zfs_vnops.c revision 260786
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sched.h>
75#include <sys/acl.h>
76#include <vm/vm_param.h>
77#include <vm/vm_pageout.h>
78
79/*
80 * Programming rules.
81 *
82 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
83 * properly lock its in-core state, create a DMU transaction, do the work,
84 * record this work in the intent log (ZIL), commit the DMU transaction,
85 * and wait for the intent log to commit if it is a synchronous operation.
86 * Moreover, the vnode ops must work in both normal and log replay context.
87 * The ordering of events is important to avoid deadlocks and references
88 * to freed memory.  The example below illustrates the following Big Rules:
89 *
90 *  (1)	A check must be made in each zfs thread for a mounted file system.
91 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
92 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
93 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
94 *	can return EIO from the calling function.
95 *
96 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
97 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
98 *	First, if it's the last reference, the vnode/znode
99 *	can be freed, so the zp may point to freed memory.  Second, the last
100 *	reference will call zfs_zinactive(), which may induce a lot of work --
101 *	pushing cached pages (which acquires range locks) and syncing out
102 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
103 *	which could deadlock the system if you were already holding one.
104 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
105 *
106 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
107 *	as they can span dmu_tx_assign() calls.
108 *
109 *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
110 *      dmu_tx_assign().  This is critical because we don't want to block
111 *      while holding locks.
112 *
113 *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
114 *	reduces lock contention and CPU usage when we must wait (note that if
115 *	throughput is constrained by the storage, nearly every transaction
116 *	must wait).
117 *
118 *      Note, in particular, that if a lock is sometimes acquired before
119 *      the tx assigns, and sometimes after (e.g. z_lock), then failing
120 *      to use a non-blocking assign can deadlock the system.  The scenario:
121 *
122 *	Thread A has grabbed a lock before calling dmu_tx_assign().
123 *	Thread B is in an already-assigned tx, and blocks for this lock.
124 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 *	forever, because the previous txg can't quiesce until B's tx commits.
126 *
127 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
128 *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
129 *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
130 *	to indicate that this operation has already called dmu_tx_wait().
131 *	This will ensure that we don't retry forever, waiting a short bit
132 *	each time.
133 *
134 *  (5)	If the operation succeeded, generate the intent log entry for it
135 *	before dropping locks.  This ensures that the ordering of events
136 *	in the intent log matches the order in which they actually occurred.
137 *	During ZIL replay the zfs_log_* functions will update the sequence
138 *	number to indicate the zil transaction has replayed.
139 *
140 *  (6)	At the end of each vnode op, the DMU tx must always commit,
141 *	regardless of whether there were any errors.
142 *
143 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144 *	to ensure that synchronous semantics are provided when necessary.
145 *
146 * In general, this is how things should be ordered in each vnode op:
147 *
148 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
149 * top:
150 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
151 *	rw_enter(...);			// grab any other locks you need
152 *	tx = dmu_tx_create(...);	// get DMU tx
153 *	dmu_tx_hold_*();		// hold each object you might modify
154 *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
155 *	if (error) {
156 *		rw_exit(...);		// drop locks
157 *		zfs_dirent_unlock(dl);	// unlock directory entry
158 *		VN_RELE(...);		// release held vnodes
159 *		if (error == ERESTART) {
160 *			waited = B_TRUE;
161 *			dmu_tx_wait(tx);
162 *			dmu_tx_abort(tx);
163 *			goto top;
164 *		}
165 *		dmu_tx_abort(tx);	// abort DMU tx
166 *		ZFS_EXIT(zfsvfs);	// finished in zfs
167 *		return (error);		// really out of space
168 *	}
169 *	error = do_real_work();		// do whatever this VOP does
170 *	if (error == 0)
171 *		zfs_log_*(...);		// on success, make ZIL entry
172 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
173 *	rw_exit(...);			// drop locks
174 *	zfs_dirent_unlock(dl);		// unlock directory entry
175 *	VN_RELE(...);			// release held vnodes
176 *	zil_commit(zilog, foid);	// synchronous when necessary
177 *	ZFS_EXIT(zfsvfs);		// finished in zfs
178 *	return (error);			// done, report error
179 */
180
181/* ARGSUSED */
182static int
183zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
184{
185	znode_t	*zp = VTOZ(*vpp);
186	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
187
188	ZFS_ENTER(zfsvfs);
189	ZFS_VERIFY_ZP(zp);
190
191	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
192	    ((flag & FAPPEND) == 0)) {
193		ZFS_EXIT(zfsvfs);
194		return (SET_ERROR(EPERM));
195	}
196
197	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
198	    ZTOV(zp)->v_type == VREG &&
199	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
200		if (fs_vscan(*vpp, cr, 0) != 0) {
201			ZFS_EXIT(zfsvfs);
202			return (SET_ERROR(EACCES));
203		}
204	}
205
206	/* Keep a count of the synchronous opens in the znode */
207	if (flag & (FSYNC | FDSYNC))
208		atomic_inc_32(&zp->z_sync_cnt);
209
210	ZFS_EXIT(zfsvfs);
211	return (0);
212}
213
214/* ARGSUSED */
215static int
216zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
217    caller_context_t *ct)
218{
219	znode_t	*zp = VTOZ(vp);
220	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
221
222	/*
223	 * Clean up any locks held by this process on the vp.
224	 */
225	cleanlocks(vp, ddi_get_pid(), 0);
226	cleanshares(vp, ddi_get_pid());
227
228	ZFS_ENTER(zfsvfs);
229	ZFS_VERIFY_ZP(zp);
230
231	/* Decrement the synchronous opens in the znode */
232	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
233		atomic_dec_32(&zp->z_sync_cnt);
234
235	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
236	    ZTOV(zp)->v_type == VREG &&
237	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
238		VERIFY(fs_vscan(vp, cr, 1) == 0);
239
240	ZFS_EXIT(zfsvfs);
241	return (0);
242}
243
244/*
245 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
246 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
247 */
248static int
249zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
250{
251	znode_t	*zp = VTOZ(vp);
252	uint64_t noff = (uint64_t)*off; /* new offset */
253	uint64_t file_sz;
254	int error;
255	boolean_t hole;
256
257	file_sz = zp->z_size;
258	if (noff >= file_sz)  {
259		return (SET_ERROR(ENXIO));
260	}
261
262	if (cmd == _FIO_SEEK_HOLE)
263		hole = B_TRUE;
264	else
265		hole = B_FALSE;
266
267	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
268
269	/* end of file? */
270	if ((error == ESRCH) || (noff > file_sz)) {
271		/*
272		 * Handle the virtual hole at the end of file.
273		 */
274		if (hole) {
275			*off = file_sz;
276			return (0);
277		}
278		return (SET_ERROR(ENXIO));
279	}
280
281	if (noff < *off)
282		return (error);
283	*off = noff;
284	return (error);
285}
286
287/* ARGSUSED */
288static int
289zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
290    int *rvalp, caller_context_t *ct)
291{
292	offset_t off;
293	int error;
294	zfsvfs_t *zfsvfs;
295	znode_t *zp;
296
297	switch (com) {
298	case _FIOFFS:
299		return (0);
300
301		/*
302		 * The following two ioctls are used by bfu.  Faking out,
303		 * necessary to avoid bfu errors.
304		 */
305	case _FIOGDIO:
306	case _FIOSDIO:
307		return (0);
308
309	case _FIO_SEEK_DATA:
310	case _FIO_SEEK_HOLE:
311#ifdef sun
312		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
313			return (SET_ERROR(EFAULT));
314#else
315		off = *(offset_t *)data;
316#endif
317		zp = VTOZ(vp);
318		zfsvfs = zp->z_zfsvfs;
319		ZFS_ENTER(zfsvfs);
320		ZFS_VERIFY_ZP(zp);
321
322		/* offset parameter is in/out */
323		error = zfs_holey(vp, com, &off);
324		ZFS_EXIT(zfsvfs);
325		if (error)
326			return (error);
327#ifdef sun
328		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
329			return (SET_ERROR(EFAULT));
330#else
331		*(offset_t *)data = off;
332#endif
333		return (0);
334	}
335	return (SET_ERROR(ENOTTY));
336}
337
338static vm_page_t
339page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
340{
341	vm_object_t obj;
342	vm_page_t pp;
343	int64_t end;
344
345	/*
346	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
347	 * aligned boundaries, if the range is not aligned.  As a result a
348	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
349	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
350	 * the whole page would be considred clean despite have some dirty data.
351	 * For this reason we should shrink the range to DEV_BSIZE aligned
352	 * boundaries before calling vm_page_clear_dirty.
353	 */
354	end = rounddown2(off + nbytes, DEV_BSIZE);
355	off = roundup2(off, DEV_BSIZE);
356	nbytes = end - off;
357
358	obj = vp->v_object;
359	zfs_vmobject_assert_wlocked(obj);
360
361	for (;;) {
362		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
363		    pp->valid) {
364			if (vm_page_xbusied(pp)) {
365				/*
366				 * Reference the page before unlocking and
367				 * sleeping so that the page daemon is less
368				 * likely to reclaim it.
369				 */
370				vm_page_reference(pp);
371				vm_page_lock(pp);
372				zfs_vmobject_wunlock(obj);
373				vm_page_busy_sleep(pp, "zfsmwb");
374				zfs_vmobject_wlock(obj);
375				continue;
376			}
377			vm_page_sbusy(pp);
378		} else if (pp == NULL) {
379			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
380			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
381			    VM_ALLOC_SBUSY);
382		} else {
383			ASSERT(pp != NULL && !pp->valid);
384			pp = NULL;
385		}
386
387		if (pp != NULL) {
388			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
389			vm_object_pip_add(obj, 1);
390			pmap_remove_write(pp);
391			if (nbytes != 0)
392				vm_page_clear_dirty(pp, off, nbytes);
393		}
394		break;
395	}
396	return (pp);
397}
398
399static void
400page_unbusy(vm_page_t pp)
401{
402
403	vm_page_sunbusy(pp);
404	vm_object_pip_subtract(pp->object, 1);
405}
406
407static vm_page_t
408page_hold(vnode_t *vp, int64_t start)
409{
410	vm_object_t obj;
411	vm_page_t pp;
412
413	obj = vp->v_object;
414	zfs_vmobject_assert_wlocked(obj);
415
416	for (;;) {
417		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
418		    pp->valid) {
419			if (vm_page_xbusied(pp)) {
420				/*
421				 * Reference the page before unlocking and
422				 * sleeping so that the page daemon is less
423				 * likely to reclaim it.
424				 */
425				vm_page_reference(pp);
426				vm_page_lock(pp);
427				zfs_vmobject_wunlock(obj);
428				vm_page_busy_sleep(pp, "zfsmwb");
429				zfs_vmobject_wlock(obj);
430				continue;
431			}
432
433			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
434			vm_page_lock(pp);
435			vm_page_hold(pp);
436			vm_page_unlock(pp);
437
438		} else
439			pp = NULL;
440		break;
441	}
442	return (pp);
443}
444
445static void
446page_unhold(vm_page_t pp)
447{
448
449	vm_page_lock(pp);
450	vm_page_unhold(pp);
451	vm_page_unlock(pp);
452}
453
454/*
455 * When a file is memory mapped, we must keep the IO data synchronized
456 * between the DMU cache and the memory mapped pages.  What this means:
457 *
458 * On Write:	If we find a memory mapped page, we write to *both*
459 *		the page and the dmu buffer.
460 */
461static void
462update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
463    int segflg, dmu_tx_t *tx)
464{
465	vm_object_t obj;
466	struct sf_buf *sf;
467	caddr_t va;
468	int off;
469
470	ASSERT(segflg != UIO_NOCOPY);
471	ASSERT(vp->v_mount != NULL);
472	obj = vp->v_object;
473	ASSERT(obj != NULL);
474
475	off = start & PAGEOFFSET;
476	zfs_vmobject_wlock(obj);
477	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
478		vm_page_t pp;
479		int nbytes = imin(PAGESIZE - off, len);
480
481		if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
482			zfs_vmobject_wunlock(obj);
483
484			va = zfs_map_page(pp, &sf);
485			(void) dmu_read(os, oid, start+off, nbytes,
486			    va+off, DMU_READ_PREFETCH);;
487			zfs_unmap_page(sf);
488
489			zfs_vmobject_wlock(obj);
490			page_unbusy(pp);
491		}
492		len -= nbytes;
493		off = 0;
494	}
495	vm_object_pip_wakeupn(obj, 0);
496	zfs_vmobject_wunlock(obj);
497}
498
499/*
500 * Read with UIO_NOCOPY flag means that sendfile(2) requests
501 * ZFS to populate a range of page cache pages with data.
502 *
503 * NOTE: this function could be optimized to pre-allocate
504 * all pages in advance, drain exclusive busy on all of them,
505 * map them into contiguous KVA region and populate them
506 * in one single dmu_read() call.
507 */
508static int
509mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
510{
511	znode_t *zp = VTOZ(vp);
512	objset_t *os = zp->z_zfsvfs->z_os;
513	struct sf_buf *sf;
514	vm_object_t obj;
515	vm_page_t pp;
516	int64_t start;
517	caddr_t va;
518	int len = nbytes;
519	int off;
520	int error = 0;
521
522	ASSERT(uio->uio_segflg == UIO_NOCOPY);
523	ASSERT(vp->v_mount != NULL);
524	obj = vp->v_object;
525	ASSERT(obj != NULL);
526	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
527
528	zfs_vmobject_wlock(obj);
529	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
530		int bytes = MIN(PAGESIZE, len);
531
532		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
533		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
534		if (pp->valid == 0) {
535			zfs_vmobject_wunlock(obj);
536			va = zfs_map_page(pp, &sf);
537			error = dmu_read(os, zp->z_id, start, bytes, va,
538			    DMU_READ_PREFETCH);
539			if (bytes != PAGESIZE && error == 0)
540				bzero(va + bytes, PAGESIZE - bytes);
541			zfs_unmap_page(sf);
542			zfs_vmobject_wlock(obj);
543			vm_page_sunbusy(pp);
544			vm_page_lock(pp);
545			if (error) {
546				if (pp->wire_count == 0 && pp->valid == 0 &&
547				    !vm_page_busied(pp))
548					vm_page_free(pp);
549			} else {
550				pp->valid = VM_PAGE_BITS_ALL;
551				vm_page_activate(pp);
552			}
553			vm_page_unlock(pp);
554		} else {
555			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
556			vm_page_sunbusy(pp);
557		}
558		if (error)
559			break;
560		uio->uio_resid -= bytes;
561		uio->uio_offset += bytes;
562		len -= bytes;
563	}
564	zfs_vmobject_wunlock(obj);
565	return (error);
566}
567
568/*
569 * When a file is memory mapped, we must keep the IO data synchronized
570 * between the DMU cache and the memory mapped pages.  What this means:
571 *
572 * On Read:	We "read" preferentially from memory mapped pages,
573 *		else we default from the dmu buffer.
574 *
575 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
576 *	 the file is memory mapped.
577 */
578static int
579mappedread(vnode_t *vp, int nbytes, uio_t *uio)
580{
581	znode_t *zp = VTOZ(vp);
582	objset_t *os = zp->z_zfsvfs->z_os;
583	vm_object_t obj;
584	int64_t start;
585	caddr_t va;
586	int len = nbytes;
587	int off;
588	int error = 0;
589
590	ASSERT(vp->v_mount != NULL);
591	obj = vp->v_object;
592	ASSERT(obj != NULL);
593
594	start = uio->uio_loffset;
595	off = start & PAGEOFFSET;
596	zfs_vmobject_wlock(obj);
597	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
598		vm_page_t pp;
599		uint64_t bytes = MIN(PAGESIZE - off, len);
600
601		if (pp = page_hold(vp, start)) {
602			struct sf_buf *sf;
603			caddr_t va;
604
605			zfs_vmobject_wunlock(obj);
606			va = zfs_map_page(pp, &sf);
607			error = uiomove(va + off, bytes, UIO_READ, uio);
608			zfs_unmap_page(sf);
609			zfs_vmobject_wlock(obj);
610			page_unhold(pp);
611		} else {
612			zfs_vmobject_wunlock(obj);
613			error = dmu_read_uio(os, zp->z_id, uio, bytes);
614			zfs_vmobject_wlock(obj);
615		}
616		len -= bytes;
617		off = 0;
618		if (error)
619			break;
620	}
621	zfs_vmobject_wunlock(obj);
622	return (error);
623}
624
625offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
626
627/*
628 * Read bytes from specified file into supplied buffer.
629 *
630 *	IN:	vp	- vnode of file to be read from.
631 *		uio	- structure supplying read location, range info,
632 *			  and return buffer.
633 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
634 *		cr	- credentials of caller.
635 *		ct	- caller context
636 *
637 *	OUT:	uio	- updated offset and range, buffer filled.
638 *
639 *	RETURN:	0 on success, error code on failure.
640 *
641 * Side Effects:
642 *	vp - atime updated if byte count > 0
643 */
644/* ARGSUSED */
645static int
646zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
647{
648	znode_t		*zp = VTOZ(vp);
649	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
650	objset_t	*os;
651	ssize_t		n, nbytes;
652	int		error = 0;
653	rl_t		*rl;
654	xuio_t		*xuio = NULL;
655
656	ZFS_ENTER(zfsvfs);
657	ZFS_VERIFY_ZP(zp);
658	os = zfsvfs->z_os;
659
660	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
661		ZFS_EXIT(zfsvfs);
662		return (SET_ERROR(EACCES));
663	}
664
665	/*
666	 * Validate file offset
667	 */
668	if (uio->uio_loffset < (offset_t)0) {
669		ZFS_EXIT(zfsvfs);
670		return (SET_ERROR(EINVAL));
671	}
672
673	/*
674	 * Fasttrack empty reads
675	 */
676	if (uio->uio_resid == 0) {
677		ZFS_EXIT(zfsvfs);
678		return (0);
679	}
680
681	/*
682	 * Check for mandatory locks
683	 */
684	if (MANDMODE(zp->z_mode)) {
685		if (error = chklock(vp, FREAD,
686		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
687			ZFS_EXIT(zfsvfs);
688			return (error);
689		}
690	}
691
692	/*
693	 * If we're in FRSYNC mode, sync out this znode before reading it.
694	 */
695	if (zfsvfs->z_log &&
696	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
697		zil_commit(zfsvfs->z_log, zp->z_id);
698
699	/*
700	 * Lock the range against changes.
701	 */
702	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
703
704	/*
705	 * If we are reading past end-of-file we can skip
706	 * to the end; but we might still need to set atime.
707	 */
708	if (uio->uio_loffset >= zp->z_size) {
709		error = 0;
710		goto out;
711	}
712
713	ASSERT(uio->uio_loffset < zp->z_size);
714	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
715
716#ifdef sun
717	if ((uio->uio_extflg == UIO_XUIO) &&
718	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
719		int nblk;
720		int blksz = zp->z_blksz;
721		uint64_t offset = uio->uio_loffset;
722
723		xuio = (xuio_t *)uio;
724		if ((ISP2(blksz))) {
725			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
726			    blksz)) / blksz;
727		} else {
728			ASSERT(offset + n <= blksz);
729			nblk = 1;
730		}
731		(void) dmu_xuio_init(xuio, nblk);
732
733		if (vn_has_cached_data(vp)) {
734			/*
735			 * For simplicity, we always allocate a full buffer
736			 * even if we only expect to read a portion of a block.
737			 */
738			while (--nblk >= 0) {
739				(void) dmu_xuio_add(xuio,
740				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
741				    blksz), 0, blksz);
742			}
743		}
744	}
745#endif	/* sun */
746
747	while (n > 0) {
748		nbytes = MIN(n, zfs_read_chunk_size -
749		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
750
751#ifdef __FreeBSD__
752		if (uio->uio_segflg == UIO_NOCOPY)
753			error = mappedread_sf(vp, nbytes, uio);
754		else
755#endif /* __FreeBSD__ */
756		if (vn_has_cached_data(vp))
757			error = mappedread(vp, nbytes, uio);
758		else
759			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
760		if (error) {
761			/* convert checksum errors into IO errors */
762			if (error == ECKSUM)
763				error = SET_ERROR(EIO);
764			break;
765		}
766
767		n -= nbytes;
768	}
769out:
770	zfs_range_unlock(rl);
771
772	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
773	ZFS_EXIT(zfsvfs);
774	return (error);
775}
776
777/*
778 * Write the bytes to a file.
779 *
780 *	IN:	vp	- vnode of file to be written to.
781 *		uio	- structure supplying write location, range info,
782 *			  and data buffer.
783 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
784 *			  set if in append mode.
785 *		cr	- credentials of caller.
786 *		ct	- caller context (NFS/CIFS fem monitor only)
787 *
788 *	OUT:	uio	- updated offset and range.
789 *
790 *	RETURN:	0 on success, error code on failure.
791 *
792 * Timestamps:
793 *	vp - ctime|mtime updated if byte count > 0
794 */
795
796/* ARGSUSED */
797static int
798zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
799{
800	znode_t		*zp = VTOZ(vp);
801	rlim64_t	limit = MAXOFFSET_T;
802	ssize_t		start_resid = uio->uio_resid;
803	ssize_t		tx_bytes;
804	uint64_t	end_size;
805	dmu_tx_t	*tx;
806	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
807	zilog_t		*zilog;
808	offset_t	woff;
809	ssize_t		n, nbytes;
810	rl_t		*rl;
811	int		max_blksz = zfsvfs->z_max_blksz;
812	int		error = 0;
813	arc_buf_t	*abuf;
814	iovec_t		*aiov = NULL;
815	xuio_t		*xuio = NULL;
816	int		i_iov = 0;
817	int		iovcnt = uio->uio_iovcnt;
818	iovec_t		*iovp = uio->uio_iov;
819	int		write_eof;
820	int		count = 0;
821	sa_bulk_attr_t	bulk[4];
822	uint64_t	mtime[2], ctime[2];
823
824	/*
825	 * Fasttrack empty write
826	 */
827	n = start_resid;
828	if (n == 0)
829		return (0);
830
831	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
832		limit = MAXOFFSET_T;
833
834	ZFS_ENTER(zfsvfs);
835	ZFS_VERIFY_ZP(zp);
836
837	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
838	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
839	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
840	    &zp->z_size, 8);
841	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
842	    &zp->z_pflags, 8);
843
844	/*
845	 * If immutable or not appending then return EPERM
846	 */
847	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
848	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
849	    (uio->uio_loffset < zp->z_size))) {
850		ZFS_EXIT(zfsvfs);
851		return (SET_ERROR(EPERM));
852	}
853
854	zilog = zfsvfs->z_log;
855
856	/*
857	 * Validate file offset
858	 */
859	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
860	if (woff < 0) {
861		ZFS_EXIT(zfsvfs);
862		return (SET_ERROR(EINVAL));
863	}
864
865	/*
866	 * Check for mandatory locks before calling zfs_range_lock()
867	 * in order to prevent a deadlock with locks set via fcntl().
868	 */
869	if (MANDMODE((mode_t)zp->z_mode) &&
870	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
871		ZFS_EXIT(zfsvfs);
872		return (error);
873	}
874
875#ifdef sun
876	/*
877	 * Pre-fault the pages to ensure slow (eg NFS) pages
878	 * don't hold up txg.
879	 * Skip this if uio contains loaned arc_buf.
880	 */
881	if ((uio->uio_extflg == UIO_XUIO) &&
882	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
883		xuio = (xuio_t *)uio;
884	else
885		uio_prefaultpages(MIN(n, max_blksz), uio);
886#endif	/* sun */
887
888	/*
889	 * If in append mode, set the io offset pointer to eof.
890	 */
891	if (ioflag & FAPPEND) {
892		/*
893		 * Obtain an appending range lock to guarantee file append
894		 * semantics.  We reset the write offset once we have the lock.
895		 */
896		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
897		woff = rl->r_off;
898		if (rl->r_len == UINT64_MAX) {
899			/*
900			 * We overlocked the file because this write will cause
901			 * the file block size to increase.
902			 * Note that zp_size cannot change with this lock held.
903			 */
904			woff = zp->z_size;
905		}
906		uio->uio_loffset = woff;
907	} else {
908		/*
909		 * Note that if the file block size will change as a result of
910		 * this write, then this range lock will lock the entire file
911		 * so that we can re-write the block safely.
912		 */
913		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
914	}
915
916	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
917		zfs_range_unlock(rl);
918		ZFS_EXIT(zfsvfs);
919		return (EFBIG);
920	}
921
922	if (woff >= limit) {
923		zfs_range_unlock(rl);
924		ZFS_EXIT(zfsvfs);
925		return (SET_ERROR(EFBIG));
926	}
927
928	if ((woff + n) > limit || woff > (limit - n))
929		n = limit - woff;
930
931	/* Will this write extend the file length? */
932	write_eof = (woff + n > zp->z_size);
933
934	end_size = MAX(zp->z_size, woff + n);
935
936	/*
937	 * Write the file in reasonable size chunks.  Each chunk is written
938	 * in a separate transaction; this keeps the intent log records small
939	 * and allows us to do more fine-grained space accounting.
940	 */
941	while (n > 0) {
942		abuf = NULL;
943		woff = uio->uio_loffset;
944		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
945		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
946			if (abuf != NULL)
947				dmu_return_arcbuf(abuf);
948			error = SET_ERROR(EDQUOT);
949			break;
950		}
951
952		if (xuio && abuf == NULL) {
953			ASSERT(i_iov < iovcnt);
954			aiov = &iovp[i_iov];
955			abuf = dmu_xuio_arcbuf(xuio, i_iov);
956			dmu_xuio_clear(xuio, i_iov);
957			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
958			    iovec_t *, aiov, arc_buf_t *, abuf);
959			ASSERT((aiov->iov_base == abuf->b_data) ||
960			    ((char *)aiov->iov_base - (char *)abuf->b_data +
961			    aiov->iov_len == arc_buf_size(abuf)));
962			i_iov++;
963		} else if (abuf == NULL && n >= max_blksz &&
964		    woff >= zp->z_size &&
965		    P2PHASE(woff, max_blksz) == 0 &&
966		    zp->z_blksz == max_blksz) {
967			/*
968			 * This write covers a full block.  "Borrow" a buffer
969			 * from the dmu so that we can fill it before we enter
970			 * a transaction.  This avoids the possibility of
971			 * holding up the transaction if the data copy hangs
972			 * up on a pagefault (e.g., from an NFS server mapping).
973			 */
974			size_t cbytes;
975
976			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
977			    max_blksz);
978			ASSERT(abuf != NULL);
979			ASSERT(arc_buf_size(abuf) == max_blksz);
980			if (error = uiocopy(abuf->b_data, max_blksz,
981			    UIO_WRITE, uio, &cbytes)) {
982				dmu_return_arcbuf(abuf);
983				break;
984			}
985			ASSERT(cbytes == max_blksz);
986		}
987
988		/*
989		 * Start a transaction.
990		 */
991		tx = dmu_tx_create(zfsvfs->z_os);
992		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
993		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
994		zfs_sa_upgrade_txholds(tx, zp);
995		error = dmu_tx_assign(tx, TXG_WAIT);
996		if (error) {
997			dmu_tx_abort(tx);
998			if (abuf != NULL)
999				dmu_return_arcbuf(abuf);
1000			break;
1001		}
1002
1003		/*
1004		 * If zfs_range_lock() over-locked we grow the blocksize
1005		 * and then reduce the lock range.  This will only happen
1006		 * on the first iteration since zfs_range_reduce() will
1007		 * shrink down r_len to the appropriate size.
1008		 */
1009		if (rl->r_len == UINT64_MAX) {
1010			uint64_t new_blksz;
1011
1012			if (zp->z_blksz > max_blksz) {
1013				ASSERT(!ISP2(zp->z_blksz));
1014				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
1015			} else {
1016				new_blksz = MIN(end_size, max_blksz);
1017			}
1018			zfs_grow_blocksize(zp, new_blksz, tx);
1019			zfs_range_reduce(rl, woff, n);
1020		}
1021
1022		/*
1023		 * XXX - should we really limit each write to z_max_blksz?
1024		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1025		 */
1026		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1027
1028		if (woff + nbytes > zp->z_size)
1029			vnode_pager_setsize(vp, woff + nbytes);
1030
1031		if (abuf == NULL) {
1032			tx_bytes = uio->uio_resid;
1033			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1034			    uio, nbytes, tx);
1035			tx_bytes -= uio->uio_resid;
1036		} else {
1037			tx_bytes = nbytes;
1038			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1039			/*
1040			 * If this is not a full block write, but we are
1041			 * extending the file past EOF and this data starts
1042			 * block-aligned, use assign_arcbuf().  Otherwise,
1043			 * write via dmu_write().
1044			 */
1045			if (tx_bytes < max_blksz && (!write_eof ||
1046			    aiov->iov_base != abuf->b_data)) {
1047				ASSERT(xuio);
1048				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1049				    aiov->iov_len, aiov->iov_base, tx);
1050				dmu_return_arcbuf(abuf);
1051				xuio_stat_wbuf_copied();
1052			} else {
1053				ASSERT(xuio || tx_bytes == max_blksz);
1054				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1055				    woff, abuf, tx);
1056			}
1057			ASSERT(tx_bytes <= uio->uio_resid);
1058			uioskip(uio, tx_bytes);
1059		}
1060		if (tx_bytes && vn_has_cached_data(vp)) {
1061			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1062			    zp->z_id, uio->uio_segflg, tx);
1063		}
1064
1065		/*
1066		 * If we made no progress, we're done.  If we made even
1067		 * partial progress, update the znode and ZIL accordingly.
1068		 */
1069		if (tx_bytes == 0) {
1070			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1071			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1072			dmu_tx_commit(tx);
1073			ASSERT(error != 0);
1074			break;
1075		}
1076
1077		/*
1078		 * Clear Set-UID/Set-GID bits on successful write if not
1079		 * privileged and at least one of the excute bits is set.
1080		 *
1081		 * It would be nice to to this after all writes have
1082		 * been done, but that would still expose the ISUID/ISGID
1083		 * to another app after the partial write is committed.
1084		 *
1085		 * Note: we don't call zfs_fuid_map_id() here because
1086		 * user 0 is not an ephemeral uid.
1087		 */
1088		mutex_enter(&zp->z_acl_lock);
1089		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1090		    (S_IXUSR >> 6))) != 0 &&
1091		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1092		    secpolicy_vnode_setid_retain(vp, cr,
1093		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1094			uint64_t newmode;
1095			zp->z_mode &= ~(S_ISUID | S_ISGID);
1096			newmode = zp->z_mode;
1097			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1098			    (void *)&newmode, sizeof (uint64_t), tx);
1099		}
1100		mutex_exit(&zp->z_acl_lock);
1101
1102		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1103		    B_TRUE);
1104
1105		/*
1106		 * Update the file size (zp_size) if it has changed;
1107		 * account for possible concurrent updates.
1108		 */
1109		while ((end_size = zp->z_size) < uio->uio_loffset) {
1110			(void) atomic_cas_64(&zp->z_size, end_size,
1111			    uio->uio_loffset);
1112			ASSERT(error == 0);
1113		}
1114		/*
1115		 * If we are replaying and eof is non zero then force
1116		 * the file size to the specified eof. Note, there's no
1117		 * concurrency during replay.
1118		 */
1119		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1120			zp->z_size = zfsvfs->z_replay_eof;
1121
1122		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1123
1124		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1125		dmu_tx_commit(tx);
1126
1127		if (error != 0)
1128			break;
1129		ASSERT(tx_bytes == nbytes);
1130		n -= nbytes;
1131
1132#ifdef sun
1133		if (!xuio && n > 0)
1134			uio_prefaultpages(MIN(n, max_blksz), uio);
1135#endif	/* sun */
1136	}
1137
1138	zfs_range_unlock(rl);
1139
1140	/*
1141	 * If we're in replay mode, or we made no progress, return error.
1142	 * Otherwise, it's at least a partial write, so it's successful.
1143	 */
1144	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1145		ZFS_EXIT(zfsvfs);
1146		return (error);
1147	}
1148
1149	if (ioflag & (FSYNC | FDSYNC) ||
1150	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1151		zil_commit(zilog, zp->z_id);
1152
1153	ZFS_EXIT(zfsvfs);
1154	return (0);
1155}
1156
1157void
1158zfs_get_done(zgd_t *zgd, int error)
1159{
1160	znode_t *zp = zgd->zgd_private;
1161	objset_t *os = zp->z_zfsvfs->z_os;
1162
1163	if (zgd->zgd_db)
1164		dmu_buf_rele(zgd->zgd_db, zgd);
1165
1166	zfs_range_unlock(zgd->zgd_rl);
1167
1168	/*
1169	 * Release the vnode asynchronously as we currently have the
1170	 * txg stopped from syncing.
1171	 */
1172	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1173
1174	if (error == 0 && zgd->zgd_bp)
1175		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1176
1177	kmem_free(zgd, sizeof (zgd_t));
1178}
1179
1180#ifdef DEBUG
1181static int zil_fault_io = 0;
1182#endif
1183
1184/*
1185 * Get data to generate a TX_WRITE intent log record.
1186 */
1187int
1188zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1189{
1190	zfsvfs_t *zfsvfs = arg;
1191	objset_t *os = zfsvfs->z_os;
1192	znode_t *zp;
1193	uint64_t object = lr->lr_foid;
1194	uint64_t offset = lr->lr_offset;
1195	uint64_t size = lr->lr_length;
1196	blkptr_t *bp = &lr->lr_blkptr;
1197	dmu_buf_t *db;
1198	zgd_t *zgd;
1199	int error = 0;
1200
1201	ASSERT(zio != NULL);
1202	ASSERT(size != 0);
1203
1204	/*
1205	 * Nothing to do if the file has been removed
1206	 */
1207	if (zfs_zget(zfsvfs, object, &zp) != 0)
1208		return (SET_ERROR(ENOENT));
1209	if (zp->z_unlinked) {
1210		/*
1211		 * Release the vnode asynchronously as we currently have the
1212		 * txg stopped from syncing.
1213		 */
1214		VN_RELE_ASYNC(ZTOV(zp),
1215		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1216		return (SET_ERROR(ENOENT));
1217	}
1218
1219	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1220	zgd->zgd_zilog = zfsvfs->z_log;
1221	zgd->zgd_private = zp;
1222
1223	/*
1224	 * Write records come in two flavors: immediate and indirect.
1225	 * For small writes it's cheaper to store the data with the
1226	 * log record (immediate); for large writes it's cheaper to
1227	 * sync the data and get a pointer to it (indirect) so that
1228	 * we don't have to write the data twice.
1229	 */
1230	if (buf != NULL) { /* immediate write */
1231		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1232		/* test for truncation needs to be done while range locked */
1233		if (offset >= zp->z_size) {
1234			error = SET_ERROR(ENOENT);
1235		} else {
1236			error = dmu_read(os, object, offset, size, buf,
1237			    DMU_READ_NO_PREFETCH);
1238		}
1239		ASSERT(error == 0 || error == ENOENT);
1240	} else { /* indirect write */
1241		/*
1242		 * Have to lock the whole block to ensure when it's
1243		 * written out and it's checksum is being calculated
1244		 * that no one can change the data. We need to re-check
1245		 * blocksize after we get the lock in case it's changed!
1246		 */
1247		for (;;) {
1248			uint64_t blkoff;
1249			size = zp->z_blksz;
1250			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1251			offset -= blkoff;
1252			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1253			    RL_READER);
1254			if (zp->z_blksz == size)
1255				break;
1256			offset += blkoff;
1257			zfs_range_unlock(zgd->zgd_rl);
1258		}
1259		/* test for truncation needs to be done while range locked */
1260		if (lr->lr_offset >= zp->z_size)
1261			error = SET_ERROR(ENOENT);
1262#ifdef DEBUG
1263		if (zil_fault_io) {
1264			error = SET_ERROR(EIO);
1265			zil_fault_io = 0;
1266		}
1267#endif
1268		if (error == 0)
1269			error = dmu_buf_hold(os, object, offset, zgd, &db,
1270			    DMU_READ_NO_PREFETCH);
1271
1272		if (error == 0) {
1273			blkptr_t *obp = dmu_buf_get_blkptr(db);
1274			if (obp) {
1275				ASSERT(BP_IS_HOLE(bp));
1276				*bp = *obp;
1277			}
1278
1279			zgd->zgd_db = db;
1280			zgd->zgd_bp = bp;
1281
1282			ASSERT(db->db_offset == offset);
1283			ASSERT(db->db_size == size);
1284
1285			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1286			    zfs_get_done, zgd);
1287			ASSERT(error || lr->lr_length <= zp->z_blksz);
1288
1289			/*
1290			 * On success, we need to wait for the write I/O
1291			 * initiated by dmu_sync() to complete before we can
1292			 * release this dbuf.  We will finish everything up
1293			 * in the zfs_get_done() callback.
1294			 */
1295			if (error == 0)
1296				return (0);
1297
1298			if (error == EALREADY) {
1299				lr->lr_common.lrc_txtype = TX_WRITE2;
1300				error = 0;
1301			}
1302		}
1303	}
1304
1305	zfs_get_done(zgd, error);
1306
1307	return (error);
1308}
1309
1310/*ARGSUSED*/
1311static int
1312zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1313    caller_context_t *ct)
1314{
1315	znode_t *zp = VTOZ(vp);
1316	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1317	int error;
1318
1319	ZFS_ENTER(zfsvfs);
1320	ZFS_VERIFY_ZP(zp);
1321
1322	if (flag & V_ACE_MASK)
1323		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1324	else
1325		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1326
1327	ZFS_EXIT(zfsvfs);
1328	return (error);
1329}
1330
1331/*
1332 * If vnode is for a device return a specfs vnode instead.
1333 */
1334static int
1335specvp_check(vnode_t **vpp, cred_t *cr)
1336{
1337	int error = 0;
1338
1339	if (IS_DEVVP(*vpp)) {
1340		struct vnode *svp;
1341
1342		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1343		VN_RELE(*vpp);
1344		if (svp == NULL)
1345			error = SET_ERROR(ENOSYS);
1346		*vpp = svp;
1347	}
1348	return (error);
1349}
1350
1351
1352/*
1353 * Lookup an entry in a directory, or an extended attribute directory.
1354 * If it exists, return a held vnode reference for it.
1355 *
1356 *	IN:	dvp	- vnode of directory to search.
1357 *		nm	- name of entry to lookup.
1358 *		pnp	- full pathname to lookup [UNUSED].
1359 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1360 *		rdir	- root directory vnode [UNUSED].
1361 *		cr	- credentials of caller.
1362 *		ct	- caller context
1363 *		direntflags - directory lookup flags
1364 *		realpnp - returned pathname.
1365 *
1366 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1367 *
1368 *	RETURN:	0 on success, error code on failure.
1369 *
1370 * Timestamps:
1371 *	NA
1372 */
1373/* ARGSUSED */
1374static int
1375zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1376    int nameiop, cred_t *cr, kthread_t *td, int flags)
1377{
1378	znode_t *zdp = VTOZ(dvp);
1379	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1380	int	error = 0;
1381	int *direntflags = NULL;
1382	void *realpnp = NULL;
1383
1384	/* fast path */
1385	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1386
1387		if (dvp->v_type != VDIR) {
1388			return (SET_ERROR(ENOTDIR));
1389		} else if (zdp->z_sa_hdl == NULL) {
1390			return (SET_ERROR(EIO));
1391		}
1392
1393		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1394			error = zfs_fastaccesschk_execute(zdp, cr);
1395			if (!error) {
1396				*vpp = dvp;
1397				VN_HOLD(*vpp);
1398				return (0);
1399			}
1400			return (error);
1401		} else {
1402			vnode_t *tvp = dnlc_lookup(dvp, nm);
1403
1404			if (tvp) {
1405				error = zfs_fastaccesschk_execute(zdp, cr);
1406				if (error) {
1407					VN_RELE(tvp);
1408					return (error);
1409				}
1410				if (tvp == DNLC_NO_VNODE) {
1411					VN_RELE(tvp);
1412					return (SET_ERROR(ENOENT));
1413				} else {
1414					*vpp = tvp;
1415					return (specvp_check(vpp, cr));
1416				}
1417			}
1418		}
1419	}
1420
1421	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1422
1423	ZFS_ENTER(zfsvfs);
1424	ZFS_VERIFY_ZP(zdp);
1425
1426	*vpp = NULL;
1427
1428	if (flags & LOOKUP_XATTR) {
1429#ifdef TODO
1430		/*
1431		 * If the xattr property is off, refuse the lookup request.
1432		 */
1433		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1434			ZFS_EXIT(zfsvfs);
1435			return (SET_ERROR(EINVAL));
1436		}
1437#endif
1438
1439		/*
1440		 * We don't allow recursive attributes..
1441		 * Maybe someday we will.
1442		 */
1443		if (zdp->z_pflags & ZFS_XATTR) {
1444			ZFS_EXIT(zfsvfs);
1445			return (SET_ERROR(EINVAL));
1446		}
1447
1448		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1449			ZFS_EXIT(zfsvfs);
1450			return (error);
1451		}
1452
1453		/*
1454		 * Do we have permission to get into attribute directory?
1455		 */
1456
1457		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1458		    B_FALSE, cr)) {
1459			VN_RELE(*vpp);
1460			*vpp = NULL;
1461		}
1462
1463		ZFS_EXIT(zfsvfs);
1464		return (error);
1465	}
1466
1467	if (dvp->v_type != VDIR) {
1468		ZFS_EXIT(zfsvfs);
1469		return (SET_ERROR(ENOTDIR));
1470	}
1471
1472	/*
1473	 * Check accessibility of directory.
1474	 */
1475
1476	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1477		ZFS_EXIT(zfsvfs);
1478		return (error);
1479	}
1480
1481	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1482	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1483		ZFS_EXIT(zfsvfs);
1484		return (SET_ERROR(EILSEQ));
1485	}
1486
1487	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1488	if (error == 0)
1489		error = specvp_check(vpp, cr);
1490
1491	/* Translate errors and add SAVENAME when needed. */
1492	if (cnp->cn_flags & ISLASTCN) {
1493		switch (nameiop) {
1494		case CREATE:
1495		case RENAME:
1496			if (error == ENOENT) {
1497				error = EJUSTRETURN;
1498				cnp->cn_flags |= SAVENAME;
1499				break;
1500			}
1501			/* FALLTHROUGH */
1502		case DELETE:
1503			if (error == 0)
1504				cnp->cn_flags |= SAVENAME;
1505			break;
1506		}
1507	}
1508	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1509		int ltype = 0;
1510
1511		if (cnp->cn_flags & ISDOTDOT) {
1512			ltype = VOP_ISLOCKED(dvp);
1513			VOP_UNLOCK(dvp, 0);
1514		}
1515		ZFS_EXIT(zfsvfs);
1516		error = vn_lock(*vpp, cnp->cn_lkflags);
1517		if (cnp->cn_flags & ISDOTDOT)
1518			vn_lock(dvp, ltype | LK_RETRY);
1519		if (error != 0) {
1520			VN_RELE(*vpp);
1521			*vpp = NULL;
1522			return (error);
1523		}
1524	} else {
1525		ZFS_EXIT(zfsvfs);
1526	}
1527
1528#ifdef FREEBSD_NAMECACHE
1529	/*
1530	 * Insert name into cache (as non-existent) if appropriate.
1531	 */
1532	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) && nameiop != CREATE)
1533		cache_enter(dvp, *vpp, cnp);
1534	/*
1535	 * Insert name into cache if appropriate.
1536	 */
1537	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1538		if (!(cnp->cn_flags & ISLASTCN) ||
1539		    (nameiop != DELETE && nameiop != RENAME)) {
1540			cache_enter(dvp, *vpp, cnp);
1541		}
1542	}
1543#endif
1544
1545	return (error);
1546}
1547
1548/*
1549 * Attempt to create a new entry in a directory.  If the entry
1550 * already exists, truncate the file if permissible, else return
1551 * an error.  Return the vp of the created or trunc'd file.
1552 *
1553 *	IN:	dvp	- vnode of directory to put new file entry in.
1554 *		name	- name of new file entry.
1555 *		vap	- attributes of new file.
1556 *		excl	- flag indicating exclusive or non-exclusive mode.
1557 *		mode	- mode to open file with.
1558 *		cr	- credentials of caller.
1559 *		flag	- large file flag [UNUSED].
1560 *		ct	- caller context
1561 *		vsecp 	- ACL to be set
1562 *
1563 *	OUT:	vpp	- vnode of created or trunc'd entry.
1564 *
1565 *	RETURN:	0 on success, error code on failure.
1566 *
1567 * Timestamps:
1568 *	dvp - ctime|mtime updated if new entry created
1569 *	 vp - ctime|mtime always, atime if new
1570 */
1571
1572/* ARGSUSED */
1573static int
1574zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1575    vnode_t **vpp, cred_t *cr, kthread_t *td)
1576{
1577	znode_t		*zp, *dzp = VTOZ(dvp);
1578	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1579	zilog_t		*zilog;
1580	objset_t	*os;
1581	zfs_dirlock_t	*dl;
1582	dmu_tx_t	*tx;
1583	int		error;
1584	ksid_t		*ksid;
1585	uid_t		uid;
1586	gid_t		gid = crgetgid(cr);
1587	zfs_acl_ids_t   acl_ids;
1588	boolean_t	fuid_dirtied;
1589	boolean_t	have_acl = B_FALSE;
1590	boolean_t	waited = B_FALSE;
1591	void		*vsecp = NULL;
1592	int		flag = 0;
1593
1594	/*
1595	 * If we have an ephemeral id, ACL, or XVATTR then
1596	 * make sure file system is at proper version
1597	 */
1598
1599	ksid = crgetsid(cr, KSID_OWNER);
1600	if (ksid)
1601		uid = ksid_getid(ksid);
1602	else
1603		uid = crgetuid(cr);
1604
1605	if (zfsvfs->z_use_fuids == B_FALSE &&
1606	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1607	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1608		return (SET_ERROR(EINVAL));
1609
1610	ZFS_ENTER(zfsvfs);
1611	ZFS_VERIFY_ZP(dzp);
1612	os = zfsvfs->z_os;
1613	zilog = zfsvfs->z_log;
1614
1615	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1616	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1617		ZFS_EXIT(zfsvfs);
1618		return (SET_ERROR(EILSEQ));
1619	}
1620
1621	if (vap->va_mask & AT_XVATTR) {
1622		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1623		    crgetuid(cr), cr, vap->va_type)) != 0) {
1624			ZFS_EXIT(zfsvfs);
1625			return (error);
1626		}
1627	}
1628top:
1629	*vpp = NULL;
1630
1631	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1632		vap->va_mode &= ~S_ISVTX;
1633
1634	if (*name == '\0') {
1635		/*
1636		 * Null component name refers to the directory itself.
1637		 */
1638		VN_HOLD(dvp);
1639		zp = dzp;
1640		dl = NULL;
1641		error = 0;
1642	} else {
1643		/* possible VN_HOLD(zp) */
1644		int zflg = 0;
1645
1646		if (flag & FIGNORECASE)
1647			zflg |= ZCILOOK;
1648
1649		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1650		    NULL, NULL);
1651		if (error) {
1652			if (have_acl)
1653				zfs_acl_ids_free(&acl_ids);
1654			if (strcmp(name, "..") == 0)
1655				error = SET_ERROR(EISDIR);
1656			ZFS_EXIT(zfsvfs);
1657			return (error);
1658		}
1659	}
1660
1661	if (zp == NULL) {
1662		uint64_t txtype;
1663
1664		/*
1665		 * Create a new file object and update the directory
1666		 * to reference it.
1667		 */
1668		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1669			if (have_acl)
1670				zfs_acl_ids_free(&acl_ids);
1671			goto out;
1672		}
1673
1674		/*
1675		 * We only support the creation of regular files in
1676		 * extended attribute directories.
1677		 */
1678
1679		if ((dzp->z_pflags & ZFS_XATTR) &&
1680		    (vap->va_type != VREG)) {
1681			if (have_acl)
1682				zfs_acl_ids_free(&acl_ids);
1683			error = SET_ERROR(EINVAL);
1684			goto out;
1685		}
1686
1687		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1688		    cr, vsecp, &acl_ids)) != 0)
1689			goto out;
1690		have_acl = B_TRUE;
1691
1692		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1693			zfs_acl_ids_free(&acl_ids);
1694			error = SET_ERROR(EDQUOT);
1695			goto out;
1696		}
1697
1698		tx = dmu_tx_create(os);
1699
1700		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1701		    ZFS_SA_BASE_ATTR_SIZE);
1702
1703		fuid_dirtied = zfsvfs->z_fuid_dirty;
1704		if (fuid_dirtied)
1705			zfs_fuid_txhold(zfsvfs, tx);
1706		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1707		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1708		if (!zfsvfs->z_use_sa &&
1709		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1710			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1711			    0, acl_ids.z_aclp->z_acl_bytes);
1712		}
1713		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1714		if (error) {
1715			zfs_dirent_unlock(dl);
1716			if (error == ERESTART) {
1717				waited = B_TRUE;
1718				dmu_tx_wait(tx);
1719				dmu_tx_abort(tx);
1720				goto top;
1721			}
1722			zfs_acl_ids_free(&acl_ids);
1723			dmu_tx_abort(tx);
1724			ZFS_EXIT(zfsvfs);
1725			return (error);
1726		}
1727		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1728
1729		if (fuid_dirtied)
1730			zfs_fuid_sync(zfsvfs, tx);
1731
1732		(void) zfs_link_create(dl, zp, tx, ZNEW);
1733		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1734		if (flag & FIGNORECASE)
1735			txtype |= TX_CI;
1736		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1737		    vsecp, acl_ids.z_fuidp, vap);
1738		zfs_acl_ids_free(&acl_ids);
1739		dmu_tx_commit(tx);
1740	} else {
1741		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1742
1743		if (have_acl)
1744			zfs_acl_ids_free(&acl_ids);
1745		have_acl = B_FALSE;
1746
1747		/*
1748		 * A directory entry already exists for this name.
1749		 */
1750		/*
1751		 * Can't truncate an existing file if in exclusive mode.
1752		 */
1753		if (excl == EXCL) {
1754			error = SET_ERROR(EEXIST);
1755			goto out;
1756		}
1757		/*
1758		 * Can't open a directory for writing.
1759		 */
1760		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1761			error = SET_ERROR(EISDIR);
1762			goto out;
1763		}
1764		/*
1765		 * Verify requested access to file.
1766		 */
1767		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1768			goto out;
1769		}
1770
1771		mutex_enter(&dzp->z_lock);
1772		dzp->z_seq++;
1773		mutex_exit(&dzp->z_lock);
1774
1775		/*
1776		 * Truncate regular files if requested.
1777		 */
1778		if ((ZTOV(zp)->v_type == VREG) &&
1779		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1780			/* we can't hold any locks when calling zfs_freesp() */
1781			zfs_dirent_unlock(dl);
1782			dl = NULL;
1783			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1784			if (error == 0) {
1785				vnevent_create(ZTOV(zp), ct);
1786			}
1787		}
1788	}
1789out:
1790	if (dl)
1791		zfs_dirent_unlock(dl);
1792
1793	if (error) {
1794		if (zp)
1795			VN_RELE(ZTOV(zp));
1796	} else {
1797		*vpp = ZTOV(zp);
1798		error = specvp_check(vpp, cr);
1799	}
1800
1801	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1802		zil_commit(zilog, 0);
1803
1804	ZFS_EXIT(zfsvfs);
1805	return (error);
1806}
1807
1808/*
1809 * Remove an entry from a directory.
1810 *
1811 *	IN:	dvp	- vnode of directory to remove entry from.
1812 *		name	- name of entry to remove.
1813 *		cr	- credentials of caller.
1814 *		ct	- caller context
1815 *		flags	- case flags
1816 *
1817 *	RETURN:	0 on success, error code on failure.
1818 *
1819 * Timestamps:
1820 *	dvp - ctime|mtime
1821 *	 vp - ctime (if nlink > 0)
1822 */
1823
1824uint64_t null_xattr = 0;
1825
1826/*ARGSUSED*/
1827static int
1828zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1829    int flags)
1830{
1831	znode_t		*zp, *dzp = VTOZ(dvp);
1832	znode_t		*xzp;
1833	vnode_t		*vp;
1834	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1835	zilog_t		*zilog;
1836	uint64_t	acl_obj, xattr_obj;
1837	uint64_t 	xattr_obj_unlinked = 0;
1838	uint64_t	obj = 0;
1839	zfs_dirlock_t	*dl;
1840	dmu_tx_t	*tx;
1841	boolean_t	may_delete_now, delete_now = FALSE;
1842	boolean_t	unlinked, toobig = FALSE;
1843	uint64_t	txtype;
1844	pathname_t	*realnmp = NULL;
1845	pathname_t	realnm;
1846	int		error;
1847	int		zflg = ZEXISTS;
1848	boolean_t	waited = B_FALSE;
1849
1850	ZFS_ENTER(zfsvfs);
1851	ZFS_VERIFY_ZP(dzp);
1852	zilog = zfsvfs->z_log;
1853
1854	if (flags & FIGNORECASE) {
1855		zflg |= ZCILOOK;
1856		pn_alloc(&realnm);
1857		realnmp = &realnm;
1858	}
1859
1860top:
1861	xattr_obj = 0;
1862	xzp = NULL;
1863	/*
1864	 * Attempt to lock directory; fail if entry doesn't exist.
1865	 */
1866	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1867	    NULL, realnmp)) {
1868		if (realnmp)
1869			pn_free(realnmp);
1870		ZFS_EXIT(zfsvfs);
1871		return (error);
1872	}
1873
1874	vp = ZTOV(zp);
1875
1876	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1877		goto out;
1878	}
1879
1880	/*
1881	 * Need to use rmdir for removing directories.
1882	 */
1883	if (vp->v_type == VDIR) {
1884		error = SET_ERROR(EPERM);
1885		goto out;
1886	}
1887
1888	vnevent_remove(vp, dvp, name, ct);
1889
1890	if (realnmp)
1891		dnlc_remove(dvp, realnmp->pn_buf);
1892	else
1893		dnlc_remove(dvp, name);
1894
1895	VI_LOCK(vp);
1896	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1897	VI_UNLOCK(vp);
1898
1899	/*
1900	 * We may delete the znode now, or we may put it in the unlinked set;
1901	 * it depends on whether we're the last link, and on whether there are
1902	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1903	 * allow for either case.
1904	 */
1905	obj = zp->z_id;
1906	tx = dmu_tx_create(zfsvfs->z_os);
1907	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1908	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1909	zfs_sa_upgrade_txholds(tx, zp);
1910	zfs_sa_upgrade_txholds(tx, dzp);
1911	if (may_delete_now) {
1912		toobig =
1913		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1914		/* if the file is too big, only hold_free a token amount */
1915		dmu_tx_hold_free(tx, zp->z_id, 0,
1916		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1917	}
1918
1919	/* are there any extended attributes? */
1920	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1921	    &xattr_obj, sizeof (xattr_obj));
1922	if (error == 0 && xattr_obj) {
1923		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1924		ASSERT0(error);
1925		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1926		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1927	}
1928
1929	mutex_enter(&zp->z_lock);
1930	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1931		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1932	mutex_exit(&zp->z_lock);
1933
1934	/* charge as an update -- would be nice not to charge at all */
1935	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1936
1937	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1938	if (error) {
1939		zfs_dirent_unlock(dl);
1940		VN_RELE(vp);
1941		if (xzp)
1942			VN_RELE(ZTOV(xzp));
1943		if (error == ERESTART) {
1944			waited = B_TRUE;
1945			dmu_tx_wait(tx);
1946			dmu_tx_abort(tx);
1947			goto top;
1948		}
1949		if (realnmp)
1950			pn_free(realnmp);
1951		dmu_tx_abort(tx);
1952		ZFS_EXIT(zfsvfs);
1953		return (error);
1954	}
1955
1956	/*
1957	 * Remove the directory entry.
1958	 */
1959	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1960
1961	if (error) {
1962		dmu_tx_commit(tx);
1963		goto out;
1964	}
1965
1966	if (unlinked) {
1967
1968		/*
1969		 * Hold z_lock so that we can make sure that the ACL obj
1970		 * hasn't changed.  Could have been deleted due to
1971		 * zfs_sa_upgrade().
1972		 */
1973		mutex_enter(&zp->z_lock);
1974		VI_LOCK(vp);
1975		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1976		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1977		delete_now = may_delete_now && !toobig &&
1978		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1979		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1980		    acl_obj;
1981		VI_UNLOCK(vp);
1982	}
1983
1984	if (delete_now) {
1985#ifdef __FreeBSD__
1986		panic("zfs_remove: delete_now branch taken");
1987#endif
1988		if (xattr_obj_unlinked) {
1989			ASSERT3U(xzp->z_links, ==, 2);
1990			mutex_enter(&xzp->z_lock);
1991			xzp->z_unlinked = 1;
1992			xzp->z_links = 0;
1993			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1994			    &xzp->z_links, sizeof (xzp->z_links), tx);
1995			ASSERT3U(error,  ==,  0);
1996			mutex_exit(&xzp->z_lock);
1997			zfs_unlinked_add(xzp, tx);
1998
1999			if (zp->z_is_sa)
2000				error = sa_remove(zp->z_sa_hdl,
2001				    SA_ZPL_XATTR(zfsvfs), tx);
2002			else
2003				error = sa_update(zp->z_sa_hdl,
2004				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2005				    sizeof (uint64_t), tx);
2006			ASSERT0(error);
2007		}
2008		VI_LOCK(vp);
2009		vp->v_count--;
2010		ASSERT0(vp->v_count);
2011		VI_UNLOCK(vp);
2012		mutex_exit(&zp->z_lock);
2013		zfs_znode_delete(zp, tx);
2014	} else if (unlinked) {
2015		mutex_exit(&zp->z_lock);
2016		zfs_unlinked_add(zp, tx);
2017#ifdef __FreeBSD__
2018		vp->v_vflag |= VV_NOSYNC;
2019#endif
2020	}
2021
2022	txtype = TX_REMOVE;
2023	if (flags & FIGNORECASE)
2024		txtype |= TX_CI;
2025	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2026
2027	dmu_tx_commit(tx);
2028out:
2029	if (realnmp)
2030		pn_free(realnmp);
2031
2032	zfs_dirent_unlock(dl);
2033
2034	if (!delete_now)
2035		VN_RELE(vp);
2036	if (xzp)
2037		VN_RELE(ZTOV(xzp));
2038
2039	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2040		zil_commit(zilog, 0);
2041
2042	ZFS_EXIT(zfsvfs);
2043	return (error);
2044}
2045
2046/*
2047 * Create a new directory and insert it into dvp using the name
2048 * provided.  Return a pointer to the inserted directory.
2049 *
2050 *	IN:	dvp	- vnode of directory to add subdir to.
2051 *		dirname	- name of new directory.
2052 *		vap	- attributes of new directory.
2053 *		cr	- credentials of caller.
2054 *		ct	- caller context
2055 *		flags	- case flags
2056 *		vsecp	- ACL to be set
2057 *
2058 *	OUT:	vpp	- vnode of created directory.
2059 *
2060 *	RETURN:	0 on success, error code on failure.
2061 *
2062 * Timestamps:
2063 *	dvp - ctime|mtime updated
2064 *	 vp - ctime|mtime|atime updated
2065 */
2066/*ARGSUSED*/
2067static int
2068zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2069    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2070{
2071	znode_t		*zp, *dzp = VTOZ(dvp);
2072	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2073	zilog_t		*zilog;
2074	zfs_dirlock_t	*dl;
2075	uint64_t	txtype;
2076	dmu_tx_t	*tx;
2077	int		error;
2078	int		zf = ZNEW;
2079	ksid_t		*ksid;
2080	uid_t		uid;
2081	gid_t		gid = crgetgid(cr);
2082	zfs_acl_ids_t   acl_ids;
2083	boolean_t	fuid_dirtied;
2084	boolean_t	waited = B_FALSE;
2085
2086	ASSERT(vap->va_type == VDIR);
2087
2088	/*
2089	 * If we have an ephemeral id, ACL, or XVATTR then
2090	 * make sure file system is at proper version
2091	 */
2092
2093	ksid = crgetsid(cr, KSID_OWNER);
2094	if (ksid)
2095		uid = ksid_getid(ksid);
2096	else
2097		uid = crgetuid(cr);
2098	if (zfsvfs->z_use_fuids == B_FALSE &&
2099	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2100	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2101		return (SET_ERROR(EINVAL));
2102
2103	ZFS_ENTER(zfsvfs);
2104	ZFS_VERIFY_ZP(dzp);
2105	zilog = zfsvfs->z_log;
2106
2107	if (dzp->z_pflags & ZFS_XATTR) {
2108		ZFS_EXIT(zfsvfs);
2109		return (SET_ERROR(EINVAL));
2110	}
2111
2112	if (zfsvfs->z_utf8 && u8_validate(dirname,
2113	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2114		ZFS_EXIT(zfsvfs);
2115		return (SET_ERROR(EILSEQ));
2116	}
2117	if (flags & FIGNORECASE)
2118		zf |= ZCILOOK;
2119
2120	if (vap->va_mask & AT_XVATTR) {
2121		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2122		    crgetuid(cr), cr, vap->va_type)) != 0) {
2123			ZFS_EXIT(zfsvfs);
2124			return (error);
2125		}
2126	}
2127
2128	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2129	    vsecp, &acl_ids)) != 0) {
2130		ZFS_EXIT(zfsvfs);
2131		return (error);
2132	}
2133	/*
2134	 * First make sure the new directory doesn't exist.
2135	 *
2136	 * Existence is checked first to make sure we don't return
2137	 * EACCES instead of EEXIST which can cause some applications
2138	 * to fail.
2139	 */
2140top:
2141	*vpp = NULL;
2142
2143	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2144	    NULL, NULL)) {
2145		zfs_acl_ids_free(&acl_ids);
2146		ZFS_EXIT(zfsvfs);
2147		return (error);
2148	}
2149
2150	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2151		zfs_acl_ids_free(&acl_ids);
2152		zfs_dirent_unlock(dl);
2153		ZFS_EXIT(zfsvfs);
2154		return (error);
2155	}
2156
2157	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2158		zfs_acl_ids_free(&acl_ids);
2159		zfs_dirent_unlock(dl);
2160		ZFS_EXIT(zfsvfs);
2161		return (SET_ERROR(EDQUOT));
2162	}
2163
2164	/*
2165	 * Add a new entry to the directory.
2166	 */
2167	tx = dmu_tx_create(zfsvfs->z_os);
2168	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2169	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2170	fuid_dirtied = zfsvfs->z_fuid_dirty;
2171	if (fuid_dirtied)
2172		zfs_fuid_txhold(zfsvfs, tx);
2173	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2174		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2175		    acl_ids.z_aclp->z_acl_bytes);
2176	}
2177
2178	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2179	    ZFS_SA_BASE_ATTR_SIZE);
2180
2181	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2182	if (error) {
2183		zfs_dirent_unlock(dl);
2184		if (error == ERESTART) {
2185			waited = B_TRUE;
2186			dmu_tx_wait(tx);
2187			dmu_tx_abort(tx);
2188			goto top;
2189		}
2190		zfs_acl_ids_free(&acl_ids);
2191		dmu_tx_abort(tx);
2192		ZFS_EXIT(zfsvfs);
2193		return (error);
2194	}
2195
2196	/*
2197	 * Create new node.
2198	 */
2199	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2200
2201	if (fuid_dirtied)
2202		zfs_fuid_sync(zfsvfs, tx);
2203
2204	/*
2205	 * Now put new name in parent dir.
2206	 */
2207	(void) zfs_link_create(dl, zp, tx, ZNEW);
2208
2209	*vpp = ZTOV(zp);
2210
2211	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2212	if (flags & FIGNORECASE)
2213		txtype |= TX_CI;
2214	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2215	    acl_ids.z_fuidp, vap);
2216
2217	zfs_acl_ids_free(&acl_ids);
2218
2219	dmu_tx_commit(tx);
2220
2221	zfs_dirent_unlock(dl);
2222
2223	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2224		zil_commit(zilog, 0);
2225
2226	ZFS_EXIT(zfsvfs);
2227	return (0);
2228}
2229
2230/*
2231 * Remove a directory subdir entry.  If the current working
2232 * directory is the same as the subdir to be removed, the
2233 * remove will fail.
2234 *
2235 *	IN:	dvp	- vnode of directory to remove from.
2236 *		name	- name of directory to be removed.
2237 *		cwd	- vnode of current working directory.
2238 *		cr	- credentials of caller.
2239 *		ct	- caller context
2240 *		flags	- case flags
2241 *
2242 *	RETURN:	0 on success, error code on failure.
2243 *
2244 * Timestamps:
2245 *	dvp - ctime|mtime updated
2246 */
2247/*ARGSUSED*/
2248static int
2249zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2250    caller_context_t *ct, int flags)
2251{
2252	znode_t		*dzp = VTOZ(dvp);
2253	znode_t		*zp;
2254	vnode_t		*vp;
2255	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2256	zilog_t		*zilog;
2257	zfs_dirlock_t	*dl;
2258	dmu_tx_t	*tx;
2259	int		error;
2260	int		zflg = ZEXISTS;
2261	boolean_t	waited = B_FALSE;
2262
2263	ZFS_ENTER(zfsvfs);
2264	ZFS_VERIFY_ZP(dzp);
2265	zilog = zfsvfs->z_log;
2266
2267	if (flags & FIGNORECASE)
2268		zflg |= ZCILOOK;
2269top:
2270	zp = NULL;
2271
2272	/*
2273	 * Attempt to lock directory; fail if entry doesn't exist.
2274	 */
2275	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2276	    NULL, NULL)) {
2277		ZFS_EXIT(zfsvfs);
2278		return (error);
2279	}
2280
2281	vp = ZTOV(zp);
2282
2283	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2284		goto out;
2285	}
2286
2287	if (vp->v_type != VDIR) {
2288		error = SET_ERROR(ENOTDIR);
2289		goto out;
2290	}
2291
2292	if (vp == cwd) {
2293		error = SET_ERROR(EINVAL);
2294		goto out;
2295	}
2296
2297	vnevent_rmdir(vp, dvp, name, ct);
2298
2299	/*
2300	 * Grab a lock on the directory to make sure that noone is
2301	 * trying to add (or lookup) entries while we are removing it.
2302	 */
2303	rw_enter(&zp->z_name_lock, RW_WRITER);
2304
2305	/*
2306	 * Grab a lock on the parent pointer to make sure we play well
2307	 * with the treewalk and directory rename code.
2308	 */
2309	rw_enter(&zp->z_parent_lock, RW_WRITER);
2310
2311	tx = dmu_tx_create(zfsvfs->z_os);
2312	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2313	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2314	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2315	zfs_sa_upgrade_txholds(tx, zp);
2316	zfs_sa_upgrade_txholds(tx, dzp);
2317	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2318	if (error) {
2319		rw_exit(&zp->z_parent_lock);
2320		rw_exit(&zp->z_name_lock);
2321		zfs_dirent_unlock(dl);
2322		VN_RELE(vp);
2323		if (error == ERESTART) {
2324			waited = B_TRUE;
2325			dmu_tx_wait(tx);
2326			dmu_tx_abort(tx);
2327			goto top;
2328		}
2329		dmu_tx_abort(tx);
2330		ZFS_EXIT(zfsvfs);
2331		return (error);
2332	}
2333
2334#ifdef FREEBSD_NAMECACHE
2335	cache_purge(dvp);
2336#endif
2337
2338	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2339
2340	if (error == 0) {
2341		uint64_t txtype = TX_RMDIR;
2342		if (flags & FIGNORECASE)
2343			txtype |= TX_CI;
2344		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2345	}
2346
2347	dmu_tx_commit(tx);
2348
2349	rw_exit(&zp->z_parent_lock);
2350	rw_exit(&zp->z_name_lock);
2351#ifdef FREEBSD_NAMECACHE
2352	cache_purge(vp);
2353#endif
2354out:
2355	zfs_dirent_unlock(dl);
2356
2357	VN_RELE(vp);
2358
2359	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2360		zil_commit(zilog, 0);
2361
2362	ZFS_EXIT(zfsvfs);
2363	return (error);
2364}
2365
2366/*
2367 * Read as many directory entries as will fit into the provided
2368 * buffer from the given directory cursor position (specified in
2369 * the uio structure).
2370 *
2371 *	IN:	vp	- vnode of directory to read.
2372 *		uio	- structure supplying read location, range info,
2373 *			  and return buffer.
2374 *		cr	- credentials of caller.
2375 *		ct	- caller context
2376 *		flags	- case flags
2377 *
2378 *	OUT:	uio	- updated offset and range, buffer filled.
2379 *		eofp	- set to true if end-of-file detected.
2380 *
2381 *	RETURN:	0 on success, error code on failure.
2382 *
2383 * Timestamps:
2384 *	vp - atime updated
2385 *
2386 * Note that the low 4 bits of the cookie returned by zap is always zero.
2387 * This allows us to use the low range for "special" directory entries:
2388 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2389 * we use the offset 2 for the '.zfs' directory.
2390 */
2391/* ARGSUSED */
2392static int
2393zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2394{
2395	znode_t		*zp = VTOZ(vp);
2396	iovec_t		*iovp;
2397	edirent_t	*eodp;
2398	dirent64_t	*odp;
2399	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2400	objset_t	*os;
2401	caddr_t		outbuf;
2402	size_t		bufsize;
2403	zap_cursor_t	zc;
2404	zap_attribute_t	zap;
2405	uint_t		bytes_wanted;
2406	uint64_t	offset; /* must be unsigned; checks for < 1 */
2407	uint64_t	parent;
2408	int		local_eof;
2409	int		outcount;
2410	int		error;
2411	uint8_t		prefetch;
2412	boolean_t	check_sysattrs;
2413	uint8_t		type;
2414	int		ncooks;
2415	u_long		*cooks = NULL;
2416	int		flags = 0;
2417
2418	ZFS_ENTER(zfsvfs);
2419	ZFS_VERIFY_ZP(zp);
2420
2421	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2422	    &parent, sizeof (parent))) != 0) {
2423		ZFS_EXIT(zfsvfs);
2424		return (error);
2425	}
2426
2427	/*
2428	 * If we are not given an eof variable,
2429	 * use a local one.
2430	 */
2431	if (eofp == NULL)
2432		eofp = &local_eof;
2433
2434	/*
2435	 * Check for valid iov_len.
2436	 */
2437	if (uio->uio_iov->iov_len <= 0) {
2438		ZFS_EXIT(zfsvfs);
2439		return (SET_ERROR(EINVAL));
2440	}
2441
2442	/*
2443	 * Quit if directory has been removed (posix)
2444	 */
2445	if ((*eofp = zp->z_unlinked) != 0) {
2446		ZFS_EXIT(zfsvfs);
2447		return (0);
2448	}
2449
2450	error = 0;
2451	os = zfsvfs->z_os;
2452	offset = uio->uio_loffset;
2453	prefetch = zp->z_zn_prefetch;
2454
2455	/*
2456	 * Initialize the iterator cursor.
2457	 */
2458	if (offset <= 3) {
2459		/*
2460		 * Start iteration from the beginning of the directory.
2461		 */
2462		zap_cursor_init(&zc, os, zp->z_id);
2463	} else {
2464		/*
2465		 * The offset is a serialized cursor.
2466		 */
2467		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2468	}
2469
2470	/*
2471	 * Get space to change directory entries into fs independent format.
2472	 */
2473	iovp = uio->uio_iov;
2474	bytes_wanted = iovp->iov_len;
2475	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2476		bufsize = bytes_wanted;
2477		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2478		odp = (struct dirent64 *)outbuf;
2479	} else {
2480		bufsize = bytes_wanted;
2481		outbuf = NULL;
2482		odp = (struct dirent64 *)iovp->iov_base;
2483	}
2484	eodp = (struct edirent *)odp;
2485
2486	if (ncookies != NULL) {
2487		/*
2488		 * Minimum entry size is dirent size and 1 byte for a file name.
2489		 */
2490		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2491		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2492		*cookies = cooks;
2493		*ncookies = ncooks;
2494	}
2495	/*
2496	 * If this VFS supports the system attribute view interface; and
2497	 * we're looking at an extended attribute directory; and we care
2498	 * about normalization conflicts on this vfs; then we must check
2499	 * for normalization conflicts with the sysattr name space.
2500	 */
2501#ifdef TODO
2502	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2503	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2504	    (flags & V_RDDIR_ENTFLAGS);
2505#else
2506	check_sysattrs = 0;
2507#endif
2508
2509	/*
2510	 * Transform to file-system independent format
2511	 */
2512	outcount = 0;
2513	while (outcount < bytes_wanted) {
2514		ino64_t objnum;
2515		ushort_t reclen;
2516		off64_t *next = NULL;
2517
2518		/*
2519		 * Special case `.', `..', and `.zfs'.
2520		 */
2521		if (offset == 0) {
2522			(void) strcpy(zap.za_name, ".");
2523			zap.za_normalization_conflict = 0;
2524			objnum = zp->z_id;
2525			type = DT_DIR;
2526		} else if (offset == 1) {
2527			(void) strcpy(zap.za_name, "..");
2528			zap.za_normalization_conflict = 0;
2529			objnum = parent;
2530			type = DT_DIR;
2531		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2532			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2533			zap.za_normalization_conflict = 0;
2534			objnum = ZFSCTL_INO_ROOT;
2535			type = DT_DIR;
2536		} else {
2537			/*
2538			 * Grab next entry.
2539			 */
2540			if (error = zap_cursor_retrieve(&zc, &zap)) {
2541				if ((*eofp = (error == ENOENT)) != 0)
2542					break;
2543				else
2544					goto update;
2545			}
2546
2547			if (zap.za_integer_length != 8 ||
2548			    zap.za_num_integers != 1) {
2549				cmn_err(CE_WARN, "zap_readdir: bad directory "
2550				    "entry, obj = %lld, offset = %lld\n",
2551				    (u_longlong_t)zp->z_id,
2552				    (u_longlong_t)offset);
2553				error = SET_ERROR(ENXIO);
2554				goto update;
2555			}
2556
2557			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2558			/*
2559			 * MacOS X can extract the object type here such as:
2560			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2561			 */
2562			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2563
2564			if (check_sysattrs && !zap.za_normalization_conflict) {
2565#ifdef TODO
2566				zap.za_normalization_conflict =
2567				    xattr_sysattr_casechk(zap.za_name);
2568#else
2569				panic("%s:%u: TODO", __func__, __LINE__);
2570#endif
2571			}
2572		}
2573
2574		if (flags & V_RDDIR_ACCFILTER) {
2575			/*
2576			 * If we have no access at all, don't include
2577			 * this entry in the returned information
2578			 */
2579			znode_t	*ezp;
2580			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2581				goto skip_entry;
2582			if (!zfs_has_access(ezp, cr)) {
2583				VN_RELE(ZTOV(ezp));
2584				goto skip_entry;
2585			}
2586			VN_RELE(ZTOV(ezp));
2587		}
2588
2589		if (flags & V_RDDIR_ENTFLAGS)
2590			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2591		else
2592			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2593
2594		/*
2595		 * Will this entry fit in the buffer?
2596		 */
2597		if (outcount + reclen > bufsize) {
2598			/*
2599			 * Did we manage to fit anything in the buffer?
2600			 */
2601			if (!outcount) {
2602				error = SET_ERROR(EINVAL);
2603				goto update;
2604			}
2605			break;
2606		}
2607		if (flags & V_RDDIR_ENTFLAGS) {
2608			/*
2609			 * Add extended flag entry:
2610			 */
2611			eodp->ed_ino = objnum;
2612			eodp->ed_reclen = reclen;
2613			/* NOTE: ed_off is the offset for the *next* entry */
2614			next = &(eodp->ed_off);
2615			eodp->ed_eflags = zap.za_normalization_conflict ?
2616			    ED_CASE_CONFLICT : 0;
2617			(void) strncpy(eodp->ed_name, zap.za_name,
2618			    EDIRENT_NAMELEN(reclen));
2619			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2620		} else {
2621			/*
2622			 * Add normal entry:
2623			 */
2624			odp->d_ino = objnum;
2625			odp->d_reclen = reclen;
2626			odp->d_namlen = strlen(zap.za_name);
2627			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2628			odp->d_type = type;
2629			odp = (dirent64_t *)((intptr_t)odp + reclen);
2630		}
2631		outcount += reclen;
2632
2633		ASSERT(outcount <= bufsize);
2634
2635		/* Prefetch znode */
2636		if (prefetch)
2637			dmu_prefetch(os, objnum, 0, 0);
2638
2639	skip_entry:
2640		/*
2641		 * Move to the next entry, fill in the previous offset.
2642		 */
2643		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2644			zap_cursor_advance(&zc);
2645			offset = zap_cursor_serialize(&zc);
2646		} else {
2647			offset += 1;
2648		}
2649
2650		if (cooks != NULL) {
2651			*cooks++ = offset;
2652			ncooks--;
2653			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2654		}
2655	}
2656	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2657
2658	/* Subtract unused cookies */
2659	if (ncookies != NULL)
2660		*ncookies -= ncooks;
2661
2662	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2663		iovp->iov_base += outcount;
2664		iovp->iov_len -= outcount;
2665		uio->uio_resid -= outcount;
2666	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2667		/*
2668		 * Reset the pointer.
2669		 */
2670		offset = uio->uio_loffset;
2671	}
2672
2673update:
2674	zap_cursor_fini(&zc);
2675	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2676		kmem_free(outbuf, bufsize);
2677
2678	if (error == ENOENT)
2679		error = 0;
2680
2681	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2682
2683	uio->uio_loffset = offset;
2684	ZFS_EXIT(zfsvfs);
2685	if (error != 0 && cookies != NULL) {
2686		free(*cookies, M_TEMP);
2687		*cookies = NULL;
2688		*ncookies = 0;
2689	}
2690	return (error);
2691}
2692
2693ulong_t zfs_fsync_sync_cnt = 4;
2694
2695static int
2696zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2697{
2698	znode_t	*zp = VTOZ(vp);
2699	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2700
2701	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2702
2703	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2704		ZFS_ENTER(zfsvfs);
2705		ZFS_VERIFY_ZP(zp);
2706		zil_commit(zfsvfs->z_log, zp->z_id);
2707		ZFS_EXIT(zfsvfs);
2708	}
2709	return (0);
2710}
2711
2712
2713/*
2714 * Get the requested file attributes and place them in the provided
2715 * vattr structure.
2716 *
2717 *	IN:	vp	- vnode of file.
2718 *		vap	- va_mask identifies requested attributes.
2719 *			  If AT_XVATTR set, then optional attrs are requested
2720 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2721 *		cr	- credentials of caller.
2722 *		ct	- caller context
2723 *
2724 *	OUT:	vap	- attribute values.
2725 *
2726 *	RETURN:	0 (always succeeds).
2727 */
2728/* ARGSUSED */
2729static int
2730zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2731    caller_context_t *ct)
2732{
2733	znode_t *zp = VTOZ(vp);
2734	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2735	int	error = 0;
2736	uint32_t blksize;
2737	u_longlong_t nblocks;
2738	uint64_t links;
2739	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2740	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2741	xoptattr_t *xoap = NULL;
2742	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2743	sa_bulk_attr_t bulk[4];
2744	int count = 0;
2745
2746	ZFS_ENTER(zfsvfs);
2747	ZFS_VERIFY_ZP(zp);
2748
2749	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2750
2751	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2752	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2753	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2754	if (vp->v_type == VBLK || vp->v_type == VCHR)
2755		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2756		    &rdev, 8);
2757
2758	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2759		ZFS_EXIT(zfsvfs);
2760		return (error);
2761	}
2762
2763	/*
2764	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2765	 * Also, if we are the owner don't bother, since owner should
2766	 * always be allowed to read basic attributes of file.
2767	 */
2768	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2769	    (vap->va_uid != crgetuid(cr))) {
2770		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2771		    skipaclchk, cr)) {
2772			ZFS_EXIT(zfsvfs);
2773			return (error);
2774		}
2775	}
2776
2777	/*
2778	 * Return all attributes.  It's cheaper to provide the answer
2779	 * than to determine whether we were asked the question.
2780	 */
2781
2782	mutex_enter(&zp->z_lock);
2783	vap->va_type = IFTOVT(zp->z_mode);
2784	vap->va_mode = zp->z_mode & ~S_IFMT;
2785#ifdef sun
2786	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2787#else
2788	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2789#endif
2790	vap->va_nodeid = zp->z_id;
2791	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2792		links = zp->z_links + 1;
2793	else
2794		links = zp->z_links;
2795	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2796	vap->va_size = zp->z_size;
2797#ifdef sun
2798	vap->va_rdev = vp->v_rdev;
2799#else
2800	if (vp->v_type == VBLK || vp->v_type == VCHR)
2801		vap->va_rdev = zfs_cmpldev(rdev);
2802#endif
2803	vap->va_seq = zp->z_seq;
2804	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2805
2806	/*
2807	 * Add in any requested optional attributes and the create time.
2808	 * Also set the corresponding bits in the returned attribute bitmap.
2809	 */
2810	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2811		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2812			xoap->xoa_archive =
2813			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2814			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2815		}
2816
2817		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2818			xoap->xoa_readonly =
2819			    ((zp->z_pflags & ZFS_READONLY) != 0);
2820			XVA_SET_RTN(xvap, XAT_READONLY);
2821		}
2822
2823		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2824			xoap->xoa_system =
2825			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2826			XVA_SET_RTN(xvap, XAT_SYSTEM);
2827		}
2828
2829		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2830			xoap->xoa_hidden =
2831			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2832			XVA_SET_RTN(xvap, XAT_HIDDEN);
2833		}
2834
2835		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2836			xoap->xoa_nounlink =
2837			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2838			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2839		}
2840
2841		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2842			xoap->xoa_immutable =
2843			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2844			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2845		}
2846
2847		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2848			xoap->xoa_appendonly =
2849			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2850			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2851		}
2852
2853		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2854			xoap->xoa_nodump =
2855			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2856			XVA_SET_RTN(xvap, XAT_NODUMP);
2857		}
2858
2859		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2860			xoap->xoa_opaque =
2861			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2862			XVA_SET_RTN(xvap, XAT_OPAQUE);
2863		}
2864
2865		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2866			xoap->xoa_av_quarantined =
2867			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2868			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2869		}
2870
2871		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2872			xoap->xoa_av_modified =
2873			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2874			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2875		}
2876
2877		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2878		    vp->v_type == VREG) {
2879			zfs_sa_get_scanstamp(zp, xvap);
2880		}
2881
2882		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2883			uint64_t times[2];
2884
2885			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2886			    times, sizeof (times));
2887			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2888			XVA_SET_RTN(xvap, XAT_CREATETIME);
2889		}
2890
2891		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2892			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2893			XVA_SET_RTN(xvap, XAT_REPARSE);
2894		}
2895		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2896			xoap->xoa_generation = zp->z_gen;
2897			XVA_SET_RTN(xvap, XAT_GEN);
2898		}
2899
2900		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2901			xoap->xoa_offline =
2902			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2903			XVA_SET_RTN(xvap, XAT_OFFLINE);
2904		}
2905
2906		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2907			xoap->xoa_sparse =
2908			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2909			XVA_SET_RTN(xvap, XAT_SPARSE);
2910		}
2911	}
2912
2913	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2914	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2915	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2916	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2917
2918	mutex_exit(&zp->z_lock);
2919
2920	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2921	vap->va_blksize = blksize;
2922	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2923
2924	if (zp->z_blksz == 0) {
2925		/*
2926		 * Block size hasn't been set; suggest maximal I/O transfers.
2927		 */
2928		vap->va_blksize = zfsvfs->z_max_blksz;
2929	}
2930
2931	ZFS_EXIT(zfsvfs);
2932	return (0);
2933}
2934
2935/*
2936 * Set the file attributes to the values contained in the
2937 * vattr structure.
2938 *
2939 *	IN:	vp	- vnode of file to be modified.
2940 *		vap	- new attribute values.
2941 *			  If AT_XVATTR set, then optional attrs are being set
2942 *		flags	- ATTR_UTIME set if non-default time values provided.
2943 *			- ATTR_NOACLCHECK (CIFS context only).
2944 *		cr	- credentials of caller.
2945 *		ct	- caller context
2946 *
2947 *	RETURN:	0 on success, error code on failure.
2948 *
2949 * Timestamps:
2950 *	vp - ctime updated, mtime updated if size changed.
2951 */
2952/* ARGSUSED */
2953static int
2954zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2955    caller_context_t *ct)
2956{
2957	znode_t		*zp = VTOZ(vp);
2958	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2959	zilog_t		*zilog;
2960	dmu_tx_t	*tx;
2961	vattr_t		oldva;
2962	xvattr_t	tmpxvattr;
2963	uint_t		mask = vap->va_mask;
2964	uint_t		saved_mask = 0;
2965	uint64_t	saved_mode;
2966	int		trim_mask = 0;
2967	uint64_t	new_mode;
2968	uint64_t	new_uid, new_gid;
2969	uint64_t	xattr_obj;
2970	uint64_t	mtime[2], ctime[2];
2971	znode_t		*attrzp;
2972	int		need_policy = FALSE;
2973	int		err, err2;
2974	zfs_fuid_info_t *fuidp = NULL;
2975	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2976	xoptattr_t	*xoap;
2977	zfs_acl_t	*aclp;
2978	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2979	boolean_t	fuid_dirtied = B_FALSE;
2980	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2981	int		count = 0, xattr_count = 0;
2982
2983	if (mask == 0)
2984		return (0);
2985
2986	if (mask & AT_NOSET)
2987		return (SET_ERROR(EINVAL));
2988
2989	ZFS_ENTER(zfsvfs);
2990	ZFS_VERIFY_ZP(zp);
2991
2992	zilog = zfsvfs->z_log;
2993
2994	/*
2995	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2996	 * that file system is at proper version level
2997	 */
2998
2999	if (zfsvfs->z_use_fuids == B_FALSE &&
3000	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3001	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3002	    (mask & AT_XVATTR))) {
3003		ZFS_EXIT(zfsvfs);
3004		return (SET_ERROR(EINVAL));
3005	}
3006
3007	if (mask & AT_SIZE && vp->v_type == VDIR) {
3008		ZFS_EXIT(zfsvfs);
3009		return (SET_ERROR(EISDIR));
3010	}
3011
3012	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3013		ZFS_EXIT(zfsvfs);
3014		return (SET_ERROR(EINVAL));
3015	}
3016
3017	/*
3018	 * If this is an xvattr_t, then get a pointer to the structure of
3019	 * optional attributes.  If this is NULL, then we have a vattr_t.
3020	 */
3021	xoap = xva_getxoptattr(xvap);
3022
3023	xva_init(&tmpxvattr);
3024
3025	/*
3026	 * Immutable files can only alter immutable bit and atime
3027	 */
3028	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3029	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3030	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3031		ZFS_EXIT(zfsvfs);
3032		return (SET_ERROR(EPERM));
3033	}
3034
3035	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3036		ZFS_EXIT(zfsvfs);
3037		return (SET_ERROR(EPERM));
3038	}
3039
3040	/*
3041	 * Verify timestamps doesn't overflow 32 bits.
3042	 * ZFS can handle large timestamps, but 32bit syscalls can't
3043	 * handle times greater than 2039.  This check should be removed
3044	 * once large timestamps are fully supported.
3045	 */
3046	if (mask & (AT_ATIME | AT_MTIME)) {
3047		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3048		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3049			ZFS_EXIT(zfsvfs);
3050			return (SET_ERROR(EOVERFLOW));
3051		}
3052	}
3053
3054top:
3055	attrzp = NULL;
3056	aclp = NULL;
3057
3058	/* Can this be moved to before the top label? */
3059	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3060		ZFS_EXIT(zfsvfs);
3061		return (SET_ERROR(EROFS));
3062	}
3063
3064	/*
3065	 * First validate permissions
3066	 */
3067
3068	if (mask & AT_SIZE) {
3069		/*
3070		 * XXX - Note, we are not providing any open
3071		 * mode flags here (like FNDELAY), so we may
3072		 * block if there are locks present... this
3073		 * should be addressed in openat().
3074		 */
3075		/* XXX - would it be OK to generate a log record here? */
3076		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3077		if (err) {
3078			ZFS_EXIT(zfsvfs);
3079			return (err);
3080		}
3081	}
3082
3083	if (mask & (AT_ATIME|AT_MTIME) ||
3084	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3085	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3086	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3087	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3088	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3089	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3090	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3091		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3092		    skipaclchk, cr);
3093	}
3094
3095	if (mask & (AT_UID|AT_GID)) {
3096		int	idmask = (mask & (AT_UID|AT_GID));
3097		int	take_owner;
3098		int	take_group;
3099
3100		/*
3101		 * NOTE: even if a new mode is being set,
3102		 * we may clear S_ISUID/S_ISGID bits.
3103		 */
3104
3105		if (!(mask & AT_MODE))
3106			vap->va_mode = zp->z_mode;
3107
3108		/*
3109		 * Take ownership or chgrp to group we are a member of
3110		 */
3111
3112		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3113		take_group = (mask & AT_GID) &&
3114		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3115
3116		/*
3117		 * If both AT_UID and AT_GID are set then take_owner and
3118		 * take_group must both be set in order to allow taking
3119		 * ownership.
3120		 *
3121		 * Otherwise, send the check through secpolicy_vnode_setattr()
3122		 *
3123		 */
3124
3125		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3126		    ((idmask == AT_UID) && take_owner) ||
3127		    ((idmask == AT_GID) && take_group)) {
3128			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3129			    skipaclchk, cr) == 0) {
3130				/*
3131				 * Remove setuid/setgid for non-privileged users
3132				 */
3133				secpolicy_setid_clear(vap, vp, cr);
3134				trim_mask = (mask & (AT_UID|AT_GID));
3135			} else {
3136				need_policy =  TRUE;
3137			}
3138		} else {
3139			need_policy =  TRUE;
3140		}
3141	}
3142
3143	mutex_enter(&zp->z_lock);
3144	oldva.va_mode = zp->z_mode;
3145	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3146	if (mask & AT_XVATTR) {
3147		/*
3148		 * Update xvattr mask to include only those attributes
3149		 * that are actually changing.
3150		 *
3151		 * the bits will be restored prior to actually setting
3152		 * the attributes so the caller thinks they were set.
3153		 */
3154		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3155			if (xoap->xoa_appendonly !=
3156			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3157				need_policy = TRUE;
3158			} else {
3159				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3160				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3161			}
3162		}
3163
3164		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3165			if (xoap->xoa_nounlink !=
3166			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3167				need_policy = TRUE;
3168			} else {
3169				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3170				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3171			}
3172		}
3173
3174		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3175			if (xoap->xoa_immutable !=
3176			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3177				need_policy = TRUE;
3178			} else {
3179				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3180				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3181			}
3182		}
3183
3184		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3185			if (xoap->xoa_nodump !=
3186			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3187				need_policy = TRUE;
3188			} else {
3189				XVA_CLR_REQ(xvap, XAT_NODUMP);
3190				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3191			}
3192		}
3193
3194		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3195			if (xoap->xoa_av_modified !=
3196			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3197				need_policy = TRUE;
3198			} else {
3199				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3200				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3201			}
3202		}
3203
3204		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3205			if ((vp->v_type != VREG &&
3206			    xoap->xoa_av_quarantined) ||
3207			    xoap->xoa_av_quarantined !=
3208			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3209				need_policy = TRUE;
3210			} else {
3211				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3212				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3213			}
3214		}
3215
3216		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3217			mutex_exit(&zp->z_lock);
3218			ZFS_EXIT(zfsvfs);
3219			return (SET_ERROR(EPERM));
3220		}
3221
3222		if (need_policy == FALSE &&
3223		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3224		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3225			need_policy = TRUE;
3226		}
3227	}
3228
3229	mutex_exit(&zp->z_lock);
3230
3231	if (mask & AT_MODE) {
3232		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3233			err = secpolicy_setid_setsticky_clear(vp, vap,
3234			    &oldva, cr);
3235			if (err) {
3236				ZFS_EXIT(zfsvfs);
3237				return (err);
3238			}
3239			trim_mask |= AT_MODE;
3240		} else {
3241			need_policy = TRUE;
3242		}
3243	}
3244
3245	if (need_policy) {
3246		/*
3247		 * If trim_mask is set then take ownership
3248		 * has been granted or write_acl is present and user
3249		 * has the ability to modify mode.  In that case remove
3250		 * UID|GID and or MODE from mask so that
3251		 * secpolicy_vnode_setattr() doesn't revoke it.
3252		 */
3253
3254		if (trim_mask) {
3255			saved_mask = vap->va_mask;
3256			vap->va_mask &= ~trim_mask;
3257			if (trim_mask & AT_MODE) {
3258				/*
3259				 * Save the mode, as secpolicy_vnode_setattr()
3260				 * will overwrite it with ova.va_mode.
3261				 */
3262				saved_mode = vap->va_mode;
3263			}
3264		}
3265		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3266		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3267		if (err) {
3268			ZFS_EXIT(zfsvfs);
3269			return (err);
3270		}
3271
3272		if (trim_mask) {
3273			vap->va_mask |= saved_mask;
3274			if (trim_mask & AT_MODE) {
3275				/*
3276				 * Recover the mode after
3277				 * secpolicy_vnode_setattr().
3278				 */
3279				vap->va_mode = saved_mode;
3280			}
3281		}
3282	}
3283
3284	/*
3285	 * secpolicy_vnode_setattr, or take ownership may have
3286	 * changed va_mask
3287	 */
3288	mask = vap->va_mask;
3289
3290	if ((mask & (AT_UID | AT_GID))) {
3291		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3292		    &xattr_obj, sizeof (xattr_obj));
3293
3294		if (err == 0 && xattr_obj) {
3295			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3296			if (err)
3297				goto out2;
3298		}
3299		if (mask & AT_UID) {
3300			new_uid = zfs_fuid_create(zfsvfs,
3301			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3302			if (new_uid != zp->z_uid &&
3303			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3304				if (attrzp)
3305					VN_RELE(ZTOV(attrzp));
3306				err = SET_ERROR(EDQUOT);
3307				goto out2;
3308			}
3309		}
3310
3311		if (mask & AT_GID) {
3312			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3313			    cr, ZFS_GROUP, &fuidp);
3314			if (new_gid != zp->z_gid &&
3315			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3316				if (attrzp)
3317					VN_RELE(ZTOV(attrzp));
3318				err = SET_ERROR(EDQUOT);
3319				goto out2;
3320			}
3321		}
3322	}
3323	tx = dmu_tx_create(zfsvfs->z_os);
3324
3325	if (mask & AT_MODE) {
3326		uint64_t pmode = zp->z_mode;
3327		uint64_t acl_obj;
3328		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3329
3330		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3331		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3332			err = SET_ERROR(EPERM);
3333			goto out;
3334		}
3335
3336		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3337			goto out;
3338
3339		mutex_enter(&zp->z_lock);
3340		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3341			/*
3342			 * Are we upgrading ACL from old V0 format
3343			 * to V1 format?
3344			 */
3345			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3346			    zfs_znode_acl_version(zp) ==
3347			    ZFS_ACL_VERSION_INITIAL) {
3348				dmu_tx_hold_free(tx, acl_obj, 0,
3349				    DMU_OBJECT_END);
3350				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3351				    0, aclp->z_acl_bytes);
3352			} else {
3353				dmu_tx_hold_write(tx, acl_obj, 0,
3354				    aclp->z_acl_bytes);
3355			}
3356		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3357			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3358			    0, aclp->z_acl_bytes);
3359		}
3360		mutex_exit(&zp->z_lock);
3361		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3362	} else {
3363		if ((mask & AT_XVATTR) &&
3364		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3365			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3366		else
3367			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3368	}
3369
3370	if (attrzp) {
3371		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3372	}
3373
3374	fuid_dirtied = zfsvfs->z_fuid_dirty;
3375	if (fuid_dirtied)
3376		zfs_fuid_txhold(zfsvfs, tx);
3377
3378	zfs_sa_upgrade_txholds(tx, zp);
3379
3380	err = dmu_tx_assign(tx, TXG_WAIT);
3381	if (err)
3382		goto out;
3383
3384	count = 0;
3385	/*
3386	 * Set each attribute requested.
3387	 * We group settings according to the locks they need to acquire.
3388	 *
3389	 * Note: you cannot set ctime directly, although it will be
3390	 * updated as a side-effect of calling this function.
3391	 */
3392
3393
3394	if (mask & (AT_UID|AT_GID|AT_MODE))
3395		mutex_enter(&zp->z_acl_lock);
3396	mutex_enter(&zp->z_lock);
3397
3398	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3399	    &zp->z_pflags, sizeof (zp->z_pflags));
3400
3401	if (attrzp) {
3402		if (mask & (AT_UID|AT_GID|AT_MODE))
3403			mutex_enter(&attrzp->z_acl_lock);
3404		mutex_enter(&attrzp->z_lock);
3405		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3406		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3407		    sizeof (attrzp->z_pflags));
3408	}
3409
3410	if (mask & (AT_UID|AT_GID)) {
3411
3412		if (mask & AT_UID) {
3413			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3414			    &new_uid, sizeof (new_uid));
3415			zp->z_uid = new_uid;
3416			if (attrzp) {
3417				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3418				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3419				    sizeof (new_uid));
3420				attrzp->z_uid = new_uid;
3421			}
3422		}
3423
3424		if (mask & AT_GID) {
3425			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3426			    NULL, &new_gid, sizeof (new_gid));
3427			zp->z_gid = new_gid;
3428			if (attrzp) {
3429				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3430				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3431				    sizeof (new_gid));
3432				attrzp->z_gid = new_gid;
3433			}
3434		}
3435		if (!(mask & AT_MODE)) {
3436			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3437			    NULL, &new_mode, sizeof (new_mode));
3438			new_mode = zp->z_mode;
3439		}
3440		err = zfs_acl_chown_setattr(zp);
3441		ASSERT(err == 0);
3442		if (attrzp) {
3443			err = zfs_acl_chown_setattr(attrzp);
3444			ASSERT(err == 0);
3445		}
3446	}
3447
3448	if (mask & AT_MODE) {
3449		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3450		    &new_mode, sizeof (new_mode));
3451		zp->z_mode = new_mode;
3452		ASSERT3U((uintptr_t)aclp, !=, 0);
3453		err = zfs_aclset_common(zp, aclp, cr, tx);
3454		ASSERT0(err);
3455		if (zp->z_acl_cached)
3456			zfs_acl_free(zp->z_acl_cached);
3457		zp->z_acl_cached = aclp;
3458		aclp = NULL;
3459	}
3460
3461
3462	if (mask & AT_ATIME) {
3463		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3464		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3465		    &zp->z_atime, sizeof (zp->z_atime));
3466	}
3467
3468	if (mask & AT_MTIME) {
3469		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3470		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3471		    mtime, sizeof (mtime));
3472	}
3473
3474	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3475	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3476		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3477		    NULL, mtime, sizeof (mtime));
3478		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3479		    &ctime, sizeof (ctime));
3480		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3481		    B_TRUE);
3482	} else if (mask != 0) {
3483		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3484		    &ctime, sizeof (ctime));
3485		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3486		    B_TRUE);
3487		if (attrzp) {
3488			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3489			    SA_ZPL_CTIME(zfsvfs), NULL,
3490			    &ctime, sizeof (ctime));
3491			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3492			    mtime, ctime, B_TRUE);
3493		}
3494	}
3495	/*
3496	 * Do this after setting timestamps to prevent timestamp
3497	 * update from toggling bit
3498	 */
3499
3500	if (xoap && (mask & AT_XVATTR)) {
3501
3502		/*
3503		 * restore trimmed off masks
3504		 * so that return masks can be set for caller.
3505		 */
3506
3507		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3508			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3509		}
3510		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3511			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3512		}
3513		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3514			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3515		}
3516		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3517			XVA_SET_REQ(xvap, XAT_NODUMP);
3518		}
3519		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3520			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3521		}
3522		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3523			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3524		}
3525
3526		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3527			ASSERT(vp->v_type == VREG);
3528
3529		zfs_xvattr_set(zp, xvap, tx);
3530	}
3531
3532	if (fuid_dirtied)
3533		zfs_fuid_sync(zfsvfs, tx);
3534
3535	if (mask != 0)
3536		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3537
3538	mutex_exit(&zp->z_lock);
3539	if (mask & (AT_UID|AT_GID|AT_MODE))
3540		mutex_exit(&zp->z_acl_lock);
3541
3542	if (attrzp) {
3543		if (mask & (AT_UID|AT_GID|AT_MODE))
3544			mutex_exit(&attrzp->z_acl_lock);
3545		mutex_exit(&attrzp->z_lock);
3546	}
3547out:
3548	if (err == 0 && attrzp) {
3549		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3550		    xattr_count, tx);
3551		ASSERT(err2 == 0);
3552	}
3553
3554	if (attrzp)
3555		VN_RELE(ZTOV(attrzp));
3556
3557	if (aclp)
3558		zfs_acl_free(aclp);
3559
3560	if (fuidp) {
3561		zfs_fuid_info_free(fuidp);
3562		fuidp = NULL;
3563	}
3564
3565	if (err) {
3566		dmu_tx_abort(tx);
3567		if (err == ERESTART)
3568			goto top;
3569	} else {
3570		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3571		dmu_tx_commit(tx);
3572	}
3573
3574out2:
3575	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3576		zil_commit(zilog, 0);
3577
3578	ZFS_EXIT(zfsvfs);
3579	return (err);
3580}
3581
3582typedef struct zfs_zlock {
3583	krwlock_t	*zl_rwlock;	/* lock we acquired */
3584	znode_t		*zl_znode;	/* znode we held */
3585	struct zfs_zlock *zl_next;	/* next in list */
3586} zfs_zlock_t;
3587
3588/*
3589 * Drop locks and release vnodes that were held by zfs_rename_lock().
3590 */
3591static void
3592zfs_rename_unlock(zfs_zlock_t **zlpp)
3593{
3594	zfs_zlock_t *zl;
3595
3596	while ((zl = *zlpp) != NULL) {
3597		if (zl->zl_znode != NULL)
3598			VN_RELE(ZTOV(zl->zl_znode));
3599		rw_exit(zl->zl_rwlock);
3600		*zlpp = zl->zl_next;
3601		kmem_free(zl, sizeof (*zl));
3602	}
3603}
3604
3605/*
3606 * Search back through the directory tree, using the ".." entries.
3607 * Lock each directory in the chain to prevent concurrent renames.
3608 * Fail any attempt to move a directory into one of its own descendants.
3609 * XXX - z_parent_lock can overlap with map or grow locks
3610 */
3611static int
3612zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3613{
3614	zfs_zlock_t	*zl;
3615	znode_t		*zp = tdzp;
3616	uint64_t	rootid = zp->z_zfsvfs->z_root;
3617	uint64_t	oidp = zp->z_id;
3618	krwlock_t	*rwlp = &szp->z_parent_lock;
3619	krw_t		rw = RW_WRITER;
3620
3621	/*
3622	 * First pass write-locks szp and compares to zp->z_id.
3623	 * Later passes read-lock zp and compare to zp->z_parent.
3624	 */
3625	do {
3626		if (!rw_tryenter(rwlp, rw)) {
3627			/*
3628			 * Another thread is renaming in this path.
3629			 * Note that if we are a WRITER, we don't have any
3630			 * parent_locks held yet.
3631			 */
3632			if (rw == RW_READER && zp->z_id > szp->z_id) {
3633				/*
3634				 * Drop our locks and restart
3635				 */
3636				zfs_rename_unlock(&zl);
3637				*zlpp = NULL;
3638				zp = tdzp;
3639				oidp = zp->z_id;
3640				rwlp = &szp->z_parent_lock;
3641				rw = RW_WRITER;
3642				continue;
3643			} else {
3644				/*
3645				 * Wait for other thread to drop its locks
3646				 */
3647				rw_enter(rwlp, rw);
3648			}
3649		}
3650
3651		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3652		zl->zl_rwlock = rwlp;
3653		zl->zl_znode = NULL;
3654		zl->zl_next = *zlpp;
3655		*zlpp = zl;
3656
3657		if (oidp == szp->z_id)		/* We're a descendant of szp */
3658			return (SET_ERROR(EINVAL));
3659
3660		if (oidp == rootid)		/* We've hit the top */
3661			return (0);
3662
3663		if (rw == RW_READER) {		/* i.e. not the first pass */
3664			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3665			if (error)
3666				return (error);
3667			zl->zl_znode = zp;
3668		}
3669		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3670		    &oidp, sizeof (oidp));
3671		rwlp = &zp->z_parent_lock;
3672		rw = RW_READER;
3673
3674	} while (zp->z_id != sdzp->z_id);
3675
3676	return (0);
3677}
3678
3679/*
3680 * Move an entry from the provided source directory to the target
3681 * directory.  Change the entry name as indicated.
3682 *
3683 *	IN:	sdvp	- Source directory containing the "old entry".
3684 *		snm	- Old entry name.
3685 *		tdvp	- Target directory to contain the "new entry".
3686 *		tnm	- New entry name.
3687 *		cr	- credentials of caller.
3688 *		ct	- caller context
3689 *		flags	- case flags
3690 *
3691 *	RETURN:	0 on success, error code on failure.
3692 *
3693 * Timestamps:
3694 *	sdvp,tdvp - ctime|mtime updated
3695 */
3696/*ARGSUSED*/
3697static int
3698zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3699    caller_context_t *ct, int flags)
3700{
3701	znode_t		*tdzp, *szp, *tzp;
3702	znode_t		*sdzp = VTOZ(sdvp);
3703	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3704	zilog_t		*zilog;
3705	vnode_t		*realvp;
3706	zfs_dirlock_t	*sdl, *tdl;
3707	dmu_tx_t	*tx;
3708	zfs_zlock_t	*zl;
3709	int		cmp, serr, terr;
3710	int		error = 0;
3711	int		zflg = 0;
3712	boolean_t	waited = B_FALSE;
3713
3714	ZFS_ENTER(zfsvfs);
3715	ZFS_VERIFY_ZP(sdzp);
3716	zilog = zfsvfs->z_log;
3717
3718	/*
3719	 * Make sure we have the real vp for the target directory.
3720	 */
3721	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3722		tdvp = realvp;
3723
3724	tdzp = VTOZ(tdvp);
3725	ZFS_VERIFY_ZP(tdzp);
3726
3727	/*
3728	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3729	 * ctldir appear to have the same v_vfsp.
3730	 */
3731	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3732		ZFS_EXIT(zfsvfs);
3733		return (SET_ERROR(EXDEV));
3734	}
3735
3736	if (zfsvfs->z_utf8 && u8_validate(tnm,
3737	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3738		ZFS_EXIT(zfsvfs);
3739		return (SET_ERROR(EILSEQ));
3740	}
3741
3742	if (flags & FIGNORECASE)
3743		zflg |= ZCILOOK;
3744
3745top:
3746	szp = NULL;
3747	tzp = NULL;
3748	zl = NULL;
3749
3750	/*
3751	 * This is to prevent the creation of links into attribute space
3752	 * by renaming a linked file into/outof an attribute directory.
3753	 * See the comment in zfs_link() for why this is considered bad.
3754	 */
3755	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3756		ZFS_EXIT(zfsvfs);
3757		return (SET_ERROR(EINVAL));
3758	}
3759
3760	/*
3761	 * Lock source and target directory entries.  To prevent deadlock,
3762	 * a lock ordering must be defined.  We lock the directory with
3763	 * the smallest object id first, or if it's a tie, the one with
3764	 * the lexically first name.
3765	 */
3766	if (sdzp->z_id < tdzp->z_id) {
3767		cmp = -1;
3768	} else if (sdzp->z_id > tdzp->z_id) {
3769		cmp = 1;
3770	} else {
3771		/*
3772		 * First compare the two name arguments without
3773		 * considering any case folding.
3774		 */
3775		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3776
3777		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3778		ASSERT(error == 0 || !zfsvfs->z_utf8);
3779		if (cmp == 0) {
3780			/*
3781			 * POSIX: "If the old argument and the new argument
3782			 * both refer to links to the same existing file,
3783			 * the rename() function shall return successfully
3784			 * and perform no other action."
3785			 */
3786			ZFS_EXIT(zfsvfs);
3787			return (0);
3788		}
3789		/*
3790		 * If the file system is case-folding, then we may
3791		 * have some more checking to do.  A case-folding file
3792		 * system is either supporting mixed case sensitivity
3793		 * access or is completely case-insensitive.  Note
3794		 * that the file system is always case preserving.
3795		 *
3796		 * In mixed sensitivity mode case sensitive behavior
3797		 * is the default.  FIGNORECASE must be used to
3798		 * explicitly request case insensitive behavior.
3799		 *
3800		 * If the source and target names provided differ only
3801		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3802		 * we will treat this as a special case in the
3803		 * case-insensitive mode: as long as the source name
3804		 * is an exact match, we will allow this to proceed as
3805		 * a name-change request.
3806		 */
3807		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3808		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3809		    flags & FIGNORECASE)) &&
3810		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3811		    &error) == 0) {
3812			/*
3813			 * case preserving rename request, require exact
3814			 * name matches
3815			 */
3816			zflg |= ZCIEXACT;
3817			zflg &= ~ZCILOOK;
3818		}
3819	}
3820
3821	/*
3822	 * If the source and destination directories are the same, we should
3823	 * grab the z_name_lock of that directory only once.
3824	 */
3825	if (sdzp == tdzp) {
3826		zflg |= ZHAVELOCK;
3827		rw_enter(&sdzp->z_name_lock, RW_READER);
3828	}
3829
3830	if (cmp < 0) {
3831		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3832		    ZEXISTS | zflg, NULL, NULL);
3833		terr = zfs_dirent_lock(&tdl,
3834		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3835	} else {
3836		terr = zfs_dirent_lock(&tdl,
3837		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3838		serr = zfs_dirent_lock(&sdl,
3839		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3840		    NULL, NULL);
3841	}
3842
3843	if (serr) {
3844		/*
3845		 * Source entry invalid or not there.
3846		 */
3847		if (!terr) {
3848			zfs_dirent_unlock(tdl);
3849			if (tzp)
3850				VN_RELE(ZTOV(tzp));
3851		}
3852
3853		if (sdzp == tdzp)
3854			rw_exit(&sdzp->z_name_lock);
3855
3856		/*
3857		 * FreeBSD: In OpenSolaris they only check if rename source is
3858		 * ".." here, because "." is handled in their lookup. This is
3859		 * not the case for FreeBSD, so we check for "." explicitly.
3860		 */
3861		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3862			serr = SET_ERROR(EINVAL);
3863		ZFS_EXIT(zfsvfs);
3864		return (serr);
3865	}
3866	if (terr) {
3867		zfs_dirent_unlock(sdl);
3868		VN_RELE(ZTOV(szp));
3869
3870		if (sdzp == tdzp)
3871			rw_exit(&sdzp->z_name_lock);
3872
3873		if (strcmp(tnm, "..") == 0)
3874			terr = SET_ERROR(EINVAL);
3875		ZFS_EXIT(zfsvfs);
3876		return (terr);
3877	}
3878
3879	/*
3880	 * Must have write access at the source to remove the old entry
3881	 * and write access at the target to create the new entry.
3882	 * Note that if target and source are the same, this can be
3883	 * done in a single check.
3884	 */
3885
3886	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3887		goto out;
3888
3889	if (ZTOV(szp)->v_type == VDIR) {
3890		/*
3891		 * Check to make sure rename is valid.
3892		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3893		 */
3894		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3895			goto out;
3896	}
3897
3898	/*
3899	 * Does target exist?
3900	 */
3901	if (tzp) {
3902		/*
3903		 * Source and target must be the same type.
3904		 */
3905		if (ZTOV(szp)->v_type == VDIR) {
3906			if (ZTOV(tzp)->v_type != VDIR) {
3907				error = SET_ERROR(ENOTDIR);
3908				goto out;
3909			}
3910		} else {
3911			if (ZTOV(tzp)->v_type == VDIR) {
3912				error = SET_ERROR(EISDIR);
3913				goto out;
3914			}
3915		}
3916		/*
3917		 * POSIX dictates that when the source and target
3918		 * entries refer to the same file object, rename
3919		 * must do nothing and exit without error.
3920		 */
3921		if (szp->z_id == tzp->z_id) {
3922			error = 0;
3923			goto out;
3924		}
3925	}
3926
3927	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3928	if (tzp)
3929		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3930
3931	/*
3932	 * notify the target directory if it is not the same
3933	 * as source directory.
3934	 */
3935	if (tdvp != sdvp) {
3936		vnevent_rename_dest_dir(tdvp, ct);
3937	}
3938
3939	tx = dmu_tx_create(zfsvfs->z_os);
3940	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3941	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3942	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3943	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3944	if (sdzp != tdzp) {
3945		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3946		zfs_sa_upgrade_txholds(tx, tdzp);
3947	}
3948	if (tzp) {
3949		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3950		zfs_sa_upgrade_txholds(tx, tzp);
3951	}
3952
3953	zfs_sa_upgrade_txholds(tx, szp);
3954	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3955	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3956	if (error) {
3957		if (zl != NULL)
3958			zfs_rename_unlock(&zl);
3959		zfs_dirent_unlock(sdl);
3960		zfs_dirent_unlock(tdl);
3961
3962		if (sdzp == tdzp)
3963			rw_exit(&sdzp->z_name_lock);
3964
3965		VN_RELE(ZTOV(szp));
3966		if (tzp)
3967			VN_RELE(ZTOV(tzp));
3968		if (error == ERESTART) {
3969			waited = B_TRUE;
3970			dmu_tx_wait(tx);
3971			dmu_tx_abort(tx);
3972			goto top;
3973		}
3974		dmu_tx_abort(tx);
3975		ZFS_EXIT(zfsvfs);
3976		return (error);
3977	}
3978
3979	if (tzp)	/* Attempt to remove the existing target */
3980		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3981
3982	if (error == 0) {
3983		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3984		if (error == 0) {
3985			szp->z_pflags |= ZFS_AV_MODIFIED;
3986
3987			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3988			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3989			ASSERT0(error);
3990
3991			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3992			if (error == 0) {
3993				zfs_log_rename(zilog, tx, TX_RENAME |
3994				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3995				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3996
3997				/*
3998				 * Update path information for the target vnode
3999				 */
4000				vn_renamepath(tdvp, ZTOV(szp), tnm,
4001				    strlen(tnm));
4002			} else {
4003				/*
4004				 * At this point, we have successfully created
4005				 * the target name, but have failed to remove
4006				 * the source name.  Since the create was done
4007				 * with the ZRENAMING flag, there are
4008				 * complications; for one, the link count is
4009				 * wrong.  The easiest way to deal with this
4010				 * is to remove the newly created target, and
4011				 * return the original error.  This must
4012				 * succeed; fortunately, it is very unlikely to
4013				 * fail, since we just created it.
4014				 */
4015				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4016				    ZRENAMING, NULL), ==, 0);
4017			}
4018		}
4019#ifdef FREEBSD_NAMECACHE
4020		if (error == 0) {
4021			cache_purge(sdvp);
4022			cache_purge(tdvp);
4023			cache_purge(ZTOV(szp));
4024			if (tzp)
4025				cache_purge(ZTOV(tzp));
4026		}
4027#endif
4028	}
4029
4030	dmu_tx_commit(tx);
4031out:
4032	if (zl != NULL)
4033		zfs_rename_unlock(&zl);
4034
4035	zfs_dirent_unlock(sdl);
4036	zfs_dirent_unlock(tdl);
4037
4038	if (sdzp == tdzp)
4039		rw_exit(&sdzp->z_name_lock);
4040
4041
4042	VN_RELE(ZTOV(szp));
4043	if (tzp)
4044		VN_RELE(ZTOV(tzp));
4045
4046	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4047		zil_commit(zilog, 0);
4048
4049	ZFS_EXIT(zfsvfs);
4050
4051	return (error);
4052}
4053
4054/*
4055 * Insert the indicated symbolic reference entry into the directory.
4056 *
4057 *	IN:	dvp	- Directory to contain new symbolic link.
4058 *		link	- Name for new symlink entry.
4059 *		vap	- Attributes of new entry.
4060 *		cr	- credentials of caller.
4061 *		ct	- caller context
4062 *		flags	- case flags
4063 *
4064 *	RETURN:	0 on success, error code on failure.
4065 *
4066 * Timestamps:
4067 *	dvp - ctime|mtime updated
4068 */
4069/*ARGSUSED*/
4070static int
4071zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4072    cred_t *cr, kthread_t *td)
4073{
4074	znode_t		*zp, *dzp = VTOZ(dvp);
4075	zfs_dirlock_t	*dl;
4076	dmu_tx_t	*tx;
4077	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4078	zilog_t		*zilog;
4079	uint64_t	len = strlen(link);
4080	int		error;
4081	int		zflg = ZNEW;
4082	zfs_acl_ids_t	acl_ids;
4083	boolean_t	fuid_dirtied;
4084	uint64_t	txtype = TX_SYMLINK;
4085	boolean_t	waited = B_FALSE;
4086	int		flags = 0;
4087
4088	ASSERT(vap->va_type == VLNK);
4089
4090	ZFS_ENTER(zfsvfs);
4091	ZFS_VERIFY_ZP(dzp);
4092	zilog = zfsvfs->z_log;
4093
4094	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4095	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4096		ZFS_EXIT(zfsvfs);
4097		return (SET_ERROR(EILSEQ));
4098	}
4099	if (flags & FIGNORECASE)
4100		zflg |= ZCILOOK;
4101
4102	if (len > MAXPATHLEN) {
4103		ZFS_EXIT(zfsvfs);
4104		return (SET_ERROR(ENAMETOOLONG));
4105	}
4106
4107	if ((error = zfs_acl_ids_create(dzp, 0,
4108	    vap, cr, NULL, &acl_ids)) != 0) {
4109		ZFS_EXIT(zfsvfs);
4110		return (error);
4111	}
4112top:
4113	/*
4114	 * Attempt to lock directory; fail if entry already exists.
4115	 */
4116	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4117	if (error) {
4118		zfs_acl_ids_free(&acl_ids);
4119		ZFS_EXIT(zfsvfs);
4120		return (error);
4121	}
4122
4123	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4124		zfs_acl_ids_free(&acl_ids);
4125		zfs_dirent_unlock(dl);
4126		ZFS_EXIT(zfsvfs);
4127		return (error);
4128	}
4129
4130	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4131		zfs_acl_ids_free(&acl_ids);
4132		zfs_dirent_unlock(dl);
4133		ZFS_EXIT(zfsvfs);
4134		return (SET_ERROR(EDQUOT));
4135	}
4136	tx = dmu_tx_create(zfsvfs->z_os);
4137	fuid_dirtied = zfsvfs->z_fuid_dirty;
4138	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4139	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4140	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4141	    ZFS_SA_BASE_ATTR_SIZE + len);
4142	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4143	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4144		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4145		    acl_ids.z_aclp->z_acl_bytes);
4146	}
4147	if (fuid_dirtied)
4148		zfs_fuid_txhold(zfsvfs, tx);
4149	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4150	if (error) {
4151		zfs_dirent_unlock(dl);
4152		if (error == ERESTART) {
4153			waited = B_TRUE;
4154			dmu_tx_wait(tx);
4155			dmu_tx_abort(tx);
4156			goto top;
4157		}
4158		zfs_acl_ids_free(&acl_ids);
4159		dmu_tx_abort(tx);
4160		ZFS_EXIT(zfsvfs);
4161		return (error);
4162	}
4163
4164	/*
4165	 * Create a new object for the symlink.
4166	 * for version 4 ZPL datsets the symlink will be an SA attribute
4167	 */
4168	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4169
4170	if (fuid_dirtied)
4171		zfs_fuid_sync(zfsvfs, tx);
4172
4173	mutex_enter(&zp->z_lock);
4174	if (zp->z_is_sa)
4175		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4176		    link, len, tx);
4177	else
4178		zfs_sa_symlink(zp, link, len, tx);
4179	mutex_exit(&zp->z_lock);
4180
4181	zp->z_size = len;
4182	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4183	    &zp->z_size, sizeof (zp->z_size), tx);
4184	/*
4185	 * Insert the new object into the directory.
4186	 */
4187	(void) zfs_link_create(dl, zp, tx, ZNEW);
4188
4189	if (flags & FIGNORECASE)
4190		txtype |= TX_CI;
4191	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4192	*vpp = ZTOV(zp);
4193
4194	zfs_acl_ids_free(&acl_ids);
4195
4196	dmu_tx_commit(tx);
4197
4198	zfs_dirent_unlock(dl);
4199
4200	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4201		zil_commit(zilog, 0);
4202
4203	ZFS_EXIT(zfsvfs);
4204	return (error);
4205}
4206
4207/*
4208 * Return, in the buffer contained in the provided uio structure,
4209 * the symbolic path referred to by vp.
4210 *
4211 *	IN:	vp	- vnode of symbolic link.
4212 *		uio	- structure to contain the link path.
4213 *		cr	- credentials of caller.
4214 *		ct	- caller context
4215 *
4216 *	OUT:	uio	- structure containing the link path.
4217 *
4218 *	RETURN:	0 on success, error code on failure.
4219 *
4220 * Timestamps:
4221 *	vp - atime updated
4222 */
4223/* ARGSUSED */
4224static int
4225zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4226{
4227	znode_t		*zp = VTOZ(vp);
4228	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4229	int		error;
4230
4231	ZFS_ENTER(zfsvfs);
4232	ZFS_VERIFY_ZP(zp);
4233
4234	mutex_enter(&zp->z_lock);
4235	if (zp->z_is_sa)
4236		error = sa_lookup_uio(zp->z_sa_hdl,
4237		    SA_ZPL_SYMLINK(zfsvfs), uio);
4238	else
4239		error = zfs_sa_readlink(zp, uio);
4240	mutex_exit(&zp->z_lock);
4241
4242	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4243
4244	ZFS_EXIT(zfsvfs);
4245	return (error);
4246}
4247
4248/*
4249 * Insert a new entry into directory tdvp referencing svp.
4250 *
4251 *	IN:	tdvp	- Directory to contain new entry.
4252 *		svp	- vnode of new entry.
4253 *		name	- name of new entry.
4254 *		cr	- credentials of caller.
4255 *		ct	- caller context
4256 *
4257 *	RETURN:	0 on success, error code on failure.
4258 *
4259 * Timestamps:
4260 *	tdvp - ctime|mtime updated
4261 *	 svp - ctime updated
4262 */
4263/* ARGSUSED */
4264static int
4265zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4266    caller_context_t *ct, int flags)
4267{
4268	znode_t		*dzp = VTOZ(tdvp);
4269	znode_t		*tzp, *szp;
4270	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4271	zilog_t		*zilog;
4272	zfs_dirlock_t	*dl;
4273	dmu_tx_t	*tx;
4274	vnode_t		*realvp;
4275	int		error;
4276	int		zf = ZNEW;
4277	uint64_t	parent;
4278	uid_t		owner;
4279	boolean_t	waited = B_FALSE;
4280
4281	ASSERT(tdvp->v_type == VDIR);
4282
4283	ZFS_ENTER(zfsvfs);
4284	ZFS_VERIFY_ZP(dzp);
4285	zilog = zfsvfs->z_log;
4286
4287	if (VOP_REALVP(svp, &realvp, ct) == 0)
4288		svp = realvp;
4289
4290	/*
4291	 * POSIX dictates that we return EPERM here.
4292	 * Better choices include ENOTSUP or EISDIR.
4293	 */
4294	if (svp->v_type == VDIR) {
4295		ZFS_EXIT(zfsvfs);
4296		return (SET_ERROR(EPERM));
4297	}
4298
4299	szp = VTOZ(svp);
4300	ZFS_VERIFY_ZP(szp);
4301
4302	/*
4303	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4304	 * ctldir appear to have the same v_vfsp.
4305	 */
4306	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4307		ZFS_EXIT(zfsvfs);
4308		return (SET_ERROR(EXDEV));
4309	}
4310
4311	/* Prevent links to .zfs/shares files */
4312
4313	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4314	    &parent, sizeof (uint64_t))) != 0) {
4315		ZFS_EXIT(zfsvfs);
4316		return (error);
4317	}
4318	if (parent == zfsvfs->z_shares_dir) {
4319		ZFS_EXIT(zfsvfs);
4320		return (SET_ERROR(EPERM));
4321	}
4322
4323	if (zfsvfs->z_utf8 && u8_validate(name,
4324	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4325		ZFS_EXIT(zfsvfs);
4326		return (SET_ERROR(EILSEQ));
4327	}
4328	if (flags & FIGNORECASE)
4329		zf |= ZCILOOK;
4330
4331	/*
4332	 * We do not support links between attributes and non-attributes
4333	 * because of the potential security risk of creating links
4334	 * into "normal" file space in order to circumvent restrictions
4335	 * imposed in attribute space.
4336	 */
4337	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4338		ZFS_EXIT(zfsvfs);
4339		return (SET_ERROR(EINVAL));
4340	}
4341
4342
4343	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4344	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4345		ZFS_EXIT(zfsvfs);
4346		return (SET_ERROR(EPERM));
4347	}
4348
4349	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4350		ZFS_EXIT(zfsvfs);
4351		return (error);
4352	}
4353
4354top:
4355	/*
4356	 * Attempt to lock directory; fail if entry already exists.
4357	 */
4358	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4359	if (error) {
4360		ZFS_EXIT(zfsvfs);
4361		return (error);
4362	}
4363
4364	tx = dmu_tx_create(zfsvfs->z_os);
4365	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4366	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4367	zfs_sa_upgrade_txholds(tx, szp);
4368	zfs_sa_upgrade_txholds(tx, dzp);
4369	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4370	if (error) {
4371		zfs_dirent_unlock(dl);
4372		if (error == ERESTART) {
4373			waited = B_TRUE;
4374			dmu_tx_wait(tx);
4375			dmu_tx_abort(tx);
4376			goto top;
4377		}
4378		dmu_tx_abort(tx);
4379		ZFS_EXIT(zfsvfs);
4380		return (error);
4381	}
4382
4383	error = zfs_link_create(dl, szp, tx, 0);
4384
4385	if (error == 0) {
4386		uint64_t txtype = TX_LINK;
4387		if (flags & FIGNORECASE)
4388			txtype |= TX_CI;
4389		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4390	}
4391
4392	dmu_tx_commit(tx);
4393
4394	zfs_dirent_unlock(dl);
4395
4396	if (error == 0) {
4397		vnevent_link(svp, ct);
4398	}
4399
4400	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4401		zil_commit(zilog, 0);
4402
4403	ZFS_EXIT(zfsvfs);
4404	return (error);
4405}
4406
4407#ifdef sun
4408/*
4409 * zfs_null_putapage() is used when the file system has been force
4410 * unmounted. It just drops the pages.
4411 */
4412/* ARGSUSED */
4413static int
4414zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4415		size_t *lenp, int flags, cred_t *cr)
4416{
4417	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4418	return (0);
4419}
4420
4421/*
4422 * Push a page out to disk, klustering if possible.
4423 *
4424 *	IN:	vp	- file to push page to.
4425 *		pp	- page to push.
4426 *		flags	- additional flags.
4427 *		cr	- credentials of caller.
4428 *
4429 *	OUT:	offp	- start of range pushed.
4430 *		lenp	- len of range pushed.
4431 *
4432 *	RETURN:	0 on success, error code on failure.
4433 *
4434 * NOTE: callers must have locked the page to be pushed.  On
4435 * exit, the page (and all other pages in the kluster) must be
4436 * unlocked.
4437 */
4438/* ARGSUSED */
4439static int
4440zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4441		size_t *lenp, int flags, cred_t *cr)
4442{
4443	znode_t		*zp = VTOZ(vp);
4444	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4445	dmu_tx_t	*tx;
4446	u_offset_t	off, koff;
4447	size_t		len, klen;
4448	int		err;
4449
4450	off = pp->p_offset;
4451	len = PAGESIZE;
4452	/*
4453	 * If our blocksize is bigger than the page size, try to kluster
4454	 * multiple pages so that we write a full block (thus avoiding
4455	 * a read-modify-write).
4456	 */
4457	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4458		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4459		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4460		ASSERT(koff <= zp->z_size);
4461		if (koff + klen > zp->z_size)
4462			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4463		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4464	}
4465	ASSERT3U(btop(len), ==, btopr(len));
4466
4467	/*
4468	 * Can't push pages past end-of-file.
4469	 */
4470	if (off >= zp->z_size) {
4471		/* ignore all pages */
4472		err = 0;
4473		goto out;
4474	} else if (off + len > zp->z_size) {
4475		int npages = btopr(zp->z_size - off);
4476		page_t *trunc;
4477
4478		page_list_break(&pp, &trunc, npages);
4479		/* ignore pages past end of file */
4480		if (trunc)
4481			pvn_write_done(trunc, flags);
4482		len = zp->z_size - off;
4483	}
4484
4485	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4486	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4487		err = SET_ERROR(EDQUOT);
4488		goto out;
4489	}
4490	tx = dmu_tx_create(zfsvfs->z_os);
4491	dmu_tx_hold_write(tx, zp->z_id, off, len);
4492
4493	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4494	zfs_sa_upgrade_txholds(tx, zp);
4495	err = dmu_tx_assign(tx, TXG_WAIT);
4496	if (err != 0) {
4497		dmu_tx_abort(tx);
4498		goto out;
4499	}
4500
4501	if (zp->z_blksz <= PAGESIZE) {
4502		caddr_t va = zfs_map_page(pp, S_READ);
4503		ASSERT3U(len, <=, PAGESIZE);
4504		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4505		zfs_unmap_page(pp, va);
4506	} else {
4507		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4508	}
4509
4510	if (err == 0) {
4511		uint64_t mtime[2], ctime[2];
4512		sa_bulk_attr_t bulk[3];
4513		int count = 0;
4514
4515		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4516		    &mtime, 16);
4517		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4518		    &ctime, 16);
4519		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4520		    &zp->z_pflags, 8);
4521		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4522		    B_TRUE);
4523		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4524	}
4525	dmu_tx_commit(tx);
4526
4527out:
4528	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4529	if (offp)
4530		*offp = off;
4531	if (lenp)
4532		*lenp = len;
4533
4534	return (err);
4535}
4536
4537/*
4538 * Copy the portion of the file indicated from pages into the file.
4539 * The pages are stored in a page list attached to the files vnode.
4540 *
4541 *	IN:	vp	- vnode of file to push page data to.
4542 *		off	- position in file to put data.
4543 *		len	- amount of data to write.
4544 *		flags	- flags to control the operation.
4545 *		cr	- credentials of caller.
4546 *		ct	- caller context.
4547 *
4548 *	RETURN:	0 on success, error code on failure.
4549 *
4550 * Timestamps:
4551 *	vp - ctime|mtime updated
4552 */
4553/*ARGSUSED*/
4554static int
4555zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4556    caller_context_t *ct)
4557{
4558	znode_t		*zp = VTOZ(vp);
4559	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4560	page_t		*pp;
4561	size_t		io_len;
4562	u_offset_t	io_off;
4563	uint_t		blksz;
4564	rl_t		*rl;
4565	int		error = 0;
4566
4567	ZFS_ENTER(zfsvfs);
4568	ZFS_VERIFY_ZP(zp);
4569
4570	/*
4571	 * Align this request to the file block size in case we kluster.
4572	 * XXX - this can result in pretty aggresive locking, which can
4573	 * impact simultanious read/write access.  One option might be
4574	 * to break up long requests (len == 0) into block-by-block
4575	 * operations to get narrower locking.
4576	 */
4577	blksz = zp->z_blksz;
4578	if (ISP2(blksz))
4579		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4580	else
4581		io_off = 0;
4582	if (len > 0 && ISP2(blksz))
4583		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4584	else
4585		io_len = 0;
4586
4587	if (io_len == 0) {
4588		/*
4589		 * Search the entire vp list for pages >= io_off.
4590		 */
4591		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4592		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4593		goto out;
4594	}
4595	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4596
4597	if (off > zp->z_size) {
4598		/* past end of file */
4599		zfs_range_unlock(rl);
4600		ZFS_EXIT(zfsvfs);
4601		return (0);
4602	}
4603
4604	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4605
4606	for (off = io_off; io_off < off + len; io_off += io_len) {
4607		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4608			pp = page_lookup(vp, io_off,
4609			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4610		} else {
4611			pp = page_lookup_nowait(vp, io_off,
4612			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4613		}
4614
4615		if (pp != NULL && pvn_getdirty(pp, flags)) {
4616			int err;
4617
4618			/*
4619			 * Found a dirty page to push
4620			 */
4621			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4622			if (err)
4623				error = err;
4624		} else {
4625			io_len = PAGESIZE;
4626		}
4627	}
4628out:
4629	zfs_range_unlock(rl);
4630	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4631		zil_commit(zfsvfs->z_log, zp->z_id);
4632	ZFS_EXIT(zfsvfs);
4633	return (error);
4634}
4635#endif	/* sun */
4636
4637/*ARGSUSED*/
4638void
4639zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4640{
4641	znode_t	*zp = VTOZ(vp);
4642	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4643	int error;
4644
4645	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4646	if (zp->z_sa_hdl == NULL) {
4647		/*
4648		 * The fs has been unmounted, or we did a
4649		 * suspend/resume and this file no longer exists.
4650		 */
4651		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4652		vrecycle(vp);
4653		return;
4654	}
4655
4656	mutex_enter(&zp->z_lock);
4657	if (zp->z_unlinked) {
4658		/*
4659		 * Fast path to recycle a vnode of a removed file.
4660		 */
4661		mutex_exit(&zp->z_lock);
4662		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4663		vrecycle(vp);
4664		return;
4665	}
4666	mutex_exit(&zp->z_lock);
4667
4668	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4669		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4670
4671		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4672		zfs_sa_upgrade_txholds(tx, zp);
4673		error = dmu_tx_assign(tx, TXG_WAIT);
4674		if (error) {
4675			dmu_tx_abort(tx);
4676		} else {
4677			mutex_enter(&zp->z_lock);
4678			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4679			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4680			zp->z_atime_dirty = 0;
4681			mutex_exit(&zp->z_lock);
4682			dmu_tx_commit(tx);
4683		}
4684	}
4685	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4686}
4687
4688#ifdef sun
4689/*
4690 * Bounds-check the seek operation.
4691 *
4692 *	IN:	vp	- vnode seeking within
4693 *		ooff	- old file offset
4694 *		noffp	- pointer to new file offset
4695 *		ct	- caller context
4696 *
4697 *	RETURN:	0 on success, EINVAL if new offset invalid.
4698 */
4699/* ARGSUSED */
4700static int
4701zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4702    caller_context_t *ct)
4703{
4704	if (vp->v_type == VDIR)
4705		return (0);
4706	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4707}
4708
4709/*
4710 * Pre-filter the generic locking function to trap attempts to place
4711 * a mandatory lock on a memory mapped file.
4712 */
4713static int
4714zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4715    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4716{
4717	znode_t *zp = VTOZ(vp);
4718	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4719
4720	ZFS_ENTER(zfsvfs);
4721	ZFS_VERIFY_ZP(zp);
4722
4723	/*
4724	 * We are following the UFS semantics with respect to mapcnt
4725	 * here: If we see that the file is mapped already, then we will
4726	 * return an error, but we don't worry about races between this
4727	 * function and zfs_map().
4728	 */
4729	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4730		ZFS_EXIT(zfsvfs);
4731		return (SET_ERROR(EAGAIN));
4732	}
4733	ZFS_EXIT(zfsvfs);
4734	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4735}
4736
4737/*
4738 * If we can't find a page in the cache, we will create a new page
4739 * and fill it with file data.  For efficiency, we may try to fill
4740 * multiple pages at once (klustering) to fill up the supplied page
4741 * list.  Note that the pages to be filled are held with an exclusive
4742 * lock to prevent access by other threads while they are being filled.
4743 */
4744static int
4745zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4746    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4747{
4748	znode_t *zp = VTOZ(vp);
4749	page_t *pp, *cur_pp;
4750	objset_t *os = zp->z_zfsvfs->z_os;
4751	u_offset_t io_off, total;
4752	size_t io_len;
4753	int err;
4754
4755	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4756		/*
4757		 * We only have a single page, don't bother klustering
4758		 */
4759		io_off = off;
4760		io_len = PAGESIZE;
4761		pp = page_create_va(vp, io_off, io_len,
4762		    PG_EXCL | PG_WAIT, seg, addr);
4763	} else {
4764		/*
4765		 * Try to find enough pages to fill the page list
4766		 */
4767		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4768		    &io_len, off, plsz, 0);
4769	}
4770	if (pp == NULL) {
4771		/*
4772		 * The page already exists, nothing to do here.
4773		 */
4774		*pl = NULL;
4775		return (0);
4776	}
4777
4778	/*
4779	 * Fill the pages in the kluster.
4780	 */
4781	cur_pp = pp;
4782	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4783		caddr_t va;
4784
4785		ASSERT3U(io_off, ==, cur_pp->p_offset);
4786		va = zfs_map_page(cur_pp, S_WRITE);
4787		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4788		    DMU_READ_PREFETCH);
4789		zfs_unmap_page(cur_pp, va);
4790		if (err) {
4791			/* On error, toss the entire kluster */
4792			pvn_read_done(pp, B_ERROR);
4793			/* convert checksum errors into IO errors */
4794			if (err == ECKSUM)
4795				err = SET_ERROR(EIO);
4796			return (err);
4797		}
4798		cur_pp = cur_pp->p_next;
4799	}
4800
4801	/*
4802	 * Fill in the page list array from the kluster starting
4803	 * from the desired offset `off'.
4804	 * NOTE: the page list will always be null terminated.
4805	 */
4806	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4807	ASSERT(pl == NULL || (*pl)->p_offset == off);
4808
4809	return (0);
4810}
4811
4812/*
4813 * Return pointers to the pages for the file region [off, off + len]
4814 * in the pl array.  If plsz is greater than len, this function may
4815 * also return page pointers from after the specified region
4816 * (i.e. the region [off, off + plsz]).  These additional pages are
4817 * only returned if they are already in the cache, or were created as
4818 * part of a klustered read.
4819 *
4820 *	IN:	vp	- vnode of file to get data from.
4821 *		off	- position in file to get data from.
4822 *		len	- amount of data to retrieve.
4823 *		plsz	- length of provided page list.
4824 *		seg	- segment to obtain pages for.
4825 *		addr	- virtual address of fault.
4826 *		rw	- mode of created pages.
4827 *		cr	- credentials of caller.
4828 *		ct	- caller context.
4829 *
4830 *	OUT:	protp	- protection mode of created pages.
4831 *		pl	- list of pages created.
4832 *
4833 *	RETURN:	0 on success, error code on failure.
4834 *
4835 * Timestamps:
4836 *	vp - atime updated
4837 */
4838/* ARGSUSED */
4839static int
4840zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4841    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4842    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4843{
4844	znode_t		*zp = VTOZ(vp);
4845	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4846	page_t		**pl0 = pl;
4847	int		err = 0;
4848
4849	/* we do our own caching, faultahead is unnecessary */
4850	if (pl == NULL)
4851		return (0);
4852	else if (len > plsz)
4853		len = plsz;
4854	else
4855		len = P2ROUNDUP(len, PAGESIZE);
4856	ASSERT(plsz >= len);
4857
4858	ZFS_ENTER(zfsvfs);
4859	ZFS_VERIFY_ZP(zp);
4860
4861	if (protp)
4862		*protp = PROT_ALL;
4863
4864	/*
4865	 * Loop through the requested range [off, off + len) looking
4866	 * for pages.  If we don't find a page, we will need to create
4867	 * a new page and fill it with data from the file.
4868	 */
4869	while (len > 0) {
4870		if (*pl = page_lookup(vp, off, SE_SHARED))
4871			*(pl+1) = NULL;
4872		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4873			goto out;
4874		while (*pl) {
4875			ASSERT3U((*pl)->p_offset, ==, off);
4876			off += PAGESIZE;
4877			addr += PAGESIZE;
4878			if (len > 0) {
4879				ASSERT3U(len, >=, PAGESIZE);
4880				len -= PAGESIZE;
4881			}
4882			ASSERT3U(plsz, >=, PAGESIZE);
4883			plsz -= PAGESIZE;
4884			pl++;
4885		}
4886	}
4887
4888	/*
4889	 * Fill out the page array with any pages already in the cache.
4890	 */
4891	while (plsz > 0 &&
4892	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4893			off += PAGESIZE;
4894			plsz -= PAGESIZE;
4895	}
4896out:
4897	if (err) {
4898		/*
4899		 * Release any pages we have previously locked.
4900		 */
4901		while (pl > pl0)
4902			page_unlock(*--pl);
4903	} else {
4904		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4905	}
4906
4907	*pl = NULL;
4908
4909	ZFS_EXIT(zfsvfs);
4910	return (err);
4911}
4912
4913/*
4914 * Request a memory map for a section of a file.  This code interacts
4915 * with common code and the VM system as follows:
4916 *
4917 * - common code calls mmap(), which ends up in smmap_common()
4918 * - this calls VOP_MAP(), which takes you into (say) zfs
4919 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4920 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4921 * - zfs_addmap() updates z_mapcnt
4922 */
4923/*ARGSUSED*/
4924static int
4925zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4926    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4927    caller_context_t *ct)
4928{
4929	znode_t *zp = VTOZ(vp);
4930	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4931	segvn_crargs_t	vn_a;
4932	int		error;
4933
4934	ZFS_ENTER(zfsvfs);
4935	ZFS_VERIFY_ZP(zp);
4936
4937	if ((prot & PROT_WRITE) && (zp->z_pflags &
4938	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4939		ZFS_EXIT(zfsvfs);
4940		return (SET_ERROR(EPERM));
4941	}
4942
4943	if ((prot & (PROT_READ | PROT_EXEC)) &&
4944	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4945		ZFS_EXIT(zfsvfs);
4946		return (SET_ERROR(EACCES));
4947	}
4948
4949	if (vp->v_flag & VNOMAP) {
4950		ZFS_EXIT(zfsvfs);
4951		return (SET_ERROR(ENOSYS));
4952	}
4953
4954	if (off < 0 || len > MAXOFFSET_T - off) {
4955		ZFS_EXIT(zfsvfs);
4956		return (SET_ERROR(ENXIO));
4957	}
4958
4959	if (vp->v_type != VREG) {
4960		ZFS_EXIT(zfsvfs);
4961		return (SET_ERROR(ENODEV));
4962	}
4963
4964	/*
4965	 * If file is locked, disallow mapping.
4966	 */
4967	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4968		ZFS_EXIT(zfsvfs);
4969		return (SET_ERROR(EAGAIN));
4970	}
4971
4972	as_rangelock(as);
4973	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4974	if (error != 0) {
4975		as_rangeunlock(as);
4976		ZFS_EXIT(zfsvfs);
4977		return (error);
4978	}
4979
4980	vn_a.vp = vp;
4981	vn_a.offset = (u_offset_t)off;
4982	vn_a.type = flags & MAP_TYPE;
4983	vn_a.prot = prot;
4984	vn_a.maxprot = maxprot;
4985	vn_a.cred = cr;
4986	vn_a.amp = NULL;
4987	vn_a.flags = flags & ~MAP_TYPE;
4988	vn_a.szc = 0;
4989	vn_a.lgrp_mem_policy_flags = 0;
4990
4991	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4992
4993	as_rangeunlock(as);
4994	ZFS_EXIT(zfsvfs);
4995	return (error);
4996}
4997
4998/* ARGSUSED */
4999static int
5000zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5001    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5002    caller_context_t *ct)
5003{
5004	uint64_t pages = btopr(len);
5005
5006	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5007	return (0);
5008}
5009
5010/*
5011 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5012 * more accurate mtime for the associated file.  Since we don't have a way of
5013 * detecting when the data was actually modified, we have to resort to
5014 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5015 * last page is pushed.  The problem occurs when the msync() call is omitted,
5016 * which by far the most common case:
5017 *
5018 * 	open()
5019 * 	mmap()
5020 * 	<modify memory>
5021 * 	munmap()
5022 * 	close()
5023 * 	<time lapse>
5024 * 	putpage() via fsflush
5025 *
5026 * If we wait until fsflush to come along, we can have a modification time that
5027 * is some arbitrary point in the future.  In order to prevent this in the
5028 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5029 * torn down.
5030 */
5031/* ARGSUSED */
5032static int
5033zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5034    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5035    caller_context_t *ct)
5036{
5037	uint64_t pages = btopr(len);
5038
5039	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5040	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5041
5042	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5043	    vn_has_cached_data(vp))
5044		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5045
5046	return (0);
5047}
5048
5049/*
5050 * Free or allocate space in a file.  Currently, this function only
5051 * supports the `F_FREESP' command.  However, this command is somewhat
5052 * misnamed, as its functionality includes the ability to allocate as
5053 * well as free space.
5054 *
5055 *	IN:	vp	- vnode of file to free data in.
5056 *		cmd	- action to take (only F_FREESP supported).
5057 *		bfp	- section of file to free/alloc.
5058 *		flag	- current file open mode flags.
5059 *		offset	- current file offset.
5060 *		cr	- credentials of caller [UNUSED].
5061 *		ct	- caller context.
5062 *
5063 *	RETURN:	0 on success, error code on failure.
5064 *
5065 * Timestamps:
5066 *	vp - ctime|mtime updated
5067 */
5068/* ARGSUSED */
5069static int
5070zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5071    offset_t offset, cred_t *cr, caller_context_t *ct)
5072{
5073	znode_t		*zp = VTOZ(vp);
5074	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5075	uint64_t	off, len;
5076	int		error;
5077
5078	ZFS_ENTER(zfsvfs);
5079	ZFS_VERIFY_ZP(zp);
5080
5081	if (cmd != F_FREESP) {
5082		ZFS_EXIT(zfsvfs);
5083		return (SET_ERROR(EINVAL));
5084	}
5085
5086	if (error = convoff(vp, bfp, 0, offset)) {
5087		ZFS_EXIT(zfsvfs);
5088		return (error);
5089	}
5090
5091	if (bfp->l_len < 0) {
5092		ZFS_EXIT(zfsvfs);
5093		return (SET_ERROR(EINVAL));
5094	}
5095
5096	off = bfp->l_start;
5097	len = bfp->l_len; /* 0 means from off to end of file */
5098
5099	error = zfs_freesp(zp, off, len, flag, TRUE);
5100
5101	ZFS_EXIT(zfsvfs);
5102	return (error);
5103}
5104#endif	/* sun */
5105
5106CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5107CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5108
5109/*ARGSUSED*/
5110static int
5111zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5112{
5113	znode_t		*zp = VTOZ(vp);
5114	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5115	uint32_t	gen;
5116	uint64_t	gen64;
5117	uint64_t	object = zp->z_id;
5118	zfid_short_t	*zfid;
5119	int		size, i, error;
5120
5121	ZFS_ENTER(zfsvfs);
5122	ZFS_VERIFY_ZP(zp);
5123
5124	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5125	    &gen64, sizeof (uint64_t))) != 0) {
5126		ZFS_EXIT(zfsvfs);
5127		return (error);
5128	}
5129
5130	gen = (uint32_t)gen64;
5131
5132	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5133
5134#ifdef illumos
5135	if (fidp->fid_len < size) {
5136		fidp->fid_len = size;
5137		ZFS_EXIT(zfsvfs);
5138		return (SET_ERROR(ENOSPC));
5139	}
5140#else
5141	fidp->fid_len = size;
5142#endif
5143
5144	zfid = (zfid_short_t *)fidp;
5145
5146	zfid->zf_len = size;
5147
5148	for (i = 0; i < sizeof (zfid->zf_object); i++)
5149		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5150
5151	/* Must have a non-zero generation number to distinguish from .zfs */
5152	if (gen == 0)
5153		gen = 1;
5154	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5155		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5156
5157	if (size == LONG_FID_LEN) {
5158		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5159		zfid_long_t	*zlfid;
5160
5161		zlfid = (zfid_long_t *)fidp;
5162
5163		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5164			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5165
5166		/* XXX - this should be the generation number for the objset */
5167		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5168			zlfid->zf_setgen[i] = 0;
5169	}
5170
5171	ZFS_EXIT(zfsvfs);
5172	return (0);
5173}
5174
5175static int
5176zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5177    caller_context_t *ct)
5178{
5179	znode_t		*zp, *xzp;
5180	zfsvfs_t	*zfsvfs;
5181	zfs_dirlock_t	*dl;
5182	int		error;
5183
5184	switch (cmd) {
5185	case _PC_LINK_MAX:
5186		*valp = INT_MAX;
5187		return (0);
5188
5189	case _PC_FILESIZEBITS:
5190		*valp = 64;
5191		return (0);
5192#ifdef sun
5193	case _PC_XATTR_EXISTS:
5194		zp = VTOZ(vp);
5195		zfsvfs = zp->z_zfsvfs;
5196		ZFS_ENTER(zfsvfs);
5197		ZFS_VERIFY_ZP(zp);
5198		*valp = 0;
5199		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5200		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5201		if (error == 0) {
5202			zfs_dirent_unlock(dl);
5203			if (!zfs_dirempty(xzp))
5204				*valp = 1;
5205			VN_RELE(ZTOV(xzp));
5206		} else if (error == ENOENT) {
5207			/*
5208			 * If there aren't extended attributes, it's the
5209			 * same as having zero of them.
5210			 */
5211			error = 0;
5212		}
5213		ZFS_EXIT(zfsvfs);
5214		return (error);
5215
5216	case _PC_SATTR_ENABLED:
5217	case _PC_SATTR_EXISTS:
5218		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5219		    (vp->v_type == VREG || vp->v_type == VDIR);
5220		return (0);
5221
5222	case _PC_ACCESS_FILTERING:
5223		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5224		    vp->v_type == VDIR;
5225		return (0);
5226
5227	case _PC_ACL_ENABLED:
5228		*valp = _ACL_ACE_ENABLED;
5229		return (0);
5230#endif	/* sun */
5231	case _PC_MIN_HOLE_SIZE:
5232		*valp = (int)SPA_MINBLOCKSIZE;
5233		return (0);
5234#ifdef sun
5235	case _PC_TIMESTAMP_RESOLUTION:
5236		/* nanosecond timestamp resolution */
5237		*valp = 1L;
5238		return (0);
5239#endif	/* sun */
5240	case _PC_ACL_EXTENDED:
5241		*valp = 0;
5242		return (0);
5243
5244	case _PC_ACL_NFS4:
5245		*valp = 1;
5246		return (0);
5247
5248	case _PC_ACL_PATH_MAX:
5249		*valp = ACL_MAX_ENTRIES;
5250		return (0);
5251
5252	default:
5253		return (EOPNOTSUPP);
5254	}
5255}
5256
5257/*ARGSUSED*/
5258static int
5259zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5260    caller_context_t *ct)
5261{
5262	znode_t *zp = VTOZ(vp);
5263	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5264	int error;
5265	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5266
5267	ZFS_ENTER(zfsvfs);
5268	ZFS_VERIFY_ZP(zp);
5269	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5270	ZFS_EXIT(zfsvfs);
5271
5272	return (error);
5273}
5274
5275/*ARGSUSED*/
5276int
5277zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5278    caller_context_t *ct)
5279{
5280	znode_t *zp = VTOZ(vp);
5281	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5282	int error;
5283	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5284	zilog_t	*zilog = zfsvfs->z_log;
5285
5286	ZFS_ENTER(zfsvfs);
5287	ZFS_VERIFY_ZP(zp);
5288
5289	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5290
5291	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5292		zil_commit(zilog, 0);
5293
5294	ZFS_EXIT(zfsvfs);
5295	return (error);
5296}
5297
5298#ifdef sun
5299/*
5300 * The smallest read we may consider to loan out an arcbuf.
5301 * This must be a power of 2.
5302 */
5303int zcr_blksz_min = (1 << 10);	/* 1K */
5304/*
5305 * If set to less than the file block size, allow loaning out of an
5306 * arcbuf for a partial block read.  This must be a power of 2.
5307 */
5308int zcr_blksz_max = (1 << 17);	/* 128K */
5309
5310/*ARGSUSED*/
5311static int
5312zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5313    caller_context_t *ct)
5314{
5315	znode_t	*zp = VTOZ(vp);
5316	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5317	int max_blksz = zfsvfs->z_max_blksz;
5318	uio_t *uio = &xuio->xu_uio;
5319	ssize_t size = uio->uio_resid;
5320	offset_t offset = uio->uio_loffset;
5321	int blksz;
5322	int fullblk, i;
5323	arc_buf_t *abuf;
5324	ssize_t maxsize;
5325	int preamble, postamble;
5326
5327	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5328		return (SET_ERROR(EINVAL));
5329
5330	ZFS_ENTER(zfsvfs);
5331	ZFS_VERIFY_ZP(zp);
5332	switch (ioflag) {
5333	case UIO_WRITE:
5334		/*
5335		 * Loan out an arc_buf for write if write size is bigger than
5336		 * max_blksz, and the file's block size is also max_blksz.
5337		 */
5338		blksz = max_blksz;
5339		if (size < blksz || zp->z_blksz != blksz) {
5340			ZFS_EXIT(zfsvfs);
5341			return (SET_ERROR(EINVAL));
5342		}
5343		/*
5344		 * Caller requests buffers for write before knowing where the
5345		 * write offset might be (e.g. NFS TCP write).
5346		 */
5347		if (offset == -1) {
5348			preamble = 0;
5349		} else {
5350			preamble = P2PHASE(offset, blksz);
5351			if (preamble) {
5352				preamble = blksz - preamble;
5353				size -= preamble;
5354			}
5355		}
5356
5357		postamble = P2PHASE(size, blksz);
5358		size -= postamble;
5359
5360		fullblk = size / blksz;
5361		(void) dmu_xuio_init(xuio,
5362		    (preamble != 0) + fullblk + (postamble != 0));
5363		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5364		    int, postamble, int,
5365		    (preamble != 0) + fullblk + (postamble != 0));
5366
5367		/*
5368		 * Have to fix iov base/len for partial buffers.  They
5369		 * currently represent full arc_buf's.
5370		 */
5371		if (preamble) {
5372			/* data begins in the middle of the arc_buf */
5373			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5374			    blksz);
5375			ASSERT(abuf);
5376			(void) dmu_xuio_add(xuio, abuf,
5377			    blksz - preamble, preamble);
5378		}
5379
5380		for (i = 0; i < fullblk; i++) {
5381			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5382			    blksz);
5383			ASSERT(abuf);
5384			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5385		}
5386
5387		if (postamble) {
5388			/* data ends in the middle of the arc_buf */
5389			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5390			    blksz);
5391			ASSERT(abuf);
5392			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5393		}
5394		break;
5395	case UIO_READ:
5396		/*
5397		 * Loan out an arc_buf for read if the read size is larger than
5398		 * the current file block size.  Block alignment is not
5399		 * considered.  Partial arc_buf will be loaned out for read.
5400		 */
5401		blksz = zp->z_blksz;
5402		if (blksz < zcr_blksz_min)
5403			blksz = zcr_blksz_min;
5404		if (blksz > zcr_blksz_max)
5405			blksz = zcr_blksz_max;
5406		/* avoid potential complexity of dealing with it */
5407		if (blksz > max_blksz) {
5408			ZFS_EXIT(zfsvfs);
5409			return (SET_ERROR(EINVAL));
5410		}
5411
5412		maxsize = zp->z_size - uio->uio_loffset;
5413		if (size > maxsize)
5414			size = maxsize;
5415
5416		if (size < blksz || vn_has_cached_data(vp)) {
5417			ZFS_EXIT(zfsvfs);
5418			return (SET_ERROR(EINVAL));
5419		}
5420		break;
5421	default:
5422		ZFS_EXIT(zfsvfs);
5423		return (SET_ERROR(EINVAL));
5424	}
5425
5426	uio->uio_extflg = UIO_XUIO;
5427	XUIO_XUZC_RW(xuio) = ioflag;
5428	ZFS_EXIT(zfsvfs);
5429	return (0);
5430}
5431
5432/*ARGSUSED*/
5433static int
5434zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5435{
5436	int i;
5437	arc_buf_t *abuf;
5438	int ioflag = XUIO_XUZC_RW(xuio);
5439
5440	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5441
5442	i = dmu_xuio_cnt(xuio);
5443	while (i-- > 0) {
5444		abuf = dmu_xuio_arcbuf(xuio, i);
5445		/*
5446		 * if abuf == NULL, it must be a write buffer
5447		 * that has been returned in zfs_write().
5448		 */
5449		if (abuf)
5450			dmu_return_arcbuf(abuf);
5451		ASSERT(abuf || ioflag == UIO_WRITE);
5452	}
5453
5454	dmu_xuio_fini(xuio);
5455	return (0);
5456}
5457
5458/*
5459 * Predeclare these here so that the compiler assumes that
5460 * this is an "old style" function declaration that does
5461 * not include arguments => we won't get type mismatch errors
5462 * in the initializations that follow.
5463 */
5464static int zfs_inval();
5465static int zfs_isdir();
5466
5467static int
5468zfs_inval()
5469{
5470	return (SET_ERROR(EINVAL));
5471}
5472
5473static int
5474zfs_isdir()
5475{
5476	return (SET_ERROR(EISDIR));
5477}
5478/*
5479 * Directory vnode operations template
5480 */
5481vnodeops_t *zfs_dvnodeops;
5482const fs_operation_def_t zfs_dvnodeops_template[] = {
5483	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5484	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5485	VOPNAME_READ,		{ .error = zfs_isdir },
5486	VOPNAME_WRITE,		{ .error = zfs_isdir },
5487	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5488	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5489	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5490	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5491	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5492	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5493	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5494	VOPNAME_LINK,		{ .vop_link = zfs_link },
5495	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5496	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5497	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5498	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5499	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5500	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5501	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5502	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5503	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5504	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5505	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5506	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5507	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5508	NULL,			NULL
5509};
5510
5511/*
5512 * Regular file vnode operations template
5513 */
5514vnodeops_t *zfs_fvnodeops;
5515const fs_operation_def_t zfs_fvnodeops_template[] = {
5516	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5517	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5518	VOPNAME_READ,		{ .vop_read = zfs_read },
5519	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5520	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5521	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5522	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5523	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5524	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5525	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5526	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5527	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5528	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5529	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5530	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5531	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5532	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5533	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5534	VOPNAME_MAP,		{ .vop_map = zfs_map },
5535	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5536	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5537	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5538	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5539	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5540	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5541	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5542	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5543	NULL,			NULL
5544};
5545
5546/*
5547 * Symbolic link vnode operations template
5548 */
5549vnodeops_t *zfs_symvnodeops;
5550const fs_operation_def_t zfs_symvnodeops_template[] = {
5551	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5552	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5553	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5554	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5555	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5556	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5557	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5558	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5559	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5560	NULL,			NULL
5561};
5562
5563/*
5564 * special share hidden files vnode operations template
5565 */
5566vnodeops_t *zfs_sharevnodeops;
5567const fs_operation_def_t zfs_sharevnodeops_template[] = {
5568	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5569	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5570	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5571	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5572	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5573	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5574	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5575	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5576	NULL,			NULL
5577};
5578
5579/*
5580 * Extended attribute directory vnode operations template
5581 *
5582 * This template is identical to the directory vnodes
5583 * operation template except for restricted operations:
5584 *	VOP_MKDIR()
5585 *	VOP_SYMLINK()
5586 *
5587 * Note that there are other restrictions embedded in:
5588 *	zfs_create()	- restrict type to VREG
5589 *	zfs_link()	- no links into/out of attribute space
5590 *	zfs_rename()	- no moves into/out of attribute space
5591 */
5592vnodeops_t *zfs_xdvnodeops;
5593const fs_operation_def_t zfs_xdvnodeops_template[] = {
5594	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5595	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5596	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5597	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5598	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5599	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5600	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5601	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5602	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5603	VOPNAME_LINK,		{ .vop_link = zfs_link },
5604	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5605	VOPNAME_MKDIR,		{ .error = zfs_inval },
5606	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5607	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5608	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5609	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5610	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5611	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5612	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5613	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5614	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5615	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5616	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5617	NULL,			NULL
5618};
5619
5620/*
5621 * Error vnode operations template
5622 */
5623vnodeops_t *zfs_evnodeops;
5624const fs_operation_def_t zfs_evnodeops_template[] = {
5625	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5626	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5627	NULL,			NULL
5628};
5629#endif	/* sun */
5630
5631static int
5632ioflags(int ioflags)
5633{
5634	int flags = 0;
5635
5636	if (ioflags & IO_APPEND)
5637		flags |= FAPPEND;
5638	if (ioflags & IO_NDELAY)
5639        	flags |= FNONBLOCK;
5640	if (ioflags & IO_SYNC)
5641		flags |= (FSYNC | FDSYNC | FRSYNC);
5642
5643	return (flags);
5644}
5645
5646static int
5647zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5648{
5649	znode_t *zp = VTOZ(vp);
5650	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5651	objset_t *os = zp->z_zfsvfs->z_os;
5652	vm_page_t mfirst, mlast, mreq;
5653	vm_object_t object;
5654	caddr_t va;
5655	struct sf_buf *sf;
5656	off_t startoff, endoff;
5657	int i, error;
5658	vm_pindex_t reqstart, reqend;
5659	int pcount, lsize, reqsize, size;
5660
5661	ZFS_ENTER(zfsvfs);
5662	ZFS_VERIFY_ZP(zp);
5663
5664	pcount = OFF_TO_IDX(round_page(count));
5665	mreq = m[reqpage];
5666	object = mreq->object;
5667	error = 0;
5668
5669	KASSERT(vp->v_object == object, ("mismatching object"));
5670
5671	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5672		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5673		reqstart = OFF_TO_IDX(round_page(startoff));
5674		if (reqstart < m[0]->pindex)
5675			reqstart = 0;
5676		else
5677			reqstart = reqstart - m[0]->pindex;
5678		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5679		    zp->z_blksz);
5680		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5681		if (reqend > m[pcount - 1]->pindex)
5682			reqend = m[pcount - 1]->pindex;
5683		reqsize = reqend - m[reqstart]->pindex + 1;
5684		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5685		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5686	} else {
5687		reqstart = reqpage;
5688		reqsize = 1;
5689	}
5690	mfirst = m[reqstart];
5691	mlast = m[reqstart + reqsize - 1];
5692
5693	zfs_vmobject_wlock(object);
5694
5695	for (i = 0; i < reqstart; i++) {
5696		vm_page_lock(m[i]);
5697		vm_page_free(m[i]);
5698		vm_page_unlock(m[i]);
5699	}
5700	for (i = reqstart + reqsize; i < pcount; i++) {
5701		vm_page_lock(m[i]);
5702		vm_page_free(m[i]);
5703		vm_page_unlock(m[i]);
5704	}
5705
5706	if (mreq->valid && reqsize == 1) {
5707		if (mreq->valid != VM_PAGE_BITS_ALL)
5708			vm_page_zero_invalid(mreq, TRUE);
5709		zfs_vmobject_wunlock(object);
5710		ZFS_EXIT(zfsvfs);
5711		return (zfs_vm_pagerret_ok);
5712	}
5713
5714	PCPU_INC(cnt.v_vnodein);
5715	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5716
5717	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5718		for (i = reqstart; i < reqstart + reqsize; i++) {
5719			if (i != reqpage) {
5720				vm_page_lock(m[i]);
5721				vm_page_free(m[i]);
5722				vm_page_unlock(m[i]);
5723			}
5724		}
5725		zfs_vmobject_wunlock(object);
5726		ZFS_EXIT(zfsvfs);
5727		return (zfs_vm_pagerret_bad);
5728	}
5729
5730	lsize = PAGE_SIZE;
5731	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5732		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5733
5734	zfs_vmobject_wunlock(object);
5735
5736	for (i = reqstart; i < reqstart + reqsize; i++) {
5737		size = PAGE_SIZE;
5738		if (i == (reqstart + reqsize - 1))
5739			size = lsize;
5740		va = zfs_map_page(m[i], &sf);
5741		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5742		    size, va, DMU_READ_PREFETCH);
5743		if (size != PAGE_SIZE)
5744			bzero(va + size, PAGE_SIZE - size);
5745		zfs_unmap_page(sf);
5746		if (error != 0)
5747			break;
5748	}
5749
5750	zfs_vmobject_wlock(object);
5751
5752	for (i = reqstart; i < reqstart + reqsize; i++) {
5753		if (!error)
5754			m[i]->valid = VM_PAGE_BITS_ALL;
5755		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5756		if (i != reqpage)
5757			vm_page_readahead_finish(m[i]);
5758	}
5759
5760	zfs_vmobject_wunlock(object);
5761
5762	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5763	ZFS_EXIT(zfsvfs);
5764	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5765}
5766
5767static int
5768zfs_freebsd_getpages(ap)
5769	struct vop_getpages_args /* {
5770		struct vnode *a_vp;
5771		vm_page_t *a_m;
5772		int a_count;
5773		int a_reqpage;
5774		vm_ooffset_t a_offset;
5775	} */ *ap;
5776{
5777
5778	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5779}
5780
5781static int
5782zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags,
5783    int *rtvals)
5784{
5785	znode_t		*zp = VTOZ(vp);
5786	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5787	rl_t		*rl;
5788	dmu_tx_t	*tx;
5789	struct sf_buf	*sf;
5790	vm_object_t	object;
5791	vm_page_t	m;
5792	caddr_t		va;
5793	size_t		tocopy;
5794	size_t		lo_len;
5795	vm_ooffset_t	lo_off;
5796	vm_ooffset_t	off;
5797	uint_t		blksz;
5798	int		ncount;
5799	int		pcount;
5800	int		err;
5801	int		i;
5802
5803	ZFS_ENTER(zfsvfs);
5804	ZFS_VERIFY_ZP(zp);
5805
5806	object = vp->v_object;
5807	pcount = btoc(len);
5808	ncount = pcount;
5809
5810	KASSERT(ma[0]->object == object, ("mismatching object"));
5811	KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length"));
5812
5813	for (i = 0; i < pcount; i++)
5814		rtvals[i] = zfs_vm_pagerret_error;
5815
5816	off = IDX_TO_OFF(ma[0]->pindex);
5817	blksz = zp->z_blksz;
5818	lo_off = rounddown(off, blksz);
5819	lo_len = roundup(len + (off - lo_off), blksz);
5820	rl = zfs_range_lock(zp, lo_off, lo_len, RL_WRITER);
5821
5822	zfs_vmobject_wlock(object);
5823	if (len + off > object->un_pager.vnp.vnp_size) {
5824		if (object->un_pager.vnp.vnp_size > off) {
5825			int pgoff;
5826
5827			len = object->un_pager.vnp.vnp_size - off;
5828			ncount = btoc(len);
5829			if ((pgoff = (int)len & PAGE_MASK) != 0) {
5830				/*
5831				 * If the object is locked and the following
5832				 * conditions hold, then the page's dirty
5833				 * field cannot be concurrently changed by a
5834				 * pmap operation.
5835				 */
5836				m = ma[ncount - 1];
5837				vm_page_assert_sbusied(m);
5838				KASSERT(!pmap_page_is_write_mapped(m),
5839				    ("zfs_putpages: page %p is not read-only", m));
5840				vm_page_clear_dirty(m, pgoff, PAGE_SIZE -
5841				    pgoff);
5842			}
5843		} else {
5844			len = 0;
5845			ncount = 0;
5846		}
5847		if (ncount < pcount) {
5848			for (i = ncount; i < pcount; i++) {
5849				rtvals[i] = zfs_vm_pagerret_bad;
5850			}
5851		}
5852	}
5853	zfs_vmobject_wunlock(object);
5854
5855	if (ncount == 0)
5856		goto out;
5857
5858	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
5859	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
5860		goto out;
5861	}
5862
5863top:
5864	tx = dmu_tx_create(zfsvfs->z_os);
5865	dmu_tx_hold_write(tx, zp->z_id, off, len);
5866
5867	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
5868	zfs_sa_upgrade_txholds(tx, zp);
5869	err = dmu_tx_assign(tx, TXG_NOWAIT);
5870	if (err != 0) {
5871		if (err == ERESTART) {
5872			dmu_tx_wait(tx);
5873			dmu_tx_abort(tx);
5874			goto top;
5875		}
5876		dmu_tx_abort(tx);
5877		goto out;
5878	}
5879
5880	if (zp->z_blksz < PAGE_SIZE) {
5881		i = 0;
5882		for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) {
5883			tocopy = len > PAGE_SIZE ? PAGE_SIZE : len;
5884			va = zfs_map_page(ma[i], &sf);
5885			dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx);
5886			zfs_unmap_page(sf);
5887		}
5888	} else {
5889		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx);
5890	}
5891
5892	if (err == 0) {
5893		uint64_t mtime[2], ctime[2];
5894		sa_bulk_attr_t bulk[3];
5895		int count = 0;
5896
5897		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
5898		    &mtime, 16);
5899		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
5900		    &ctime, 16);
5901		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
5902		    &zp->z_pflags, 8);
5903		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
5904		    B_TRUE);
5905		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
5906
5907		zfs_vmobject_wlock(object);
5908		for (i = 0; i < ncount; i++) {
5909			rtvals[i] = zfs_vm_pagerret_ok;
5910			vm_page_undirty(ma[i]);
5911		}
5912		zfs_vmobject_wunlock(object);
5913		PCPU_INC(cnt.v_vnodeout);
5914		PCPU_ADD(cnt.v_vnodepgsout, ncount);
5915	}
5916	dmu_tx_commit(tx);
5917
5918out:
5919	zfs_range_unlock(rl);
5920	if ((flags & (zfs_vm_pagerput_sync | zfs_vm_pagerput_inval)) != 0 ||
5921	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5922		zil_commit(zfsvfs->z_log, zp->z_id);
5923	ZFS_EXIT(zfsvfs);
5924	return (rtvals[0]);
5925}
5926
5927int
5928zfs_freebsd_putpages(ap)
5929	struct vop_putpages_args /* {
5930		struct vnode *a_vp;
5931		vm_page_t *a_m;
5932		int a_count;
5933		int a_sync;
5934		int *a_rtvals;
5935		vm_ooffset_t a_offset;
5936	} */ *ap;
5937{
5938
5939	return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync,
5940	    ap->a_rtvals));
5941}
5942
5943static int
5944zfs_freebsd_bmap(ap)
5945	struct vop_bmap_args /* {
5946		struct vnode *a_vp;
5947		daddr_t  a_bn;
5948		struct bufobj **a_bop;
5949		daddr_t *a_bnp;
5950		int *a_runp;
5951		int *a_runb;
5952	} */ *ap;
5953{
5954
5955	if (ap->a_bop != NULL)
5956		*ap->a_bop = &ap->a_vp->v_bufobj;
5957	if (ap->a_bnp != NULL)
5958		*ap->a_bnp = ap->a_bn;
5959	if (ap->a_runp != NULL)
5960		*ap->a_runp = 0;
5961	if (ap->a_runb != NULL)
5962		*ap->a_runb = 0;
5963
5964	return (0);
5965}
5966
5967static int
5968zfs_freebsd_open(ap)
5969	struct vop_open_args /* {
5970		struct vnode *a_vp;
5971		int a_mode;
5972		struct ucred *a_cred;
5973		struct thread *a_td;
5974	} */ *ap;
5975{
5976	vnode_t	*vp = ap->a_vp;
5977	znode_t *zp = VTOZ(vp);
5978	int error;
5979
5980	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
5981	if (error == 0)
5982		vnode_create_vobject(vp, zp->z_size, ap->a_td);
5983	return (error);
5984}
5985
5986static int
5987zfs_freebsd_close(ap)
5988	struct vop_close_args /* {
5989		struct vnode *a_vp;
5990		int  a_fflag;
5991		struct ucred *a_cred;
5992		struct thread *a_td;
5993	} */ *ap;
5994{
5995
5996	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
5997}
5998
5999static int
6000zfs_freebsd_ioctl(ap)
6001	struct vop_ioctl_args /* {
6002		struct vnode *a_vp;
6003		u_long a_command;
6004		caddr_t a_data;
6005		int a_fflag;
6006		struct ucred *cred;
6007		struct thread *td;
6008	} */ *ap;
6009{
6010
6011	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
6012	    ap->a_fflag, ap->a_cred, NULL, NULL));
6013}
6014
6015static int
6016zfs_freebsd_read(ap)
6017	struct vop_read_args /* {
6018		struct vnode *a_vp;
6019		struct uio *a_uio;
6020		int a_ioflag;
6021		struct ucred *a_cred;
6022	} */ *ap;
6023{
6024
6025	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6026	    ap->a_cred, NULL));
6027}
6028
6029static int
6030zfs_freebsd_write(ap)
6031	struct vop_write_args /* {
6032		struct vnode *a_vp;
6033		struct uio *a_uio;
6034		int a_ioflag;
6035		struct ucred *a_cred;
6036	} */ *ap;
6037{
6038
6039	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
6040	    ap->a_cred, NULL));
6041}
6042
6043static int
6044zfs_freebsd_access(ap)
6045	struct vop_access_args /* {
6046		struct vnode *a_vp;
6047		accmode_t a_accmode;
6048		struct ucred *a_cred;
6049		struct thread *a_td;
6050	} */ *ap;
6051{
6052	vnode_t *vp = ap->a_vp;
6053	znode_t *zp = VTOZ(vp);
6054	accmode_t accmode;
6055	int error = 0;
6056
6057	/*
6058	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
6059	 */
6060	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
6061	if (accmode != 0)
6062		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
6063
6064	/*
6065	 * VADMIN has to be handled by vaccess().
6066	 */
6067	if (error == 0) {
6068		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
6069		if (accmode != 0) {
6070			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
6071			    zp->z_gid, accmode, ap->a_cred, NULL);
6072		}
6073	}
6074
6075	/*
6076	 * For VEXEC, ensure that at least one execute bit is set for
6077	 * non-directories.
6078	 */
6079	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
6080	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
6081		error = EACCES;
6082	}
6083
6084	return (error);
6085}
6086
6087static int
6088zfs_freebsd_lookup(ap)
6089	struct vop_lookup_args /* {
6090		struct vnode *a_dvp;
6091		struct vnode **a_vpp;
6092		struct componentname *a_cnp;
6093	} */ *ap;
6094{
6095	struct componentname *cnp = ap->a_cnp;
6096	char nm[NAME_MAX + 1];
6097
6098	ASSERT(cnp->cn_namelen < sizeof(nm));
6099	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
6100
6101	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
6102	    cnp->cn_cred, cnp->cn_thread, 0));
6103}
6104
6105static int
6106zfs_freebsd_create(ap)
6107	struct vop_create_args /* {
6108		struct vnode *a_dvp;
6109		struct vnode **a_vpp;
6110		struct componentname *a_cnp;
6111		struct vattr *a_vap;
6112	} */ *ap;
6113{
6114	struct componentname *cnp = ap->a_cnp;
6115	vattr_t *vap = ap->a_vap;
6116	int mode;
6117
6118	ASSERT(cnp->cn_flags & SAVENAME);
6119
6120	vattr_init_mask(vap);
6121	mode = vap->va_mode & ALLPERMS;
6122
6123	return (zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
6124	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread));
6125}
6126
6127static int
6128zfs_freebsd_remove(ap)
6129	struct vop_remove_args /* {
6130		struct vnode *a_dvp;
6131		struct vnode *a_vp;
6132		struct componentname *a_cnp;
6133	} */ *ap;
6134{
6135
6136	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6137
6138	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6139	    ap->a_cnp->cn_cred, NULL, 0));
6140}
6141
6142static int
6143zfs_freebsd_mkdir(ap)
6144	struct vop_mkdir_args /* {
6145		struct vnode *a_dvp;
6146		struct vnode **a_vpp;
6147		struct componentname *a_cnp;
6148		struct vattr *a_vap;
6149	} */ *ap;
6150{
6151	vattr_t *vap = ap->a_vap;
6152
6153	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6154
6155	vattr_init_mask(vap);
6156
6157	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6158	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6159}
6160
6161static int
6162zfs_freebsd_rmdir(ap)
6163	struct vop_rmdir_args /* {
6164		struct vnode *a_dvp;
6165		struct vnode *a_vp;
6166		struct componentname *a_cnp;
6167	} */ *ap;
6168{
6169	struct componentname *cnp = ap->a_cnp;
6170
6171	ASSERT(cnp->cn_flags & SAVENAME);
6172
6173	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6174}
6175
6176static int
6177zfs_freebsd_readdir(ap)
6178	struct vop_readdir_args /* {
6179		struct vnode *a_vp;
6180		struct uio *a_uio;
6181		struct ucred *a_cred;
6182		int *a_eofflag;
6183		int *a_ncookies;
6184		u_long **a_cookies;
6185	} */ *ap;
6186{
6187
6188	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6189	    ap->a_ncookies, ap->a_cookies));
6190}
6191
6192static int
6193zfs_freebsd_fsync(ap)
6194	struct vop_fsync_args /* {
6195		struct vnode *a_vp;
6196		int a_waitfor;
6197		struct thread *a_td;
6198	} */ *ap;
6199{
6200
6201	vop_stdfsync(ap);
6202	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6203}
6204
6205static int
6206zfs_freebsd_getattr(ap)
6207	struct vop_getattr_args /* {
6208		struct vnode *a_vp;
6209		struct vattr *a_vap;
6210		struct ucred *a_cred;
6211	} */ *ap;
6212{
6213	vattr_t *vap = ap->a_vap;
6214	xvattr_t xvap;
6215	u_long fflags = 0;
6216	int error;
6217
6218	xva_init(&xvap);
6219	xvap.xva_vattr = *vap;
6220	xvap.xva_vattr.va_mask |= AT_XVATTR;
6221
6222	/* Convert chflags into ZFS-type flags. */
6223	/* XXX: what about SF_SETTABLE?. */
6224	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6225	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6226	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6227	XVA_SET_REQ(&xvap, XAT_NODUMP);
6228	XVA_SET_REQ(&xvap, XAT_READONLY);
6229	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6230	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6231	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6232	XVA_SET_REQ(&xvap, XAT_REPARSE);
6233	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6234	XVA_SET_REQ(&xvap, XAT_SPARSE);
6235
6236	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6237	if (error != 0)
6238		return (error);
6239
6240	/* Convert ZFS xattr into chflags. */
6241#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6242	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6243		fflags |= (fflag);					\
6244} while (0)
6245	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6246	    xvap.xva_xoptattrs.xoa_immutable);
6247	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6248	    xvap.xva_xoptattrs.xoa_appendonly);
6249	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6250	    xvap.xva_xoptattrs.xoa_nounlink);
6251	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6252	    xvap.xva_xoptattrs.xoa_archive);
6253	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6254	    xvap.xva_xoptattrs.xoa_nodump);
6255	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6256	    xvap.xva_xoptattrs.xoa_readonly);
6257	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6258	    xvap.xva_xoptattrs.xoa_system);
6259	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6260	    xvap.xva_xoptattrs.xoa_hidden);
6261	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6262	    xvap.xva_xoptattrs.xoa_reparse);
6263	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6264	    xvap.xva_xoptattrs.xoa_offline);
6265	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6266	    xvap.xva_xoptattrs.xoa_sparse);
6267
6268#undef	FLAG_CHECK
6269	*vap = xvap.xva_vattr;
6270	vap->va_flags = fflags;
6271	return (0);
6272}
6273
6274static int
6275zfs_freebsd_setattr(ap)
6276	struct vop_setattr_args /* {
6277		struct vnode *a_vp;
6278		struct vattr *a_vap;
6279		struct ucred *a_cred;
6280	} */ *ap;
6281{
6282	vnode_t *vp = ap->a_vp;
6283	vattr_t *vap = ap->a_vap;
6284	cred_t *cred = ap->a_cred;
6285	xvattr_t xvap;
6286	u_long fflags;
6287	uint64_t zflags;
6288
6289	vattr_init_mask(vap);
6290	vap->va_mask &= ~AT_NOSET;
6291
6292	xva_init(&xvap);
6293	xvap.xva_vattr = *vap;
6294
6295	zflags = VTOZ(vp)->z_pflags;
6296
6297	if (vap->va_flags != VNOVAL) {
6298		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6299		int error;
6300
6301		if (zfsvfs->z_use_fuids == B_FALSE)
6302			return (EOPNOTSUPP);
6303
6304		fflags = vap->va_flags;
6305		/*
6306		 * XXX KDM
6307		 * We need to figure out whether it makes sense to allow
6308		 * UF_REPARSE through, since we don't really have other
6309		 * facilities to handle reparse points and zfs_setattr()
6310		 * doesn't currently allow setting that attribute anyway.
6311		 */
6312		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6313		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6314		     UF_OFFLINE|UF_SPARSE)) != 0)
6315			return (EOPNOTSUPP);
6316		/*
6317		 * Unprivileged processes are not permitted to unset system
6318		 * flags, or modify flags if any system flags are set.
6319		 * Privileged non-jail processes may not modify system flags
6320		 * if securelevel > 0 and any existing system flags are set.
6321		 * Privileged jail processes behave like privileged non-jail
6322		 * processes if the security.jail.chflags_allowed sysctl is
6323		 * is non-zero; otherwise, they behave like unprivileged
6324		 * processes.
6325		 */
6326		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6327		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6328			if (zflags &
6329			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6330				error = securelevel_gt(cred, 0);
6331				if (error != 0)
6332					return (error);
6333			}
6334		} else {
6335			/*
6336			 * Callers may only modify the file flags on objects they
6337			 * have VADMIN rights for.
6338			 */
6339			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6340				return (error);
6341			if (zflags &
6342			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6343				return (EPERM);
6344			}
6345			if (fflags &
6346			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6347				return (EPERM);
6348			}
6349		}
6350
6351#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6352	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6353	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6354		XVA_SET_REQ(&xvap, (xflag));				\
6355		(xfield) = ((fflags & (fflag)) != 0);			\
6356	}								\
6357} while (0)
6358		/* Convert chflags into ZFS-type flags. */
6359		/* XXX: what about SF_SETTABLE?. */
6360		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6361		    xvap.xva_xoptattrs.xoa_immutable);
6362		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6363		    xvap.xva_xoptattrs.xoa_appendonly);
6364		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6365		    xvap.xva_xoptattrs.xoa_nounlink);
6366		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6367		    xvap.xva_xoptattrs.xoa_archive);
6368		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6369		    xvap.xva_xoptattrs.xoa_nodump);
6370		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6371		    xvap.xva_xoptattrs.xoa_readonly);
6372		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6373		    xvap.xva_xoptattrs.xoa_system);
6374		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6375		    xvap.xva_xoptattrs.xoa_hidden);
6376		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6377		    xvap.xva_xoptattrs.xoa_hidden);
6378		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6379		    xvap.xva_xoptattrs.xoa_offline);
6380		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6381		    xvap.xva_xoptattrs.xoa_sparse);
6382#undef	FLAG_CHANGE
6383	}
6384	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6385}
6386
6387static int
6388zfs_freebsd_rename(ap)
6389	struct vop_rename_args  /* {
6390		struct vnode *a_fdvp;
6391		struct vnode *a_fvp;
6392		struct componentname *a_fcnp;
6393		struct vnode *a_tdvp;
6394		struct vnode *a_tvp;
6395		struct componentname *a_tcnp;
6396	} */ *ap;
6397{
6398	vnode_t *fdvp = ap->a_fdvp;
6399	vnode_t *fvp = ap->a_fvp;
6400	vnode_t *tdvp = ap->a_tdvp;
6401	vnode_t *tvp = ap->a_tvp;
6402	int error;
6403
6404	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6405	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6406
6407	/*
6408	 * Check for cross-device rename.
6409	 */
6410	if ((fdvp->v_mount != tdvp->v_mount) ||
6411	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6412		error = EXDEV;
6413	else
6414		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6415		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6416	if (tdvp == tvp)
6417		VN_RELE(tdvp);
6418	else
6419		VN_URELE(tdvp);
6420	if (tvp)
6421		VN_URELE(tvp);
6422	VN_RELE(fdvp);
6423	VN_RELE(fvp);
6424
6425	return (error);
6426}
6427
6428static int
6429zfs_freebsd_symlink(ap)
6430	struct vop_symlink_args /* {
6431		struct vnode *a_dvp;
6432		struct vnode **a_vpp;
6433		struct componentname *a_cnp;
6434		struct vattr *a_vap;
6435		char *a_target;
6436	} */ *ap;
6437{
6438	struct componentname *cnp = ap->a_cnp;
6439	vattr_t *vap = ap->a_vap;
6440
6441	ASSERT(cnp->cn_flags & SAVENAME);
6442
6443	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6444	vattr_init_mask(vap);
6445
6446	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6447	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6448}
6449
6450static int
6451zfs_freebsd_readlink(ap)
6452	struct vop_readlink_args /* {
6453		struct vnode *a_vp;
6454		struct uio *a_uio;
6455		struct ucred *a_cred;
6456	} */ *ap;
6457{
6458
6459	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6460}
6461
6462static int
6463zfs_freebsd_link(ap)
6464	struct vop_link_args /* {
6465		struct vnode *a_tdvp;
6466		struct vnode *a_vp;
6467		struct componentname *a_cnp;
6468	} */ *ap;
6469{
6470	struct componentname *cnp = ap->a_cnp;
6471	vnode_t *vp = ap->a_vp;
6472	vnode_t *tdvp = ap->a_tdvp;
6473
6474	if (tdvp->v_mount != vp->v_mount)
6475		return (EXDEV);
6476
6477	ASSERT(cnp->cn_flags & SAVENAME);
6478
6479	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6480}
6481
6482static int
6483zfs_freebsd_inactive(ap)
6484	struct vop_inactive_args /* {
6485		struct vnode *a_vp;
6486		struct thread *a_td;
6487	} */ *ap;
6488{
6489	vnode_t *vp = ap->a_vp;
6490
6491	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6492	return (0);
6493}
6494
6495static int
6496zfs_freebsd_reclaim(ap)
6497	struct vop_reclaim_args /* {
6498		struct vnode *a_vp;
6499		struct thread *a_td;
6500	} */ *ap;
6501{
6502	vnode_t	*vp = ap->a_vp;
6503	znode_t	*zp = VTOZ(vp);
6504	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6505
6506	ASSERT(zp != NULL);
6507
6508	/* Destroy the vm object and flush associated pages. */
6509	vnode_destroy_vobject(vp);
6510
6511	/*
6512	 * z_teardown_inactive_lock protects from a race with
6513	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6514	 * force unmount.
6515	 */
6516	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6517	if (zp->z_sa_hdl == NULL)
6518		zfs_znode_free(zp);
6519	else
6520		zfs_zinactive(zp);
6521	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6522
6523	vp->v_data = NULL;
6524	return (0);
6525}
6526
6527static int
6528zfs_freebsd_fid(ap)
6529	struct vop_fid_args /* {
6530		struct vnode *a_vp;
6531		struct fid *a_fid;
6532	} */ *ap;
6533{
6534
6535	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6536}
6537
6538static int
6539zfs_freebsd_pathconf(ap)
6540	struct vop_pathconf_args /* {
6541		struct vnode *a_vp;
6542		int a_name;
6543		register_t *a_retval;
6544	} */ *ap;
6545{
6546	ulong_t val;
6547	int error;
6548
6549	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6550	if (error == 0)
6551		*ap->a_retval = val;
6552	else if (error == EOPNOTSUPP)
6553		error = vop_stdpathconf(ap);
6554	return (error);
6555}
6556
6557static int
6558zfs_freebsd_fifo_pathconf(ap)
6559	struct vop_pathconf_args /* {
6560		struct vnode *a_vp;
6561		int a_name;
6562		register_t *a_retval;
6563	} */ *ap;
6564{
6565
6566	switch (ap->a_name) {
6567	case _PC_ACL_EXTENDED:
6568	case _PC_ACL_NFS4:
6569	case _PC_ACL_PATH_MAX:
6570	case _PC_MAC_PRESENT:
6571		return (zfs_freebsd_pathconf(ap));
6572	default:
6573		return (fifo_specops.vop_pathconf(ap));
6574	}
6575}
6576
6577/*
6578 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6579 * extended attribute name:
6580 *
6581 *	NAMESPACE	PREFIX
6582 *	system		freebsd:system:
6583 *	user		(none, can be used to access ZFS fsattr(5) attributes
6584 *			created on Solaris)
6585 */
6586static int
6587zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6588    size_t size)
6589{
6590	const char *namespace, *prefix, *suffix;
6591
6592	/* We don't allow '/' character in attribute name. */
6593	if (strchr(name, '/') != NULL)
6594		return (EINVAL);
6595	/* We don't allow attribute names that start with "freebsd:" string. */
6596	if (strncmp(name, "freebsd:", 8) == 0)
6597		return (EINVAL);
6598
6599	bzero(attrname, size);
6600
6601	switch (attrnamespace) {
6602	case EXTATTR_NAMESPACE_USER:
6603#if 0
6604		prefix = "freebsd:";
6605		namespace = EXTATTR_NAMESPACE_USER_STRING;
6606		suffix = ":";
6607#else
6608		/*
6609		 * This is the default namespace by which we can access all
6610		 * attributes created on Solaris.
6611		 */
6612		prefix = namespace = suffix = "";
6613#endif
6614		break;
6615	case EXTATTR_NAMESPACE_SYSTEM:
6616		prefix = "freebsd:";
6617		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6618		suffix = ":";
6619		break;
6620	case EXTATTR_NAMESPACE_EMPTY:
6621	default:
6622		return (EINVAL);
6623	}
6624	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6625	    name) >= size) {
6626		return (ENAMETOOLONG);
6627	}
6628	return (0);
6629}
6630
6631/*
6632 * Vnode operating to retrieve a named extended attribute.
6633 */
6634static int
6635zfs_getextattr(struct vop_getextattr_args *ap)
6636/*
6637vop_getextattr {
6638	IN struct vnode *a_vp;
6639	IN int a_attrnamespace;
6640	IN const char *a_name;
6641	INOUT struct uio *a_uio;
6642	OUT size_t *a_size;
6643	IN struct ucred *a_cred;
6644	IN struct thread *a_td;
6645};
6646*/
6647{
6648	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6649	struct thread *td = ap->a_td;
6650	struct nameidata nd;
6651	char attrname[255];
6652	struct vattr va;
6653	vnode_t *xvp = NULL, *vp;
6654	int error, flags;
6655
6656	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6657	    ap->a_cred, ap->a_td, VREAD);
6658	if (error != 0)
6659		return (error);
6660
6661	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6662	    sizeof(attrname));
6663	if (error != 0)
6664		return (error);
6665
6666	ZFS_ENTER(zfsvfs);
6667
6668	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6669	    LOOKUP_XATTR);
6670	if (error != 0) {
6671		ZFS_EXIT(zfsvfs);
6672		return (error);
6673	}
6674
6675	flags = FREAD;
6676	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6677	    xvp, td);
6678	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6679	vp = nd.ni_vp;
6680	NDFREE(&nd, NDF_ONLY_PNBUF);
6681	if (error != 0) {
6682		ZFS_EXIT(zfsvfs);
6683		if (error == ENOENT)
6684			error = ENOATTR;
6685		return (error);
6686	}
6687
6688	if (ap->a_size != NULL) {
6689		error = VOP_GETATTR(vp, &va, ap->a_cred);
6690		if (error == 0)
6691			*ap->a_size = (size_t)va.va_size;
6692	} else if (ap->a_uio != NULL)
6693		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6694
6695	VOP_UNLOCK(vp, 0);
6696	vn_close(vp, flags, ap->a_cred, td);
6697	ZFS_EXIT(zfsvfs);
6698
6699	return (error);
6700}
6701
6702/*
6703 * Vnode operation to remove a named attribute.
6704 */
6705int
6706zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6707/*
6708vop_deleteextattr {
6709	IN struct vnode *a_vp;
6710	IN int a_attrnamespace;
6711	IN const char *a_name;
6712	IN struct ucred *a_cred;
6713	IN struct thread *a_td;
6714};
6715*/
6716{
6717	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6718	struct thread *td = ap->a_td;
6719	struct nameidata nd;
6720	char attrname[255];
6721	struct vattr va;
6722	vnode_t *xvp = NULL, *vp;
6723	int error, flags;
6724
6725	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6726	    ap->a_cred, ap->a_td, VWRITE);
6727	if (error != 0)
6728		return (error);
6729
6730	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6731	    sizeof(attrname));
6732	if (error != 0)
6733		return (error);
6734
6735	ZFS_ENTER(zfsvfs);
6736
6737	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6738	    LOOKUP_XATTR);
6739	if (error != 0) {
6740		ZFS_EXIT(zfsvfs);
6741		return (error);
6742	}
6743
6744	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6745	    UIO_SYSSPACE, attrname, xvp, td);
6746	error = namei(&nd);
6747	vp = nd.ni_vp;
6748	NDFREE(&nd, NDF_ONLY_PNBUF);
6749	if (error != 0) {
6750		ZFS_EXIT(zfsvfs);
6751		if (error == ENOENT)
6752			error = ENOATTR;
6753		return (error);
6754	}
6755	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6756
6757	vput(nd.ni_dvp);
6758	if (vp == nd.ni_dvp)
6759		vrele(vp);
6760	else
6761		vput(vp);
6762	ZFS_EXIT(zfsvfs);
6763
6764	return (error);
6765}
6766
6767/*
6768 * Vnode operation to set a named attribute.
6769 */
6770static int
6771zfs_setextattr(struct vop_setextattr_args *ap)
6772/*
6773vop_setextattr {
6774	IN struct vnode *a_vp;
6775	IN int a_attrnamespace;
6776	IN const char *a_name;
6777	INOUT struct uio *a_uio;
6778	IN struct ucred *a_cred;
6779	IN struct thread *a_td;
6780};
6781*/
6782{
6783	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6784	struct thread *td = ap->a_td;
6785	struct nameidata nd;
6786	char attrname[255];
6787	struct vattr va;
6788	vnode_t *xvp = NULL, *vp;
6789	int error, flags;
6790
6791	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6792	    ap->a_cred, ap->a_td, VWRITE);
6793	if (error != 0)
6794		return (error);
6795
6796	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6797	    sizeof(attrname));
6798	if (error != 0)
6799		return (error);
6800
6801	ZFS_ENTER(zfsvfs);
6802
6803	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6804	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6805	if (error != 0) {
6806		ZFS_EXIT(zfsvfs);
6807		return (error);
6808	}
6809
6810	flags = FFLAGS(O_WRONLY | O_CREAT);
6811	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6812	    xvp, td);
6813	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6814	vp = nd.ni_vp;
6815	NDFREE(&nd, NDF_ONLY_PNBUF);
6816	if (error != 0) {
6817		ZFS_EXIT(zfsvfs);
6818		return (error);
6819	}
6820
6821	VATTR_NULL(&va);
6822	va.va_size = 0;
6823	error = VOP_SETATTR(vp, &va, ap->a_cred);
6824	if (error == 0)
6825		VOP_WRITE(vp, ap->a_uio, IO_UNIT | IO_SYNC, ap->a_cred);
6826
6827	VOP_UNLOCK(vp, 0);
6828	vn_close(vp, flags, ap->a_cred, td);
6829	ZFS_EXIT(zfsvfs);
6830
6831	return (error);
6832}
6833
6834/*
6835 * Vnode operation to retrieve extended attributes on a vnode.
6836 */
6837static int
6838zfs_listextattr(struct vop_listextattr_args *ap)
6839/*
6840vop_listextattr {
6841	IN struct vnode *a_vp;
6842	IN int a_attrnamespace;
6843	INOUT struct uio *a_uio;
6844	OUT size_t *a_size;
6845	IN struct ucred *a_cred;
6846	IN struct thread *a_td;
6847};
6848*/
6849{
6850	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6851	struct thread *td = ap->a_td;
6852	struct nameidata nd;
6853	char attrprefix[16];
6854	u_char dirbuf[sizeof(struct dirent)];
6855	struct dirent *dp;
6856	struct iovec aiov;
6857	struct uio auio, *uio = ap->a_uio;
6858	size_t *sizep = ap->a_size;
6859	size_t plen;
6860	vnode_t *xvp = NULL, *vp;
6861	int done, error, eof, pos;
6862
6863	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6864	    ap->a_cred, ap->a_td, VREAD);
6865	if (error != 0)
6866		return (error);
6867
6868	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6869	    sizeof(attrprefix));
6870	if (error != 0)
6871		return (error);
6872	plen = strlen(attrprefix);
6873
6874	ZFS_ENTER(zfsvfs);
6875
6876	if (sizep != NULL)
6877		*sizep = 0;
6878
6879	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6880	    LOOKUP_XATTR);
6881	if (error != 0) {
6882		ZFS_EXIT(zfsvfs);
6883		/*
6884		 * ENOATTR means that the EA directory does not yet exist,
6885		 * i.e. there are no extended attributes there.
6886		 */
6887		if (error == ENOATTR)
6888			error = 0;
6889		return (error);
6890	}
6891
6892	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6893	    UIO_SYSSPACE, ".", xvp, td);
6894	error = namei(&nd);
6895	vp = nd.ni_vp;
6896	NDFREE(&nd, NDF_ONLY_PNBUF);
6897	if (error != 0) {
6898		ZFS_EXIT(zfsvfs);
6899		return (error);
6900	}
6901
6902	auio.uio_iov = &aiov;
6903	auio.uio_iovcnt = 1;
6904	auio.uio_segflg = UIO_SYSSPACE;
6905	auio.uio_td = td;
6906	auio.uio_rw = UIO_READ;
6907	auio.uio_offset = 0;
6908
6909	do {
6910		u_char nlen;
6911
6912		aiov.iov_base = (void *)dirbuf;
6913		aiov.iov_len = sizeof(dirbuf);
6914		auio.uio_resid = sizeof(dirbuf);
6915		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6916		done = sizeof(dirbuf) - auio.uio_resid;
6917		if (error != 0)
6918			break;
6919		for (pos = 0; pos < done;) {
6920			dp = (struct dirent *)(dirbuf + pos);
6921			pos += dp->d_reclen;
6922			/*
6923			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6924			 * is what we get when attribute was created on Solaris.
6925			 */
6926			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6927				continue;
6928			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6929				continue;
6930			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6931				continue;
6932			nlen = dp->d_namlen - plen;
6933			if (sizep != NULL)
6934				*sizep += 1 + nlen;
6935			else if (uio != NULL) {
6936				/*
6937				 * Format of extattr name entry is one byte for
6938				 * length and the rest for name.
6939				 */
6940				error = uiomove(&nlen, 1, uio->uio_rw, uio);
6941				if (error == 0) {
6942					error = uiomove(dp->d_name + plen, nlen,
6943					    uio->uio_rw, uio);
6944				}
6945				if (error != 0)
6946					break;
6947			}
6948		}
6949	} while (!eof && error == 0);
6950
6951	vput(vp);
6952	ZFS_EXIT(zfsvfs);
6953
6954	return (error);
6955}
6956
6957int
6958zfs_freebsd_getacl(ap)
6959	struct vop_getacl_args /* {
6960		struct vnode *vp;
6961		acl_type_t type;
6962		struct acl *aclp;
6963		struct ucred *cred;
6964		struct thread *td;
6965	} */ *ap;
6966{
6967	int		error;
6968	vsecattr_t      vsecattr;
6969
6970	if (ap->a_type != ACL_TYPE_NFS4)
6971		return (EINVAL);
6972
6973	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
6974	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
6975		return (error);
6976
6977	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
6978	if (vsecattr.vsa_aclentp != NULL)
6979		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
6980
6981	return (error);
6982}
6983
6984int
6985zfs_freebsd_setacl(ap)
6986	struct vop_setacl_args /* {
6987		struct vnode *vp;
6988		acl_type_t type;
6989		struct acl *aclp;
6990		struct ucred *cred;
6991		struct thread *td;
6992	} */ *ap;
6993{
6994	int		error;
6995	vsecattr_t      vsecattr;
6996	int		aclbsize;	/* size of acl list in bytes */
6997	aclent_t	*aaclp;
6998
6999	if (ap->a_type != ACL_TYPE_NFS4)
7000		return (EINVAL);
7001
7002	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
7003		return (EINVAL);
7004
7005	/*
7006	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
7007	 * splitting every entry into two and appending "canonical six"
7008	 * entries at the end.  Don't allow for setting an ACL that would
7009	 * cause chmod(2) to run out of ACL entries.
7010	 */
7011	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
7012		return (ENOSPC);
7013
7014	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
7015	if (error != 0)
7016		return (error);
7017
7018	vsecattr.vsa_mask = VSA_ACE;
7019	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
7020	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
7021	aaclp = vsecattr.vsa_aclentp;
7022	vsecattr.vsa_aclentsz = aclbsize;
7023
7024	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
7025	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
7026	kmem_free(aaclp, aclbsize);
7027
7028	return (error);
7029}
7030
7031int
7032zfs_freebsd_aclcheck(ap)
7033	struct vop_aclcheck_args /* {
7034		struct vnode *vp;
7035		acl_type_t type;
7036		struct acl *aclp;
7037		struct ucred *cred;
7038		struct thread *td;
7039	} */ *ap;
7040{
7041
7042	return (EOPNOTSUPP);
7043}
7044
7045struct vop_vector zfs_vnodeops;
7046struct vop_vector zfs_fifoops;
7047struct vop_vector zfs_shareops;
7048
7049struct vop_vector zfs_vnodeops = {
7050	.vop_default =		&default_vnodeops,
7051	.vop_inactive =		zfs_freebsd_inactive,
7052	.vop_reclaim =		zfs_freebsd_reclaim,
7053	.vop_access =		zfs_freebsd_access,
7054#ifdef FREEBSD_NAMECACHE
7055	.vop_lookup =		vfs_cache_lookup,
7056	.vop_cachedlookup =	zfs_freebsd_lookup,
7057#else
7058	.vop_lookup =		zfs_freebsd_lookup,
7059#endif
7060	.vop_getattr =		zfs_freebsd_getattr,
7061	.vop_setattr =		zfs_freebsd_setattr,
7062	.vop_create =		zfs_freebsd_create,
7063	.vop_mknod =		zfs_freebsd_create,
7064	.vop_mkdir =		zfs_freebsd_mkdir,
7065	.vop_readdir =		zfs_freebsd_readdir,
7066	.vop_fsync =		zfs_freebsd_fsync,
7067	.vop_open =		zfs_freebsd_open,
7068	.vop_close =		zfs_freebsd_close,
7069	.vop_rmdir =		zfs_freebsd_rmdir,
7070	.vop_ioctl =		zfs_freebsd_ioctl,
7071	.vop_link =		zfs_freebsd_link,
7072	.vop_symlink =		zfs_freebsd_symlink,
7073	.vop_readlink =		zfs_freebsd_readlink,
7074	.vop_read =		zfs_freebsd_read,
7075	.vop_write =		zfs_freebsd_write,
7076	.vop_remove =		zfs_freebsd_remove,
7077	.vop_rename =		zfs_freebsd_rename,
7078	.vop_pathconf =		zfs_freebsd_pathconf,
7079	.vop_bmap =		zfs_freebsd_bmap,
7080	.vop_fid =		zfs_freebsd_fid,
7081	.vop_getextattr =	zfs_getextattr,
7082	.vop_deleteextattr =	zfs_deleteextattr,
7083	.vop_setextattr =	zfs_setextattr,
7084	.vop_listextattr =	zfs_listextattr,
7085	.vop_getacl =		zfs_freebsd_getacl,
7086	.vop_setacl =		zfs_freebsd_setacl,
7087	.vop_aclcheck =		zfs_freebsd_aclcheck,
7088	.vop_getpages =		zfs_freebsd_getpages,
7089	.vop_putpages =		zfs_freebsd_putpages,
7090};
7091
7092struct vop_vector zfs_fifoops = {
7093	.vop_default =		&fifo_specops,
7094	.vop_fsync =		zfs_freebsd_fsync,
7095	.vop_access =		zfs_freebsd_access,
7096	.vop_getattr =		zfs_freebsd_getattr,
7097	.vop_inactive =		zfs_freebsd_inactive,
7098	.vop_read =		VOP_PANIC,
7099	.vop_reclaim =		zfs_freebsd_reclaim,
7100	.vop_setattr =		zfs_freebsd_setattr,
7101	.vop_write =		VOP_PANIC,
7102	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
7103	.vop_fid =		zfs_freebsd_fid,
7104	.vop_getacl =		zfs_freebsd_getacl,
7105	.vop_setacl =		zfs_freebsd_setacl,
7106	.vop_aclcheck =		zfs_freebsd_aclcheck,
7107};
7108
7109/*
7110 * special share hidden files vnode operations template
7111 */
7112struct vop_vector zfs_shareops = {
7113	.vop_default =		&default_vnodeops,
7114	.vop_access =		zfs_freebsd_access,
7115	.vop_inactive =		zfs_freebsd_inactive,
7116	.vop_reclaim =		zfs_freebsd_reclaim,
7117	.vop_fid =		zfs_freebsd_fid,
7118	.vop_pathconf =		zfs_freebsd_pathconf,
7119};
7120