4627	else
4628		io_len = 0;
4629
4630	if (io_len == 0) {
4631		/*
4632		 * Search the entire vp list for pages >= io_off.
4633		 */
4634		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4635		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4636		goto out;
4637	}
4638	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4639
4640	if (off > zp->z_size) {
4641		/* past end of file */
4642		zfs_range_unlock(rl);
4643		ZFS_EXIT(zfsvfs);
4644		return (0);
4645	}
4646
4647	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4648
4649	for (off = io_off; io_off < off + len; io_off += io_len) {
4650		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4651			pp = page_lookup(vp, io_off,
4652			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4653		} else {
4654			pp = page_lookup_nowait(vp, io_off,
4655			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4656		}
4657
4658		if (pp != NULL && pvn_getdirty(pp, flags)) {
4659			int err;
4660
4661			/*
4662			 * Found a dirty page to push
4663			 */
4664			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4665			if (err)
4666				error = err;
4667		} else {
4668			io_len = PAGESIZE;
4669		}
4670	}
4671out:
4672	zfs_range_unlock(rl);
4673	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4674		zil_commit(zfsvfs->z_log, zp->z_id);
4675	ZFS_EXIT(zfsvfs);
4676	return (error);
4677}
4678#endif	/* sun */
4679
4680/*ARGSUSED*/
4681void
4682zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4683{
4684	znode_t	*zp = VTOZ(vp);
4685	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4686	int error;
4687
4688	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4689	if (zp->z_sa_hdl == NULL) {
4690		/*
4691		 * The fs has been unmounted, or we did a
4692		 * suspend/resume and this file no longer exists.
4693		 */
4694		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4695		vrecycle(vp);
4696		return;
4697	}
4698
4699	mutex_enter(&zp->z_lock);
4700	if (zp->z_unlinked) {
4701		/*
4702		 * Fast path to recycle a vnode of a removed file.
4703		 */
4704		mutex_exit(&zp->z_lock);
4705		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4706		vrecycle(vp);
4707		return;
4708	}
4709	mutex_exit(&zp->z_lock);
4710
4711	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4712		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4713
4714		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4715		zfs_sa_upgrade_txholds(tx, zp);
4716		error = dmu_tx_assign(tx, TXG_WAIT);
4717		if (error) {
4718			dmu_tx_abort(tx);
4719		} else {
4720			mutex_enter(&zp->z_lock);
4721			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4722			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4723			zp->z_atime_dirty = 0;
4724			mutex_exit(&zp->z_lock);
4725			dmu_tx_commit(tx);
4726		}
4727	}
4728	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4729}
4730
4731#ifdef sun
4732/*
4733 * Bounds-check the seek operation.
4734 *
4735 *	IN:	vp	- vnode seeking within
4736 *		ooff	- old file offset
4737 *		noffp	- pointer to new file offset
4738 *		ct	- caller context
4739 *
4740 *	RETURN:	0 on success, EINVAL if new offset invalid.
4741 */
4742/* ARGSUSED */
4743static int
4744zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4745    caller_context_t *ct)
4746{
4747	if (vp->v_type == VDIR)
4748		return (0);
4749	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4750}
4751
4752/*
4753 * Pre-filter the generic locking function to trap attempts to place
4754 * a mandatory lock on a memory mapped file.
4755 */
4756static int
4757zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4758    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4759{
4760	znode_t *zp = VTOZ(vp);
4761	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4762
4763	ZFS_ENTER(zfsvfs);
4764	ZFS_VERIFY_ZP(zp);
4765
4766	/*
4767	 * We are following the UFS semantics with respect to mapcnt
4768	 * here: If we see that the file is mapped already, then we will
4769	 * return an error, but we don't worry about races between this
4770	 * function and zfs_map().
4771	 */
4772	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4773		ZFS_EXIT(zfsvfs);
4774		return (SET_ERROR(EAGAIN));
4775	}
4776	ZFS_EXIT(zfsvfs);
4777	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4778}
4779
4780/*
4781 * If we can't find a page in the cache, we will create a new page
4782 * and fill it with file data.  For efficiency, we may try to fill
4783 * multiple pages at once (klustering) to fill up the supplied page
4784 * list.  Note that the pages to be filled are held with an exclusive
4785 * lock to prevent access by other threads while they are being filled.
4786 */
4787static int
4788zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4789    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4790{
4791	znode_t *zp = VTOZ(vp);
4792	page_t *pp, *cur_pp;
4793	objset_t *os = zp->z_zfsvfs->z_os;
4794	u_offset_t io_off, total;
4795	size_t io_len;
4796	int err;
4797
4798	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4799		/*
4800		 * We only have a single page, don't bother klustering
4801		 */
4802		io_off = off;
4803		io_len = PAGESIZE;
4804		pp = page_create_va(vp, io_off, io_len,
4805		    PG_EXCL | PG_WAIT, seg, addr);
4806	} else {
4807		/*
4808		 * Try to find enough pages to fill the page list
4809		 */
4810		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4811		    &io_len, off, plsz, 0);
4812	}
4813	if (pp == NULL) {
4814		/*
4815		 * The page already exists, nothing to do here.
4816		 */
4817		*pl = NULL;
4818		return (0);
4819	}
4820
4821	/*
4822	 * Fill the pages in the kluster.
4823	 */
4824	cur_pp = pp;
4825	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4826		caddr_t va;
4827
4828		ASSERT3U(io_off, ==, cur_pp->p_offset);
4829		va = zfs_map_page(cur_pp, S_WRITE);
4830		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4831		    DMU_READ_PREFETCH);
4832		zfs_unmap_page(cur_pp, va);
4833		if (err) {
4834			/* On error, toss the entire kluster */
4835			pvn_read_done(pp, B_ERROR);
4836			/* convert checksum errors into IO errors */
4837			if (err == ECKSUM)
4838				err = SET_ERROR(EIO);
4839			return (err);
4840		}
4841		cur_pp = cur_pp->p_next;
4842	}
4843
4844	/*
4845	 * Fill in the page list array from the kluster starting
4846	 * from the desired offset `off'.
4847	 * NOTE: the page list will always be null terminated.
4848	 */
4849	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4850	ASSERT(pl == NULL || (*pl)->p_offset == off);
4851
4852	return (0);
4853}
4854
4855/*
4856 * Return pointers to the pages for the file region [off, off + len]
4857 * in the pl array.  If plsz is greater than len, this function may
4858 * also return page pointers from after the specified region
4859 * (i.e. the region [off, off + plsz]).  These additional pages are
4860 * only returned if they are already in the cache, or were created as
4861 * part of a klustered read.
4862 *
4863 *	IN:	vp	- vnode of file to get data from.
4864 *		off	- position in file to get data from.
4865 *		len	- amount of data to retrieve.
4866 *		plsz	- length of provided page list.
4867 *		seg	- segment to obtain pages for.
4868 *		addr	- virtual address of fault.
4869 *		rw	- mode of created pages.
4870 *		cr	- credentials of caller.
4871 *		ct	- caller context.
4872 *
4873 *	OUT:	protp	- protection mode of created pages.
4874 *		pl	- list of pages created.
4875 *
4876 *	RETURN:	0 on success, error code on failure.
4877 *
4878 * Timestamps:
4879 *	vp - atime updated
4880 */
4881/* ARGSUSED */
4882static int
4883zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4884    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4885    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4886{
4887	znode_t		*zp = VTOZ(vp);
4888	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4889	page_t		**pl0 = pl;
4890	int		err = 0;
4891
4892	/* we do our own caching, faultahead is unnecessary */
4893	if (pl == NULL)
4894		return (0);
4895	else if (len > plsz)
4896		len = plsz;
4897	else
4898		len = P2ROUNDUP(len, PAGESIZE);
4899	ASSERT(plsz >= len);
4900
4901	ZFS_ENTER(zfsvfs);
4902	ZFS_VERIFY_ZP(zp);
4903
4904	if (protp)
4905		*protp = PROT_ALL;
4906
4907	/*
4908	 * Loop through the requested range [off, off + len) looking
4909	 * for pages.  If we don't find a page, we will need to create
4910	 * a new page and fill it with data from the file.
4911	 */
4912	while (len > 0) {
4913		if (*pl = page_lookup(vp, off, SE_SHARED))
4914			*(pl+1) = NULL;
4915		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4916			goto out;
4917		while (*pl) {
4918			ASSERT3U((*pl)->p_offset, ==, off);
4919			off += PAGESIZE;
4920			addr += PAGESIZE;
4921			if (len > 0) {
4922				ASSERT3U(len, >=, PAGESIZE);
4923				len -= PAGESIZE;
4924			}
4925			ASSERT3U(plsz, >=, PAGESIZE);
4926			plsz -= PAGESIZE;
4927			pl++;
4928		}
4929	}
4930
4931	/*
4932	 * Fill out the page array with any pages already in the cache.
4933	 */
4934	while (plsz > 0 &&
4935	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4936			off += PAGESIZE;
4937			plsz -= PAGESIZE;
4938	}
4939out:
4940	if (err) {
4941		/*
4942		 * Release any pages we have previously locked.
4943		 */
4944		while (pl > pl0)
4945			page_unlock(*--pl);
4946	} else {
4947		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4948	}
4949
4950	*pl = NULL;
4951
4952	ZFS_EXIT(zfsvfs);
4953	return (err);
4954}
4955
4956/*
4957 * Request a memory map for a section of a file.  This code interacts
4958 * with common code and the VM system as follows:
4959 *
4960 * - common code calls mmap(), which ends up in smmap_common()
4961 * - this calls VOP_MAP(), which takes you into (say) zfs
4962 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4963 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4964 * - zfs_addmap() updates z_mapcnt
4965 */
4966/*ARGSUSED*/
4967static int
4968zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4969    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4970    caller_context_t *ct)
4971{
4972	znode_t *zp = VTOZ(vp);
4973	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4974	segvn_crargs_t	vn_a;
4975	int		error;
4976
4977	ZFS_ENTER(zfsvfs);
4978	ZFS_VERIFY_ZP(zp);
4979
4980	if ((prot & PROT_WRITE) && (zp->z_pflags &
4981	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4982		ZFS_EXIT(zfsvfs);
4983		return (SET_ERROR(EPERM));
4984	}
4985
4986	if ((prot & (PROT_READ | PROT_EXEC)) &&
4987	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4988		ZFS_EXIT(zfsvfs);
4989		return (SET_ERROR(EACCES));
4990	}
4991
4992	if (vp->v_flag & VNOMAP) {
4993		ZFS_EXIT(zfsvfs);
4994		return (SET_ERROR(ENOSYS));
4995	}
4996
4997	if (off < 0 || len > MAXOFFSET_T - off) {
4998		ZFS_EXIT(zfsvfs);
4999		return (SET_ERROR(ENXIO));
5000	}
5001
5002	if (vp->v_type != VREG) {
5003		ZFS_EXIT(zfsvfs);
5004		return (SET_ERROR(ENODEV));
5005	}
5006
5007	/*
5008	 * If file is locked, disallow mapping.
5009	 */
5010	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
5011		ZFS_EXIT(zfsvfs);
5012		return (SET_ERROR(EAGAIN));
5013	}
5014
5015	as_rangelock(as);
5016	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5017	if (error != 0) {
5018		as_rangeunlock(as);
5019		ZFS_EXIT(zfsvfs);
5020		return (error);
5021	}
5022
5023	vn_a.vp = vp;
5024	vn_a.offset = (u_offset_t)off;
5025	vn_a.type = flags & MAP_TYPE;
5026	vn_a.prot = prot;
5027	vn_a.maxprot = maxprot;
5028	vn_a.cred = cr;
5029	vn_a.amp = NULL;
5030	vn_a.flags = flags & ~MAP_TYPE;
5031	vn_a.szc = 0;
5032	vn_a.lgrp_mem_policy_flags = 0;
5033
5034	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5035
5036	as_rangeunlock(as);
5037	ZFS_EXIT(zfsvfs);
5038	return (error);
5039}
5040
5041/* ARGSUSED */
5042static int
5043zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5044    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5045    caller_context_t *ct)
5046{
5047	uint64_t pages = btopr(len);
5048
5049	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5050	return (0);
5051}
5052
5053/*
5054 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5055 * more accurate mtime for the associated file.  Since we don't have a way of
5056 * detecting when the data was actually modified, we have to resort to
5057 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5058 * last page is pushed.  The problem occurs when the msync() call is omitted,
5059 * which by far the most common case:
5060 *
5061 *	open()
5062 *	mmap()
5063 *	<modify memory>
5064 *	munmap()
5065 *	close()
5066 *	<time lapse>
5067 *	putpage() via fsflush
5068 *
5069 * If we wait until fsflush to come along, we can have a modification time that
5070 * is some arbitrary point in the future.  In order to prevent this in the
5071 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5072 * torn down.
5073 */
5074/* ARGSUSED */
5075static int
5076zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5077    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5078    caller_context_t *ct)
5079{
5080	uint64_t pages = btopr(len);
5081
5082	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5083	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5084
5085	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5086	    vn_has_cached_data(vp))
5087		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5088
5089	return (0);
5090}
5091
5092/*
5093 * Free or allocate space in a file.  Currently, this function only
5094 * supports the `F_FREESP' command.  However, this command is somewhat
5095 * misnamed, as its functionality includes the ability to allocate as
5096 * well as free space.
5097 *
5098 *	IN:	vp	- vnode of file to free data in.
5099 *		cmd	- action to take (only F_FREESP supported).
5100 *		bfp	- section of file to free/alloc.
5101 *		flag	- current file open mode flags.
5102 *		offset	- current file offset.
5103 *		cr	- credentials of caller [UNUSED].
5104 *		ct	- caller context.
5105 *
5106 *	RETURN:	0 on success, error code on failure.
5107 *
5108 * Timestamps:
5109 *	vp - ctime|mtime updated
5110 */
5111/* ARGSUSED */
5112static int
5113zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5114    offset_t offset, cred_t *cr, caller_context_t *ct)
5115{
5116	znode_t		*zp = VTOZ(vp);
5117	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5118	uint64_t	off, len;
5119	int		error;
5120
5121	ZFS_ENTER(zfsvfs);
5122	ZFS_VERIFY_ZP(zp);
5123
5124	if (cmd != F_FREESP) {
5125		ZFS_EXIT(zfsvfs);
5126		return (SET_ERROR(EINVAL));
5127	}
5128
5129	if (error = convoff(vp, bfp, 0, offset)) {
5130		ZFS_EXIT(zfsvfs);
5131		return (error);
5132	}
5133
5134	if (bfp->l_len < 0) {
5135		ZFS_EXIT(zfsvfs);
5136		return (SET_ERROR(EINVAL));
5137	}
5138
5139	off = bfp->l_start;
5140	len = bfp->l_len; /* 0 means from off to end of file */
5141
5142	error = zfs_freesp(zp, off, len, flag, TRUE);
5143
5144	ZFS_EXIT(zfsvfs);
5145	return (error);
5146}
5147#endif	/* sun */
5148
5149CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5150CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5151
5152/*ARGSUSED*/
5153static int
5154zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5155{
5156	znode_t		*zp = VTOZ(vp);
5157	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5158	uint32_t	gen;
5159	uint64_t	gen64;
5160	uint64_t	object = zp->z_id;
5161	zfid_short_t	*zfid;
5162	int		size, i, error;
5163
5164	ZFS_ENTER(zfsvfs);
5165	ZFS_VERIFY_ZP(zp);
5166
5167	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5168	    &gen64, sizeof (uint64_t))) != 0) {
5169		ZFS_EXIT(zfsvfs);
5170		return (error);
5171	}
5172
5173	gen = (uint32_t)gen64;
5174
5175	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5176
5177#ifdef illumos
5178	if (fidp->fid_len < size) {
5179		fidp->fid_len = size;
5180		ZFS_EXIT(zfsvfs);
5181		return (SET_ERROR(ENOSPC));
5182	}
5183#else
5184	fidp->fid_len = size;
5185#endif
5186
5187	zfid = (zfid_short_t *)fidp;
5188
5189	zfid->zf_len = size;
5190
5191	for (i = 0; i < sizeof (zfid->zf_object); i++)
5192		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5193
5194	/* Must have a non-zero generation number to distinguish from .zfs */
5195	if (gen == 0)
5196		gen = 1;
5197	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5198		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5199
5200	if (size == LONG_FID_LEN) {
5201		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5202		zfid_long_t	*zlfid;
5203
5204		zlfid = (zfid_long_t *)fidp;
5205
5206		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5207			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5208
5209		/* XXX - this should be the generation number for the objset */
5210		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5211			zlfid->zf_setgen[i] = 0;
5212	}
5213
5214	ZFS_EXIT(zfsvfs);
5215	return (0);
5216}
5217
5218static int
5219zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5220    caller_context_t *ct)
5221{
5222	znode_t		*zp, *xzp;
5223	zfsvfs_t	*zfsvfs;
5224	zfs_dirlock_t	*dl;
5225	int		error;
5226
5227	switch (cmd) {
5228	case _PC_LINK_MAX:
5229		*valp = INT_MAX;
5230		return (0);
5231
5232	case _PC_FILESIZEBITS:
5233		*valp = 64;
5234		return (0);
5235#ifdef sun
5236	case _PC_XATTR_EXISTS:
5237		zp = VTOZ(vp);
5238		zfsvfs = zp->z_zfsvfs;
5239		ZFS_ENTER(zfsvfs);
5240		ZFS_VERIFY_ZP(zp);
5241		*valp = 0;
5242		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5243		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5244		if (error == 0) {
5245			zfs_dirent_unlock(dl);
5246			if (!zfs_dirempty(xzp))
5247				*valp = 1;
5248			VN_RELE(ZTOV(xzp));
5249		} else if (error == ENOENT) {
5250			/*
5251			 * If there aren't extended attributes, it's the
5252			 * same as having zero of them.
5253			 */
5254			error = 0;
5255		}
5256		ZFS_EXIT(zfsvfs);
5257		return (error);
5258
5259	case _PC_SATTR_ENABLED:
5260	case _PC_SATTR_EXISTS:
5261		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5262		    (vp->v_type == VREG || vp->v_type == VDIR);
5263		return (0);
5264
5265	case _PC_ACCESS_FILTERING:
5266		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5267		    vp->v_type == VDIR;
5268		return (0);
5269
5270	case _PC_ACL_ENABLED:
5271		*valp = _ACL_ACE_ENABLED;
5272		return (0);
5273#endif	/* sun */
5274	case _PC_MIN_HOLE_SIZE:
5275		*valp = (int)SPA_MINBLOCKSIZE;
5276		return (0);
5277#ifdef sun
5278	case _PC_TIMESTAMP_RESOLUTION:
5279		/* nanosecond timestamp resolution */
5280		*valp = 1L;
5281		return (0);
5282#endif	/* sun */
5283	case _PC_ACL_EXTENDED:
5284		*valp = 0;
5285		return (0);
5286
5287	case _PC_ACL_NFS4:
5288		*valp = 1;
5289		return (0);
5290
5291	case _PC_ACL_PATH_MAX:
5292		*valp = ACL_MAX_ENTRIES;
5293		return (0);
5294
5295	default:
5296		return (EOPNOTSUPP);
5297	}
5298}
5299
5300/*ARGSUSED*/
5301static int
5302zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5303    caller_context_t *ct)
5304{
5305	znode_t *zp = VTOZ(vp);
5306	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5307	int error;
5308	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5309
5310	ZFS_ENTER(zfsvfs);
5311	ZFS_VERIFY_ZP(zp);
5312	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5313	ZFS_EXIT(zfsvfs);
5314
5315	return (error);
5316}
5317
5318/*ARGSUSED*/
5319int
5320zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5321    caller_context_t *ct)
5322{
5323	znode_t *zp = VTOZ(vp);
5324	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5325	int error;
5326	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5327	zilog_t	*zilog = zfsvfs->z_log;
5328
5329	ZFS_ENTER(zfsvfs);
5330	ZFS_VERIFY_ZP(zp);
5331
5332	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5333
5334	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5335		zil_commit(zilog, 0);
5336
5337	ZFS_EXIT(zfsvfs);
5338	return (error);
5339}
5340
5341#ifdef sun
5342/*
5343 * The smallest read we may consider to loan out an arcbuf.
5344 * This must be a power of 2.
5345 */
5346int zcr_blksz_min = (1 << 10);	/* 1K */
5347/*
5348 * If set to less than the file block size, allow loaning out of an
5349 * arcbuf for a partial block read.  This must be a power of 2.
5350 */
5351int zcr_blksz_max = (1 << 17);	/* 128K */
5352
5353/*ARGSUSED*/
5354static int
5355zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5356    caller_context_t *ct)
5357{
5358	znode_t	*zp = VTOZ(vp);
5359	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5360	int max_blksz = zfsvfs->z_max_blksz;
5361	uio_t *uio = &xuio->xu_uio;
5362	ssize_t size = uio->uio_resid;
5363	offset_t offset = uio->uio_loffset;
5364	int blksz;
5365	int fullblk, i;
5366	arc_buf_t *abuf;
5367	ssize_t maxsize;
5368	int preamble, postamble;
5369
5370	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5371		return (SET_ERROR(EINVAL));
5372
5373	ZFS_ENTER(zfsvfs);
5374	ZFS_VERIFY_ZP(zp);
5375	switch (ioflag) {
5376	case UIO_WRITE:
5377		/*
5378		 * Loan out an arc_buf for write if write size is bigger than
5379		 * max_blksz, and the file's block size is also max_blksz.
5380		 */
5381		blksz = max_blksz;
5382		if (size < blksz || zp->z_blksz != blksz) {
5383			ZFS_EXIT(zfsvfs);
5384			return (SET_ERROR(EINVAL));
5385		}
5386		/*
5387		 * Caller requests buffers for write before knowing where the
5388		 * write offset might be (e.g. NFS TCP write).
5389		 */
5390		if (offset == -1) {
5391			preamble = 0;
5392		} else {
5393			preamble = P2PHASE(offset, blksz);
5394			if (preamble) {
5395				preamble = blksz - preamble;
5396				size -= preamble;
5397			}
5398		}
5399
5400		postamble = P2PHASE(size, blksz);
5401		size -= postamble;
5402
5403		fullblk = size / blksz;
5404		(void) dmu_xuio_init(xuio,
5405		    (preamble != 0) + fullblk + (postamble != 0));
5406		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5407		    int, postamble, int,
5408		    (preamble != 0) + fullblk + (postamble != 0));
5409
5410		/*
5411		 * Have to fix iov base/len for partial buffers.  They
5412		 * currently represent full arc_buf's.
5413		 */
5414		if (preamble) {
5415			/* data begins in the middle of the arc_buf */
5416			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5417			    blksz);
5418			ASSERT(abuf);
5419			(void) dmu_xuio_add(xuio, abuf,
5420			    blksz - preamble, preamble);
5421		}
5422
5423		for (i = 0; i < fullblk; i++) {
5424			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5425			    blksz);
5426			ASSERT(abuf);
5427			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5428		}
5429
5430		if (postamble) {
5431			/* data ends in the middle of the arc_buf */
5432			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5433			    blksz);
5434			ASSERT(abuf);
5435			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5436		}
5437		break;
5438	case UIO_READ:
5439		/*
5440		 * Loan out an arc_buf for read if the read size is larger than
5441		 * the current file block size.  Block alignment is not
5442		 * considered.  Partial arc_buf will be loaned out for read.
5443		 */
5444		blksz = zp->z_blksz;
5445		if (blksz < zcr_blksz_min)
5446			blksz = zcr_blksz_min;
5447		if (blksz > zcr_blksz_max)
5448			blksz = zcr_blksz_max;
5449		/* avoid potential complexity of dealing with it */
5450		if (blksz > max_blksz) {
5451			ZFS_EXIT(zfsvfs);
5452			return (SET_ERROR(EINVAL));
5453		}
5454
5455		maxsize = zp->z_size - uio->uio_loffset;
5456		if (size > maxsize)
5457			size = maxsize;
5458
5459		if (size < blksz || vn_has_cached_data(vp)) {
5460			ZFS_EXIT(zfsvfs);
5461			return (SET_ERROR(EINVAL));
5462		}
5463		break;
5464	default:
5465		ZFS_EXIT(zfsvfs);
5466		return (SET_ERROR(EINVAL));
5467	}
5468
5469	uio->uio_extflg = UIO_XUIO;
5470	XUIO_XUZC_RW(xuio) = ioflag;
5471	ZFS_EXIT(zfsvfs);
5472	return (0);
5473}
5474
5475/*ARGSUSED*/
5476static int
5477zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5478{
5479	int i;
5480	arc_buf_t *abuf;
5481	int ioflag = XUIO_XUZC_RW(xuio);
5482
5483	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5484
5485	i = dmu_xuio_cnt(xuio);
5486	while (i-- > 0) {
5487		abuf = dmu_xuio_arcbuf(xuio, i);
5488		/*
5489		 * if abuf == NULL, it must be a write buffer
5490		 * that has been returned in zfs_write().
5491		 */
5492		if (abuf)
5493			dmu_return_arcbuf(abuf);
5494		ASSERT(abuf || ioflag == UIO_WRITE);
5495	}
5496
5497	dmu_xuio_fini(xuio);
5498	return (0);
5499}
5500
5501/*
5502 * Predeclare these here so that the compiler assumes that
5503 * this is an "old style" function declaration that does
5504 * not include arguments => we won't get type mismatch errors
5505 * in the initializations that follow.
5506 */
5507static int zfs_inval();
5508static int zfs_isdir();
5509
5510static int
5511zfs_inval()
5512{
5513	return (SET_ERROR(EINVAL));
5514}
5515
5516static int
5517zfs_isdir()
5518{
5519	return (SET_ERROR(EISDIR));
5520}
5521/*
5522 * Directory vnode operations template
5523 */
5524vnodeops_t *zfs_dvnodeops;
5525const fs_operation_def_t zfs_dvnodeops_template[] = {
5526	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5527	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5528	VOPNAME_READ,		{ .error = zfs_isdir },
5529	VOPNAME_WRITE,		{ .error = zfs_isdir },
5530	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5531	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5532	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5533	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5534	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5535	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5536	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5537	VOPNAME_LINK,		{ .vop_link = zfs_link },
5538	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5539	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5540	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5541	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5542	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5543	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5544	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5545	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5546	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5547	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5548	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5549	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5550	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5551	NULL,			NULL
5552};
5553
5554/*
5555 * Regular file vnode operations template
5556 */
5557vnodeops_t *zfs_fvnodeops;
5558const fs_operation_def_t zfs_fvnodeops_template[] = {
5559	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5560	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5561	VOPNAME_READ,		{ .vop_read = zfs_read },
5562	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5563	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5564	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5565	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5566	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5567	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5568	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5569	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5570	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5571	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5572	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5573	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5574	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5575	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5576	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5577	VOPNAME_MAP,		{ .vop_map = zfs_map },
5578	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5579	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5580	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5581	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5582	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5583	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5584	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5585	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5586	NULL,			NULL
5587};
5588
5589/*
5590 * Symbolic link vnode operations template
5591 */
5592vnodeops_t *zfs_symvnodeops;
5593const fs_operation_def_t zfs_symvnodeops_template[] = {
5594	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5595	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5596	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5597	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5598	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5599	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5600	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5601	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5602	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5603	NULL,			NULL
5604};
5605
5606/*
5607 * special share hidden files vnode operations template
5608 */
5609vnodeops_t *zfs_sharevnodeops;
5610const fs_operation_def_t zfs_sharevnodeops_template[] = {
5611	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5612	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5613	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5614	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5615	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5616	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5617	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5618	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5619	NULL,			NULL
5620};
5621
5622/*
5623 * Extended attribute directory vnode operations template
5624 *
5625 * This template is identical to the directory vnodes
5626 * operation template except for restricted operations:
5627 *	VOP_MKDIR()
5628 *	VOP_SYMLINK()
5629 *
5630 * Note that there are other restrictions embedded in:
5631 *	zfs_create()	- restrict type to VREG
5632 *	zfs_link()	- no links into/out of attribute space
5633 *	zfs_rename()	- no moves into/out of attribute space
5634 */
5635vnodeops_t *zfs_xdvnodeops;
5636const fs_operation_def_t zfs_xdvnodeops_template[] = {
5637	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5638	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5639	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5640	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5641	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5642	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5643	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5644	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5645	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5646	VOPNAME_LINK,		{ .vop_link = zfs_link },
5647	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5648	VOPNAME_MKDIR,		{ .error = zfs_inval },
5649	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5650	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5651	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5652	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5653	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5654	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5655	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5656	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5657	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5658	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5659	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5660	NULL,			NULL
5661};
5662
5663/*
5664 * Error vnode operations template
5665 */
5666vnodeops_t *zfs_evnodeops;
5667const fs_operation_def_t zfs_evnodeops_template[] = {
5668	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5669	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5670	NULL,			NULL
5671};
5672#endif	/* sun */
5673
5674static int
5675ioflags(int ioflags)
5676{
5677	int flags = 0;
5678
5679	if (ioflags & IO_APPEND)
5680		flags |= FAPPEND;
5681	if (ioflags & IO_NDELAY)
5682        	flags |= FNONBLOCK;
5683	if (ioflags & IO_SYNC)
5684		flags |= (FSYNC | FDSYNC | FRSYNC);
5685
5686	return (flags);
5687}
5688
5689static int
5690zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5691{
5692	znode_t *zp = VTOZ(vp);
5693	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5694	objset_t *os = zp->z_zfsvfs->z_os;
5695	vm_page_t mfirst, mlast, mreq;
5696	vm_object_t object;
5697	caddr_t va;
5698	struct sf_buf *sf;
5699	off_t startoff, endoff;
5700	int i, error;
5701	vm_pindex_t reqstart, reqend;
5702	int pcount, lsize, reqsize, size;
5703
5704	ZFS_ENTER(zfsvfs);
5705	ZFS_VERIFY_ZP(zp);
5706
5707	pcount = OFF_TO_IDX(round_page(count));
5708	mreq = m[reqpage];
5709	object = mreq->object;
5710	error = 0;
5711
5712	KASSERT(vp->v_object == object, ("mismatching object"));
5713
5714	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5715		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5716		reqstart = OFF_TO_IDX(round_page(startoff));
5717		if (reqstart < m[0]->pindex)
5718			reqstart = 0;
5719		else
5720			reqstart = reqstart - m[0]->pindex;
5721		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5722		    zp->z_blksz);
5723		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5724		if (reqend > m[pcount - 1]->pindex)
5725			reqend = m[pcount - 1]->pindex;
5726		reqsize = reqend - m[reqstart]->pindex + 1;
5727		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5728		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5729	} else {
5730		reqstart = reqpage;
5731		reqsize = 1;
5732	}
5733	mfirst = m[reqstart];
5734	mlast = m[reqstart + reqsize - 1];
5735
5736	zfs_vmobject_wlock(object);
5737
5738	for (i = 0; i < reqstart; i++) {
5739		vm_page_lock(m[i]);
5740		vm_page_free(m[i]);
5741		vm_page_unlock(m[i]);
5742	}
5743	for (i = reqstart + reqsize; i < pcount; i++) {
5744		vm_page_lock(m[i]);
5745		vm_page_free(m[i]);
5746		vm_page_unlock(m[i]);
5747	}
5748
5749	if (mreq->valid && reqsize == 1) {
5750		if (mreq->valid != VM_PAGE_BITS_ALL)
5751			vm_page_zero_invalid(mreq, TRUE);
5752		zfs_vmobject_wunlock(object);
5753		ZFS_EXIT(zfsvfs);
5754		return (zfs_vm_pagerret_ok);
5755	}
5756
5757	PCPU_INC(cnt.v_vnodein);
5758	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5759
5760	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5761		for (i = reqstart; i < reqstart + reqsize; i++) {
5762			if (i != reqpage) {
5763				vm_page_lock(m[i]);
5764				vm_page_free(m[i]);
5765				vm_page_unlock(m[i]);
5766			}
5767		}
5768		zfs_vmobject_wunlock(object);
5769		ZFS_EXIT(zfsvfs);
5770		return (zfs_vm_pagerret_bad);
5771	}
5772
5773	lsize = PAGE_SIZE;
5774	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5775		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5776
5777	zfs_vmobject_wunlock(object);
5778
5779	for (i = reqstart; i < reqstart + reqsize; i++) {
5780		size = PAGE_SIZE;
5781		if (i == (reqstart + reqsize - 1))
5782			size = lsize;
5783		va = zfs_map_page(m[i], &sf);
5784		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5785		    size, va, DMU_READ_PREFETCH);
5786		if (size != PAGE_SIZE)
5787			bzero(va + size, PAGE_SIZE - size);
5788		zfs_unmap_page(sf);
5789		if (error != 0)
5790			break;
5791	}
5792
5793	zfs_vmobject_wlock(object);
5794
5795	for (i = reqstart; i < reqstart + reqsize; i++) {
5796		if (!error)
5797			m[i]->valid = VM_PAGE_BITS_ALL;
5798		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5799		if (i != reqpage)
5800			vm_page_readahead_finish(m[i]);
5801	}
5802
5803	zfs_vmobject_wunlock(object);
5804
5805	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5806	ZFS_EXIT(zfsvfs);
5807	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5808}
5809
5810static int
5811zfs_freebsd_getpages(ap)
5812	struct vop_getpages_args /* {
5813		struct vnode *a_vp;
5814		vm_page_t *a_m;
5815		int a_count;
5816		int a_reqpage;
5817		vm_ooffset_t a_offset;
5818	} */ *ap;
5819{
5820
5821	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5822}
5823
5824static int
5825zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5826    int *rtvals)
5827{
5828	znode_t		*zp = VTOZ(vp);
5829	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5830	rl_t		*rl;
5831	dmu_tx_t	*tx;
5832	struct sf_buf	*sf;
5833	vm_object_t	object;
5834	vm_page_t	m;
5835	caddr_t		va;
5836	size_t		tocopy;
5837	size_t		lo_len;
5838	vm_ooffset_t	lo_off;
5839	vm_ooffset_t	off;
5840	uint_t		blksz;
5841	int		ncount;
5842	int		pcount;
5843	int		err;
5844	int		i;
5845
5846	ZFS_ENTER(zfsvfs);
5847	ZFS_VERIFY_ZP(zp);
5848
5849	object = vp->v_object;
5850	pcount = btoc(len);
5851	ncount = pcount;
5852
5853	KASSERT(ma[0]->object == object, ("mismatching object"));
5854	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5855
5856	for (i = 0; i < pcount; i++)
5857		rtvals[i] = zfs_vm_pagerret_error;
5858
5859	off = IDX_TO_OFF(ma[0]->pindex);
5860	blksz = zp->z_blksz;
5861	lo_off = rounddown(off, blksz);
5862	lo_len = roundup(len + (off - lo_off), blksz);
5863	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5864
5865	zfs_vmobject_wlock(object);
5866	if (len + off > object->un_pager.vnp.vnp_size) {
5867		if (object->un_pager.vnp.vnp_size > off) {
5868			int pgoff;
5869
5870			len = object->un_pager.vnp.vnp_size - off;
5871			ncount = btoc(len);
5872			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5873				/*
5874				 * If the object is locked and the following
5875				 * conditions hold, then the page's dirty
5876				 * field cannot be concurrently changed by a
5877				 * pmap operation.
5878				 */
5879				m = ma[ncount - 1];
5880				vm_page_assert_sbusied(m);
5881				KASSERT(!pmap_page_is_write_mapped(m),
5882				    ("zfs_putpages: page %p is not read-only", m));
5883				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5884				    pgoff);
5885			}
5886		} else {
5887			len = 0;
5888			ncount = 0;
5889		}
5890		if (ncount < pcount) {
5891			for (i = ncount; i < pcount; i++) {
5892				rtvals[i] = zfs_vm_pagerret_bad;
5893			}
5894		}
5895	}
5896	zfs_vmobject_wunlock(object);
5897
5898	if (ncount == 0)
5899		goto out;
5900
5901	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5902	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5903		goto out;
5904	}
5905
5906top:
5907	tx = dmu_tx_create(zfsvfs->z_os);
5908	dmu_tx_hold_write(tx, zp->z_id, off, len);
5909
5910	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5911	zfs_sa_upgrade_txholds(tx, zp);
5912	err = dmu_tx_assign(tx, TXG_NOWAIT);
5913	if (err != 0) {
5914		if (err == ERESTART) {
5915			dmu_tx_wait(tx);
5916			dmu_tx_abort(tx);
5917			goto top;
5918		}
5919		dmu_tx_abort(tx);
5920		goto out;
5921	}
5922
5923	if (zp->z_blksz < PAGE_SIZE) {
5924		i = 0;
5925		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5926			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5927			va = zfs_map_page(ma[i], &sf);
5928			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
5929			zfs_unmap_page(sf);
5930		}
5931	} else {
5932		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
5933	}
5934
5935	if (err == 0) {
5936		uint64_t mtime[2], ctime[2];
5937		sa_bulk_attr_t bulk[3];
5938		int count = 0;
5939
5940		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
5941		    &mtime, 16);
5942		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
5943		    &ctime, 16);
5944		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
5945		    &zp->z_pflags, 8);
5946		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
5947		    B_TRUE);
5948		(void)sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
5949		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
5950
5951		zfs_vmobject_wlock(object);
5952		for (i = 0; i < ncount; i++) {
5953			rtvals[i] = zfs_vm_pagerret_ok;
5954			vm_page_undirty(ma[i]);
5955		}
5956		zfs_vmobject_wunlock(object);
5957		PCPU_INC(cnt.v_vnodeout);
5958		PCPU_ADD(cnt.v_vnodepgsout, ncount);
5959	}
5960	dmu_tx_commit(tx);
5961
5962out:
5963	zfs_range_unlock(rl);
5964	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
5965	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5966		zil_commit(zfsvfs->z_log, zp->z_id);
5967	ZFS_EXIT(zfsvfs);
5968	return (rtvals[0]);
5969}
5970
5971int
5972zfs_freebsd_putpages(ap)
5973	struct vop_putpages_args /* {
5974		struct vnode *a_vp;
5975		vm_page_t *a_m;
5976		int a_count;
5977		int a_sync;
5978		int *a_rtvals;
5979		vm_ooffset_t a_offset;
5980	} */ *ap;
5981{
5982
5983	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
5984	    ap->a_rtvals));
5985}
5986
5987static int
5988zfs_freebsd_bmap(ap)
5989	struct vop_bmap_args /* {
5990		struct vnode *a_vp;
5991		daddr_t  a_bn;
5992		struct bufobj **a_bop;
5993		daddr_t *a_bnp;
5994		int *a_runp;
5995		int *a_runb;
5996	} */ *ap;
5997{
5998
5999	if (ap->a_bop != NULL)
6000		*ap->a_bop = &ap->a_vp->v_bufobj;
6001	if (ap->a_bnp != NULL)
6002		*ap->a_bnp = ap->a_bn;
6003	if (ap->a_runp != NULL)
6004		*ap->a_runp = 0;
6005	if (ap->a_runb != NULL)
6006		*ap->a_runb = 0;
6007
6008	return (0);
6009}
6010
6011static int
6012zfs_freebsd_open(ap)
6013	struct vop_open_args /* {
6014		struct vnode *a_vp;
6015		int a_mode;
6016		struct ucred *a_cred;
6017		struct thread *a_td;
6018	} */ *ap;
6019{
6020	vnode_t	*vp = ap->a_vp;
6021	znode_t *zp = VTOZ(vp);
6022	int error;
6023
6024	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
6025	if (error == 0)
6026		vnode_create_vobject(vp, zp->z_size, ap->a_td);
6027	return (error);
6028}
6029
6030static int
6031zfs_freebsd_close(ap)
6032	struct vop_close_args /* {
6033		struct vnode *a_vp;
6034		int  a_fflag;
6035		struct ucred *a_cred;
6036		struct thread *a_td;
6037	} */ *ap;
6038{
6039
6040	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
6041}
6042
6043static int
6044zfs_freebsd_ioctl(ap)
6045	struct vop_ioctl_args /* {
6046		struct vnode *a_vp;
6047		u_long a_command;
6048		caddr_t a_data;
6049		int a_fflag;
6050		struct ucred *cred;
6051		struct thread *td;
6052	} */ *ap;
6053{
6054
6055	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6056	    ap->a_fflag, ap->a_cred, NULL, NULL));
6057}
6058
6059static int
6060zfs_freebsd_read(ap)
6061	struct vop_read_args /* {
6062		struct vnode *a_vp;
6063		struct uio *a_uio;
6064		int a_ioflag;
6065		struct ucred *a_cred;
6066	} */ *ap;
6067{
6068
6069	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6070	    ap->a_cred, NULL));
6071}
6072
6073static int
6074zfs_freebsd_write(ap)
6075	struct vop_write_args /* {
6076		struct vnode *a_vp;
6077		struct uio *a_uio;
6078		int a_ioflag;
6079		struct ucred *a_cred;
6080	} */ *ap;
6081{
6082
6083	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6084	    ap->a_cred, NULL));
6085}
6086
6087static int
6088zfs_freebsd_access(ap)
6089	struct vop_access_args /* {
6090		struct vnode *a_vp;
6091		accmode_t a_accmode;
6092		struct ucred *a_cred;
6093		struct thread *a_td;
6094	} */ *ap;
6095{
6096	vnode_t *vp = ap->a_vp;
6097	znode_t *zp = VTOZ(vp);
6098	accmode_t accmode;
6099	int error = 0;
6100
6101	/*
6102	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6103	 */
6104	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6105	if (accmode != 0)
6106		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6107
6108	/*
6109	 * VADMIN has to be handled by vaccess().
6110	 */
6111	if (error == 0) {
6112		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6113		if (accmode != 0) {
6114			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6115			    zp->z_gid, accmode, ap->a_cred, NULL);
6116		}
6117	}
6118
6119	/*
6120	 * For VEXEC, ensure that at least one execute bit is set for
6121	 * non-directories.
6122	 */
6123	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6124	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6125		error = EACCES;
6126	}
6127
6128	return (error);
6129}
6130
6131static int
6132zfs_freebsd_lookup(ap)
6133	struct vop_lookup_args /* {
6134		struct vnode *a_dvp;
6135		struct vnode **a_vpp;
6136		struct componentname *a_cnp;
6137	} */ *ap;
6138{
6139	struct componentname *cnp = ap->a_cnp;
6140	char nm[NAME_MAX + 1];
6141
6142	ASSERT(cnp->cn_namelen < sizeof(nm));
6143	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6144
6145	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6146	    cnp->cn_cred, cnp->cn_thread, 0));
6147}
6148
6149static int
6150zfs_freebsd_create(ap)
6151	struct vop_create_args /* {
6152		struct vnode *a_dvp;
6153		struct vnode **a_vpp;
6154		struct componentname *a_cnp;
6155		struct vattr *a_vap;
6156	} */ *ap;
6157{
6158	struct componentname *cnp = ap->a_cnp;
6159	vattr_t *vap = ap->a_vap;
6160	int error, mode;
6161
6162	ASSERT(cnp->cn_flags & SAVENAME);
6163
6164	vattr_init_mask(vap);
6165	mode = vap->va_mode & ALLPERMS;
6166
6167	error = zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6168	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread);
6169#ifdef FREEBSD_NAMECACHE
6170	if (error == 0 && (cnp->cn_flags & MAKEENTRY) != 0)
6171		cache_enter(ap->a_dvp, *ap->a_vpp, cnp);
6172#endif
6173	return (error);
6174}
6175
6176static int
6177zfs_freebsd_remove(ap)
6178	struct vop_remove_args /* {
6179		struct vnode *a_dvp;
6180		struct vnode *a_vp;
6181		struct componentname *a_cnp;
6182	} */ *ap;
6183{
6184
6185	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6186
6187	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6188	    ap->a_cnp->cn_cred, NULL, 0));
6189}
6190
6191static int
6192zfs_freebsd_mkdir(ap)
6193	struct vop_mkdir_args /* {
6194		struct vnode *a_dvp;
6195		struct vnode **a_vpp;
6196		struct componentname *a_cnp;
6197		struct vattr *a_vap;
6198	} */ *ap;
6199{
6200	vattr_t *vap = ap->a_vap;
6201
6202	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6203
6204	vattr_init_mask(vap);
6205
6206	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6207	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6208}
6209
6210static int
6211zfs_freebsd_rmdir(ap)
6212	struct vop_rmdir_args /* {
6213		struct vnode *a_dvp;
6214		struct vnode *a_vp;
6215		struct componentname *a_cnp;
6216	} */ *ap;
6217{
6218	struct componentname *cnp = ap->a_cnp;
6219
6220	ASSERT(cnp->cn_flags & SAVENAME);
6221
6222	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6223}
6224
6225static int
6226zfs_freebsd_readdir(ap)
6227	struct vop_readdir_args /* {
6228		struct vnode *a_vp;
6229		struct uio *a_uio;
6230		struct ucred *a_cred;
6231		int *a_eofflag;
6232		int *a_ncookies;
6233		u_long **a_cookies;
6234	} */ *ap;
6235{
6236
6237	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6238	    ap->a_ncookies, ap->a_cookies));
6239}
6240
6241static int
6242zfs_freebsd_fsync(ap)
6243	struct vop_fsync_args /* {
6244		struct vnode *a_vp;
6245		int a_waitfor;
6246		struct thread *a_td;
6247	} */ *ap;
6248{
6249
6250	vop_stdfsync(ap);
6251	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6252}
6253
6254static int
6255zfs_freebsd_getattr(ap)
6256	struct vop_getattr_args /* {
6257		struct vnode *a_vp;
6258		struct vattr *a_vap;
6259		struct ucred *a_cred;
6260	} */ *ap;
6261{
6262	vattr_t *vap = ap->a_vap;
6263	xvattr_t xvap;
6264	u_long fflags = 0;
6265	int error;
6266
6267	xva_init(&xvap);
6268	xvap.xva_vattr = *vap;
6269	xvap.xva_vattr.va_mask |= AT_XVATTR;
6270
6271	/* Convert chflags into ZFS-type flags. */
6272	/* XXX: what about SF_SETTABLE?. */
6273	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6274	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6275	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6276	XVA_SET_REQ(&xvap, XAT_NODUMP);
6277	XVA_SET_REQ(&xvap, XAT_READONLY);
6278	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6279	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6280	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6281	XVA_SET_REQ(&xvap, XAT_REPARSE);
6282	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6283	XVA_SET_REQ(&xvap, XAT_SPARSE);
6284
6285	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6286	if (error != 0)
6287		return (error);
6288
6289	/* Convert ZFS xattr into chflags. */
6290#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6291	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6292		fflags |= (fflag);					\
6293} while (0)
6294	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6295	    xvap.xva_xoptattrs.xoa_immutable);
6296	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6297	    xvap.xva_xoptattrs.xoa_appendonly);
6298	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6299	    xvap.xva_xoptattrs.xoa_nounlink);
6300	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6301	    xvap.xva_xoptattrs.xoa_archive);
6302	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6303	    xvap.xva_xoptattrs.xoa_nodump);
6304	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6305	    xvap.xva_xoptattrs.xoa_readonly);
6306	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6307	    xvap.xva_xoptattrs.xoa_system);
6308	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6309	    xvap.xva_xoptattrs.xoa_hidden);
6310	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6311	    xvap.xva_xoptattrs.xoa_reparse);
6312	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6313	    xvap.xva_xoptattrs.xoa_offline);
6314	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6315	    xvap.xva_xoptattrs.xoa_sparse);
6316
6317#undef	FLAG_CHECK
6318	*vap = xvap.xva_vattr;
6319	vap->va_flags = fflags;
6320	return (0);
6321}
6322
6323static int
6324zfs_freebsd_setattr(ap)
6325	struct vop_setattr_args /* {
6326		struct vnode *a_vp;
6327		struct vattr *a_vap;
6328		struct ucred *a_cred;
6329	} */ *ap;
6330{
6331	vnode_t *vp = ap->a_vp;
6332	vattr_t *vap = ap->a_vap;
6333	cred_t *cred = ap->a_cred;
6334	xvattr_t xvap;
6335	u_long fflags;
6336	uint64_t zflags;
6337
6338	vattr_init_mask(vap);
6339	vap->va_mask &= ~AT_NOSET;
6340
6341	xva_init(&xvap);
6342	xvap.xva_vattr = *vap;
6343
6344	zflags = VTOZ(vp)->z_pflags;
6345
6346	if (vap->va_flags != VNOVAL) {
6347		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6348		int error;
6349
6350		if (zfsvfs->z_use_fuids == B_FALSE)
6351			return (EOPNOTSUPP);
6352
6353		fflags = vap->va_flags;
6354		/*
6355		 * XXX KDM
6356		 * We need to figure out whether it makes sense to allow
6357		 * UF_REPARSE through, since we don't really have other
6358		 * facilities to handle reparse points and zfs_setattr()
6359		 * doesn't currently allow setting that attribute anyway.
6360		 */
6361		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6362		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6363		     UF_OFFLINE|UF_SPARSE)) != 0)
6364			return (EOPNOTSUPP);
6365		/*
6366		 * Unprivileged processes are not permitted to unset system
6367		 * flags, or modify flags if any system flags are set.
6368		 * Privileged non-jail processes may not modify system flags
6369		 * if securelevel > 0 and any existing system flags are set.
6370		 * Privileged jail processes behave like privileged non-jail
6371		 * processes if the security.jail.chflags_allowed sysctl is
6372		 * is non-zero; otherwise, they behave like unprivileged
6373		 * processes.
6374		 */
6375		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6376		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6377			if (zflags &
6378			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6379				error = securelevel_gt(cred, 0);
6380				if (error != 0)
6381					return (error);
6382			}
6383		} else {
6384			/*
6385			 * Callers may only modify the file flags on objects they
6386			 * have VADMIN rights for.
6387			 */
6388			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6389				return (error);
6390			if (zflags &
6391			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6392				return (EPERM);
6393			}
6394			if (fflags &
6395			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6396				return (EPERM);
6397			}
6398		}
6399
6400#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6401	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6402	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6403		XVA_SET_REQ(&xvap, (xflag));				\
6404		(xfield) = ((fflags & (fflag)) != 0);			\
6405	}								\
6406} while (0)
6407		/* Convert chflags into ZFS-type flags. */
6408		/* XXX: what about SF_SETTABLE?. */
6409		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6410		    xvap.xva_xoptattrs.xoa_immutable);
6411		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6412		    xvap.xva_xoptattrs.xoa_appendonly);
6413		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6414		    xvap.xva_xoptattrs.xoa_nounlink);
6415		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6416		    xvap.xva_xoptattrs.xoa_archive);
6417		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6418		    xvap.xva_xoptattrs.xoa_nodump);
6419		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6420		    xvap.xva_xoptattrs.xoa_readonly);
6421		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6422		    xvap.xva_xoptattrs.xoa_system);
6423		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6424		    xvap.xva_xoptattrs.xoa_hidden);
6425		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6426		    xvap.xva_xoptattrs.xoa_hidden);
6427		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6428		    xvap.xva_xoptattrs.xoa_offline);
6429		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6430		    xvap.xva_xoptattrs.xoa_sparse);
6431#undef	FLAG_CHANGE
6432	}
6433	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6434}
6435
6436static int
6437zfs_freebsd_rename(ap)
6438	struct vop_rename_args  /* {
6439		struct vnode *a_fdvp;
6440		struct vnode *a_fvp;
6441		struct componentname *a_fcnp;
6442		struct vnode *a_tdvp;
6443		struct vnode *a_tvp;
6444		struct componentname *a_tcnp;
6445	} */ *ap;
6446{
6447	vnode_t *fdvp = ap->a_fdvp;
6448	vnode_t *fvp = ap->a_fvp;
6449	vnode_t *tdvp = ap->a_tdvp;
6450	vnode_t *tvp = ap->a_tvp;
6451	int error;
6452
6453	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6454	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6455
6456	/*
6457	 * Check for cross-device rename.
6458	 */
6459	if ((fdvp->v_mount != tdvp->v_mount) ||
6460	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6461		error = EXDEV;
6462	else
6463		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6464		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6465	if (tdvp == tvp)
6466		VN_RELE(tdvp);
6467	else
6468		VN_URELE(tdvp);
6469	if (tvp)
6470		VN_URELE(tvp);
6471	VN_RELE(fdvp);
6472	VN_RELE(fvp);
6473
6474	return (error);
6475}
6476
6477static int
6478zfs_freebsd_symlink(ap)
6479	struct vop_symlink_args /* {
6480		struct vnode *a_dvp;
6481		struct vnode **a_vpp;
6482		struct componentname *a_cnp;
6483		struct vattr *a_vap;
6484		char *a_target;
6485	} */ *ap;
6486{
6487	struct componentname *cnp = ap->a_cnp;
6488	vattr_t *vap = ap->a_vap;
6489
6490	ASSERT(cnp->cn_flags & SAVENAME);
6491
6492	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6493	vattr_init_mask(vap);
6494
6495	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6496	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6497}
6498
6499static int
6500zfs_freebsd_readlink(ap)
6501	struct vop_readlink_args /* {
6502		struct vnode *a_vp;
6503		struct uio *a_uio;
6504		struct ucred *a_cred;
6505	} */ *ap;
6506{
6507
6508	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6509}
6510
6511static int
6512zfs_freebsd_link(ap)
6513	struct vop_link_args /* {
6514		struct vnode *a_tdvp;
6515		struct vnode *a_vp;
6516		struct componentname *a_cnp;
6517	} */ *ap;
6518{
6519	struct componentname *cnp = ap->a_cnp;
6520	vnode_t *vp = ap->a_vp;
6521	vnode_t *tdvp = ap->a_tdvp;
6522
6523	if (tdvp->v_mount != vp->v_mount)
6524		return (EXDEV);
6525
6526	ASSERT(cnp->cn_flags & SAVENAME);
6527
6528	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6529}
6530
6531static int
6532zfs_freebsd_inactive(ap)
6533	struct vop_inactive_args /* {
6534		struct vnode *a_vp;
6535		struct thread *a_td;
6536	} */ *ap;
6537{
6538	vnode_t *vp = ap->a_vp;
6539
6540	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6541	return (0);
6542}
6543
6544static int
6545zfs_freebsd_reclaim(ap)
6546	struct vop_reclaim_args /* {
6547		struct vnode *a_vp;
6548		struct thread *a_td;
6549	} */ *ap;
6550{
6551	vnode_t	*vp = ap->a_vp;
6552	znode_t	*zp = VTOZ(vp);
6553	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6554
6555	ASSERT(zp != NULL);
6556
6557	/* Destroy the vm object and flush associated pages. */
6558	vnode_destroy_vobject(vp);
6559
6560	/*
6561	 * z_teardown_inactive_lock protects from a race with
6562	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6563	 * force unmount.
6564	 */
6565	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6566	if (zp->z_sa_hdl == NULL)
6567		zfs_znode_free(zp);
6568	else
6569		zfs_zinactive(zp);
6570	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6571
6572	vp->v_data = NULL;
6573	return (0);
6574}
6575
6576static int
6577zfs_freebsd_fid(ap)
6578	struct vop_fid_args /* {
6579		struct vnode *a_vp;
6580		struct fid *a_fid;
6581	} */ *ap;
6582{
6583
6584	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6585}
6586
6587static int
6588zfs_freebsd_pathconf(ap)
6589	struct vop_pathconf_args /* {
6590		struct vnode *a_vp;
6591		int a_name;
6592		register_t *a_retval;
6593	} */ *ap;
6594{
6595	ulong_t val;
6596	int error;
6597
6598	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6599	if (error == 0)
6600		*ap->a_retval = val;
6601	else if (error == EOPNOTSUPP)
6602		error = vop_stdpathconf(ap);
6603	return (error);
6604}
6605
6606static int
6607zfs_freebsd_fifo_pathconf(ap)
6608	struct vop_pathconf_args /* {
6609		struct vnode *a_vp;
6610		int a_name;
6611		register_t *a_retval;
6612	} */ *ap;
6613{
6614
6615	switch (ap->a_name) {
6616	case _PC_ACL_EXTENDED:
6617	case _PC_ACL_NFS4:
6618	case _PC_ACL_PATH_MAX:
6619	case _PC_MAC_PRESENT:
6620		return (zfs_freebsd_pathconf(ap));
6621	default:
6622		return (fifo_specops.vop_pathconf(ap));
6623	}
6624}
6625
6626/*
6627 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6628 * extended attribute name:
6629 *
6630 *	NAMESPACE	PREFIX
6631 *	system		freebsd:system:
6632 *	user		(none, can be used to access ZFS fsattr(5) attributes
6633 *			created on Solaris)
6634 */
6635static int
6636zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6637    size_t size)
6638{
6639	const char *namespace, *prefix, *suffix;
6640
6641	/* We don't allow '/' character in attribute name. */
6642	if (strchr(name, '/') != NULL)
6643		return (EINVAL);
6644	/* We don't allow attribute names that start with "freebsd:" string. */
6645	if (strncmp(name, "freebsd:", 8) == 0)
6646		return (EINVAL);
6647
6648	bzero(attrname, size);
6649
6650	switch (attrnamespace) {
6651	case EXTATTR_NAMESPACE_USER:
6652#if 0
6653		prefix = "freebsd:";
6654		namespace = EXTATTR_NAMESPACE_USER_STRING;
6655		suffix = ":";
6656#else
6657		/*
6658		 * This is the default namespace by which we can access all
6659		 * attributes created on Solaris.
6660		 */
6661		prefix = namespace = suffix = "";
6662#endif
6663		break;
6664	case EXTATTR_NAMESPACE_SYSTEM:
6665		prefix = "freebsd:";
6666		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6667		suffix = ":";
6668		break;
6669	case EXTATTR_NAMESPACE_EMPTY:
6670	default:
6671		return (EINVAL);
6672	}
6673	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6674	    name) >= size) {
6675		return (ENAMETOOLONG);
6676	}
6677	return (0);
6678}
6679
6680/*
6681 * Vnode operating to retrieve a named extended attribute.
6682 */
6683static int
6684zfs_getextattr(struct vop_getextattr_args *ap)
6685/*
6686vop_getextattr {
6687	IN struct vnode *a_vp;
6688	IN int a_attrnamespace;
6689	IN const char *a_name;
6690	INOUT struct uio *a_uio;
6691	OUT size_t *a_size;
6692	IN struct ucred *a_cred;
6693	IN struct thread *a_td;
6694};
6695*/
6696{
6697	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6698	struct thread *td = ap->a_td;
6699	struct nameidata nd;
6700	char attrname[255];
6701	struct vattr va;
6702	vnode_t *xvp = NULL, *vp;
6703	int error, flags;
6704
6705	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6706	    ap->a_cred, ap->a_td, VREAD);
6707	if (error != 0)
6708		return (error);
6709
6710	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6711	    sizeof(attrname));
6712	if (error != 0)
6713		return (error);
6714
6715	ZFS_ENTER(zfsvfs);
6716
6717	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6718	    LOOKUP_XATTR);
6719	if (error != 0) {
6720		ZFS_EXIT(zfsvfs);
6721		return (error);
6722	}
6723
6724	flags = FREAD;
6725	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6726	    xvp, td);
6727	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6728	vp = nd.ni_vp;
6729	NDFREE(&nd, NDF_ONLY_PNBUF);
6730	if (error != 0) {
6731		ZFS_EXIT(zfsvfs);
6732		if (error == ENOENT)
6733			error = ENOATTR;
6734		return (error);
6735	}
6736
6737	if (ap->a_size != NULL) {
6738		error = VOP_GETATTR(vp, &va, ap->a_cred);
6739		if (error == 0)
6740			*ap->a_size = (size_t)va.va_size;
6741	} else if (ap->a_uio != NULL)
6742		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6743
6744	VOP_UNLOCK(vp, 0);
6745	vn_close(vp, flags, ap->a_cred, td);
6746	ZFS_EXIT(zfsvfs);
6747
6748	return (error);
6749}
6750
6751/*
6752 * Vnode operation to remove a named attribute.
6753 */
6754int
6755zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6756/*
6757vop_deleteextattr {
6758	IN struct vnode *a_vp;
6759	IN int a_attrnamespace;
6760	IN const char *a_name;
6761	IN struct ucred *a_cred;
6762	IN struct thread *a_td;
6763};
6764*/
6765{
6766	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6767	struct thread *td = ap->a_td;
6768	struct nameidata nd;
6769	char attrname[255];
6770	struct vattr va;
6771	vnode_t *xvp = NULL, *vp;
6772	int error, flags;
6773
6774	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6775	    ap->a_cred, ap->a_td, VWRITE);
6776	if (error != 0)
6777		return (error);
6778
6779	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6780	    sizeof(attrname));
6781	if (error != 0)
6782		return (error);
6783
6784	ZFS_ENTER(zfsvfs);
6785
6786	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6787	    LOOKUP_XATTR);
6788	if (error != 0) {
6789		ZFS_EXIT(zfsvfs);
6790		return (error);
6791	}
6792
6793	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6794	    UIO_SYSSPACE, attrname, xvp, td);
6795	error = namei(&nd);
6796	vp = nd.ni_vp;
6797	if (error != 0) {
6798		ZFS_EXIT(zfsvfs);
6799		NDFREE(&nd, NDF_ONLY_PNBUF);
6800		if (error == ENOENT)
6801			error = ENOATTR;
6802		return (error);
6803	}
6804
6805	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6806	NDFREE(&nd, NDF_ONLY_PNBUF);
6807
6808	vput(nd.ni_dvp);
6809	if (vp == nd.ni_dvp)
6810		vrele(vp);
6811	else
6812		vput(vp);
6813	ZFS_EXIT(zfsvfs);
6814
6815	return (error);
6816}
6817
6818/*
6819 * Vnode operation to set a named attribute.
6820 */
6821static int
6822zfs_setextattr(struct vop_setextattr_args *ap)
6823/*
6824vop_setextattr {
6825	IN struct vnode *a_vp;
6826	IN int a_attrnamespace;
6827	IN const char *a_name;
6828	INOUT struct uio *a_uio;
6829	IN struct ucred *a_cred;
6830	IN struct thread *a_td;
6831};
6832*/
6833{
6834	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6835	struct thread *td = ap->a_td;
6836	struct nameidata nd;
6837	char attrname[255];
6838	struct vattr va;
6839	vnode_t *xvp = NULL, *vp;
6840	int error, flags;
6841
6842	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6843	    ap->a_cred, ap->a_td, VWRITE);
6844	if (error != 0)
6845		return (error);
6846
6847	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6848	    sizeof(attrname));
6849	if (error != 0)
6850		return (error);
6851
6852	ZFS_ENTER(zfsvfs);
6853
6854	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6855	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6856	if (error != 0) {
6857		ZFS_EXIT(zfsvfs);
6858		return (error);
6859	}
6860
6861	flags = FFLAGS(O_WRONLY | O_CREAT);
6862	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6863	    xvp, td);
6864	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6865	vp = nd.ni_vp;
6866	NDFREE(&nd, NDF_ONLY_PNBUF);
6867	if (error != 0) {
6868		ZFS_EXIT(zfsvfs);
6869		return (error);
6870	}
6871
6872	VATTR_NULL(&va);
6873	va.va_size = 0;
6874	error = VOP_SETATTR(vp, &va, ap->a_cred);
6875	if (error == 0)
6876		VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6877
6878	VOP_UNLOCK(vp, 0);
6879	vn_close(vp, flags, ap->a_cred, td);
6880	ZFS_EXIT(zfsvfs);
6881
6882	return (error);
6883}
6884
6885/*
6886 * Vnode operation to retrieve extended attributes on a vnode.
6887 */
6888static int
6889zfs_listextattr(struct vop_listextattr_args *ap)
6890/*
6891vop_listextattr {
6892	IN struct vnode *a_vp;
6893	IN int a_attrnamespace;
6894	INOUT struct uio *a_uio;
6895	OUT size_t *a_size;
6896	IN struct ucred *a_cred;
6897	IN struct thread *a_td;
6898};
6899*/
6900{
6901	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6902	struct thread *td = ap->a_td;
6903	struct nameidata nd;
6904	char attrprefix[16];
6905	u_char dirbuf[sizeof(struct dirent)];
6906	struct dirent *dp;
6907	struct iovec aiov;
6908	struct uio auio, *uio = ap->a_uio;
6909	size_t *sizep = ap->a_size;
6910	size_t plen;
6911	vnode_t *xvp = NULL, *vp;
6912	int done, error, eof, pos;
6913
6914	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6915	    ap->a_cred, ap->a_td, VREAD);
6916	if (error != 0)
6917		return (error);
6918
6919	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6920	    sizeof(attrprefix));
6921	if (error != 0)
6922		return (error);
6923	plen = strlen(attrprefix);
6924
6925	ZFS_ENTER(zfsvfs);
6926
6927	if (sizep != NULL)
6928		*sizep = 0;
6929
6930	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6931	    LOOKUP_XATTR);
6932	if (error != 0) {
6933		ZFS_EXIT(zfsvfs);
6934		/*
6935		 * ENOATTR means that the EA directory does not yet exist,
6936		 * i.e. there are no extended attributes there.
6937		 */
6938		if (error == ENOATTR)
6939			error = 0;
6940		return (error);
6941	}
6942
6943	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6944	    UIO_SYSSPACE, ".", xvp, td);
6945	error = namei(&nd);
6946	vp = nd.ni_vp;
6947	NDFREE(&nd, NDF_ONLY_PNBUF);
6948	if (error != 0) {
6949		ZFS_EXIT(zfsvfs);
6950		return (error);
6951	}
6952
6953	auio.uio_iov = &aiov;
6954	auio.uio_iovcnt = 1;
6955	auio.uio_segflg = UIO_SYSSPACE;
6956	auio.uio_td = td;
6957	auio.uio_rw = UIO_READ;
6958	auio.uio_offset = 0;
6959
6960	do {
6961		u_char nlen;
6962
6963		aiov.iov_base = (void *)dirbuf;
6964		aiov.iov_len = sizeof(dirbuf);
6965		auio.uio_resid = sizeof(dirbuf);
6966		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6967		done = sizeof(dirbuf) - auio.uio_resid;
6968		if (error != 0)
6969			break;
6970		for (pos = 0; pos < done;) {
6971			dp = (struct dirent *)(dirbuf + pos);
6972			pos += dp->d_reclen;
6973			/*
6974			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6975			 * is what we get when attribute was created on Solaris.
6976			 */
6977			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6978				continue;
6979			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6980				continue;
6981			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6982				continue;
6983			nlen = dp->d_namlen - plen;
6984			if (sizep != NULL)
6985				*sizep += 1 + nlen;
6986			else if (uio != NULL) {
6987				/*
6988				 * Format of extattr name entry is one byte for
6989				 * length and the rest for name.
6990				 */
6991				error = uiomove(&nlen, 1, uio->uio_rw, uio);
6992				if (error == 0) {
6993					error = uiomove(dp->d_name + plen, nlen,
6994					    uio->uio_rw, uio);
6995				}
6996				if (error != 0)
6997					break;
6998			}
6999		}
7000	} while (!eof && error == 0);
7001
7002	vput(vp);
7003	ZFS_EXIT(zfsvfs);
7004
7005	return (error);
7006}
7007
7008int
7009zfs_freebsd_getacl(ap)
7010	struct vop_getacl_args /* {
7011		struct vnode *vp;
7012		acl_type_t type;
7013		struct acl *aclp;
7014		struct ucred *cred;
7015		struct thread *td;
7016	} */ *ap;
7017{
7018	int		error;
7019	vsecattr_t      vsecattr;
7020
7021	if (ap->a_type != ACL_TYPE_NFS4)
7022		return (EINVAL);
7023
7024	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
7025	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
7026		return (error);
7027
7028	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
7029	if (vsecattr.vsa_aclentp != NULL)
7030		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
7031
7032	return (error);
7033}
7034
7035int
7036zfs_freebsd_setacl(ap)
7037	struct vop_setacl_args /* {
7038		struct vnode *vp;
7039		acl_type_t type;
7040		struct acl *aclp;
7041		struct ucred *cred;
7042		struct thread *td;
7043	} */ *ap;
7044{
7045	int		error;
7046	vsecattr_t      vsecattr;
7047	int		aclbsize;	/* size of acl list in bytes */
7048	aclent_t	*aaclp;
7049
7050	if (ap->a_type != ACL_TYPE_NFS4)
7051		return (EINVAL);
7052
7053	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7054		return (EINVAL);
7055
7056	/*
7057	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7058	 * splitting every entry into two and appending "canonical six"
7059	 * entries at the end.  Don't allow for setting an ACL that would
7060	 * cause chmod(2) to run out of ACL entries.
7061	 */
7062	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7063		return (ENOSPC);
7064
7065	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7066	if (error != 0)
7067		return (error);
7068
7069	vsecattr.vsa_mask = VSA_ACE;
7070	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7071	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7072	aaclp = vsecattr.vsa_aclentp;
7073	vsecattr.vsa_aclentsz = aclbsize;
7074
7075	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7076	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7077	kmem_free(aaclp, aclbsize);
7078
7079	return (error);
7080}
7081
7082int
7083zfs_freebsd_aclcheck(ap)
7084	struct vop_aclcheck_args /* {
7085		struct vnode *vp;
7086		acl_type_t type;
7087		struct acl *aclp;
7088		struct ucred *cred;
7089		struct thread *td;
7090	} */ *ap;
7091{
7092
7093	return (EOPNOTSUPP);
7094}
7095
7096struct vop_vector zfs_vnodeops;
7097struct vop_vector zfs_fifoops;
7098struct vop_vector zfs_shareops;
7099
7100struct vop_vector zfs_vnodeops = {
7101	.vop_default =		&default_vnodeops,
7102	.vop_inactive =		zfs_freebsd_inactive,
7103	.vop_reclaim =		zfs_freebsd_reclaim,
7104	.vop_access =		zfs_freebsd_access,
7105#ifdef FREEBSD_NAMECACHE
7106	.vop_lookup =		vfs_cache_lookup,
7107	.vop_cachedlookup =	zfs_freebsd_lookup,
7108#else
7109	.vop_lookup =		zfs_freebsd_lookup,
7110#endif
7111	.vop_getattr =		zfs_freebsd_getattr,
7112	.vop_setattr =		zfs_freebsd_setattr,
7113	.vop_create =		zfs_freebsd_create,
7114	.vop_mknod =		zfs_freebsd_create,
7115	.vop_mkdir =		zfs_freebsd_mkdir,
7116	.vop_readdir =		zfs_freebsd_readdir,
7117	.vop_fsync =		zfs_freebsd_fsync,
7118	.vop_open =		zfs_freebsd_open,
7119	.vop_close =		zfs_freebsd_close,
7120	.vop_rmdir =		zfs_freebsd_rmdir,
7121	.vop_ioctl =		zfs_freebsd_ioctl,
7122	.vop_link =		zfs_freebsd_link,
7123	.vop_symlink =		zfs_freebsd_symlink,
7124	.vop_readlink =		zfs_freebsd_readlink,
7125	.vop_read =		zfs_freebsd_read,
7126	.vop_write =		zfs_freebsd_write,
7127	.vop_remove =		zfs_freebsd_remove,
7128	.vop_rename =		zfs_freebsd_rename,
7129	.vop_pathconf =		zfs_freebsd_pathconf,
7130	.vop_bmap =		zfs_freebsd_bmap,
7131	.vop_fid =		zfs_freebsd_fid,
7132	.vop_getextattr =	zfs_getextattr,
7133	.vop_deleteextattr =	zfs_deleteextattr,
7134	.vop_setextattr =	zfs_setextattr,
7135	.vop_listextattr =	zfs_listextattr,
7136	.vop_getacl =		zfs_freebsd_getacl,
7137	.vop_setacl =		zfs_freebsd_setacl,
7138	.vop_aclcheck =		zfs_freebsd_aclcheck,
7139	.vop_getpages =		zfs_freebsd_getpages,
7140	.vop_putpages =		zfs_freebsd_putpages,
7141};
7142
7143struct vop_vector zfs_fifoops = {
7144	.vop_default =		&fifo_specops,
7145	.vop_fsync =		zfs_freebsd_fsync,
7146	.vop_access =		zfs_freebsd_access,
7147	.vop_getattr =		zfs_freebsd_getattr,
7148	.vop_inactive =		zfs_freebsd_inactive,
7149	.vop_read =		VOP_PANIC,
7150	.vop_reclaim =		zfs_freebsd_reclaim,
7151	.vop_setattr =		zfs_freebsd_setattr,
7152	.vop_write =		VOP_PANIC,
7153	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7154	.vop_fid =		zfs_freebsd_fid,
7155	.vop_getacl =		zfs_freebsd_getacl,
7156	.vop_setacl =		zfs_freebsd_setacl,
7157	.vop_aclcheck =		zfs_freebsd_aclcheck,
7158};
7159
7160/*
7161 * special share hidden files vnode operations template
7162 */
7163struct vop_vector zfs_shareops = {
7164	.vop_default =		&default_vnodeops,
7165	.vop_access =		zfs_freebsd_access,
7166	.vop_inactive =		zfs_freebsd_inactive,
7167	.vop_reclaim =		zfs_freebsd_reclaim,
7168	.vop_fid =		zfs_freebsd_fid,
7169	.vop_pathconf =		zfs_freebsd_pathconf,
7170};
7171