zfs_vnops.c revision 258563
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25 */
26
27/* Portions Copyright 2007 Jeremy Teo */
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/time.h>
33#include <sys/systm.h>
34#include <sys/sysmacros.h>
35#include <sys/resource.h>
36#include <sys/vfs.h>
37#include <sys/vm.h>
38#include <sys/vnode.h>
39#include <sys/file.h>
40#include <sys/stat.h>
41#include <sys/kmem.h>
42#include <sys/taskq.h>
43#include <sys/uio.h>
44#include <sys/atomic.h>
45#include <sys/namei.h>
46#include <sys/mman.h>
47#include <sys/cmn_err.h>
48#include <sys/errno.h>
49#include <sys/unistd.h>
50#include <sys/zfs_dir.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/fs/zfs.h>
53#include <sys/dmu.h>
54#include <sys/dmu_objset.h>
55#include <sys/spa.h>
56#include <sys/txg.h>
57#include <sys/dbuf.h>
58#include <sys/zap.h>
59#include <sys/sa.h>
60#include <sys/dirent.h>
61#include <sys/policy.h>
62#include <sys/sunddi.h>
63#include <sys/filio.h>
64#include <sys/sid.h>
65#include <sys/zfs_ctldir.h>
66#include <sys/zfs_fuid.h>
67#include <sys/zfs_sa.h>
68#include <sys/dnlc.h>
69#include <sys/zfs_rlock.h>
70#include <sys/extdirent.h>
71#include <sys/kidmap.h>
72#include <sys/bio.h>
73#include <sys/buf.h>
74#include <sys/sf_buf.h>
75#include <sys/sched.h>
76#include <sys/acl.h>
77#include <vm/vm_param.h>
78#include <vm/vm_pageout.h>
79
80/*
81 * Programming rules.
82 *
83 * Each vnode op performs some logical unit of work.  To do this, the ZPL must
84 * properly lock its in-core state, create a DMU transaction, do the work,
85 * record this work in the intent log (ZIL), commit the DMU transaction,
86 * and wait for the intent log to commit if it is a synchronous operation.
87 * Moreover, the vnode ops must work in both normal and log replay context.
88 * The ordering of events is important to avoid deadlocks and references
89 * to freed memory.  The example below illustrates the following Big Rules:
90 *
91 *  (1)	A check must be made in each zfs thread for a mounted file system.
92 *	This is done avoiding races using ZFS_ENTER(zfsvfs).
93 *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
94 *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
95 *	can return EIO from the calling function.
96 *
97 *  (2)	VN_RELE() should always be the last thing except for zil_commit()
98 *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
99 *	First, if it's the last reference, the vnode/znode
100 *	can be freed, so the zp may point to freed memory.  Second, the last
101 *	reference will call zfs_zinactive(), which may induce a lot of work --
102 *	pushing cached pages (which acquires range locks) and syncing out
103 *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
104 *	which could deadlock the system if you were already holding one.
105 *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
106 *
107 *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
108 *	as they can span dmu_tx_assign() calls.
109 *
110 *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
111 *	This is critical because we don't want to block while holding locks.
112 *	Note, in particular, that if a lock is sometimes acquired before
113 *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
114 *	use a non-blocking assign can deadlock the system.  The scenario:
115 *
116 *	Thread A has grabbed a lock before calling dmu_tx_assign().
117 *	Thread B is in an already-assigned tx, and blocks for this lock.
118 *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119 *	forever, because the previous txg can't quiesce until B's tx commits.
120 *
121 *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122 *	then drop all locks, call dmu_tx_wait(), and try again.
123 *
124 *  (5)	If the operation succeeded, generate the intent log entry for it
125 *	before dropping locks.  This ensures that the ordering of events
126 *	in the intent log matches the order in which they actually occurred.
127 *	During ZIL replay the zfs_log_* functions will update the sequence
128 *	number to indicate the zil transaction has replayed.
129 *
130 *  (6)	At the end of each vnode op, the DMU tx must always commit,
131 *	regardless of whether there were any errors.
132 *
133 *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
134 *	to ensure that synchronous semantics are provided when necessary.
135 *
136 * In general, this is how things should be ordered in each vnode op:
137 *
138 *	ZFS_ENTER(zfsvfs);		// exit if unmounted
139 * top:
140 *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
141 *	rw_enter(...);			// grab any other locks you need
142 *	tx = dmu_tx_create(...);	// get DMU tx
143 *	dmu_tx_hold_*();		// hold each object you might modify
144 *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
145 *	if (error) {
146 *		rw_exit(...);		// drop locks
147 *		zfs_dirent_unlock(dl);	// unlock directory entry
148 *		VN_RELE(...);		// release held vnodes
149 *		if (error == ERESTART) {
150 *			dmu_tx_wait(tx);
151 *			dmu_tx_abort(tx);
152 *			goto top;
153 *		}
154 *		dmu_tx_abort(tx);	// abort DMU tx
155 *		ZFS_EXIT(zfsvfs);	// finished in zfs
156 *		return (error);		// really out of space
157 *	}
158 *	error = do_real_work();		// do whatever this VOP does
159 *	if (error == 0)
160 *		zfs_log_*(...);		// on success, make ZIL entry
161 *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
162 *	rw_exit(...);			// drop locks
163 *	zfs_dirent_unlock(dl);		// unlock directory entry
164 *	VN_RELE(...);			// release held vnodes
165 *	zil_commit(zilog, foid);	// synchronous when necessary
166 *	ZFS_EXIT(zfsvfs);		// finished in zfs
167 *	return (error);			// done, report error
168 */
169
170/* ARGSUSED */
171static int
172zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
173{
174	znode_t	*zp = VTOZ(*vpp);
175	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
176
177	ZFS_ENTER(zfsvfs);
178	ZFS_VERIFY_ZP(zp);
179
180	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
181	    ((flag & FAPPEND) == 0)) {
182		ZFS_EXIT(zfsvfs);
183		return (SET_ERROR(EPERM));
184	}
185
186	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
187	    ZTOV(zp)->v_type == VREG &&
188	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
189		if (fs_vscan(*vpp, cr, 0) != 0) {
190			ZFS_EXIT(zfsvfs);
191			return (SET_ERROR(EACCES));
192		}
193	}
194
195	/* Keep a count of the synchronous opens in the znode */
196	if (flag & (FSYNC | FDSYNC))
197		atomic_inc_32(&zp->z_sync_cnt);
198
199	ZFS_EXIT(zfsvfs);
200	return (0);
201}
202
203/* ARGSUSED */
204static int
205zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
206    caller_context_t *ct)
207{
208	znode_t	*zp = VTOZ(vp);
209	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
210
211	/*
212	 * Clean up any locks held by this process on the vp.
213	 */
214	cleanlocks(vp, ddi_get_pid(), 0);
215	cleanshares(vp, ddi_get_pid());
216
217	ZFS_ENTER(zfsvfs);
218	ZFS_VERIFY_ZP(zp);
219
220	/* Decrement the synchronous opens in the znode */
221	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
222		atomic_dec_32(&zp->z_sync_cnt);
223
224	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
225	    ZTOV(zp)->v_type == VREG &&
226	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
227		VERIFY(fs_vscan(vp, cr, 1) == 0);
228
229	ZFS_EXIT(zfsvfs);
230	return (0);
231}
232
233/*
234 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
235 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
236 */
237static int
238zfs_holey(vnode_t *vp, u_long cmd, offset_t *off)
239{
240	znode_t	*zp = VTOZ(vp);
241	uint64_t noff = (uint64_t)*off; /* new offset */
242	uint64_t file_sz;
243	int error;
244	boolean_t hole;
245
246	file_sz = zp->z_size;
247	if (noff >= file_sz)  {
248		return (SET_ERROR(ENXIO));
249	}
250
251	if (cmd == _FIO_SEEK_HOLE)
252		hole = B_TRUE;
253	else
254		hole = B_FALSE;
255
256	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
257
258	/* end of file? */
259	if ((error == ESRCH) || (noff > file_sz)) {
260		/*
261		 * Handle the virtual hole at the end of file.
262		 */
263		if (hole) {
264			*off = file_sz;
265			return (0);
266		}
267		return (SET_ERROR(ENXIO));
268	}
269
270	if (noff < *off)
271		return (error);
272	*off = noff;
273	return (error);
274}
275
276/* ARGSUSED */
277static int
278zfs_ioctl(vnode_t *vp, u_long com, intptr_t data, int flag, cred_t *cred,
279    int *rvalp, caller_context_t *ct)
280{
281	offset_t off;
282	int error;
283	zfsvfs_t *zfsvfs;
284	znode_t *zp;
285
286	switch (com) {
287	case _FIOFFS:
288		return (0);
289
290		/*
291		 * The following two ioctls are used by bfu.  Faking out,
292		 * necessary to avoid bfu errors.
293		 */
294	case _FIOGDIO:
295	case _FIOSDIO:
296		return (0);
297
298	case _FIO_SEEK_DATA:
299	case _FIO_SEEK_HOLE:
300#ifdef sun
301		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
302			return (SET_ERROR(EFAULT));
303#else
304		off = *(offset_t *)data;
305#endif
306		zp = VTOZ(vp);
307		zfsvfs = zp->z_zfsvfs;
308		ZFS_ENTER(zfsvfs);
309		ZFS_VERIFY_ZP(zp);
310
311		/* offset parameter is in/out */
312		error = zfs_holey(vp, com, &off);
313		ZFS_EXIT(zfsvfs);
314		if (error)
315			return (error);
316#ifdef sun
317		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
318			return (SET_ERROR(EFAULT));
319#else
320		*(offset_t *)data = off;
321#endif
322		return (0);
323	}
324	return (SET_ERROR(ENOTTY));
325}
326
327static vm_page_t
328page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes)
329{
330	vm_object_t obj;
331	vm_page_t pp;
332	int64_t end;
333
334	/*
335	 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE
336	 * aligned boundaries, if the range is not aligned.  As a result a
337	 * DEV_BSIZE subrange with partially dirty data may get marked as clean.
338	 * It may happen that all DEV_BSIZE subranges are marked clean and thus
339	 * the whole page would be considred clean despite have some dirty data.
340	 * For this reason we should shrink the range to DEV_BSIZE aligned
341	 * boundaries before calling vm_page_clear_dirty.
342	 */
343	end = rounddown2(off + nbytes, DEV_BSIZE);
344	off = roundup2(off, DEV_BSIZE);
345	nbytes = end - off;
346
347	obj = vp->v_object;
348	zfs_vmobject_assert_wlocked(obj);
349
350	for (;;) {
351		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
352		    pp->valid) {
353			if (vm_page_xbusied(pp)) {
354				/*
355				 * Reference the page before unlocking and
356				 * sleeping so that the page daemon is less
357				 * likely to reclaim it.
358				 */
359				vm_page_reference(pp);
360				vm_page_lock(pp);
361				zfs_vmobject_wunlock(obj);
362				vm_page_busy_sleep(pp, "zfsmwb");
363				zfs_vmobject_wlock(obj);
364				continue;
365			}
366			vm_page_sbusy(pp);
367		} else if (pp == NULL) {
368			pp = vm_page_alloc(obj, OFF_TO_IDX(start),
369			    VM_ALLOC_SYSTEM | VM_ALLOC_IFCACHED |
370			    VM_ALLOC_SBUSY);
371		} else {
372			ASSERT(pp != NULL && !pp->valid);
373			pp = NULL;
374		}
375
376		if (pp != NULL) {
377			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
378			vm_object_pip_add(obj, 1);
379			pmap_remove_write(pp);
380			if (nbytes != 0)
381				vm_page_clear_dirty(pp, off, nbytes);
382		}
383		break;
384	}
385	return (pp);
386}
387
388static void
389page_unbusy(vm_page_t pp)
390{
391
392	vm_page_sunbusy(pp);
393	vm_object_pip_subtract(pp->object, 1);
394}
395
396static vm_page_t
397page_hold(vnode_t *vp, int64_t start)
398{
399	vm_object_t obj;
400	vm_page_t pp;
401
402	obj = vp->v_object;
403	zfs_vmobject_assert_wlocked(obj);
404
405	for (;;) {
406		if ((pp = vm_page_lookup(obj, OFF_TO_IDX(start))) != NULL &&
407		    pp->valid) {
408			if (vm_page_xbusied(pp)) {
409				/*
410				 * Reference the page before unlocking and
411				 * sleeping so that the page daemon is less
412				 * likely to reclaim it.
413				 */
414				vm_page_reference(pp);
415				vm_page_lock(pp);
416				zfs_vmobject_wunlock(obj);
417				vm_page_busy_sleep(pp, "zfsmwb");
418				zfs_vmobject_wlock(obj);
419				continue;
420			}
421
422			ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL);
423			vm_page_lock(pp);
424			vm_page_hold(pp);
425			vm_page_unlock(pp);
426
427		} else
428			pp = NULL;
429		break;
430	}
431	return (pp);
432}
433
434static void
435page_unhold(vm_page_t pp)
436{
437
438	vm_page_lock(pp);
439	vm_page_unhold(pp);
440	vm_page_unlock(pp);
441}
442
443static caddr_t
444zfs_map_page(vm_page_t pp, struct sf_buf **sfp)
445{
446
447	*sfp = sf_buf_alloc(pp, 0);
448	return ((caddr_t)sf_buf_kva(*sfp));
449}
450
451static void
452zfs_unmap_page(struct sf_buf *sf)
453{
454
455	sf_buf_free(sf);
456}
457
458/*
459 * When a file is memory mapped, we must keep the IO data synchronized
460 * between the DMU cache and the memory mapped pages.  What this means:
461 *
462 * On Write:	If we find a memory mapped page, we write to *both*
463 *		the page and the dmu buffer.
464 */
465static void
466update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid,
467    int segflg, dmu_tx_t *tx)
468{
469	vm_object_t obj;
470	struct sf_buf *sf;
471	caddr_t va;
472	int off;
473
474	ASSERT(vp->v_mount != NULL);
475	obj = vp->v_object;
476	ASSERT(obj != NULL);
477
478	off = start & PAGEOFFSET;
479	zfs_vmobject_wlock(obj);
480	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
481		vm_page_t pp;
482		int nbytes = imin(PAGESIZE - off, len);
483
484		if (segflg == UIO_NOCOPY) {
485			pp = vm_page_lookup(obj, OFF_TO_IDX(start));
486			KASSERT(pp != NULL,
487			    ("zfs update_pages: NULL page in putpages case"));
488			KASSERT(off == 0,
489			    ("zfs update_pages: unaligned data in putpages case"));
490			KASSERT(pp->valid == VM_PAGE_BITS_ALL,
491			    ("zfs update_pages: invalid page in putpages case"));
492			KASSERT(vm_page_sbusied(pp),
493			    ("zfs update_pages: unbusy page in putpages case"));
494			KASSERT(!pmap_page_is_write_mapped(pp),
495			    ("zfs update_pages: writable page in putpages case"));
496			zfs_vmobject_wunlock(obj);
497
498			va = zfs_map_page(pp, &sf);
499			(void) dmu_write(os, oid, start, nbytes, va, tx);
500			zfs_unmap_page(sf);
501
502			zfs_vmobject_wlock(obj);
503			vm_page_undirty(pp);
504		} else if ((pp = page_busy(vp, start, off, nbytes)) != NULL) {
505			zfs_vmobject_wunlock(obj);
506
507			va = zfs_map_page(pp, &sf);
508			(void) dmu_read(os, oid, start+off, nbytes,
509			    va+off, DMU_READ_PREFETCH);;
510			zfs_unmap_page(sf);
511
512			zfs_vmobject_wlock(obj);
513			page_unbusy(pp);
514		}
515		len -= nbytes;
516		off = 0;
517	}
518	if (segflg != UIO_NOCOPY)
519		vm_object_pip_wakeupn(obj, 0);
520	zfs_vmobject_wunlock(obj);
521}
522
523/*
524 * Read with UIO_NOCOPY flag means that sendfile(2) requests
525 * ZFS to populate a range of page cache pages with data.
526 *
527 * NOTE: this function could be optimized to pre-allocate
528 * all pages in advance, drain exclusive busy on all of them,
529 * map them into contiguous KVA region and populate them
530 * in one single dmu_read() call.
531 */
532static int
533mappedread_sf(vnode_t *vp, int nbytes, uio_t *uio)
534{
535	znode_t *zp = VTOZ(vp);
536	objset_t *os = zp->z_zfsvfs->z_os;
537	struct sf_buf *sf;
538	vm_object_t obj;
539	vm_page_t pp;
540	int64_t start;
541	caddr_t va;
542	int len = nbytes;
543	int off;
544	int error = 0;
545
546	ASSERT(uio->uio_segflg == UIO_NOCOPY);
547	ASSERT(vp->v_mount != NULL);
548	obj = vp->v_object;
549	ASSERT(obj != NULL);
550	ASSERT((uio->uio_loffset & PAGEOFFSET) == 0);
551
552	zfs_vmobject_wlock(obj);
553	for (start = uio->uio_loffset; len > 0; start += PAGESIZE) {
554		int bytes = MIN(PAGESIZE, len);
555
556		pp = vm_page_grab(obj, OFF_TO_IDX(start), VM_ALLOC_SBUSY |
557		    VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY);
558		if (pp->valid == 0) {
559			zfs_vmobject_wunlock(obj);
560			va = zfs_map_page(pp, &sf);
561			error = dmu_read(os, zp->z_id, start, bytes, va,
562			    DMU_READ_PREFETCH);
563			if (bytes != PAGESIZE && error == 0)
564				bzero(va + bytes, PAGESIZE - bytes);
565			zfs_unmap_page(sf);
566			zfs_vmobject_wlock(obj);
567			vm_page_sunbusy(pp);
568			vm_page_lock(pp);
569			if (error) {
570				if (pp->wire_count == 0 && pp->valid == 0 &&
571				    !vm_page_busied(pp))
572					vm_page_free(pp);
573			} else {
574				pp->valid = VM_PAGE_BITS_ALL;
575				vm_page_activate(pp);
576			}
577			vm_page_unlock(pp);
578		} else
579			vm_page_sunbusy(pp);
580		if (error)
581			break;
582		uio->uio_resid -= bytes;
583		uio->uio_offset += bytes;
584		len -= bytes;
585	}
586	zfs_vmobject_wunlock(obj);
587	return (error);
588}
589
590/*
591 * When a file is memory mapped, we must keep the IO data synchronized
592 * between the DMU cache and the memory mapped pages.  What this means:
593 *
594 * On Read:	We "read" preferentially from memory mapped pages,
595 *		else we default from the dmu buffer.
596 *
597 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
598 *	 the file is memory mapped.
599 */
600static int
601mappedread(vnode_t *vp, int nbytes, uio_t *uio)
602{
603	znode_t *zp = VTOZ(vp);
604	objset_t *os = zp->z_zfsvfs->z_os;
605	vm_object_t obj;
606	int64_t start;
607	caddr_t va;
608	int len = nbytes;
609	int off;
610	int error = 0;
611
612	ASSERT(vp->v_mount != NULL);
613	obj = vp->v_object;
614	ASSERT(obj != NULL);
615
616	start = uio->uio_loffset;
617	off = start & PAGEOFFSET;
618	zfs_vmobject_wlock(obj);
619	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
620		vm_page_t pp;
621		uint64_t bytes = MIN(PAGESIZE - off, len);
622
623		if (pp = page_hold(vp, start)) {
624			struct sf_buf *sf;
625			caddr_t va;
626
627			zfs_vmobject_wunlock(obj);
628			va = zfs_map_page(pp, &sf);
629			error = uiomove(va + off, bytes, UIO_READ, uio);
630			zfs_unmap_page(sf);
631			zfs_vmobject_wlock(obj);
632			page_unhold(pp);
633		} else {
634			zfs_vmobject_wunlock(obj);
635			error = dmu_read_uio(os, zp->z_id, uio, bytes);
636			zfs_vmobject_wlock(obj);
637		}
638		len -= bytes;
639		off = 0;
640		if (error)
641			break;
642	}
643	zfs_vmobject_wunlock(obj);
644	return (error);
645}
646
647offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
648
649/*
650 * Read bytes from specified file into supplied buffer.
651 *
652 *	IN:	vp	- vnode of file to be read from.
653 *		uio	- structure supplying read location, range info,
654 *			  and return buffer.
655 *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
656 *		cr	- credentials of caller.
657 *		ct	- caller context
658 *
659 *	OUT:	uio	- updated offset and range, buffer filled.
660 *
661 *	RETURN:	0 on success, error code on failure.
662 *
663 * Side Effects:
664 *	vp - atime updated if byte count > 0
665 */
666/* ARGSUSED */
667static int
668zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
669{
670	znode_t		*zp = VTOZ(vp);
671	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
672	objset_t	*os;
673	ssize_t		n, nbytes;
674	int		error = 0;
675	rl_t		*rl;
676	xuio_t		*xuio = NULL;
677
678	ZFS_ENTER(zfsvfs);
679	ZFS_VERIFY_ZP(zp);
680	os = zfsvfs->z_os;
681
682	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
683		ZFS_EXIT(zfsvfs);
684		return (SET_ERROR(EACCES));
685	}
686
687	/*
688	 * Validate file offset
689	 */
690	if (uio->uio_loffset < (offset_t)0) {
691		ZFS_EXIT(zfsvfs);
692		return (SET_ERROR(EINVAL));
693	}
694
695	/*
696	 * Fasttrack empty reads
697	 */
698	if (uio->uio_resid == 0) {
699		ZFS_EXIT(zfsvfs);
700		return (0);
701	}
702
703	/*
704	 * Check for mandatory locks
705	 */
706	if (MANDMODE(zp->z_mode)) {
707		if (error = chklock(vp, FREAD,
708		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
709			ZFS_EXIT(zfsvfs);
710			return (error);
711		}
712	}
713
714	/*
715	 * If we're in FRSYNC mode, sync out this znode before reading it.
716	 */
717	if (zfsvfs->z_log &&
718	    (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
719		zil_commit(zfsvfs->z_log, zp->z_id);
720
721	/*
722	 * Lock the range against changes.
723	 */
724	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
725
726	/*
727	 * If we are reading past end-of-file we can skip
728	 * to the end; but we might still need to set atime.
729	 */
730	if (uio->uio_loffset >= zp->z_size) {
731		error = 0;
732		goto out;
733	}
734
735	ASSERT(uio->uio_loffset < zp->z_size);
736	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
737
738#ifdef sun
739	if ((uio->uio_extflg == UIO_XUIO) &&
740	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
741		int nblk;
742		int blksz = zp->z_blksz;
743		uint64_t offset = uio->uio_loffset;
744
745		xuio = (xuio_t *)uio;
746		if ((ISP2(blksz))) {
747			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
748			    blksz)) / blksz;
749		} else {
750			ASSERT(offset + n <= blksz);
751			nblk = 1;
752		}
753		(void) dmu_xuio_init(xuio, nblk);
754
755		if (vn_has_cached_data(vp)) {
756			/*
757			 * For simplicity, we always allocate a full buffer
758			 * even if we only expect to read a portion of a block.
759			 */
760			while (--nblk >= 0) {
761				(void) dmu_xuio_add(xuio,
762				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
763				    blksz), 0, blksz);
764			}
765		}
766	}
767#endif	/* sun */
768
769	while (n > 0) {
770		nbytes = MIN(n, zfs_read_chunk_size -
771		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
772
773#ifdef __FreeBSD__
774		if (uio->uio_segflg == UIO_NOCOPY)
775			error = mappedread_sf(vp, nbytes, uio);
776		else
777#endif /* __FreeBSD__ */
778		if (vn_has_cached_data(vp))
779			error = mappedread(vp, nbytes, uio);
780		else
781			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
782		if (error) {
783			/* convert checksum errors into IO errors */
784			if (error == ECKSUM)
785				error = SET_ERROR(EIO);
786			break;
787		}
788
789		n -= nbytes;
790	}
791out:
792	zfs_range_unlock(rl);
793
794	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
795	ZFS_EXIT(zfsvfs);
796	return (error);
797}
798
799/*
800 * Write the bytes to a file.
801 *
802 *	IN:	vp	- vnode of file to be written to.
803 *		uio	- structure supplying write location, range info,
804 *			  and data buffer.
805 *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
806 *			  set if in append mode.
807 *		cr	- credentials of caller.
808 *		ct	- caller context (NFS/CIFS fem monitor only)
809 *
810 *	OUT:	uio	- updated offset and range.
811 *
812 *	RETURN:	0 on success, error code on failure.
813 *
814 * Timestamps:
815 *	vp - ctime|mtime updated if byte count > 0
816 */
817
818/* ARGSUSED */
819static int
820zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
821{
822	znode_t		*zp = VTOZ(vp);
823	rlim64_t	limit = MAXOFFSET_T;
824	ssize_t		start_resid = uio->uio_resid;
825	ssize_t		tx_bytes;
826	uint64_t	end_size;
827	dmu_tx_t	*tx;
828	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
829	zilog_t		*zilog;
830	offset_t	woff;
831	ssize_t		n, nbytes;
832	rl_t		*rl;
833	int		max_blksz = zfsvfs->z_max_blksz;
834	int		error = 0;
835	arc_buf_t	*abuf;
836	iovec_t		*aiov = NULL;
837	xuio_t		*xuio = NULL;
838	int		i_iov = 0;
839	int		iovcnt = uio->uio_iovcnt;
840	iovec_t		*iovp = uio->uio_iov;
841	int		write_eof;
842	int		count = 0;
843	sa_bulk_attr_t	bulk[4];
844	uint64_t	mtime[2], ctime[2];
845
846	/*
847	 * Fasttrack empty write
848	 */
849	n = start_resid;
850	if (n == 0)
851		return (0);
852
853	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
854		limit = MAXOFFSET_T;
855
856	ZFS_ENTER(zfsvfs);
857	ZFS_VERIFY_ZP(zp);
858
859	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
860	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
861	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
862	    &zp->z_size, 8);
863	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
864	    &zp->z_pflags, 8);
865
866	/*
867	 * If immutable or not appending then return EPERM
868	 */
869	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
870	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
871	    (uio->uio_loffset < zp->z_size))) {
872		ZFS_EXIT(zfsvfs);
873		return (SET_ERROR(EPERM));
874	}
875
876	zilog = zfsvfs->z_log;
877
878	/*
879	 * Validate file offset
880	 */
881	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
882	if (woff < 0) {
883		ZFS_EXIT(zfsvfs);
884		return (SET_ERROR(EINVAL));
885	}
886
887	/*
888	 * Check for mandatory locks before calling zfs_range_lock()
889	 * in order to prevent a deadlock with locks set via fcntl().
890	 */
891	if (MANDMODE((mode_t)zp->z_mode) &&
892	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
893		ZFS_EXIT(zfsvfs);
894		return (error);
895	}
896
897#ifdef sun
898	/*
899	 * Pre-fault the pages to ensure slow (eg NFS) pages
900	 * don't hold up txg.
901	 * Skip this if uio contains loaned arc_buf.
902	 */
903	if ((uio->uio_extflg == UIO_XUIO) &&
904	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
905		xuio = (xuio_t *)uio;
906	else
907		uio_prefaultpages(MIN(n, max_blksz), uio);
908#endif	/* sun */
909
910	/*
911	 * If in append mode, set the io offset pointer to eof.
912	 */
913	if (ioflag & FAPPEND) {
914		/*
915		 * Obtain an appending range lock to guarantee file append
916		 * semantics.  We reset the write offset once we have the lock.
917		 */
918		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
919		woff = rl->r_off;
920		if (rl->r_len == UINT64_MAX) {
921			/*
922			 * We overlocked the file because this write will cause
923			 * the file block size to increase.
924			 * Note that zp_size cannot change with this lock held.
925			 */
926			woff = zp->z_size;
927		}
928		uio->uio_loffset = woff;
929	} else {
930		/*
931		 * Note that if the file block size will change as a result of
932		 * this write, then this range lock will lock the entire file
933		 * so that we can re-write the block safely.
934		 */
935		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
936	}
937
938	if (vn_rlimit_fsize(vp, uio, uio->uio_td)) {
939		zfs_range_unlock(rl);
940		ZFS_EXIT(zfsvfs);
941		return (EFBIG);
942	}
943
944	if (woff >= limit) {
945		zfs_range_unlock(rl);
946		ZFS_EXIT(zfsvfs);
947		return (SET_ERROR(EFBIG));
948	}
949
950	if ((woff + n) > limit || woff > (limit - n))
951		n = limit - woff;
952
953	/* Will this write extend the file length? */
954	write_eof = (woff + n > zp->z_size);
955
956	end_size = MAX(zp->z_size, woff + n);
957
958	/*
959	 * Write the file in reasonable size chunks.  Each chunk is written
960	 * in a separate transaction; this keeps the intent log records small
961	 * and allows us to do more fine-grained space accounting.
962	 */
963	while (n > 0) {
964		abuf = NULL;
965		woff = uio->uio_loffset;
966again:
967		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
968		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
969			if (abuf != NULL)
970				dmu_return_arcbuf(abuf);
971			error = SET_ERROR(EDQUOT);
972			break;
973		}
974
975		if (xuio && abuf == NULL) {
976			ASSERT(i_iov < iovcnt);
977			aiov = &iovp[i_iov];
978			abuf = dmu_xuio_arcbuf(xuio, i_iov);
979			dmu_xuio_clear(xuio, i_iov);
980			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
981			    iovec_t *, aiov, arc_buf_t *, abuf);
982			ASSERT((aiov->iov_base == abuf->b_data) ||
983			    ((char *)aiov->iov_base - (char *)abuf->b_data +
984			    aiov->iov_len == arc_buf_size(abuf)));
985			i_iov++;
986		} else if (abuf == NULL && n >= max_blksz &&
987		    woff >= zp->z_size &&
988		    P2PHASE(woff, max_blksz) == 0 &&
989		    zp->z_blksz == max_blksz) {
990			/*
991			 * This write covers a full block.  "Borrow" a buffer
992			 * from the dmu so that we can fill it before we enter
993			 * a transaction.  This avoids the possibility of
994			 * holding up the transaction if the data copy hangs
995			 * up on a pagefault (e.g., from an NFS server mapping).
996			 */
997			size_t cbytes;
998
999			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
1000			    max_blksz);
1001			ASSERT(abuf != NULL);
1002			ASSERT(arc_buf_size(abuf) == max_blksz);
1003			if (error = uiocopy(abuf->b_data, max_blksz,
1004			    UIO_WRITE, uio, &cbytes)) {
1005				dmu_return_arcbuf(abuf);
1006				break;
1007			}
1008			ASSERT(cbytes == max_blksz);
1009		}
1010
1011		/*
1012		 * Start a transaction.
1013		 */
1014		tx = dmu_tx_create(zfsvfs->z_os);
1015		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1016		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
1017		zfs_sa_upgrade_txholds(tx, zp);
1018		error = dmu_tx_assign(tx, TXG_NOWAIT);
1019		if (error) {
1020			if (error == ERESTART) {
1021				dmu_tx_wait(tx);
1022				dmu_tx_abort(tx);
1023				goto again;
1024			}
1025			dmu_tx_abort(tx);
1026			if (abuf != NULL)
1027				dmu_return_arcbuf(abuf);
1028			break;
1029		}
1030
1031		/*
1032		 * If zfs_range_lock() over-locked we grow the blocksize
1033		 * and then reduce the lock range.  This will only happen
1034		 * on the first iteration since zfs_range_reduce() will
1035		 * shrink down r_len to the appropriate size.
1036		 */
1037		if (rl->r_len == UINT64_MAX) {
1038			uint64_t new_blksz;
1039
1040			if (zp->z_blksz > max_blksz) {
1041				ASSERT(!ISP2(zp->z_blksz));
1042				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
1043			} else {
1044				new_blksz = MIN(end_size, max_blksz);
1045			}
1046			zfs_grow_blocksize(zp, new_blksz, tx);
1047			zfs_range_reduce(rl, woff, n);
1048		}
1049
1050		/*
1051		 * XXX - should we really limit each write to z_max_blksz?
1052		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
1053		 */
1054		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
1055
1056		if (woff + nbytes > zp->z_size)
1057			vnode_pager_setsize(vp, woff + nbytes);
1058
1059		if (abuf == NULL) {
1060			tx_bytes = uio->uio_resid;
1061			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
1062			    uio, nbytes, tx);
1063			tx_bytes -= uio->uio_resid;
1064		} else {
1065			tx_bytes = nbytes;
1066			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
1067			/*
1068			 * If this is not a full block write, but we are
1069			 * extending the file past EOF and this data starts
1070			 * block-aligned, use assign_arcbuf().  Otherwise,
1071			 * write via dmu_write().
1072			 */
1073			if (tx_bytes < max_blksz && (!write_eof ||
1074			    aiov->iov_base != abuf->b_data)) {
1075				ASSERT(xuio);
1076				dmu_write(zfsvfs->z_os, zp->z_id, woff,
1077				    aiov->iov_len, aiov->iov_base, tx);
1078				dmu_return_arcbuf(abuf);
1079				xuio_stat_wbuf_copied();
1080			} else {
1081				ASSERT(xuio || tx_bytes == max_blksz);
1082				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
1083				    woff, abuf, tx);
1084			}
1085			ASSERT(tx_bytes <= uio->uio_resid);
1086			uioskip(uio, tx_bytes);
1087		}
1088		if (tx_bytes && vn_has_cached_data(vp)) {
1089			update_pages(vp, woff, tx_bytes, zfsvfs->z_os,
1090			    zp->z_id, uio->uio_segflg, tx);
1091		}
1092
1093		/*
1094		 * If we made no progress, we're done.  If we made even
1095		 * partial progress, update the znode and ZIL accordingly.
1096		 */
1097		if (tx_bytes == 0) {
1098			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
1099			    (void *)&zp->z_size, sizeof (uint64_t), tx);
1100			dmu_tx_commit(tx);
1101			ASSERT(error != 0);
1102			break;
1103		}
1104
1105		/*
1106		 * Clear Set-UID/Set-GID bits on successful write if not
1107		 * privileged and at least one of the excute bits is set.
1108		 *
1109		 * It would be nice to to this after all writes have
1110		 * been done, but that would still expose the ISUID/ISGID
1111		 * to another app after the partial write is committed.
1112		 *
1113		 * Note: we don't call zfs_fuid_map_id() here because
1114		 * user 0 is not an ephemeral uid.
1115		 */
1116		mutex_enter(&zp->z_acl_lock);
1117		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
1118		    (S_IXUSR >> 6))) != 0 &&
1119		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
1120		    secpolicy_vnode_setid_retain(vp, cr,
1121		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
1122			uint64_t newmode;
1123			zp->z_mode &= ~(S_ISUID | S_ISGID);
1124			newmode = zp->z_mode;
1125			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
1126			    (void *)&newmode, sizeof (uint64_t), tx);
1127		}
1128		mutex_exit(&zp->z_acl_lock);
1129
1130		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
1131		    B_TRUE);
1132
1133		/*
1134		 * Update the file size (zp_size) if it has changed;
1135		 * account for possible concurrent updates.
1136		 */
1137		while ((end_size = zp->z_size) < uio->uio_loffset) {
1138			(void) atomic_cas_64(&zp->z_size, end_size,
1139			    uio->uio_loffset);
1140			ASSERT(error == 0);
1141		}
1142		/*
1143		 * If we are replaying and eof is non zero then force
1144		 * the file size to the specified eof. Note, there's no
1145		 * concurrency during replay.
1146		 */
1147		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
1148			zp->z_size = zfsvfs->z_replay_eof;
1149
1150		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1151
1152		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
1153		dmu_tx_commit(tx);
1154
1155		if (error != 0)
1156			break;
1157		ASSERT(tx_bytes == nbytes);
1158		n -= nbytes;
1159
1160#ifdef sun
1161		if (!xuio && n > 0)
1162			uio_prefaultpages(MIN(n, max_blksz), uio);
1163#endif	/* sun */
1164	}
1165
1166	zfs_range_unlock(rl);
1167
1168	/*
1169	 * If we're in replay mode, or we made no progress, return error.
1170	 * Otherwise, it's at least a partial write, so it's successful.
1171	 */
1172	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1173		ZFS_EXIT(zfsvfs);
1174		return (error);
1175	}
1176
1177	if (ioflag & (FSYNC | FDSYNC) ||
1178	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1179		zil_commit(zilog, zp->z_id);
1180
1181	ZFS_EXIT(zfsvfs);
1182	return (0);
1183}
1184
1185void
1186zfs_get_done(zgd_t *zgd, int error)
1187{
1188	znode_t *zp = zgd->zgd_private;
1189	objset_t *os = zp->z_zfsvfs->z_os;
1190
1191	if (zgd->zgd_db)
1192		dmu_buf_rele(zgd->zgd_db, zgd);
1193
1194	zfs_range_unlock(zgd->zgd_rl);
1195
1196	/*
1197	 * Release the vnode asynchronously as we currently have the
1198	 * txg stopped from syncing.
1199	 */
1200	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1201
1202	if (error == 0 && zgd->zgd_bp)
1203		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1204
1205	kmem_free(zgd, sizeof (zgd_t));
1206}
1207
1208#ifdef DEBUG
1209static int zil_fault_io = 0;
1210#endif
1211
1212/*
1213 * Get data to generate a TX_WRITE intent log record.
1214 */
1215int
1216zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1217{
1218	zfsvfs_t *zfsvfs = arg;
1219	objset_t *os = zfsvfs->z_os;
1220	znode_t *zp;
1221	uint64_t object = lr->lr_foid;
1222	uint64_t offset = lr->lr_offset;
1223	uint64_t size = lr->lr_length;
1224	blkptr_t *bp = &lr->lr_blkptr;
1225	dmu_buf_t *db;
1226	zgd_t *zgd;
1227	int error = 0;
1228
1229	ASSERT(zio != NULL);
1230	ASSERT(size != 0);
1231
1232	/*
1233	 * Nothing to do if the file has been removed
1234	 */
1235	if (zfs_zget(zfsvfs, object, &zp) != 0)
1236		return (SET_ERROR(ENOENT));
1237	if (zp->z_unlinked) {
1238		/*
1239		 * Release the vnode asynchronously as we currently have the
1240		 * txg stopped from syncing.
1241		 */
1242		VN_RELE_ASYNC(ZTOV(zp),
1243		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1244		return (SET_ERROR(ENOENT));
1245	}
1246
1247	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1248	zgd->zgd_zilog = zfsvfs->z_log;
1249	zgd->zgd_private = zp;
1250
1251	/*
1252	 * Write records come in two flavors: immediate and indirect.
1253	 * For small writes it's cheaper to store the data with the
1254	 * log record (immediate); for large writes it's cheaper to
1255	 * sync the data and get a pointer to it (indirect) so that
1256	 * we don't have to write the data twice.
1257	 */
1258	if (buf != NULL) { /* immediate write */
1259		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1260		/* test for truncation needs to be done while range locked */
1261		if (offset >= zp->z_size) {
1262			error = SET_ERROR(ENOENT);
1263		} else {
1264			error = dmu_read(os, object, offset, size, buf,
1265			    DMU_READ_NO_PREFETCH);
1266		}
1267		ASSERT(error == 0 || error == ENOENT);
1268	} else { /* indirect write */
1269		/*
1270		 * Have to lock the whole block to ensure when it's
1271		 * written out and it's checksum is being calculated
1272		 * that no one can change the data. We need to re-check
1273		 * blocksize after we get the lock in case it's changed!
1274		 */
1275		for (;;) {
1276			uint64_t blkoff;
1277			size = zp->z_blksz;
1278			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1279			offset -= blkoff;
1280			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1281			    RL_READER);
1282			if (zp->z_blksz == size)
1283				break;
1284			offset += blkoff;
1285			zfs_range_unlock(zgd->zgd_rl);
1286		}
1287		/* test for truncation needs to be done while range locked */
1288		if (lr->lr_offset >= zp->z_size)
1289			error = SET_ERROR(ENOENT);
1290#ifdef DEBUG
1291		if (zil_fault_io) {
1292			error = SET_ERROR(EIO);
1293			zil_fault_io = 0;
1294		}
1295#endif
1296		if (error == 0)
1297			error = dmu_buf_hold(os, object, offset, zgd, &db,
1298			    DMU_READ_NO_PREFETCH);
1299
1300		if (error == 0) {
1301			blkptr_t *obp = dmu_buf_get_blkptr(db);
1302			if (obp) {
1303				ASSERT(BP_IS_HOLE(bp));
1304				*bp = *obp;
1305			}
1306
1307			zgd->zgd_db = db;
1308			zgd->zgd_bp = bp;
1309
1310			ASSERT(db->db_offset == offset);
1311			ASSERT(db->db_size == size);
1312
1313			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1314			    zfs_get_done, zgd);
1315			ASSERT(error || lr->lr_length <= zp->z_blksz);
1316
1317			/*
1318			 * On success, we need to wait for the write I/O
1319			 * initiated by dmu_sync() to complete before we can
1320			 * release this dbuf.  We will finish everything up
1321			 * in the zfs_get_done() callback.
1322			 */
1323			if (error == 0)
1324				return (0);
1325
1326			if (error == EALREADY) {
1327				lr->lr_common.lrc_txtype = TX_WRITE2;
1328				error = 0;
1329			}
1330		}
1331	}
1332
1333	zfs_get_done(zgd, error);
1334
1335	return (error);
1336}
1337
1338/*ARGSUSED*/
1339static int
1340zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1341    caller_context_t *ct)
1342{
1343	znode_t *zp = VTOZ(vp);
1344	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1345	int error;
1346
1347	ZFS_ENTER(zfsvfs);
1348	ZFS_VERIFY_ZP(zp);
1349
1350	if (flag & V_ACE_MASK)
1351		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1352	else
1353		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1354
1355	ZFS_EXIT(zfsvfs);
1356	return (error);
1357}
1358
1359/*
1360 * If vnode is for a device return a specfs vnode instead.
1361 */
1362static int
1363specvp_check(vnode_t **vpp, cred_t *cr)
1364{
1365	int error = 0;
1366
1367	if (IS_DEVVP(*vpp)) {
1368		struct vnode *svp;
1369
1370		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1371		VN_RELE(*vpp);
1372		if (svp == NULL)
1373			error = SET_ERROR(ENOSYS);
1374		*vpp = svp;
1375	}
1376	return (error);
1377}
1378
1379
1380/*
1381 * Lookup an entry in a directory, or an extended attribute directory.
1382 * If it exists, return a held vnode reference for it.
1383 *
1384 *	IN:	dvp	- vnode of directory to search.
1385 *		nm	- name of entry to lookup.
1386 *		pnp	- full pathname to lookup [UNUSED].
1387 *		flags	- LOOKUP_XATTR set if looking for an attribute.
1388 *		rdir	- root directory vnode [UNUSED].
1389 *		cr	- credentials of caller.
1390 *		ct	- caller context
1391 *		direntflags - directory lookup flags
1392 *		realpnp - returned pathname.
1393 *
1394 *	OUT:	vpp	- vnode of located entry, NULL if not found.
1395 *
1396 *	RETURN:	0 on success, error code on failure.
1397 *
1398 * Timestamps:
1399 *	NA
1400 */
1401/* ARGSUSED */
1402static int
1403zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct componentname *cnp,
1404    int nameiop, cred_t *cr, kthread_t *td, int flags)
1405{
1406	znode_t *zdp = VTOZ(dvp);
1407	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1408	int	error = 0;
1409	int *direntflags = NULL;
1410	void *realpnp = NULL;
1411
1412	/* fast path */
1413	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1414
1415		if (dvp->v_type != VDIR) {
1416			return (SET_ERROR(ENOTDIR));
1417		} else if (zdp->z_sa_hdl == NULL) {
1418			return (SET_ERROR(EIO));
1419		}
1420
1421		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1422			error = zfs_fastaccesschk_execute(zdp, cr);
1423			if (!error) {
1424				*vpp = dvp;
1425				VN_HOLD(*vpp);
1426				return (0);
1427			}
1428			return (error);
1429		} else {
1430			vnode_t *tvp = dnlc_lookup(dvp, nm);
1431
1432			if (tvp) {
1433				error = zfs_fastaccesschk_execute(zdp, cr);
1434				if (error) {
1435					VN_RELE(tvp);
1436					return (error);
1437				}
1438				if (tvp == DNLC_NO_VNODE) {
1439					VN_RELE(tvp);
1440					return (SET_ERROR(ENOENT));
1441				} else {
1442					*vpp = tvp;
1443					return (specvp_check(vpp, cr));
1444				}
1445			}
1446		}
1447	}
1448
1449	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1450
1451	ZFS_ENTER(zfsvfs);
1452	ZFS_VERIFY_ZP(zdp);
1453
1454	*vpp = NULL;
1455
1456	if (flags & LOOKUP_XATTR) {
1457#ifdef TODO
1458		/*
1459		 * If the xattr property is off, refuse the lookup request.
1460		 */
1461		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1462			ZFS_EXIT(zfsvfs);
1463			return (SET_ERROR(EINVAL));
1464		}
1465#endif
1466
1467		/*
1468		 * We don't allow recursive attributes..
1469		 * Maybe someday we will.
1470		 */
1471		if (zdp->z_pflags & ZFS_XATTR) {
1472			ZFS_EXIT(zfsvfs);
1473			return (SET_ERROR(EINVAL));
1474		}
1475
1476		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1477			ZFS_EXIT(zfsvfs);
1478			return (error);
1479		}
1480
1481		/*
1482		 * Do we have permission to get into attribute directory?
1483		 */
1484
1485		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1486		    B_FALSE, cr)) {
1487			VN_RELE(*vpp);
1488			*vpp = NULL;
1489		}
1490
1491		ZFS_EXIT(zfsvfs);
1492		return (error);
1493	}
1494
1495	if (dvp->v_type != VDIR) {
1496		ZFS_EXIT(zfsvfs);
1497		return (SET_ERROR(ENOTDIR));
1498	}
1499
1500	/*
1501	 * Check accessibility of directory.
1502	 */
1503
1504	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1505		ZFS_EXIT(zfsvfs);
1506		return (error);
1507	}
1508
1509	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1510	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1511		ZFS_EXIT(zfsvfs);
1512		return (SET_ERROR(EILSEQ));
1513	}
1514
1515	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1516	if (error == 0)
1517		error = specvp_check(vpp, cr);
1518
1519	/* Translate errors and add SAVENAME when needed. */
1520	if (cnp->cn_flags & ISLASTCN) {
1521		switch (nameiop) {
1522		case CREATE:
1523		case RENAME:
1524			if (error == ENOENT) {
1525				error = EJUSTRETURN;
1526				cnp->cn_flags |= SAVENAME;
1527				break;
1528			}
1529			/* FALLTHROUGH */
1530		case DELETE:
1531			if (error == 0)
1532				cnp->cn_flags |= SAVENAME;
1533			break;
1534		}
1535	}
1536	if (error == 0 && (nm[0] != '.' || nm[1] != '\0')) {
1537		int ltype = 0;
1538
1539		if (cnp->cn_flags & ISDOTDOT) {
1540			ltype = VOP_ISLOCKED(dvp);
1541			VOP_UNLOCK(dvp, 0);
1542		}
1543		ZFS_EXIT(zfsvfs);
1544		error = vn_lock(*vpp, cnp->cn_lkflags);
1545		if (cnp->cn_flags & ISDOTDOT)
1546			vn_lock(dvp, ltype | LK_RETRY);
1547		if (error != 0) {
1548			VN_RELE(*vpp);
1549			*vpp = NULL;
1550			return (error);
1551		}
1552	} else {
1553		ZFS_EXIT(zfsvfs);
1554	}
1555
1556#ifdef FREEBSD_NAMECACHE
1557	/*
1558	 * Insert name into cache (as non-existent) if appropriate.
1559	 */
1560	if (error == ENOENT && (cnp->cn_flags & MAKEENTRY) && nameiop != CREATE)
1561		cache_enter(dvp, *vpp, cnp);
1562	/*
1563	 * Insert name into cache if appropriate.
1564	 */
1565	if (error == 0 && (cnp->cn_flags & MAKEENTRY)) {
1566		if (!(cnp->cn_flags & ISLASTCN) ||
1567		    (nameiop != DELETE && nameiop != RENAME)) {
1568			cache_enter(dvp, *vpp, cnp);
1569		}
1570	}
1571#endif
1572
1573	return (error);
1574}
1575
1576/*
1577 * Attempt to create a new entry in a directory.  If the entry
1578 * already exists, truncate the file if permissible, else return
1579 * an error.  Return the vp of the created or trunc'd file.
1580 *
1581 *	IN:	dvp	- vnode of directory to put new file entry in.
1582 *		name	- name of new file entry.
1583 *		vap	- attributes of new file.
1584 *		excl	- flag indicating exclusive or non-exclusive mode.
1585 *		mode	- mode to open file with.
1586 *		cr	- credentials of caller.
1587 *		flag	- large file flag [UNUSED].
1588 *		ct	- caller context
1589 *		vsecp 	- ACL to be set
1590 *
1591 *	OUT:	vpp	- vnode of created or trunc'd entry.
1592 *
1593 *	RETURN:	0 on success, error code on failure.
1594 *
1595 * Timestamps:
1596 *	dvp - ctime|mtime updated if new entry created
1597 *	 vp - ctime|mtime always, atime if new
1598 */
1599
1600/* ARGSUSED */
1601static int
1602zfs_create(vnode_t *dvp, char *name, vattr_t *vap, int excl, int mode,
1603    vnode_t **vpp, cred_t *cr, kthread_t *td)
1604{
1605	znode_t		*zp, *dzp = VTOZ(dvp);
1606	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1607	zilog_t		*zilog;
1608	objset_t	*os;
1609	zfs_dirlock_t	*dl;
1610	dmu_tx_t	*tx;
1611	int		error;
1612	ksid_t		*ksid;
1613	uid_t		uid;
1614	gid_t		gid = crgetgid(cr);
1615	zfs_acl_ids_t   acl_ids;
1616	boolean_t	fuid_dirtied;
1617	boolean_t	have_acl = B_FALSE;
1618	void		*vsecp = NULL;
1619	int		flag = 0;
1620
1621	/*
1622	 * If we have an ephemeral id, ACL, or XVATTR then
1623	 * make sure file system is at proper version
1624	 */
1625
1626	ksid = crgetsid(cr, KSID_OWNER);
1627	if (ksid)
1628		uid = ksid_getid(ksid);
1629	else
1630		uid = crgetuid(cr);
1631
1632	if (zfsvfs->z_use_fuids == B_FALSE &&
1633	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1634	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1635		return (SET_ERROR(EINVAL));
1636
1637	ZFS_ENTER(zfsvfs);
1638	ZFS_VERIFY_ZP(dzp);
1639	os = zfsvfs->z_os;
1640	zilog = zfsvfs->z_log;
1641
1642	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1643	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1644		ZFS_EXIT(zfsvfs);
1645		return (SET_ERROR(EILSEQ));
1646	}
1647
1648	if (vap->va_mask & AT_XVATTR) {
1649		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
1650		    crgetuid(cr), cr, vap->va_type)) != 0) {
1651			ZFS_EXIT(zfsvfs);
1652			return (error);
1653		}
1654	}
1655top:
1656	*vpp = NULL;
1657
1658	if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr))
1659		vap->va_mode &= ~S_ISVTX;
1660
1661	if (*name == '\0') {
1662		/*
1663		 * Null component name refers to the directory itself.
1664		 */
1665		VN_HOLD(dvp);
1666		zp = dzp;
1667		dl = NULL;
1668		error = 0;
1669	} else {
1670		/* possible VN_HOLD(zp) */
1671		int zflg = 0;
1672
1673		if (flag & FIGNORECASE)
1674			zflg |= ZCILOOK;
1675
1676		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1677		    NULL, NULL);
1678		if (error) {
1679			if (have_acl)
1680				zfs_acl_ids_free(&acl_ids);
1681			if (strcmp(name, "..") == 0)
1682				error = SET_ERROR(EISDIR);
1683			ZFS_EXIT(zfsvfs);
1684			return (error);
1685		}
1686	}
1687
1688	if (zp == NULL) {
1689		uint64_t txtype;
1690
1691		/*
1692		 * Create a new file object and update the directory
1693		 * to reference it.
1694		 */
1695		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1696			if (have_acl)
1697				zfs_acl_ids_free(&acl_ids);
1698			goto out;
1699		}
1700
1701		/*
1702		 * We only support the creation of regular files in
1703		 * extended attribute directories.
1704		 */
1705
1706		if ((dzp->z_pflags & ZFS_XATTR) &&
1707		    (vap->va_type != VREG)) {
1708			if (have_acl)
1709				zfs_acl_ids_free(&acl_ids);
1710			error = SET_ERROR(EINVAL);
1711			goto out;
1712		}
1713
1714		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1715		    cr, vsecp, &acl_ids)) != 0)
1716			goto out;
1717		have_acl = B_TRUE;
1718
1719		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1720			zfs_acl_ids_free(&acl_ids);
1721			error = SET_ERROR(EDQUOT);
1722			goto out;
1723		}
1724
1725		tx = dmu_tx_create(os);
1726
1727		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1728		    ZFS_SA_BASE_ATTR_SIZE);
1729
1730		fuid_dirtied = zfsvfs->z_fuid_dirty;
1731		if (fuid_dirtied)
1732			zfs_fuid_txhold(zfsvfs, tx);
1733		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1734		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1735		if (!zfsvfs->z_use_sa &&
1736		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1737			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1738			    0, acl_ids.z_aclp->z_acl_bytes);
1739		}
1740		error = dmu_tx_assign(tx, TXG_NOWAIT);
1741		if (error) {
1742			zfs_dirent_unlock(dl);
1743			if (error == ERESTART) {
1744				dmu_tx_wait(tx);
1745				dmu_tx_abort(tx);
1746				goto top;
1747			}
1748			zfs_acl_ids_free(&acl_ids);
1749			dmu_tx_abort(tx);
1750			ZFS_EXIT(zfsvfs);
1751			return (error);
1752		}
1753		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1754
1755		if (fuid_dirtied)
1756			zfs_fuid_sync(zfsvfs, tx);
1757
1758		(void) zfs_link_create(dl, zp, tx, ZNEW);
1759		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1760		if (flag & FIGNORECASE)
1761			txtype |= TX_CI;
1762		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1763		    vsecp, acl_ids.z_fuidp, vap);
1764		zfs_acl_ids_free(&acl_ids);
1765		dmu_tx_commit(tx);
1766	} else {
1767		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1768
1769		if (have_acl)
1770			zfs_acl_ids_free(&acl_ids);
1771		have_acl = B_FALSE;
1772
1773		/*
1774		 * A directory entry already exists for this name.
1775		 */
1776		/*
1777		 * Can't truncate an existing file if in exclusive mode.
1778		 */
1779		if (excl == EXCL) {
1780			error = SET_ERROR(EEXIST);
1781			goto out;
1782		}
1783		/*
1784		 * Can't open a directory for writing.
1785		 */
1786		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1787			error = SET_ERROR(EISDIR);
1788			goto out;
1789		}
1790		/*
1791		 * Verify requested access to file.
1792		 */
1793		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1794			goto out;
1795		}
1796
1797		mutex_enter(&dzp->z_lock);
1798		dzp->z_seq++;
1799		mutex_exit(&dzp->z_lock);
1800
1801		/*
1802		 * Truncate regular files if requested.
1803		 */
1804		if ((ZTOV(zp)->v_type == VREG) &&
1805		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1806			/* we can't hold any locks when calling zfs_freesp() */
1807			zfs_dirent_unlock(dl);
1808			dl = NULL;
1809			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1810			if (error == 0) {
1811				vnevent_create(ZTOV(zp), ct);
1812			}
1813		}
1814	}
1815out:
1816	if (dl)
1817		zfs_dirent_unlock(dl);
1818
1819	if (error) {
1820		if (zp)
1821			VN_RELE(ZTOV(zp));
1822	} else {
1823		*vpp = ZTOV(zp);
1824		error = specvp_check(vpp, cr);
1825	}
1826
1827	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1828		zil_commit(zilog, 0);
1829
1830	ZFS_EXIT(zfsvfs);
1831	return (error);
1832}
1833
1834/*
1835 * Remove an entry from a directory.
1836 *
1837 *	IN:	dvp	- vnode of directory to remove entry from.
1838 *		name	- name of entry to remove.
1839 *		cr	- credentials of caller.
1840 *		ct	- caller context
1841 *		flags	- case flags
1842 *
1843 *	RETURN:	0 on success, error code on failure.
1844 *
1845 * Timestamps:
1846 *	dvp - ctime|mtime
1847 *	 vp - ctime (if nlink > 0)
1848 */
1849
1850uint64_t null_xattr = 0;
1851
1852/*ARGSUSED*/
1853static int
1854zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1855    int flags)
1856{
1857	znode_t		*zp, *dzp = VTOZ(dvp);
1858	znode_t		*xzp;
1859	vnode_t		*vp;
1860	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1861	zilog_t		*zilog;
1862	uint64_t	acl_obj, xattr_obj;
1863	uint64_t 	xattr_obj_unlinked = 0;
1864	uint64_t	obj = 0;
1865	zfs_dirlock_t	*dl;
1866	dmu_tx_t	*tx;
1867	boolean_t	may_delete_now, delete_now = FALSE;
1868	boolean_t	unlinked, toobig = FALSE;
1869	uint64_t	txtype;
1870	pathname_t	*realnmp = NULL;
1871	pathname_t	realnm;
1872	int		error;
1873	int		zflg = ZEXISTS;
1874
1875	ZFS_ENTER(zfsvfs);
1876	ZFS_VERIFY_ZP(dzp);
1877	zilog = zfsvfs->z_log;
1878
1879	if (flags & FIGNORECASE) {
1880		zflg |= ZCILOOK;
1881		pn_alloc(&realnm);
1882		realnmp = &realnm;
1883	}
1884
1885top:
1886	xattr_obj = 0;
1887	xzp = NULL;
1888	/*
1889	 * Attempt to lock directory; fail if entry doesn't exist.
1890	 */
1891	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1892	    NULL, realnmp)) {
1893		if (realnmp)
1894			pn_free(realnmp);
1895		ZFS_EXIT(zfsvfs);
1896		return (error);
1897	}
1898
1899	vp = ZTOV(zp);
1900
1901	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1902		goto out;
1903	}
1904
1905	/*
1906	 * Need to use rmdir for removing directories.
1907	 */
1908	if (vp->v_type == VDIR) {
1909		error = SET_ERROR(EPERM);
1910		goto out;
1911	}
1912
1913	vnevent_remove(vp, dvp, name, ct);
1914
1915	if (realnmp)
1916		dnlc_remove(dvp, realnmp->pn_buf);
1917	else
1918		dnlc_remove(dvp, name);
1919
1920	VI_LOCK(vp);
1921	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1922	VI_UNLOCK(vp);
1923
1924	/*
1925	 * We may delete the znode now, or we may put it in the unlinked set;
1926	 * it depends on whether we're the last link, and on whether there are
1927	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1928	 * allow for either case.
1929	 */
1930	obj = zp->z_id;
1931	tx = dmu_tx_create(zfsvfs->z_os);
1932	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1933	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1934	zfs_sa_upgrade_txholds(tx, zp);
1935	zfs_sa_upgrade_txholds(tx, dzp);
1936	if (may_delete_now) {
1937		toobig =
1938		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1939		/* if the file is too big, only hold_free a token amount */
1940		dmu_tx_hold_free(tx, zp->z_id, 0,
1941		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1942	}
1943
1944	/* are there any extended attributes? */
1945	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1946	    &xattr_obj, sizeof (xattr_obj));
1947	if (error == 0 && xattr_obj) {
1948		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1949		ASSERT0(error);
1950		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1951		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1952	}
1953
1954	mutex_enter(&zp->z_lock);
1955	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1956		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1957	mutex_exit(&zp->z_lock);
1958
1959	/* charge as an update -- would be nice not to charge at all */
1960	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1961
1962	error = dmu_tx_assign(tx, TXG_NOWAIT);
1963	if (error) {
1964		zfs_dirent_unlock(dl);
1965		VN_RELE(vp);
1966		if (xzp)
1967			VN_RELE(ZTOV(xzp));
1968		if (error == ERESTART) {
1969			dmu_tx_wait(tx);
1970			dmu_tx_abort(tx);
1971			goto top;
1972		}
1973		if (realnmp)
1974			pn_free(realnmp);
1975		dmu_tx_abort(tx);
1976		ZFS_EXIT(zfsvfs);
1977		return (error);
1978	}
1979
1980	/*
1981	 * Remove the directory entry.
1982	 */
1983	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1984
1985	if (error) {
1986		dmu_tx_commit(tx);
1987		goto out;
1988	}
1989
1990	if (unlinked) {
1991
1992		/*
1993		 * Hold z_lock so that we can make sure that the ACL obj
1994		 * hasn't changed.  Could have been deleted due to
1995		 * zfs_sa_upgrade().
1996		 */
1997		mutex_enter(&zp->z_lock);
1998		VI_LOCK(vp);
1999		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2000		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
2001		delete_now = may_delete_now && !toobig &&
2002		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
2003		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
2004		    acl_obj;
2005		VI_UNLOCK(vp);
2006	}
2007
2008	if (delete_now) {
2009#ifdef __FreeBSD__
2010		panic("zfs_remove: delete_now branch taken");
2011#endif
2012		if (xattr_obj_unlinked) {
2013			ASSERT3U(xzp->z_links, ==, 2);
2014			mutex_enter(&xzp->z_lock);
2015			xzp->z_unlinked = 1;
2016			xzp->z_links = 0;
2017			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
2018			    &xzp->z_links, sizeof (xzp->z_links), tx);
2019			ASSERT3U(error,  ==,  0);
2020			mutex_exit(&xzp->z_lock);
2021			zfs_unlinked_add(xzp, tx);
2022
2023			if (zp->z_is_sa)
2024				error = sa_remove(zp->z_sa_hdl,
2025				    SA_ZPL_XATTR(zfsvfs), tx);
2026			else
2027				error = sa_update(zp->z_sa_hdl,
2028				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
2029				    sizeof (uint64_t), tx);
2030			ASSERT0(error);
2031		}
2032		VI_LOCK(vp);
2033		vp->v_count--;
2034		ASSERT0(vp->v_count);
2035		VI_UNLOCK(vp);
2036		mutex_exit(&zp->z_lock);
2037		zfs_znode_delete(zp, tx);
2038	} else if (unlinked) {
2039		mutex_exit(&zp->z_lock);
2040		zfs_unlinked_add(zp, tx);
2041#ifdef __FreeBSD__
2042		vp->v_vflag |= VV_NOSYNC;
2043#endif
2044	}
2045
2046	txtype = TX_REMOVE;
2047	if (flags & FIGNORECASE)
2048		txtype |= TX_CI;
2049	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
2050
2051	dmu_tx_commit(tx);
2052out:
2053	if (realnmp)
2054		pn_free(realnmp);
2055
2056	zfs_dirent_unlock(dl);
2057
2058	if (!delete_now)
2059		VN_RELE(vp);
2060	if (xzp)
2061		VN_RELE(ZTOV(xzp));
2062
2063	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2064		zil_commit(zilog, 0);
2065
2066	ZFS_EXIT(zfsvfs);
2067	return (error);
2068}
2069
2070/*
2071 * Create a new directory and insert it into dvp using the name
2072 * provided.  Return a pointer to the inserted directory.
2073 *
2074 *	IN:	dvp	- vnode of directory to add subdir to.
2075 *		dirname	- name of new directory.
2076 *		vap	- attributes of new directory.
2077 *		cr	- credentials of caller.
2078 *		ct	- caller context
2079 *		flags	- case flags
2080 *		vsecp	- ACL to be set
2081 *
2082 *	OUT:	vpp	- vnode of created directory.
2083 *
2084 *	RETURN:	0 on success, error code on failure.
2085 *
2086 * Timestamps:
2087 *	dvp - ctime|mtime updated
2088 *	 vp - ctime|mtime|atime updated
2089 */
2090/*ARGSUSED*/
2091static int
2092zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
2093    caller_context_t *ct, int flags, vsecattr_t *vsecp)
2094{
2095	znode_t		*zp, *dzp = VTOZ(dvp);
2096	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2097	zilog_t		*zilog;
2098	zfs_dirlock_t	*dl;
2099	uint64_t	txtype;
2100	dmu_tx_t	*tx;
2101	int		error;
2102	int		zf = ZNEW;
2103	ksid_t		*ksid;
2104	uid_t		uid;
2105	gid_t		gid = crgetgid(cr);
2106	zfs_acl_ids_t   acl_ids;
2107	boolean_t	fuid_dirtied;
2108
2109	ASSERT(vap->va_type == VDIR);
2110
2111	/*
2112	 * If we have an ephemeral id, ACL, or XVATTR then
2113	 * make sure file system is at proper version
2114	 */
2115
2116	ksid = crgetsid(cr, KSID_OWNER);
2117	if (ksid)
2118		uid = ksid_getid(ksid);
2119	else
2120		uid = crgetuid(cr);
2121	if (zfsvfs->z_use_fuids == B_FALSE &&
2122	    (vsecp || (vap->va_mask & AT_XVATTR) ||
2123	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
2124		return (SET_ERROR(EINVAL));
2125
2126	ZFS_ENTER(zfsvfs);
2127	ZFS_VERIFY_ZP(dzp);
2128	zilog = zfsvfs->z_log;
2129
2130	if (dzp->z_pflags & ZFS_XATTR) {
2131		ZFS_EXIT(zfsvfs);
2132		return (SET_ERROR(EINVAL));
2133	}
2134
2135	if (zfsvfs->z_utf8 && u8_validate(dirname,
2136	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2137		ZFS_EXIT(zfsvfs);
2138		return (SET_ERROR(EILSEQ));
2139	}
2140	if (flags & FIGNORECASE)
2141		zf |= ZCILOOK;
2142
2143	if (vap->va_mask & AT_XVATTR) {
2144		if ((error = secpolicy_xvattr(dvp, (xvattr_t *)vap,
2145		    crgetuid(cr), cr, vap->va_type)) != 0) {
2146			ZFS_EXIT(zfsvfs);
2147			return (error);
2148		}
2149	}
2150
2151	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
2152	    vsecp, &acl_ids)) != 0) {
2153		ZFS_EXIT(zfsvfs);
2154		return (error);
2155	}
2156	/*
2157	 * First make sure the new directory doesn't exist.
2158	 *
2159	 * Existence is checked first to make sure we don't return
2160	 * EACCES instead of EEXIST which can cause some applications
2161	 * to fail.
2162	 */
2163top:
2164	*vpp = NULL;
2165
2166	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
2167	    NULL, NULL)) {
2168		zfs_acl_ids_free(&acl_ids);
2169		ZFS_EXIT(zfsvfs);
2170		return (error);
2171	}
2172
2173	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
2174		zfs_acl_ids_free(&acl_ids);
2175		zfs_dirent_unlock(dl);
2176		ZFS_EXIT(zfsvfs);
2177		return (error);
2178	}
2179
2180	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
2181		zfs_acl_ids_free(&acl_ids);
2182		zfs_dirent_unlock(dl);
2183		ZFS_EXIT(zfsvfs);
2184		return (SET_ERROR(EDQUOT));
2185	}
2186
2187	/*
2188	 * Add a new entry to the directory.
2189	 */
2190	tx = dmu_tx_create(zfsvfs->z_os);
2191	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2192	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2193	fuid_dirtied = zfsvfs->z_fuid_dirty;
2194	if (fuid_dirtied)
2195		zfs_fuid_txhold(zfsvfs, tx);
2196	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2197		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2198		    acl_ids.z_aclp->z_acl_bytes);
2199	}
2200
2201	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2202	    ZFS_SA_BASE_ATTR_SIZE);
2203
2204	error = dmu_tx_assign(tx, TXG_NOWAIT);
2205	if (error) {
2206		zfs_dirent_unlock(dl);
2207		if (error == ERESTART) {
2208			dmu_tx_wait(tx);
2209			dmu_tx_abort(tx);
2210			goto top;
2211		}
2212		zfs_acl_ids_free(&acl_ids);
2213		dmu_tx_abort(tx);
2214		ZFS_EXIT(zfsvfs);
2215		return (error);
2216	}
2217
2218	/*
2219	 * Create new node.
2220	 */
2221	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2222
2223	if (fuid_dirtied)
2224		zfs_fuid_sync(zfsvfs, tx);
2225
2226	/*
2227	 * Now put new name in parent dir.
2228	 */
2229	(void) zfs_link_create(dl, zp, tx, ZNEW);
2230
2231	*vpp = ZTOV(zp);
2232
2233	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2234	if (flags & FIGNORECASE)
2235		txtype |= TX_CI;
2236	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2237	    acl_ids.z_fuidp, vap);
2238
2239	zfs_acl_ids_free(&acl_ids);
2240
2241	dmu_tx_commit(tx);
2242
2243	zfs_dirent_unlock(dl);
2244
2245	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2246		zil_commit(zilog, 0);
2247
2248	ZFS_EXIT(zfsvfs);
2249	return (0);
2250}
2251
2252/*
2253 * Remove a directory subdir entry.  If the current working
2254 * directory is the same as the subdir to be removed, the
2255 * remove will fail.
2256 *
2257 *	IN:	dvp	- vnode of directory to remove from.
2258 *		name	- name of directory to be removed.
2259 *		cwd	- vnode of current working directory.
2260 *		cr	- credentials of caller.
2261 *		ct	- caller context
2262 *		flags	- case flags
2263 *
2264 *	RETURN:	0 on success, error code on failure.
2265 *
2266 * Timestamps:
2267 *	dvp - ctime|mtime updated
2268 */
2269/*ARGSUSED*/
2270static int
2271zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2272    caller_context_t *ct, int flags)
2273{
2274	znode_t		*dzp = VTOZ(dvp);
2275	znode_t		*zp;
2276	vnode_t		*vp;
2277	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2278	zilog_t		*zilog;
2279	zfs_dirlock_t	*dl;
2280	dmu_tx_t	*tx;
2281	int		error;
2282	int		zflg = ZEXISTS;
2283
2284	ZFS_ENTER(zfsvfs);
2285	ZFS_VERIFY_ZP(dzp);
2286	zilog = zfsvfs->z_log;
2287
2288	if (flags & FIGNORECASE)
2289		zflg |= ZCILOOK;
2290top:
2291	zp = NULL;
2292
2293	/*
2294	 * Attempt to lock directory; fail if entry doesn't exist.
2295	 */
2296	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2297	    NULL, NULL)) {
2298		ZFS_EXIT(zfsvfs);
2299		return (error);
2300	}
2301
2302	vp = ZTOV(zp);
2303
2304	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2305		goto out;
2306	}
2307
2308	if (vp->v_type != VDIR) {
2309		error = SET_ERROR(ENOTDIR);
2310		goto out;
2311	}
2312
2313	if (vp == cwd) {
2314		error = SET_ERROR(EINVAL);
2315		goto out;
2316	}
2317
2318	vnevent_rmdir(vp, dvp, name, ct);
2319
2320	/*
2321	 * Grab a lock on the directory to make sure that noone is
2322	 * trying to add (or lookup) entries while we are removing it.
2323	 */
2324	rw_enter(&zp->z_name_lock, RW_WRITER);
2325
2326	/*
2327	 * Grab a lock on the parent pointer to make sure we play well
2328	 * with the treewalk and directory rename code.
2329	 */
2330	rw_enter(&zp->z_parent_lock, RW_WRITER);
2331
2332	tx = dmu_tx_create(zfsvfs->z_os);
2333	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2334	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2335	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2336	zfs_sa_upgrade_txholds(tx, zp);
2337	zfs_sa_upgrade_txholds(tx, dzp);
2338	error = dmu_tx_assign(tx, TXG_NOWAIT);
2339	if (error) {
2340		rw_exit(&zp->z_parent_lock);
2341		rw_exit(&zp->z_name_lock);
2342		zfs_dirent_unlock(dl);
2343		VN_RELE(vp);
2344		if (error == ERESTART) {
2345			dmu_tx_wait(tx);
2346			dmu_tx_abort(tx);
2347			goto top;
2348		}
2349		dmu_tx_abort(tx);
2350		ZFS_EXIT(zfsvfs);
2351		return (error);
2352	}
2353
2354#ifdef FREEBSD_NAMECACHE
2355	cache_purge(dvp);
2356#endif
2357
2358	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2359
2360	if (error == 0) {
2361		uint64_t txtype = TX_RMDIR;
2362		if (flags & FIGNORECASE)
2363			txtype |= TX_CI;
2364		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2365	}
2366
2367	dmu_tx_commit(tx);
2368
2369	rw_exit(&zp->z_parent_lock);
2370	rw_exit(&zp->z_name_lock);
2371#ifdef FREEBSD_NAMECACHE
2372	cache_purge(vp);
2373#endif
2374out:
2375	zfs_dirent_unlock(dl);
2376
2377	VN_RELE(vp);
2378
2379	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2380		zil_commit(zilog, 0);
2381
2382	ZFS_EXIT(zfsvfs);
2383	return (error);
2384}
2385
2386/*
2387 * Read as many directory entries as will fit into the provided
2388 * buffer from the given directory cursor position (specified in
2389 * the uio structure).
2390 *
2391 *	IN:	vp	- vnode of directory to read.
2392 *		uio	- structure supplying read location, range info,
2393 *			  and return buffer.
2394 *		cr	- credentials of caller.
2395 *		ct	- caller context
2396 *		flags	- case flags
2397 *
2398 *	OUT:	uio	- updated offset and range, buffer filled.
2399 *		eofp	- set to true if end-of-file detected.
2400 *
2401 *	RETURN:	0 on success, error code on failure.
2402 *
2403 * Timestamps:
2404 *	vp - atime updated
2405 *
2406 * Note that the low 4 bits of the cookie returned by zap is always zero.
2407 * This allows us to use the low range for "special" directory entries:
2408 * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2409 * we use the offset 2 for the '.zfs' directory.
2410 */
2411/* ARGSUSED */
2412static int
2413zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, int *ncookies, u_long **cookies)
2414{
2415	znode_t		*zp = VTOZ(vp);
2416	iovec_t		*iovp;
2417	edirent_t	*eodp;
2418	dirent64_t	*odp;
2419	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2420	objset_t	*os;
2421	caddr_t		outbuf;
2422	size_t		bufsize;
2423	zap_cursor_t	zc;
2424	zap_attribute_t	zap;
2425	uint_t		bytes_wanted;
2426	uint64_t	offset; /* must be unsigned; checks for < 1 */
2427	uint64_t	parent;
2428	int		local_eof;
2429	int		outcount;
2430	int		error;
2431	uint8_t		prefetch;
2432	boolean_t	check_sysattrs;
2433	uint8_t		type;
2434	int		ncooks;
2435	u_long		*cooks = NULL;
2436	int		flags = 0;
2437
2438	ZFS_ENTER(zfsvfs);
2439	ZFS_VERIFY_ZP(zp);
2440
2441	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2442	    &parent, sizeof (parent))) != 0) {
2443		ZFS_EXIT(zfsvfs);
2444		return (error);
2445	}
2446
2447	/*
2448	 * If we are not given an eof variable,
2449	 * use a local one.
2450	 */
2451	if (eofp == NULL)
2452		eofp = &local_eof;
2453
2454	/*
2455	 * Check for valid iov_len.
2456	 */
2457	if (uio->uio_iov->iov_len <= 0) {
2458		ZFS_EXIT(zfsvfs);
2459		return (SET_ERROR(EINVAL));
2460	}
2461
2462	/*
2463	 * Quit if directory has been removed (posix)
2464	 */
2465	if ((*eofp = zp->z_unlinked) != 0) {
2466		ZFS_EXIT(zfsvfs);
2467		return (0);
2468	}
2469
2470	error = 0;
2471	os = zfsvfs->z_os;
2472	offset = uio->uio_loffset;
2473	prefetch = zp->z_zn_prefetch;
2474
2475	/*
2476	 * Initialize the iterator cursor.
2477	 */
2478	if (offset <= 3) {
2479		/*
2480		 * Start iteration from the beginning of the directory.
2481		 */
2482		zap_cursor_init(&zc, os, zp->z_id);
2483	} else {
2484		/*
2485		 * The offset is a serialized cursor.
2486		 */
2487		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2488	}
2489
2490	/*
2491	 * Get space to change directory entries into fs independent format.
2492	 */
2493	iovp = uio->uio_iov;
2494	bytes_wanted = iovp->iov_len;
2495	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2496		bufsize = bytes_wanted;
2497		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2498		odp = (struct dirent64 *)outbuf;
2499	} else {
2500		bufsize = bytes_wanted;
2501		outbuf = NULL;
2502		odp = (struct dirent64 *)iovp->iov_base;
2503	}
2504	eodp = (struct edirent *)odp;
2505
2506	if (ncookies != NULL) {
2507		/*
2508		 * Minimum entry size is dirent size and 1 byte for a file name.
2509		 */
2510		ncooks = uio->uio_resid / (sizeof(struct dirent) - sizeof(((struct dirent *)NULL)->d_name) + 1);
2511		cooks = malloc(ncooks * sizeof(u_long), M_TEMP, M_WAITOK);
2512		*cookies = cooks;
2513		*ncookies = ncooks;
2514	}
2515	/*
2516	 * If this VFS supports the system attribute view interface; and
2517	 * we're looking at an extended attribute directory; and we care
2518	 * about normalization conflicts on this vfs; then we must check
2519	 * for normalization conflicts with the sysattr name space.
2520	 */
2521#ifdef TODO
2522	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2523	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2524	    (flags & V_RDDIR_ENTFLAGS);
2525#else
2526	check_sysattrs = 0;
2527#endif
2528
2529	/*
2530	 * Transform to file-system independent format
2531	 */
2532	outcount = 0;
2533	while (outcount < bytes_wanted) {
2534		ino64_t objnum;
2535		ushort_t reclen;
2536		off64_t *next = NULL;
2537
2538		/*
2539		 * Special case `.', `..', and `.zfs'.
2540		 */
2541		if (offset == 0) {
2542			(void) strcpy(zap.za_name, ".");
2543			zap.za_normalization_conflict = 0;
2544			objnum = zp->z_id;
2545			type = DT_DIR;
2546		} else if (offset == 1) {
2547			(void) strcpy(zap.za_name, "..");
2548			zap.za_normalization_conflict = 0;
2549			objnum = parent;
2550			type = DT_DIR;
2551		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2552			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2553			zap.za_normalization_conflict = 0;
2554			objnum = ZFSCTL_INO_ROOT;
2555			type = DT_DIR;
2556		} else {
2557			/*
2558			 * Grab next entry.
2559			 */
2560			if (error = zap_cursor_retrieve(&zc, &zap)) {
2561				if ((*eofp = (error == ENOENT)) != 0)
2562					break;
2563				else
2564					goto update;
2565			}
2566
2567			if (zap.za_integer_length != 8 ||
2568			    zap.za_num_integers != 1) {
2569				cmn_err(CE_WARN, "zap_readdir: bad directory "
2570				    "entry, obj = %lld, offset = %lld\n",
2571				    (u_longlong_t)zp->z_id,
2572				    (u_longlong_t)offset);
2573				error = SET_ERROR(ENXIO);
2574				goto update;
2575			}
2576
2577			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2578			/*
2579			 * MacOS X can extract the object type here such as:
2580			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2581			 */
2582			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2583
2584			if (check_sysattrs && !zap.za_normalization_conflict) {
2585#ifdef TODO
2586				zap.za_normalization_conflict =
2587				    xattr_sysattr_casechk(zap.za_name);
2588#else
2589				panic("%s:%u: TODO", __func__, __LINE__);
2590#endif
2591			}
2592		}
2593
2594		if (flags & V_RDDIR_ACCFILTER) {
2595			/*
2596			 * If we have no access at all, don't include
2597			 * this entry in the returned information
2598			 */
2599			znode_t	*ezp;
2600			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2601				goto skip_entry;
2602			if (!zfs_has_access(ezp, cr)) {
2603				VN_RELE(ZTOV(ezp));
2604				goto skip_entry;
2605			}
2606			VN_RELE(ZTOV(ezp));
2607		}
2608
2609		if (flags & V_RDDIR_ENTFLAGS)
2610			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2611		else
2612			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2613
2614		/*
2615		 * Will this entry fit in the buffer?
2616		 */
2617		if (outcount + reclen > bufsize) {
2618			/*
2619			 * Did we manage to fit anything in the buffer?
2620			 */
2621			if (!outcount) {
2622				error = SET_ERROR(EINVAL);
2623				goto update;
2624			}
2625			break;
2626		}
2627		if (flags & V_RDDIR_ENTFLAGS) {
2628			/*
2629			 * Add extended flag entry:
2630			 */
2631			eodp->ed_ino = objnum;
2632			eodp->ed_reclen = reclen;
2633			/* NOTE: ed_off is the offset for the *next* entry */
2634			next = &(eodp->ed_off);
2635			eodp->ed_eflags = zap.za_normalization_conflict ?
2636			    ED_CASE_CONFLICT : 0;
2637			(void) strncpy(eodp->ed_name, zap.za_name,
2638			    EDIRENT_NAMELEN(reclen));
2639			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2640		} else {
2641			/*
2642			 * Add normal entry:
2643			 */
2644			odp->d_ino = objnum;
2645			odp->d_reclen = reclen;
2646			odp->d_namlen = strlen(zap.za_name);
2647			(void) strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1);
2648			odp->d_type = type;
2649			odp = (dirent64_t *)((intptr_t)odp + reclen);
2650		}
2651		outcount += reclen;
2652
2653		ASSERT(outcount <= bufsize);
2654
2655		/* Prefetch znode */
2656		if (prefetch)
2657			dmu_prefetch(os, objnum, 0, 0);
2658
2659	skip_entry:
2660		/*
2661		 * Move to the next entry, fill in the previous offset.
2662		 */
2663		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2664			zap_cursor_advance(&zc);
2665			offset = zap_cursor_serialize(&zc);
2666		} else {
2667			offset += 1;
2668		}
2669
2670		if (cooks != NULL) {
2671			*cooks++ = offset;
2672			ncooks--;
2673			KASSERT(ncooks >= 0, ("ncookies=%d", ncooks));
2674		}
2675	}
2676	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2677
2678	/* Subtract unused cookies */
2679	if (ncookies != NULL)
2680		*ncookies -= ncooks;
2681
2682	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2683		iovp->iov_base += outcount;
2684		iovp->iov_len -= outcount;
2685		uio->uio_resid -= outcount;
2686	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2687		/*
2688		 * Reset the pointer.
2689		 */
2690		offset = uio->uio_loffset;
2691	}
2692
2693update:
2694	zap_cursor_fini(&zc);
2695	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2696		kmem_free(outbuf, bufsize);
2697
2698	if (error == ENOENT)
2699		error = 0;
2700
2701	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2702
2703	uio->uio_loffset = offset;
2704	ZFS_EXIT(zfsvfs);
2705	if (error != 0 && cookies != NULL) {
2706		free(*cookies, M_TEMP);
2707		*cookies = NULL;
2708		*ncookies = 0;
2709	}
2710	return (error);
2711}
2712
2713ulong_t zfs_fsync_sync_cnt = 4;
2714
2715static int
2716zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2717{
2718	znode_t	*zp = VTOZ(vp);
2719	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2720
2721	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2722
2723	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2724		ZFS_ENTER(zfsvfs);
2725		ZFS_VERIFY_ZP(zp);
2726		zil_commit(zfsvfs->z_log, zp->z_id);
2727		ZFS_EXIT(zfsvfs);
2728	}
2729	return (0);
2730}
2731
2732
2733/*
2734 * Get the requested file attributes and place them in the provided
2735 * vattr structure.
2736 *
2737 *	IN:	vp	- vnode of file.
2738 *		vap	- va_mask identifies requested attributes.
2739 *			  If AT_XVATTR set, then optional attrs are requested
2740 *		flags	- ATTR_NOACLCHECK (CIFS server context)
2741 *		cr	- credentials of caller.
2742 *		ct	- caller context
2743 *
2744 *	OUT:	vap	- attribute values.
2745 *
2746 *	RETURN:	0 (always succeeds).
2747 */
2748/* ARGSUSED */
2749static int
2750zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2751    caller_context_t *ct)
2752{
2753	znode_t *zp = VTOZ(vp);
2754	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2755	int	error = 0;
2756	uint32_t blksize;
2757	u_longlong_t nblocks;
2758	uint64_t links;
2759	uint64_t mtime[2], ctime[2], crtime[2], rdev;
2760	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2761	xoptattr_t *xoap = NULL;
2762	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2763	sa_bulk_attr_t bulk[4];
2764	int count = 0;
2765
2766	ZFS_ENTER(zfsvfs);
2767	ZFS_VERIFY_ZP(zp);
2768
2769	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2770
2771	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2772	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2773	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16);
2774	if (vp->v_type == VBLK || vp->v_type == VCHR)
2775		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL,
2776		    &rdev, 8);
2777
2778	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2779		ZFS_EXIT(zfsvfs);
2780		return (error);
2781	}
2782
2783	/*
2784	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2785	 * Also, if we are the owner don't bother, since owner should
2786	 * always be allowed to read basic attributes of file.
2787	 */
2788	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2789	    (vap->va_uid != crgetuid(cr))) {
2790		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2791		    skipaclchk, cr)) {
2792			ZFS_EXIT(zfsvfs);
2793			return (error);
2794		}
2795	}
2796
2797	/*
2798	 * Return all attributes.  It's cheaper to provide the answer
2799	 * than to determine whether we were asked the question.
2800	 */
2801
2802	mutex_enter(&zp->z_lock);
2803	vap->va_type = IFTOVT(zp->z_mode);
2804	vap->va_mode = zp->z_mode & ~S_IFMT;
2805#ifdef sun
2806	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2807#else
2808	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
2809#endif
2810	vap->va_nodeid = zp->z_id;
2811	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2812		links = zp->z_links + 1;
2813	else
2814		links = zp->z_links;
2815	vap->va_nlink = MIN(links, LINK_MAX);	/* nlink_t limit! */
2816	vap->va_size = zp->z_size;
2817#ifdef sun
2818	vap->va_rdev = vp->v_rdev;
2819#else
2820	if (vp->v_type == VBLK || vp->v_type == VCHR)
2821		vap->va_rdev = zfs_cmpldev(rdev);
2822#endif
2823	vap->va_seq = zp->z_seq;
2824	vap->va_flags = 0;	/* FreeBSD: Reset chflags(2) flags. */
2825
2826	/*
2827	 * Add in any requested optional attributes and the create time.
2828	 * Also set the corresponding bits in the returned attribute bitmap.
2829	 */
2830	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2831		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2832			xoap->xoa_archive =
2833			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2834			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2835		}
2836
2837		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2838			xoap->xoa_readonly =
2839			    ((zp->z_pflags & ZFS_READONLY) != 0);
2840			XVA_SET_RTN(xvap, XAT_READONLY);
2841		}
2842
2843		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2844			xoap->xoa_system =
2845			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2846			XVA_SET_RTN(xvap, XAT_SYSTEM);
2847		}
2848
2849		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2850			xoap->xoa_hidden =
2851			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2852			XVA_SET_RTN(xvap, XAT_HIDDEN);
2853		}
2854
2855		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2856			xoap->xoa_nounlink =
2857			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2858			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2859		}
2860
2861		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2862			xoap->xoa_immutable =
2863			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2864			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2865		}
2866
2867		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2868			xoap->xoa_appendonly =
2869			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2870			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2871		}
2872
2873		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2874			xoap->xoa_nodump =
2875			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2876			XVA_SET_RTN(xvap, XAT_NODUMP);
2877		}
2878
2879		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2880			xoap->xoa_opaque =
2881			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2882			XVA_SET_RTN(xvap, XAT_OPAQUE);
2883		}
2884
2885		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2886			xoap->xoa_av_quarantined =
2887			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2888			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2889		}
2890
2891		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2892			xoap->xoa_av_modified =
2893			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2894			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2895		}
2896
2897		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2898		    vp->v_type == VREG) {
2899			zfs_sa_get_scanstamp(zp, xvap);
2900		}
2901
2902		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2903			uint64_t times[2];
2904
2905			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2906			    times, sizeof (times));
2907			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2908			XVA_SET_RTN(xvap, XAT_CREATETIME);
2909		}
2910
2911		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2912			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2913			XVA_SET_RTN(xvap, XAT_REPARSE);
2914		}
2915		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2916			xoap->xoa_generation = zp->z_gen;
2917			XVA_SET_RTN(xvap, XAT_GEN);
2918		}
2919
2920		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2921			xoap->xoa_offline =
2922			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2923			XVA_SET_RTN(xvap, XAT_OFFLINE);
2924		}
2925
2926		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2927			xoap->xoa_sparse =
2928			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2929			XVA_SET_RTN(xvap, XAT_SPARSE);
2930		}
2931	}
2932
2933	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2934	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2935	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2936	ZFS_TIME_DECODE(&vap->va_birthtime, crtime);
2937
2938	mutex_exit(&zp->z_lock);
2939
2940	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2941	vap->va_blksize = blksize;
2942	vap->va_bytes = nblocks << 9;	/* nblocks * 512 */
2943
2944	if (zp->z_blksz == 0) {
2945		/*
2946		 * Block size hasn't been set; suggest maximal I/O transfers.
2947		 */
2948		vap->va_blksize = zfsvfs->z_max_blksz;
2949	}
2950
2951	ZFS_EXIT(zfsvfs);
2952	return (0);
2953}
2954
2955/*
2956 * Set the file attributes to the values contained in the
2957 * vattr structure.
2958 *
2959 *	IN:	vp	- vnode of file to be modified.
2960 *		vap	- new attribute values.
2961 *			  If AT_XVATTR set, then optional attrs are being set
2962 *		flags	- ATTR_UTIME set if non-default time values provided.
2963 *			- ATTR_NOACLCHECK (CIFS context only).
2964 *		cr	- credentials of caller.
2965 *		ct	- caller context
2966 *
2967 *	RETURN:	0 on success, error code on failure.
2968 *
2969 * Timestamps:
2970 *	vp - ctime updated, mtime updated if size changed.
2971 */
2972/* ARGSUSED */
2973static int
2974zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2975    caller_context_t *ct)
2976{
2977	znode_t		*zp = VTOZ(vp);
2978	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2979	zilog_t		*zilog;
2980	dmu_tx_t	*tx;
2981	vattr_t		oldva;
2982	xvattr_t	tmpxvattr;
2983	uint_t		mask = vap->va_mask;
2984	uint_t		saved_mask = 0;
2985	uint64_t	saved_mode;
2986	int		trim_mask = 0;
2987	uint64_t	new_mode;
2988	uint64_t	new_uid, new_gid;
2989	uint64_t	xattr_obj;
2990	uint64_t	mtime[2], ctime[2];
2991	znode_t		*attrzp;
2992	int		need_policy = FALSE;
2993	int		err, err2;
2994	zfs_fuid_info_t *fuidp = NULL;
2995	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2996	xoptattr_t	*xoap;
2997	zfs_acl_t	*aclp;
2998	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2999	boolean_t	fuid_dirtied = B_FALSE;
3000	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
3001	int		count = 0, xattr_count = 0;
3002
3003	if (mask == 0)
3004		return (0);
3005
3006	if (mask & AT_NOSET)
3007		return (SET_ERROR(EINVAL));
3008
3009	ZFS_ENTER(zfsvfs);
3010	ZFS_VERIFY_ZP(zp);
3011
3012	zilog = zfsvfs->z_log;
3013
3014	/*
3015	 * Make sure that if we have ephemeral uid/gid or xvattr specified
3016	 * that file system is at proper version level
3017	 */
3018
3019	if (zfsvfs->z_use_fuids == B_FALSE &&
3020	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
3021	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
3022	    (mask & AT_XVATTR))) {
3023		ZFS_EXIT(zfsvfs);
3024		return (SET_ERROR(EINVAL));
3025	}
3026
3027	if (mask & AT_SIZE && vp->v_type == VDIR) {
3028		ZFS_EXIT(zfsvfs);
3029		return (SET_ERROR(EISDIR));
3030	}
3031
3032	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
3033		ZFS_EXIT(zfsvfs);
3034		return (SET_ERROR(EINVAL));
3035	}
3036
3037	/*
3038	 * If this is an xvattr_t, then get a pointer to the structure of
3039	 * optional attributes.  If this is NULL, then we have a vattr_t.
3040	 */
3041	xoap = xva_getxoptattr(xvap);
3042
3043	xva_init(&tmpxvattr);
3044
3045	/*
3046	 * Immutable files can only alter immutable bit and atime
3047	 */
3048	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
3049	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
3050	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
3051		ZFS_EXIT(zfsvfs);
3052		return (SET_ERROR(EPERM));
3053	}
3054
3055	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
3056		ZFS_EXIT(zfsvfs);
3057		return (SET_ERROR(EPERM));
3058	}
3059
3060	/*
3061	 * Verify timestamps doesn't overflow 32 bits.
3062	 * ZFS can handle large timestamps, but 32bit syscalls can't
3063	 * handle times greater than 2039.  This check should be removed
3064	 * once large timestamps are fully supported.
3065	 */
3066	if (mask & (AT_ATIME | AT_MTIME)) {
3067		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
3068		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
3069			ZFS_EXIT(zfsvfs);
3070			return (SET_ERROR(EOVERFLOW));
3071		}
3072	}
3073
3074top:
3075	attrzp = NULL;
3076	aclp = NULL;
3077
3078	/* Can this be moved to before the top label? */
3079	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
3080		ZFS_EXIT(zfsvfs);
3081		return (SET_ERROR(EROFS));
3082	}
3083
3084	/*
3085	 * First validate permissions
3086	 */
3087
3088	if (mask & AT_SIZE) {
3089		/*
3090		 * XXX - Note, we are not providing any open
3091		 * mode flags here (like FNDELAY), so we may
3092		 * block if there are locks present... this
3093		 * should be addressed in openat().
3094		 */
3095		/* XXX - would it be OK to generate a log record here? */
3096		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
3097		if (err) {
3098			ZFS_EXIT(zfsvfs);
3099			return (err);
3100		}
3101	}
3102
3103	if (mask & (AT_ATIME|AT_MTIME) ||
3104	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
3105	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
3106	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
3107	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
3108	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
3109	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
3110	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
3111		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
3112		    skipaclchk, cr);
3113	}
3114
3115	if (mask & (AT_UID|AT_GID)) {
3116		int	idmask = (mask & (AT_UID|AT_GID));
3117		int	take_owner;
3118		int	take_group;
3119
3120		/*
3121		 * NOTE: even if a new mode is being set,
3122		 * we may clear S_ISUID/S_ISGID bits.
3123		 */
3124
3125		if (!(mask & AT_MODE))
3126			vap->va_mode = zp->z_mode;
3127
3128		/*
3129		 * Take ownership or chgrp to group we are a member of
3130		 */
3131
3132		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
3133		take_group = (mask & AT_GID) &&
3134		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
3135
3136		/*
3137		 * If both AT_UID and AT_GID are set then take_owner and
3138		 * take_group must both be set in order to allow taking
3139		 * ownership.
3140		 *
3141		 * Otherwise, send the check through secpolicy_vnode_setattr()
3142		 *
3143		 */
3144
3145		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
3146		    ((idmask == AT_UID) && take_owner) ||
3147		    ((idmask == AT_GID) && take_group)) {
3148			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3149			    skipaclchk, cr) == 0) {
3150				/*
3151				 * Remove setuid/setgid for non-privileged users
3152				 */
3153				secpolicy_setid_clear(vap, vp, cr);
3154				trim_mask = (mask & (AT_UID|AT_GID));
3155			} else {
3156				need_policy =  TRUE;
3157			}
3158		} else {
3159			need_policy =  TRUE;
3160		}
3161	}
3162
3163	mutex_enter(&zp->z_lock);
3164	oldva.va_mode = zp->z_mode;
3165	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3166	if (mask & AT_XVATTR) {
3167		/*
3168		 * Update xvattr mask to include only those attributes
3169		 * that are actually changing.
3170		 *
3171		 * the bits will be restored prior to actually setting
3172		 * the attributes so the caller thinks they were set.
3173		 */
3174		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3175			if (xoap->xoa_appendonly !=
3176			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3177				need_policy = TRUE;
3178			} else {
3179				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3180				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
3181			}
3182		}
3183
3184		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3185			if (xoap->xoa_nounlink !=
3186			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3187				need_policy = TRUE;
3188			} else {
3189				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3190				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
3191			}
3192		}
3193
3194		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3195			if (xoap->xoa_immutable !=
3196			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3197				need_policy = TRUE;
3198			} else {
3199				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3200				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
3201			}
3202		}
3203
3204		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3205			if (xoap->xoa_nodump !=
3206			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3207				need_policy = TRUE;
3208			} else {
3209				XVA_CLR_REQ(xvap, XAT_NODUMP);
3210				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
3211			}
3212		}
3213
3214		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3215			if (xoap->xoa_av_modified !=
3216			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3217				need_policy = TRUE;
3218			} else {
3219				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3220				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
3221			}
3222		}
3223
3224		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3225			if ((vp->v_type != VREG &&
3226			    xoap->xoa_av_quarantined) ||
3227			    xoap->xoa_av_quarantined !=
3228			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3229				need_policy = TRUE;
3230			} else {
3231				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3232				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
3233			}
3234		}
3235
3236		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3237			mutex_exit(&zp->z_lock);
3238			ZFS_EXIT(zfsvfs);
3239			return (SET_ERROR(EPERM));
3240		}
3241
3242		if (need_policy == FALSE &&
3243		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3244		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3245			need_policy = TRUE;
3246		}
3247	}
3248
3249	mutex_exit(&zp->z_lock);
3250
3251	if (mask & AT_MODE) {
3252		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3253			err = secpolicy_setid_setsticky_clear(vp, vap,
3254			    &oldva, cr);
3255			if (err) {
3256				ZFS_EXIT(zfsvfs);
3257				return (err);
3258			}
3259			trim_mask |= AT_MODE;
3260		} else {
3261			need_policy = TRUE;
3262		}
3263	}
3264
3265	if (need_policy) {
3266		/*
3267		 * If trim_mask is set then take ownership
3268		 * has been granted or write_acl is present and user
3269		 * has the ability to modify mode.  In that case remove
3270		 * UID|GID and or MODE from mask so that
3271		 * secpolicy_vnode_setattr() doesn't revoke it.
3272		 */
3273
3274		if (trim_mask) {
3275			saved_mask = vap->va_mask;
3276			vap->va_mask &= ~trim_mask;
3277			if (trim_mask & AT_MODE) {
3278				/*
3279				 * Save the mode, as secpolicy_vnode_setattr()
3280				 * will overwrite it with ova.va_mode.
3281				 */
3282				saved_mode = vap->va_mode;
3283			}
3284		}
3285		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3286		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3287		if (err) {
3288			ZFS_EXIT(zfsvfs);
3289			return (err);
3290		}
3291
3292		if (trim_mask) {
3293			vap->va_mask |= saved_mask;
3294			if (trim_mask & AT_MODE) {
3295				/*
3296				 * Recover the mode after
3297				 * secpolicy_vnode_setattr().
3298				 */
3299				vap->va_mode = saved_mode;
3300			}
3301		}
3302	}
3303
3304	/*
3305	 * secpolicy_vnode_setattr, or take ownership may have
3306	 * changed va_mask
3307	 */
3308	mask = vap->va_mask;
3309
3310	if ((mask & (AT_UID | AT_GID))) {
3311		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3312		    &xattr_obj, sizeof (xattr_obj));
3313
3314		if (err == 0 && xattr_obj) {
3315			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3316			if (err)
3317				goto out2;
3318		}
3319		if (mask & AT_UID) {
3320			new_uid = zfs_fuid_create(zfsvfs,
3321			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3322			if (new_uid != zp->z_uid &&
3323			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3324				if (attrzp)
3325					VN_RELE(ZTOV(attrzp));
3326				err = SET_ERROR(EDQUOT);
3327				goto out2;
3328			}
3329		}
3330
3331		if (mask & AT_GID) {
3332			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3333			    cr, ZFS_GROUP, &fuidp);
3334			if (new_gid != zp->z_gid &&
3335			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3336				if (attrzp)
3337					VN_RELE(ZTOV(attrzp));
3338				err = SET_ERROR(EDQUOT);
3339				goto out2;
3340			}
3341		}
3342	}
3343	tx = dmu_tx_create(zfsvfs->z_os);
3344
3345	if (mask & AT_MODE) {
3346		uint64_t pmode = zp->z_mode;
3347		uint64_t acl_obj;
3348		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3349
3350		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3351		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3352			err = SET_ERROR(EPERM);
3353			goto out;
3354		}
3355
3356		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3357			goto out;
3358
3359		mutex_enter(&zp->z_lock);
3360		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3361			/*
3362			 * Are we upgrading ACL from old V0 format
3363			 * to V1 format?
3364			 */
3365			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3366			    zfs_znode_acl_version(zp) ==
3367			    ZFS_ACL_VERSION_INITIAL) {
3368				dmu_tx_hold_free(tx, acl_obj, 0,
3369				    DMU_OBJECT_END);
3370				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3371				    0, aclp->z_acl_bytes);
3372			} else {
3373				dmu_tx_hold_write(tx, acl_obj, 0,
3374				    aclp->z_acl_bytes);
3375			}
3376		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3377			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3378			    0, aclp->z_acl_bytes);
3379		}
3380		mutex_exit(&zp->z_lock);
3381		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3382	} else {
3383		if ((mask & AT_XVATTR) &&
3384		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3385			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3386		else
3387			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3388	}
3389
3390	if (attrzp) {
3391		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3392	}
3393
3394	fuid_dirtied = zfsvfs->z_fuid_dirty;
3395	if (fuid_dirtied)
3396		zfs_fuid_txhold(zfsvfs, tx);
3397
3398	zfs_sa_upgrade_txholds(tx, zp);
3399
3400	err = dmu_tx_assign(tx, TXG_NOWAIT);
3401	if (err) {
3402		if (err == ERESTART)
3403			dmu_tx_wait(tx);
3404		goto out;
3405	}
3406
3407	count = 0;
3408	/*
3409	 * Set each attribute requested.
3410	 * We group settings according to the locks they need to acquire.
3411	 *
3412	 * Note: you cannot set ctime directly, although it will be
3413	 * updated as a side-effect of calling this function.
3414	 */
3415
3416
3417	if (mask & (AT_UID|AT_GID|AT_MODE))
3418		mutex_enter(&zp->z_acl_lock);
3419	mutex_enter(&zp->z_lock);
3420
3421	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3422	    &zp->z_pflags, sizeof (zp->z_pflags));
3423
3424	if (attrzp) {
3425		if (mask & (AT_UID|AT_GID|AT_MODE))
3426			mutex_enter(&attrzp->z_acl_lock);
3427		mutex_enter(&attrzp->z_lock);
3428		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3429		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3430		    sizeof (attrzp->z_pflags));
3431	}
3432
3433	if (mask & (AT_UID|AT_GID)) {
3434
3435		if (mask & AT_UID) {
3436			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3437			    &new_uid, sizeof (new_uid));
3438			zp->z_uid = new_uid;
3439			if (attrzp) {
3440				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3441				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3442				    sizeof (new_uid));
3443				attrzp->z_uid = new_uid;
3444			}
3445		}
3446
3447		if (mask & AT_GID) {
3448			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3449			    NULL, &new_gid, sizeof (new_gid));
3450			zp->z_gid = new_gid;
3451			if (attrzp) {
3452				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3453				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3454				    sizeof (new_gid));
3455				attrzp->z_gid = new_gid;
3456			}
3457		}
3458		if (!(mask & AT_MODE)) {
3459			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3460			    NULL, &new_mode, sizeof (new_mode));
3461			new_mode = zp->z_mode;
3462		}
3463		err = zfs_acl_chown_setattr(zp);
3464		ASSERT(err == 0);
3465		if (attrzp) {
3466			err = zfs_acl_chown_setattr(attrzp);
3467			ASSERT(err == 0);
3468		}
3469	}
3470
3471	if (mask & AT_MODE) {
3472		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3473		    &new_mode, sizeof (new_mode));
3474		zp->z_mode = new_mode;
3475		ASSERT3U((uintptr_t)aclp, !=, 0);
3476		err = zfs_aclset_common(zp, aclp, cr, tx);
3477		ASSERT0(err);
3478		if (zp->z_acl_cached)
3479			zfs_acl_free(zp->z_acl_cached);
3480		zp->z_acl_cached = aclp;
3481		aclp = NULL;
3482	}
3483
3484
3485	if (mask & AT_ATIME) {
3486		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3487		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3488		    &zp->z_atime, sizeof (zp->z_atime));
3489	}
3490
3491	if (mask & AT_MTIME) {
3492		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3493		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3494		    mtime, sizeof (mtime));
3495	}
3496
3497	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3498	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3499		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3500		    NULL, mtime, sizeof (mtime));
3501		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3502		    &ctime, sizeof (ctime));
3503		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3504		    B_TRUE);
3505	} else if (mask != 0) {
3506		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3507		    &ctime, sizeof (ctime));
3508		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3509		    B_TRUE);
3510		if (attrzp) {
3511			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3512			    SA_ZPL_CTIME(zfsvfs), NULL,
3513			    &ctime, sizeof (ctime));
3514			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3515			    mtime, ctime, B_TRUE);
3516		}
3517	}
3518	/*
3519	 * Do this after setting timestamps to prevent timestamp
3520	 * update from toggling bit
3521	 */
3522
3523	if (xoap && (mask & AT_XVATTR)) {
3524
3525		/*
3526		 * restore trimmed off masks
3527		 * so that return masks can be set for caller.
3528		 */
3529
3530		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3531			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3532		}
3533		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3534			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3535		}
3536		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3537			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3538		}
3539		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3540			XVA_SET_REQ(xvap, XAT_NODUMP);
3541		}
3542		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3543			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3544		}
3545		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3546			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3547		}
3548
3549		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3550			ASSERT(vp->v_type == VREG);
3551
3552		zfs_xvattr_set(zp, xvap, tx);
3553	}
3554
3555	if (fuid_dirtied)
3556		zfs_fuid_sync(zfsvfs, tx);
3557
3558	if (mask != 0)
3559		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3560
3561	mutex_exit(&zp->z_lock);
3562	if (mask & (AT_UID|AT_GID|AT_MODE))
3563		mutex_exit(&zp->z_acl_lock);
3564
3565	if (attrzp) {
3566		if (mask & (AT_UID|AT_GID|AT_MODE))
3567			mutex_exit(&attrzp->z_acl_lock);
3568		mutex_exit(&attrzp->z_lock);
3569	}
3570out:
3571	if (err == 0 && attrzp) {
3572		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3573		    xattr_count, tx);
3574		ASSERT(err2 == 0);
3575	}
3576
3577	if (attrzp)
3578		VN_RELE(ZTOV(attrzp));
3579
3580	if (aclp)
3581		zfs_acl_free(aclp);
3582
3583	if (fuidp) {
3584		zfs_fuid_info_free(fuidp);
3585		fuidp = NULL;
3586	}
3587
3588	if (err) {
3589		dmu_tx_abort(tx);
3590		if (err == ERESTART)
3591			goto top;
3592	} else {
3593		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3594		dmu_tx_commit(tx);
3595	}
3596
3597out2:
3598	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3599		zil_commit(zilog, 0);
3600
3601	ZFS_EXIT(zfsvfs);
3602	return (err);
3603}
3604
3605typedef struct zfs_zlock {
3606	krwlock_t	*zl_rwlock;	/* lock we acquired */
3607	znode_t		*zl_znode;	/* znode we held */
3608	struct zfs_zlock *zl_next;	/* next in list */
3609} zfs_zlock_t;
3610
3611/*
3612 * Drop locks and release vnodes that were held by zfs_rename_lock().
3613 */
3614static void
3615zfs_rename_unlock(zfs_zlock_t **zlpp)
3616{
3617	zfs_zlock_t *zl;
3618
3619	while ((zl = *zlpp) != NULL) {
3620		if (zl->zl_znode != NULL)
3621			VN_RELE(ZTOV(zl->zl_znode));
3622		rw_exit(zl->zl_rwlock);
3623		*zlpp = zl->zl_next;
3624		kmem_free(zl, sizeof (*zl));
3625	}
3626}
3627
3628/*
3629 * Search back through the directory tree, using the ".." entries.
3630 * Lock each directory in the chain to prevent concurrent renames.
3631 * Fail any attempt to move a directory into one of its own descendants.
3632 * XXX - z_parent_lock can overlap with map or grow locks
3633 */
3634static int
3635zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3636{
3637	zfs_zlock_t	*zl;
3638	znode_t		*zp = tdzp;
3639	uint64_t	rootid = zp->z_zfsvfs->z_root;
3640	uint64_t	oidp = zp->z_id;
3641	krwlock_t	*rwlp = &szp->z_parent_lock;
3642	krw_t		rw = RW_WRITER;
3643
3644	/*
3645	 * First pass write-locks szp and compares to zp->z_id.
3646	 * Later passes read-lock zp and compare to zp->z_parent.
3647	 */
3648	do {
3649		if (!rw_tryenter(rwlp, rw)) {
3650			/*
3651			 * Another thread is renaming in this path.
3652			 * Note that if we are a WRITER, we don't have any
3653			 * parent_locks held yet.
3654			 */
3655			if (rw == RW_READER && zp->z_id > szp->z_id) {
3656				/*
3657				 * Drop our locks and restart
3658				 */
3659				zfs_rename_unlock(&zl);
3660				*zlpp = NULL;
3661				zp = tdzp;
3662				oidp = zp->z_id;
3663				rwlp = &szp->z_parent_lock;
3664				rw = RW_WRITER;
3665				continue;
3666			} else {
3667				/*
3668				 * Wait for other thread to drop its locks
3669				 */
3670				rw_enter(rwlp, rw);
3671			}
3672		}
3673
3674		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3675		zl->zl_rwlock = rwlp;
3676		zl->zl_znode = NULL;
3677		zl->zl_next = *zlpp;
3678		*zlpp = zl;
3679
3680		if (oidp == szp->z_id)		/* We're a descendant of szp */
3681			return (SET_ERROR(EINVAL));
3682
3683		if (oidp == rootid)		/* We've hit the top */
3684			return (0);
3685
3686		if (rw == RW_READER) {		/* i.e. not the first pass */
3687			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3688			if (error)
3689				return (error);
3690			zl->zl_znode = zp;
3691		}
3692		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3693		    &oidp, sizeof (oidp));
3694		rwlp = &zp->z_parent_lock;
3695		rw = RW_READER;
3696
3697	} while (zp->z_id != sdzp->z_id);
3698
3699	return (0);
3700}
3701
3702/*
3703 * Move an entry from the provided source directory to the target
3704 * directory.  Change the entry name as indicated.
3705 *
3706 *	IN:	sdvp	- Source directory containing the "old entry".
3707 *		snm	- Old entry name.
3708 *		tdvp	- Target directory to contain the "new entry".
3709 *		tnm	- New entry name.
3710 *		cr	- credentials of caller.
3711 *		ct	- caller context
3712 *		flags	- case flags
3713 *
3714 *	RETURN:	0 on success, error code on failure.
3715 *
3716 * Timestamps:
3717 *	sdvp,tdvp - ctime|mtime updated
3718 */
3719/*ARGSUSED*/
3720static int
3721zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3722    caller_context_t *ct, int flags)
3723{
3724	znode_t		*tdzp, *szp, *tzp;
3725	znode_t		*sdzp = VTOZ(sdvp);
3726	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3727	zilog_t		*zilog;
3728	vnode_t		*realvp;
3729	zfs_dirlock_t	*sdl, *tdl;
3730	dmu_tx_t	*tx;
3731	zfs_zlock_t	*zl;
3732	int		cmp, serr, terr;
3733	int		error = 0;
3734	int		zflg = 0;
3735
3736	ZFS_ENTER(zfsvfs);
3737	ZFS_VERIFY_ZP(sdzp);
3738	zilog = zfsvfs->z_log;
3739
3740	/*
3741	 * Make sure we have the real vp for the target directory.
3742	 */
3743	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3744		tdvp = realvp;
3745
3746	tdzp = VTOZ(tdvp);
3747	ZFS_VERIFY_ZP(tdzp);
3748
3749	/*
3750	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3751	 * ctldir appear to have the same v_vfsp.
3752	 */
3753	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3754		ZFS_EXIT(zfsvfs);
3755		return (SET_ERROR(EXDEV));
3756	}
3757
3758	if (zfsvfs->z_utf8 && u8_validate(tnm,
3759	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3760		ZFS_EXIT(zfsvfs);
3761		return (SET_ERROR(EILSEQ));
3762	}
3763
3764	if (flags & FIGNORECASE)
3765		zflg |= ZCILOOK;
3766
3767top:
3768	szp = NULL;
3769	tzp = NULL;
3770	zl = NULL;
3771
3772	/*
3773	 * This is to prevent the creation of links into attribute space
3774	 * by renaming a linked file into/outof an attribute directory.
3775	 * See the comment in zfs_link() for why this is considered bad.
3776	 */
3777	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3778		ZFS_EXIT(zfsvfs);
3779		return (SET_ERROR(EINVAL));
3780	}
3781
3782	/*
3783	 * Lock source and target directory entries.  To prevent deadlock,
3784	 * a lock ordering must be defined.  We lock the directory with
3785	 * the smallest object id first, or if it's a tie, the one with
3786	 * the lexically first name.
3787	 */
3788	if (sdzp->z_id < tdzp->z_id) {
3789		cmp = -1;
3790	} else if (sdzp->z_id > tdzp->z_id) {
3791		cmp = 1;
3792	} else {
3793		/*
3794		 * First compare the two name arguments without
3795		 * considering any case folding.
3796		 */
3797		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3798
3799		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3800		ASSERT(error == 0 || !zfsvfs->z_utf8);
3801		if (cmp == 0) {
3802			/*
3803			 * POSIX: "If the old argument and the new argument
3804			 * both refer to links to the same existing file,
3805			 * the rename() function shall return successfully
3806			 * and perform no other action."
3807			 */
3808			ZFS_EXIT(zfsvfs);
3809			return (0);
3810		}
3811		/*
3812		 * If the file system is case-folding, then we may
3813		 * have some more checking to do.  A case-folding file
3814		 * system is either supporting mixed case sensitivity
3815		 * access or is completely case-insensitive.  Note
3816		 * that the file system is always case preserving.
3817		 *
3818		 * In mixed sensitivity mode case sensitive behavior
3819		 * is the default.  FIGNORECASE must be used to
3820		 * explicitly request case insensitive behavior.
3821		 *
3822		 * If the source and target names provided differ only
3823		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3824		 * we will treat this as a special case in the
3825		 * case-insensitive mode: as long as the source name
3826		 * is an exact match, we will allow this to proceed as
3827		 * a name-change request.
3828		 */
3829		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3830		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3831		    flags & FIGNORECASE)) &&
3832		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3833		    &error) == 0) {
3834			/*
3835			 * case preserving rename request, require exact
3836			 * name matches
3837			 */
3838			zflg |= ZCIEXACT;
3839			zflg &= ~ZCILOOK;
3840		}
3841	}
3842
3843	/*
3844	 * If the source and destination directories are the same, we should
3845	 * grab the z_name_lock of that directory only once.
3846	 */
3847	if (sdzp == tdzp) {
3848		zflg |= ZHAVELOCK;
3849		rw_enter(&sdzp->z_name_lock, RW_READER);
3850	}
3851
3852	if (cmp < 0) {
3853		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3854		    ZEXISTS | zflg, NULL, NULL);
3855		terr = zfs_dirent_lock(&tdl,
3856		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3857	} else {
3858		terr = zfs_dirent_lock(&tdl,
3859		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3860		serr = zfs_dirent_lock(&sdl,
3861		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3862		    NULL, NULL);
3863	}
3864
3865	if (serr) {
3866		/*
3867		 * Source entry invalid or not there.
3868		 */
3869		if (!terr) {
3870			zfs_dirent_unlock(tdl);
3871			if (tzp)
3872				VN_RELE(ZTOV(tzp));
3873		}
3874
3875		if (sdzp == tdzp)
3876			rw_exit(&sdzp->z_name_lock);
3877
3878		/*
3879		 * FreeBSD: In OpenSolaris they only check if rename source is
3880		 * ".." here, because "." is handled in their lookup. This is
3881		 * not the case for FreeBSD, so we check for "." explicitly.
3882		 */
3883		if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0)
3884			serr = SET_ERROR(EINVAL);
3885		ZFS_EXIT(zfsvfs);
3886		return (serr);
3887	}
3888	if (terr) {
3889		zfs_dirent_unlock(sdl);
3890		VN_RELE(ZTOV(szp));
3891
3892		if (sdzp == tdzp)
3893			rw_exit(&sdzp->z_name_lock);
3894
3895		if (strcmp(tnm, "..") == 0)
3896			terr = SET_ERROR(EINVAL);
3897		ZFS_EXIT(zfsvfs);
3898		return (terr);
3899	}
3900
3901	/*
3902	 * Must have write access at the source to remove the old entry
3903	 * and write access at the target to create the new entry.
3904	 * Note that if target and source are the same, this can be
3905	 * done in a single check.
3906	 */
3907
3908	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3909		goto out;
3910
3911	if (ZTOV(szp)->v_type == VDIR) {
3912		/*
3913		 * Check to make sure rename is valid.
3914		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3915		 */
3916		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3917			goto out;
3918	}
3919
3920	/*
3921	 * Does target exist?
3922	 */
3923	if (tzp) {
3924		/*
3925		 * Source and target must be the same type.
3926		 */
3927		if (ZTOV(szp)->v_type == VDIR) {
3928			if (ZTOV(tzp)->v_type != VDIR) {
3929				error = SET_ERROR(ENOTDIR);
3930				goto out;
3931			}
3932		} else {
3933			if (ZTOV(tzp)->v_type == VDIR) {
3934				error = SET_ERROR(EISDIR);
3935				goto out;
3936			}
3937		}
3938		/*
3939		 * POSIX dictates that when the source and target
3940		 * entries refer to the same file object, rename
3941		 * must do nothing and exit without error.
3942		 */
3943		if (szp->z_id == tzp->z_id) {
3944			error = 0;
3945			goto out;
3946		}
3947	}
3948
3949	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3950	if (tzp)
3951		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3952
3953	/*
3954	 * notify the target directory if it is not the same
3955	 * as source directory.
3956	 */
3957	if (tdvp != sdvp) {
3958		vnevent_rename_dest_dir(tdvp, ct);
3959	}
3960
3961	tx = dmu_tx_create(zfsvfs->z_os);
3962	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3963	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3964	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3965	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3966	if (sdzp != tdzp) {
3967		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3968		zfs_sa_upgrade_txholds(tx, tdzp);
3969	}
3970	if (tzp) {
3971		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3972		zfs_sa_upgrade_txholds(tx, tzp);
3973	}
3974
3975	zfs_sa_upgrade_txholds(tx, szp);
3976	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3977	error = dmu_tx_assign(tx, TXG_NOWAIT);
3978	if (error) {
3979		if (zl != NULL)
3980			zfs_rename_unlock(&zl);
3981		zfs_dirent_unlock(sdl);
3982		zfs_dirent_unlock(tdl);
3983
3984		if (sdzp == tdzp)
3985			rw_exit(&sdzp->z_name_lock);
3986
3987		VN_RELE(ZTOV(szp));
3988		if (tzp)
3989			VN_RELE(ZTOV(tzp));
3990		if (error == ERESTART) {
3991			dmu_tx_wait(tx);
3992			dmu_tx_abort(tx);
3993			goto top;
3994		}
3995		dmu_tx_abort(tx);
3996		ZFS_EXIT(zfsvfs);
3997		return (error);
3998	}
3999
4000	if (tzp)	/* Attempt to remove the existing target */
4001		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
4002
4003	if (error == 0) {
4004		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
4005		if (error == 0) {
4006			szp->z_pflags |= ZFS_AV_MODIFIED;
4007
4008			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
4009			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
4010			ASSERT0(error);
4011
4012			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
4013			if (error == 0) {
4014				zfs_log_rename(zilog, tx, TX_RENAME |
4015				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
4016				    sdl->dl_name, tdzp, tdl->dl_name, szp);
4017
4018				/*
4019				 * Update path information for the target vnode
4020				 */
4021				vn_renamepath(tdvp, ZTOV(szp), tnm,
4022				    strlen(tnm));
4023			} else {
4024				/*
4025				 * At this point, we have successfully created
4026				 * the target name, but have failed to remove
4027				 * the source name.  Since the create was done
4028				 * with the ZRENAMING flag, there are
4029				 * complications; for one, the link count is
4030				 * wrong.  The easiest way to deal with this
4031				 * is to remove the newly created target, and
4032				 * return the original error.  This must
4033				 * succeed; fortunately, it is very unlikely to
4034				 * fail, since we just created it.
4035				 */
4036				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
4037				    ZRENAMING, NULL), ==, 0);
4038			}
4039		}
4040#ifdef FREEBSD_NAMECACHE
4041		if (error == 0) {
4042			cache_purge(sdvp);
4043			cache_purge(tdvp);
4044			cache_purge(ZTOV(szp));
4045			if (tzp)
4046				cache_purge(ZTOV(tzp));
4047		}
4048#endif
4049	}
4050
4051	dmu_tx_commit(tx);
4052out:
4053	if (zl != NULL)
4054		zfs_rename_unlock(&zl);
4055
4056	zfs_dirent_unlock(sdl);
4057	zfs_dirent_unlock(tdl);
4058
4059	if (sdzp == tdzp)
4060		rw_exit(&sdzp->z_name_lock);
4061
4062
4063	VN_RELE(ZTOV(szp));
4064	if (tzp)
4065		VN_RELE(ZTOV(tzp));
4066
4067	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4068		zil_commit(zilog, 0);
4069
4070	ZFS_EXIT(zfsvfs);
4071
4072	return (error);
4073}
4074
4075/*
4076 * Insert the indicated symbolic reference entry into the directory.
4077 *
4078 *	IN:	dvp	- Directory to contain new symbolic link.
4079 *		link	- Name for new symlink entry.
4080 *		vap	- Attributes of new entry.
4081 *		cr	- credentials of caller.
4082 *		ct	- caller context
4083 *		flags	- case flags
4084 *
4085 *	RETURN:	0 on success, error code on failure.
4086 *
4087 * Timestamps:
4088 *	dvp - ctime|mtime updated
4089 */
4090/*ARGSUSED*/
4091static int
4092zfs_symlink(vnode_t *dvp, vnode_t **vpp, char *name, vattr_t *vap, char *link,
4093    cred_t *cr, kthread_t *td)
4094{
4095	znode_t		*zp, *dzp = VTOZ(dvp);
4096	zfs_dirlock_t	*dl;
4097	dmu_tx_t	*tx;
4098	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4099	zilog_t		*zilog;
4100	uint64_t	len = strlen(link);
4101	int		error;
4102	int		zflg = ZNEW;
4103	zfs_acl_ids_t	acl_ids;
4104	boolean_t	fuid_dirtied;
4105	uint64_t	txtype = TX_SYMLINK;
4106	int		flags = 0;
4107
4108	ASSERT(vap->va_type == VLNK);
4109
4110	ZFS_ENTER(zfsvfs);
4111	ZFS_VERIFY_ZP(dzp);
4112	zilog = zfsvfs->z_log;
4113
4114	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4115	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4116		ZFS_EXIT(zfsvfs);
4117		return (SET_ERROR(EILSEQ));
4118	}
4119	if (flags & FIGNORECASE)
4120		zflg |= ZCILOOK;
4121
4122	if (len > MAXPATHLEN) {
4123		ZFS_EXIT(zfsvfs);
4124		return (SET_ERROR(ENAMETOOLONG));
4125	}
4126
4127	if ((error = zfs_acl_ids_create(dzp, 0,
4128	    vap, cr, NULL, &acl_ids)) != 0) {
4129		ZFS_EXIT(zfsvfs);
4130		return (error);
4131	}
4132top:
4133	/*
4134	 * Attempt to lock directory; fail if entry already exists.
4135	 */
4136	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4137	if (error) {
4138		zfs_acl_ids_free(&acl_ids);
4139		ZFS_EXIT(zfsvfs);
4140		return (error);
4141	}
4142
4143	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4144		zfs_acl_ids_free(&acl_ids);
4145		zfs_dirent_unlock(dl);
4146		ZFS_EXIT(zfsvfs);
4147		return (error);
4148	}
4149
4150	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
4151		zfs_acl_ids_free(&acl_ids);
4152		zfs_dirent_unlock(dl);
4153		ZFS_EXIT(zfsvfs);
4154		return (SET_ERROR(EDQUOT));
4155	}
4156	tx = dmu_tx_create(zfsvfs->z_os);
4157	fuid_dirtied = zfsvfs->z_fuid_dirty;
4158	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4159	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4160	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4161	    ZFS_SA_BASE_ATTR_SIZE + len);
4162	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4163	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4164		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4165		    acl_ids.z_aclp->z_acl_bytes);
4166	}
4167	if (fuid_dirtied)
4168		zfs_fuid_txhold(zfsvfs, tx);
4169	error = dmu_tx_assign(tx, TXG_NOWAIT);
4170	if (error) {
4171		zfs_dirent_unlock(dl);
4172		if (error == ERESTART) {
4173			dmu_tx_wait(tx);
4174			dmu_tx_abort(tx);
4175			goto top;
4176		}
4177		zfs_acl_ids_free(&acl_ids);
4178		dmu_tx_abort(tx);
4179		ZFS_EXIT(zfsvfs);
4180		return (error);
4181	}
4182
4183	/*
4184	 * Create a new object for the symlink.
4185	 * for version 4 ZPL datsets the symlink will be an SA attribute
4186	 */
4187	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4188
4189	if (fuid_dirtied)
4190		zfs_fuid_sync(zfsvfs, tx);
4191
4192	mutex_enter(&zp->z_lock);
4193	if (zp->z_is_sa)
4194		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4195		    link, len, tx);
4196	else
4197		zfs_sa_symlink(zp, link, len, tx);
4198	mutex_exit(&zp->z_lock);
4199
4200	zp->z_size = len;
4201	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4202	    &zp->z_size, sizeof (zp->z_size), tx);
4203	/*
4204	 * Insert the new object into the directory.
4205	 */
4206	(void) zfs_link_create(dl, zp, tx, ZNEW);
4207
4208	if (flags & FIGNORECASE)
4209		txtype |= TX_CI;
4210	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4211	*vpp = ZTOV(zp);
4212
4213	zfs_acl_ids_free(&acl_ids);
4214
4215	dmu_tx_commit(tx);
4216
4217	zfs_dirent_unlock(dl);
4218
4219	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4220		zil_commit(zilog, 0);
4221
4222	ZFS_EXIT(zfsvfs);
4223	return (error);
4224}
4225
4226/*
4227 * Return, in the buffer contained in the provided uio structure,
4228 * the symbolic path referred to by vp.
4229 *
4230 *	IN:	vp	- vnode of symbolic link.
4231 *		uio	- structure to contain the link path.
4232 *		cr	- credentials of caller.
4233 *		ct	- caller context
4234 *
4235 *	OUT:	uio	- structure containing the link path.
4236 *
4237 *	RETURN:	0 on success, error code on failure.
4238 *
4239 * Timestamps:
4240 *	vp - atime updated
4241 */
4242/* ARGSUSED */
4243static int
4244zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
4245{
4246	znode_t		*zp = VTOZ(vp);
4247	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4248	int		error;
4249
4250	ZFS_ENTER(zfsvfs);
4251	ZFS_VERIFY_ZP(zp);
4252
4253	mutex_enter(&zp->z_lock);
4254	if (zp->z_is_sa)
4255		error = sa_lookup_uio(zp->z_sa_hdl,
4256		    SA_ZPL_SYMLINK(zfsvfs), uio);
4257	else
4258		error = zfs_sa_readlink(zp, uio);
4259	mutex_exit(&zp->z_lock);
4260
4261	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4262
4263	ZFS_EXIT(zfsvfs);
4264	return (error);
4265}
4266
4267/*
4268 * Insert a new entry into directory tdvp referencing svp.
4269 *
4270 *	IN:	tdvp	- Directory to contain new entry.
4271 *		svp	- vnode of new entry.
4272 *		name	- name of new entry.
4273 *		cr	- credentials of caller.
4274 *		ct	- caller context
4275 *
4276 *	RETURN:	0 on success, error code on failure.
4277 *
4278 * Timestamps:
4279 *	tdvp - ctime|mtime updated
4280 *	 svp - ctime updated
4281 */
4282/* ARGSUSED */
4283static int
4284zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
4285    caller_context_t *ct, int flags)
4286{
4287	znode_t		*dzp = VTOZ(tdvp);
4288	znode_t		*tzp, *szp;
4289	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
4290	zilog_t		*zilog;
4291	zfs_dirlock_t	*dl;
4292	dmu_tx_t	*tx;
4293	vnode_t		*realvp;
4294	int		error;
4295	int		zf = ZNEW;
4296	uint64_t	parent;
4297	uid_t		owner;
4298
4299	ASSERT(tdvp->v_type == VDIR);
4300
4301	ZFS_ENTER(zfsvfs);
4302	ZFS_VERIFY_ZP(dzp);
4303	zilog = zfsvfs->z_log;
4304
4305	if (VOP_REALVP(svp, &realvp, ct) == 0)
4306		svp = realvp;
4307
4308	/*
4309	 * POSIX dictates that we return EPERM here.
4310	 * Better choices include ENOTSUP or EISDIR.
4311	 */
4312	if (svp->v_type == VDIR) {
4313		ZFS_EXIT(zfsvfs);
4314		return (SET_ERROR(EPERM));
4315	}
4316
4317	szp = VTOZ(svp);
4318	ZFS_VERIFY_ZP(szp);
4319
4320	/*
4321	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4322	 * ctldir appear to have the same v_vfsp.
4323	 */
4324	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4325		ZFS_EXIT(zfsvfs);
4326		return (SET_ERROR(EXDEV));
4327	}
4328
4329	/* Prevent links to .zfs/shares files */
4330
4331	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4332	    &parent, sizeof (uint64_t))) != 0) {
4333		ZFS_EXIT(zfsvfs);
4334		return (error);
4335	}
4336	if (parent == zfsvfs->z_shares_dir) {
4337		ZFS_EXIT(zfsvfs);
4338		return (SET_ERROR(EPERM));
4339	}
4340
4341	if (zfsvfs->z_utf8 && u8_validate(name,
4342	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4343		ZFS_EXIT(zfsvfs);
4344		return (SET_ERROR(EILSEQ));
4345	}
4346	if (flags & FIGNORECASE)
4347		zf |= ZCILOOK;
4348
4349	/*
4350	 * We do not support links between attributes and non-attributes
4351	 * because of the potential security risk of creating links
4352	 * into "normal" file space in order to circumvent restrictions
4353	 * imposed in attribute space.
4354	 */
4355	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4356		ZFS_EXIT(zfsvfs);
4357		return (SET_ERROR(EINVAL));
4358	}
4359
4360
4361	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4362	if (owner != crgetuid(cr) && secpolicy_basic_link(svp, cr) != 0) {
4363		ZFS_EXIT(zfsvfs);
4364		return (SET_ERROR(EPERM));
4365	}
4366
4367	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4368		ZFS_EXIT(zfsvfs);
4369		return (error);
4370	}
4371
4372top:
4373	/*
4374	 * Attempt to lock directory; fail if entry already exists.
4375	 */
4376	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4377	if (error) {
4378		ZFS_EXIT(zfsvfs);
4379		return (error);
4380	}
4381
4382	tx = dmu_tx_create(zfsvfs->z_os);
4383	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4384	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4385	zfs_sa_upgrade_txholds(tx, szp);
4386	zfs_sa_upgrade_txholds(tx, dzp);
4387	error = dmu_tx_assign(tx, TXG_NOWAIT);
4388	if (error) {
4389		zfs_dirent_unlock(dl);
4390		if (error == ERESTART) {
4391			dmu_tx_wait(tx);
4392			dmu_tx_abort(tx);
4393			goto top;
4394		}
4395		dmu_tx_abort(tx);
4396		ZFS_EXIT(zfsvfs);
4397		return (error);
4398	}
4399
4400	error = zfs_link_create(dl, szp, tx, 0);
4401
4402	if (error == 0) {
4403		uint64_t txtype = TX_LINK;
4404		if (flags & FIGNORECASE)
4405			txtype |= TX_CI;
4406		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4407	}
4408
4409	dmu_tx_commit(tx);
4410
4411	zfs_dirent_unlock(dl);
4412
4413	if (error == 0) {
4414		vnevent_link(svp, ct);
4415	}
4416
4417	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4418		zil_commit(zilog, 0);
4419
4420	ZFS_EXIT(zfsvfs);
4421	return (error);
4422}
4423
4424#ifdef sun
4425/*
4426 * zfs_null_putapage() is used when the file system has been force
4427 * unmounted. It just drops the pages.
4428 */
4429/* ARGSUSED */
4430static int
4431zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4432		size_t *lenp, int flags, cred_t *cr)
4433{
4434	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4435	return (0);
4436}
4437
4438/*
4439 * Push a page out to disk, klustering if possible.
4440 *
4441 *	IN:	vp	- file to push page to.
4442 *		pp	- page to push.
4443 *		flags	- additional flags.
4444 *		cr	- credentials of caller.
4445 *
4446 *	OUT:	offp	- start of range pushed.
4447 *		lenp	- len of range pushed.
4448 *
4449 *	RETURN:	0 on success, error code on failure.
4450 *
4451 * NOTE: callers must have locked the page to be pushed.  On
4452 * exit, the page (and all other pages in the kluster) must be
4453 * unlocked.
4454 */
4455/* ARGSUSED */
4456static int
4457zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4458		size_t *lenp, int flags, cred_t *cr)
4459{
4460	znode_t		*zp = VTOZ(vp);
4461	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4462	dmu_tx_t	*tx;
4463	u_offset_t	off, koff;
4464	size_t		len, klen;
4465	int		err;
4466
4467	off = pp->p_offset;
4468	len = PAGESIZE;
4469	/*
4470	 * If our blocksize is bigger than the page size, try to kluster
4471	 * multiple pages so that we write a full block (thus avoiding
4472	 * a read-modify-write).
4473	 */
4474	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4475		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4476		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4477		ASSERT(koff <= zp->z_size);
4478		if (koff + klen > zp->z_size)
4479			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4480		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4481	}
4482	ASSERT3U(btop(len), ==, btopr(len));
4483
4484	/*
4485	 * Can't push pages past end-of-file.
4486	 */
4487	if (off >= zp->z_size) {
4488		/* ignore all pages */
4489		err = 0;
4490		goto out;
4491	} else if (off + len > zp->z_size) {
4492		int npages = btopr(zp->z_size - off);
4493		page_t *trunc;
4494
4495		page_list_break(&pp, &trunc, npages);
4496		/* ignore pages past end of file */
4497		if (trunc)
4498			pvn_write_done(trunc, flags);
4499		len = zp->z_size - off;
4500	}
4501
4502	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4503	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4504		err = SET_ERROR(EDQUOT);
4505		goto out;
4506	}
4507top:
4508	tx = dmu_tx_create(zfsvfs->z_os);
4509	dmu_tx_hold_write(tx, zp->z_id, off, len);
4510
4511	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4512	zfs_sa_upgrade_txholds(tx, zp);
4513	err = dmu_tx_assign(tx, TXG_NOWAIT);
4514	if (err != 0) {
4515		if (err == ERESTART) {
4516			dmu_tx_wait(tx);
4517			dmu_tx_abort(tx);
4518			goto top;
4519		}
4520		dmu_tx_abort(tx);
4521		goto out;
4522	}
4523
4524	if (zp->z_blksz <= PAGESIZE) {
4525		caddr_t va = zfs_map_page(pp, S_READ);
4526		ASSERT3U(len, <=, PAGESIZE);
4527		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4528		zfs_unmap_page(pp, va);
4529	} else {
4530		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4531	}
4532
4533	if (err == 0) {
4534		uint64_t mtime[2], ctime[2];
4535		sa_bulk_attr_t bulk[3];
4536		int count = 0;
4537
4538		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4539		    &mtime, 16);
4540		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4541		    &ctime, 16);
4542		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4543		    &zp->z_pflags, 8);
4544		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4545		    B_TRUE);
4546		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4547	}
4548	dmu_tx_commit(tx);
4549
4550out:
4551	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4552	if (offp)
4553		*offp = off;
4554	if (lenp)
4555		*lenp = len;
4556
4557	return (err);
4558}
4559
4560/*
4561 * Copy the portion of the file indicated from pages into the file.
4562 * The pages are stored in a page list attached to the files vnode.
4563 *
4564 *	IN:	vp	- vnode of file to push page data to.
4565 *		off	- position in file to put data.
4566 *		len	- amount of data to write.
4567 *		flags	- flags to control the operation.
4568 *		cr	- credentials of caller.
4569 *		ct	- caller context.
4570 *
4571 *	RETURN:	0 on success, error code on failure.
4572 *
4573 * Timestamps:
4574 *	vp - ctime|mtime updated
4575 */
4576/*ARGSUSED*/
4577static int
4578zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4579    caller_context_t *ct)
4580{
4581	znode_t		*zp = VTOZ(vp);
4582	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4583	page_t		*pp;
4584	size_t		io_len;
4585	u_offset_t	io_off;
4586	uint_t		blksz;
4587	rl_t		*rl;
4588	int		error = 0;
4589
4590	ZFS_ENTER(zfsvfs);
4591	ZFS_VERIFY_ZP(zp);
4592
4593	/*
4594	 * Align this request to the file block size in case we kluster.
4595	 * XXX - this can result in pretty aggresive locking, which can
4596	 * impact simultanious read/write access.  One option might be
4597	 * to break up long requests (len == 0) into block-by-block
4598	 * operations to get narrower locking.
4599	 */
4600	blksz = zp->z_blksz;
4601	if (ISP2(blksz))
4602		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4603	else
4604		io_off = 0;
4605	if (len > 0 && ISP2(blksz))
4606		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4607	else
4608		io_len = 0;
4609
4610	if (io_len == 0) {
4611		/*
4612		 * Search the entire vp list for pages >= io_off.
4613		 */
4614		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4615		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4616		goto out;
4617	}
4618	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4619
4620	if (off > zp->z_size) {
4621		/* past end of file */
4622		zfs_range_unlock(rl);
4623		ZFS_EXIT(zfsvfs);
4624		return (0);
4625	}
4626
4627	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4628
4629	for (off = io_off; io_off < off + len; io_off += io_len) {
4630		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4631			pp = page_lookup(vp, io_off,
4632			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4633		} else {
4634			pp = page_lookup_nowait(vp, io_off,
4635			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4636		}
4637
4638		if (pp != NULL && pvn_getdirty(pp, flags)) {
4639			int err;
4640
4641			/*
4642			 * Found a dirty page to push
4643			 */
4644			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4645			if (err)
4646				error = err;
4647		} else {
4648			io_len = PAGESIZE;
4649		}
4650	}
4651out:
4652	zfs_range_unlock(rl);
4653	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4654		zil_commit(zfsvfs->z_log, zp->z_id);
4655	ZFS_EXIT(zfsvfs);
4656	return (error);
4657}
4658#endif	/* sun */
4659
4660/*ARGSUSED*/
4661void
4662zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4663{
4664	znode_t	*zp = VTOZ(vp);
4665	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4666	int error;
4667
4668	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4669	if (zp->z_sa_hdl == NULL) {
4670		/*
4671		 * The fs has been unmounted, or we did a
4672		 * suspend/resume and this file no longer exists.
4673		 */
4674		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4675		vrecycle(vp);
4676		return;
4677	}
4678
4679	mutex_enter(&zp->z_lock);
4680	if (zp->z_unlinked) {
4681		/*
4682		 * Fast path to recycle a vnode of a removed file.
4683		 */
4684		mutex_exit(&zp->z_lock);
4685		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4686		vrecycle(vp);
4687		return;
4688	}
4689	mutex_exit(&zp->z_lock);
4690
4691	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4692		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4693
4694		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4695		zfs_sa_upgrade_txholds(tx, zp);
4696		error = dmu_tx_assign(tx, TXG_WAIT);
4697		if (error) {
4698			dmu_tx_abort(tx);
4699		} else {
4700			mutex_enter(&zp->z_lock);
4701			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4702			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4703			zp->z_atime_dirty = 0;
4704			mutex_exit(&zp->z_lock);
4705			dmu_tx_commit(tx);
4706		}
4707	}
4708	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4709}
4710
4711#ifdef sun
4712/*
4713 * Bounds-check the seek operation.
4714 *
4715 *	IN:	vp	- vnode seeking within
4716 *		ooff	- old file offset
4717 *		noffp	- pointer to new file offset
4718 *		ct	- caller context
4719 *
4720 *	RETURN:	0 on success, EINVAL if new offset invalid.
4721 */
4722/* ARGSUSED */
4723static int
4724zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4725    caller_context_t *ct)
4726{
4727	if (vp->v_type == VDIR)
4728		return (0);
4729	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4730}
4731
4732/*
4733 * Pre-filter the generic locking function to trap attempts to place
4734 * a mandatory lock on a memory mapped file.
4735 */
4736static int
4737zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4738    flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4739{
4740	znode_t *zp = VTOZ(vp);
4741	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4742
4743	ZFS_ENTER(zfsvfs);
4744	ZFS_VERIFY_ZP(zp);
4745
4746	/*
4747	 * We are following the UFS semantics with respect to mapcnt
4748	 * here: If we see that the file is mapped already, then we will
4749	 * return an error, but we don't worry about races between this
4750	 * function and zfs_map().
4751	 */
4752	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4753		ZFS_EXIT(zfsvfs);
4754		return (SET_ERROR(EAGAIN));
4755	}
4756	ZFS_EXIT(zfsvfs);
4757	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4758}
4759
4760/*
4761 * If we can't find a page in the cache, we will create a new page
4762 * and fill it with file data.  For efficiency, we may try to fill
4763 * multiple pages at once (klustering) to fill up the supplied page
4764 * list.  Note that the pages to be filled are held with an exclusive
4765 * lock to prevent access by other threads while they are being filled.
4766 */
4767static int
4768zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4769    caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4770{
4771	znode_t *zp = VTOZ(vp);
4772	page_t *pp, *cur_pp;
4773	objset_t *os = zp->z_zfsvfs->z_os;
4774	u_offset_t io_off, total;
4775	size_t io_len;
4776	int err;
4777
4778	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4779		/*
4780		 * We only have a single page, don't bother klustering
4781		 */
4782		io_off = off;
4783		io_len = PAGESIZE;
4784		pp = page_create_va(vp, io_off, io_len,
4785		    PG_EXCL | PG_WAIT, seg, addr);
4786	} else {
4787		/*
4788		 * Try to find enough pages to fill the page list
4789		 */
4790		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4791		    &io_len, off, plsz, 0);
4792	}
4793	if (pp == NULL) {
4794		/*
4795		 * The page already exists, nothing to do here.
4796		 */
4797		*pl = NULL;
4798		return (0);
4799	}
4800
4801	/*
4802	 * Fill the pages in the kluster.
4803	 */
4804	cur_pp = pp;
4805	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4806		caddr_t va;
4807
4808		ASSERT3U(io_off, ==, cur_pp->p_offset);
4809		va = zfs_map_page(cur_pp, S_WRITE);
4810		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4811		    DMU_READ_PREFETCH);
4812		zfs_unmap_page(cur_pp, va);
4813		if (err) {
4814			/* On error, toss the entire kluster */
4815			pvn_read_done(pp, B_ERROR);
4816			/* convert checksum errors into IO errors */
4817			if (err == ECKSUM)
4818				err = SET_ERROR(EIO);
4819			return (err);
4820		}
4821		cur_pp = cur_pp->p_next;
4822	}
4823
4824	/*
4825	 * Fill in the page list array from the kluster starting
4826	 * from the desired offset `off'.
4827	 * NOTE: the page list will always be null terminated.
4828	 */
4829	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4830	ASSERT(pl == NULL || (*pl)->p_offset == off);
4831
4832	return (0);
4833}
4834
4835/*
4836 * Return pointers to the pages for the file region [off, off + len]
4837 * in the pl array.  If plsz is greater than len, this function may
4838 * also return page pointers from after the specified region
4839 * (i.e. the region [off, off + plsz]).  These additional pages are
4840 * only returned if they are already in the cache, or were created as
4841 * part of a klustered read.
4842 *
4843 *	IN:	vp	- vnode of file to get data from.
4844 *		off	- position in file to get data from.
4845 *		len	- amount of data to retrieve.
4846 *		plsz	- length of provided page list.
4847 *		seg	- segment to obtain pages for.
4848 *		addr	- virtual address of fault.
4849 *		rw	- mode of created pages.
4850 *		cr	- credentials of caller.
4851 *		ct	- caller context.
4852 *
4853 *	OUT:	protp	- protection mode of created pages.
4854 *		pl	- list of pages created.
4855 *
4856 *	RETURN:	0 on success, error code on failure.
4857 *
4858 * Timestamps:
4859 *	vp - atime updated
4860 */
4861/* ARGSUSED */
4862static int
4863zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4864    page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4865    enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4866{
4867	znode_t		*zp = VTOZ(vp);
4868	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4869	page_t		**pl0 = pl;
4870	int		err = 0;
4871
4872	/* we do our own caching, faultahead is unnecessary */
4873	if (pl == NULL)
4874		return (0);
4875	else if (len > plsz)
4876		len = plsz;
4877	else
4878		len = P2ROUNDUP(len, PAGESIZE);
4879	ASSERT(plsz >= len);
4880
4881	ZFS_ENTER(zfsvfs);
4882	ZFS_VERIFY_ZP(zp);
4883
4884	if (protp)
4885		*protp = PROT_ALL;
4886
4887	/*
4888	 * Loop through the requested range [off, off + len) looking
4889	 * for pages.  If we don't find a page, we will need to create
4890	 * a new page and fill it with data from the file.
4891	 */
4892	while (len > 0) {
4893		if (*pl = page_lookup(vp, off, SE_SHARED))
4894			*(pl+1) = NULL;
4895		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4896			goto out;
4897		while (*pl) {
4898			ASSERT3U((*pl)->p_offset, ==, off);
4899			off += PAGESIZE;
4900			addr += PAGESIZE;
4901			if (len > 0) {
4902				ASSERT3U(len, >=, PAGESIZE);
4903				len -= PAGESIZE;
4904			}
4905			ASSERT3U(plsz, >=, PAGESIZE);
4906			plsz -= PAGESIZE;
4907			pl++;
4908		}
4909	}
4910
4911	/*
4912	 * Fill out the page array with any pages already in the cache.
4913	 */
4914	while (plsz > 0 &&
4915	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4916			off += PAGESIZE;
4917			plsz -= PAGESIZE;
4918	}
4919out:
4920	if (err) {
4921		/*
4922		 * Release any pages we have previously locked.
4923		 */
4924		while (pl > pl0)
4925			page_unlock(*--pl);
4926	} else {
4927		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4928	}
4929
4930	*pl = NULL;
4931
4932	ZFS_EXIT(zfsvfs);
4933	return (err);
4934}
4935
4936/*
4937 * Request a memory map for a section of a file.  This code interacts
4938 * with common code and the VM system as follows:
4939 *
4940 * - common code calls mmap(), which ends up in smmap_common()
4941 * - this calls VOP_MAP(), which takes you into (say) zfs
4942 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4943 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4944 * - zfs_addmap() updates z_mapcnt
4945 */
4946/*ARGSUSED*/
4947static int
4948zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4949    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4950    caller_context_t *ct)
4951{
4952	znode_t *zp = VTOZ(vp);
4953	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4954	segvn_crargs_t	vn_a;
4955	int		error;
4956
4957	ZFS_ENTER(zfsvfs);
4958	ZFS_VERIFY_ZP(zp);
4959
4960	if ((prot & PROT_WRITE) && (zp->z_pflags &
4961	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4962		ZFS_EXIT(zfsvfs);
4963		return (SET_ERROR(EPERM));
4964	}
4965
4966	if ((prot & (PROT_READ | PROT_EXEC)) &&
4967	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4968		ZFS_EXIT(zfsvfs);
4969		return (SET_ERROR(EACCES));
4970	}
4971
4972	if (vp->v_flag & VNOMAP) {
4973		ZFS_EXIT(zfsvfs);
4974		return (SET_ERROR(ENOSYS));
4975	}
4976
4977	if (off < 0 || len > MAXOFFSET_T - off) {
4978		ZFS_EXIT(zfsvfs);
4979		return (SET_ERROR(ENXIO));
4980	}
4981
4982	if (vp->v_type != VREG) {
4983		ZFS_EXIT(zfsvfs);
4984		return (SET_ERROR(ENODEV));
4985	}
4986
4987	/*
4988	 * If file is locked, disallow mapping.
4989	 */
4990	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4991		ZFS_EXIT(zfsvfs);
4992		return (SET_ERROR(EAGAIN));
4993	}
4994
4995	as_rangelock(as);
4996	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4997	if (error != 0) {
4998		as_rangeunlock(as);
4999		ZFS_EXIT(zfsvfs);
5000		return (error);
5001	}
5002
5003	vn_a.vp = vp;
5004	vn_a.offset = (u_offset_t)off;
5005	vn_a.type = flags & MAP_TYPE;
5006	vn_a.prot = prot;
5007	vn_a.maxprot = maxprot;
5008	vn_a.cred = cr;
5009	vn_a.amp = NULL;
5010	vn_a.flags = flags & ~MAP_TYPE;
5011	vn_a.szc = 0;
5012	vn_a.lgrp_mem_policy_flags = 0;
5013
5014	error = as_map(as, *addrp, len, segvn_create, &vn_a);
5015
5016	as_rangeunlock(as);
5017	ZFS_EXIT(zfsvfs);
5018	return (error);
5019}
5020
5021/* ARGSUSED */
5022static int
5023zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5024    size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
5025    caller_context_t *ct)
5026{
5027	uint64_t pages = btopr(len);
5028
5029	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
5030	return (0);
5031}
5032
5033/*
5034 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
5035 * more accurate mtime for the associated file.  Since we don't have a way of
5036 * detecting when the data was actually modified, we have to resort to
5037 * heuristics.  If an explicit msync() is done, then we mark the mtime when the
5038 * last page is pushed.  The problem occurs when the msync() call is omitted,
5039 * which by far the most common case:
5040 *
5041 * 	open()
5042 * 	mmap()
5043 * 	<modify memory>
5044 * 	munmap()
5045 * 	close()
5046 * 	<time lapse>
5047 * 	putpage() via fsflush
5048 *
5049 * If we wait until fsflush to come along, we can have a modification time that
5050 * is some arbitrary point in the future.  In order to prevent this in the
5051 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
5052 * torn down.
5053 */
5054/* ARGSUSED */
5055static int
5056zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5057    size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
5058    caller_context_t *ct)
5059{
5060	uint64_t pages = btopr(len);
5061
5062	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
5063	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
5064
5065	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
5066	    vn_has_cached_data(vp))
5067		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
5068
5069	return (0);
5070}
5071
5072/*
5073 * Free or allocate space in a file.  Currently, this function only
5074 * supports the `F_FREESP' command.  However, this command is somewhat
5075 * misnamed, as its functionality includes the ability to allocate as
5076 * well as free space.
5077 *
5078 *	IN:	vp	- vnode of file to free data in.
5079 *		cmd	- action to take (only F_FREESP supported).
5080 *		bfp	- section of file to free/alloc.
5081 *		flag	- current file open mode flags.
5082 *		offset	- current file offset.
5083 *		cr	- credentials of caller [UNUSED].
5084 *		ct	- caller context.
5085 *
5086 *	RETURN:	0 on success, error code on failure.
5087 *
5088 * Timestamps:
5089 *	vp - ctime|mtime updated
5090 */
5091/* ARGSUSED */
5092static int
5093zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
5094    offset_t offset, cred_t *cr, caller_context_t *ct)
5095{
5096	znode_t		*zp = VTOZ(vp);
5097	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5098	uint64_t	off, len;
5099	int		error;
5100
5101	ZFS_ENTER(zfsvfs);
5102	ZFS_VERIFY_ZP(zp);
5103
5104	if (cmd != F_FREESP) {
5105		ZFS_EXIT(zfsvfs);
5106		return (SET_ERROR(EINVAL));
5107	}
5108
5109	if (error = convoff(vp, bfp, 0, offset)) {
5110		ZFS_EXIT(zfsvfs);
5111		return (error);
5112	}
5113
5114	if (bfp->l_len < 0) {
5115		ZFS_EXIT(zfsvfs);
5116		return (SET_ERROR(EINVAL));
5117	}
5118
5119	off = bfp->l_start;
5120	len = bfp->l_len; /* 0 means from off to end of file */
5121
5122	error = zfs_freesp(zp, off, len, flag, TRUE);
5123
5124	ZFS_EXIT(zfsvfs);
5125	return (error);
5126}
5127#endif	/* sun */
5128
5129CTASSERT(sizeof(struct zfid_short) <= sizeof(struct fid));
5130CTASSERT(sizeof(struct zfid_long) <= sizeof(struct fid));
5131
5132/*ARGSUSED*/
5133static int
5134zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
5135{
5136	znode_t		*zp = VTOZ(vp);
5137	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
5138	uint32_t	gen;
5139	uint64_t	gen64;
5140	uint64_t	object = zp->z_id;
5141	zfid_short_t	*zfid;
5142	int		size, i, error;
5143
5144	ZFS_ENTER(zfsvfs);
5145	ZFS_VERIFY_ZP(zp);
5146
5147	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
5148	    &gen64, sizeof (uint64_t))) != 0) {
5149		ZFS_EXIT(zfsvfs);
5150		return (error);
5151	}
5152
5153	gen = (uint32_t)gen64;
5154
5155	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
5156
5157#ifdef illumos
5158	if (fidp->fid_len < size) {
5159		fidp->fid_len = size;
5160		ZFS_EXIT(zfsvfs);
5161		return (SET_ERROR(ENOSPC));
5162	}
5163#else
5164	fidp->fid_len = size;
5165#endif
5166
5167	zfid = (zfid_short_t *)fidp;
5168
5169	zfid->zf_len = size;
5170
5171	for (i = 0; i < sizeof (zfid->zf_object); i++)
5172		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5173
5174	/* Must have a non-zero generation number to distinguish from .zfs */
5175	if (gen == 0)
5176		gen = 1;
5177	for (i = 0; i < sizeof (zfid->zf_gen); i++)
5178		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5179
5180	if (size == LONG_FID_LEN) {
5181		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
5182		zfid_long_t	*zlfid;
5183
5184		zlfid = (zfid_long_t *)fidp;
5185
5186		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
5187			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
5188
5189		/* XXX - this should be the generation number for the objset */
5190		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
5191			zlfid->zf_setgen[i] = 0;
5192	}
5193
5194	ZFS_EXIT(zfsvfs);
5195	return (0);
5196}
5197
5198static int
5199zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5200    caller_context_t *ct)
5201{
5202	znode_t		*zp, *xzp;
5203	zfsvfs_t	*zfsvfs;
5204	zfs_dirlock_t	*dl;
5205	int		error;
5206
5207	switch (cmd) {
5208	case _PC_LINK_MAX:
5209		*valp = INT_MAX;
5210		return (0);
5211
5212	case _PC_FILESIZEBITS:
5213		*valp = 64;
5214		return (0);
5215#ifdef sun
5216	case _PC_XATTR_EXISTS:
5217		zp = VTOZ(vp);
5218		zfsvfs = zp->z_zfsvfs;
5219		ZFS_ENTER(zfsvfs);
5220		ZFS_VERIFY_ZP(zp);
5221		*valp = 0;
5222		error = zfs_dirent_lock(&dl, zp, "", &xzp,
5223		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
5224		if (error == 0) {
5225			zfs_dirent_unlock(dl);
5226			if (!zfs_dirempty(xzp))
5227				*valp = 1;
5228			VN_RELE(ZTOV(xzp));
5229		} else if (error == ENOENT) {
5230			/*
5231			 * If there aren't extended attributes, it's the
5232			 * same as having zero of them.
5233			 */
5234			error = 0;
5235		}
5236		ZFS_EXIT(zfsvfs);
5237		return (error);
5238
5239	case _PC_SATTR_ENABLED:
5240	case _PC_SATTR_EXISTS:
5241		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5242		    (vp->v_type == VREG || vp->v_type == VDIR);
5243		return (0);
5244
5245	case _PC_ACCESS_FILTERING:
5246		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
5247		    vp->v_type == VDIR;
5248		return (0);
5249
5250	case _PC_ACL_ENABLED:
5251		*valp = _ACL_ACE_ENABLED;
5252		return (0);
5253#endif	/* sun */
5254	case _PC_MIN_HOLE_SIZE:
5255		*valp = (int)SPA_MINBLOCKSIZE;
5256		return (0);
5257#ifdef sun
5258	case _PC_TIMESTAMP_RESOLUTION:
5259		/* nanosecond timestamp resolution */
5260		*valp = 1L;
5261		return (0);
5262#endif	/* sun */
5263	case _PC_ACL_EXTENDED:
5264		*valp = 0;
5265		return (0);
5266
5267	case _PC_ACL_NFS4:
5268		*valp = 1;
5269		return (0);
5270
5271	case _PC_ACL_PATH_MAX:
5272		*valp = ACL_MAX_ENTRIES;
5273		return (0);
5274
5275	default:
5276		return (EOPNOTSUPP);
5277	}
5278}
5279
5280/*ARGSUSED*/
5281static int
5282zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5283    caller_context_t *ct)
5284{
5285	znode_t *zp = VTOZ(vp);
5286	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5287	int error;
5288	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5289
5290	ZFS_ENTER(zfsvfs);
5291	ZFS_VERIFY_ZP(zp);
5292	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5293	ZFS_EXIT(zfsvfs);
5294
5295	return (error);
5296}
5297
5298/*ARGSUSED*/
5299int
5300zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5301    caller_context_t *ct)
5302{
5303	znode_t *zp = VTOZ(vp);
5304	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5305	int error;
5306	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5307	zilog_t	*zilog = zfsvfs->z_log;
5308
5309	ZFS_ENTER(zfsvfs);
5310	ZFS_VERIFY_ZP(zp);
5311
5312	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5313
5314	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5315		zil_commit(zilog, 0);
5316
5317	ZFS_EXIT(zfsvfs);
5318	return (error);
5319}
5320
5321#ifdef sun
5322/*
5323 * The smallest read we may consider to loan out an arcbuf.
5324 * This must be a power of 2.
5325 */
5326int zcr_blksz_min = (1 << 10);	/* 1K */
5327/*
5328 * If set to less than the file block size, allow loaning out of an
5329 * arcbuf for a partial block read.  This must be a power of 2.
5330 */
5331int zcr_blksz_max = (1 << 17);	/* 128K */
5332
5333/*ARGSUSED*/
5334static int
5335zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5336    caller_context_t *ct)
5337{
5338	znode_t	*zp = VTOZ(vp);
5339	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5340	int max_blksz = zfsvfs->z_max_blksz;
5341	uio_t *uio = &xuio->xu_uio;
5342	ssize_t size = uio->uio_resid;
5343	offset_t offset = uio->uio_loffset;
5344	int blksz;
5345	int fullblk, i;
5346	arc_buf_t *abuf;
5347	ssize_t maxsize;
5348	int preamble, postamble;
5349
5350	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5351		return (SET_ERROR(EINVAL));
5352
5353	ZFS_ENTER(zfsvfs);
5354	ZFS_VERIFY_ZP(zp);
5355	switch (ioflag) {
5356	case UIO_WRITE:
5357		/*
5358		 * Loan out an arc_buf for write if write size is bigger than
5359		 * max_blksz, and the file's block size is also max_blksz.
5360		 */
5361		blksz = max_blksz;
5362		if (size < blksz || zp->z_blksz != blksz) {
5363			ZFS_EXIT(zfsvfs);
5364			return (SET_ERROR(EINVAL));
5365		}
5366		/*
5367		 * Caller requests buffers for write before knowing where the
5368		 * write offset might be (e.g. NFS TCP write).
5369		 */
5370		if (offset == -1) {
5371			preamble = 0;
5372		} else {
5373			preamble = P2PHASE(offset, blksz);
5374			if (preamble) {
5375				preamble = blksz - preamble;
5376				size -= preamble;
5377			}
5378		}
5379
5380		postamble = P2PHASE(size, blksz);
5381		size -= postamble;
5382
5383		fullblk = size / blksz;
5384		(void) dmu_xuio_init(xuio,
5385		    (preamble != 0) + fullblk + (postamble != 0));
5386		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5387		    int, postamble, int,
5388		    (preamble != 0) + fullblk + (postamble != 0));
5389
5390		/*
5391		 * Have to fix iov base/len for partial buffers.  They
5392		 * currently represent full arc_buf's.
5393		 */
5394		if (preamble) {
5395			/* data begins in the middle of the arc_buf */
5396			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5397			    blksz);
5398			ASSERT(abuf);
5399			(void) dmu_xuio_add(xuio, abuf,
5400			    blksz - preamble, preamble);
5401		}
5402
5403		for (i = 0; i < fullblk; i++) {
5404			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5405			    blksz);
5406			ASSERT(abuf);
5407			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5408		}
5409
5410		if (postamble) {
5411			/* data ends in the middle of the arc_buf */
5412			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5413			    blksz);
5414			ASSERT(abuf);
5415			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5416		}
5417		break;
5418	case UIO_READ:
5419		/*
5420		 * Loan out an arc_buf for read if the read size is larger than
5421		 * the current file block size.  Block alignment is not
5422		 * considered.  Partial arc_buf will be loaned out for read.
5423		 */
5424		blksz = zp->z_blksz;
5425		if (blksz < zcr_blksz_min)
5426			blksz = zcr_blksz_min;
5427		if (blksz > zcr_blksz_max)
5428			blksz = zcr_blksz_max;
5429		/* avoid potential complexity of dealing with it */
5430		if (blksz > max_blksz) {
5431			ZFS_EXIT(zfsvfs);
5432			return (SET_ERROR(EINVAL));
5433		}
5434
5435		maxsize = zp->z_size - uio->uio_loffset;
5436		if (size > maxsize)
5437			size = maxsize;
5438
5439		if (size < blksz || vn_has_cached_data(vp)) {
5440			ZFS_EXIT(zfsvfs);
5441			return (SET_ERROR(EINVAL));
5442		}
5443		break;
5444	default:
5445		ZFS_EXIT(zfsvfs);
5446		return (SET_ERROR(EINVAL));
5447	}
5448
5449	uio->uio_extflg = UIO_XUIO;
5450	XUIO_XUZC_RW(xuio) = ioflag;
5451	ZFS_EXIT(zfsvfs);
5452	return (0);
5453}
5454
5455/*ARGSUSED*/
5456static int
5457zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5458{
5459	int i;
5460	arc_buf_t *abuf;
5461	int ioflag = XUIO_XUZC_RW(xuio);
5462
5463	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5464
5465	i = dmu_xuio_cnt(xuio);
5466	while (i-- > 0) {
5467		abuf = dmu_xuio_arcbuf(xuio, i);
5468		/*
5469		 * if abuf == NULL, it must be a write buffer
5470		 * that has been returned in zfs_write().
5471		 */
5472		if (abuf)
5473			dmu_return_arcbuf(abuf);
5474		ASSERT(abuf || ioflag == UIO_WRITE);
5475	}
5476
5477	dmu_xuio_fini(xuio);
5478	return (0);
5479}
5480
5481/*
5482 * Predeclare these here so that the compiler assumes that
5483 * this is an "old style" function declaration that does
5484 * not include arguments => we won't get type mismatch errors
5485 * in the initializations that follow.
5486 */
5487static int zfs_inval();
5488static int zfs_isdir();
5489
5490static int
5491zfs_inval()
5492{
5493	return (SET_ERROR(EINVAL));
5494}
5495
5496static int
5497zfs_isdir()
5498{
5499	return (SET_ERROR(EISDIR));
5500}
5501/*
5502 * Directory vnode operations template
5503 */
5504vnodeops_t *zfs_dvnodeops;
5505const fs_operation_def_t zfs_dvnodeops_template[] = {
5506	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5507	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5508	VOPNAME_READ,		{ .error = zfs_isdir },
5509	VOPNAME_WRITE,		{ .error = zfs_isdir },
5510	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5511	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5512	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5513	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5514	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5515	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5516	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5517	VOPNAME_LINK,		{ .vop_link = zfs_link },
5518	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5519	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5520	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5521	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5522	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5523	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5524	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5525	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5526	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5527	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5528	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5529	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5530	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5531	NULL,			NULL
5532};
5533
5534/*
5535 * Regular file vnode operations template
5536 */
5537vnodeops_t *zfs_fvnodeops;
5538const fs_operation_def_t zfs_fvnodeops_template[] = {
5539	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5540	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5541	VOPNAME_READ,		{ .vop_read = zfs_read },
5542	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5543	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5544	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5545	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5546	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5547	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5548	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5549	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5550	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5551	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5552	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5553	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5554	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5555	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5556	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5557	VOPNAME_MAP,		{ .vop_map = zfs_map },
5558	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5559	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5560	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5561	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5562	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5563	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5564	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5565	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5566	NULL,			NULL
5567};
5568
5569/*
5570 * Symbolic link vnode operations template
5571 */
5572vnodeops_t *zfs_symvnodeops;
5573const fs_operation_def_t zfs_symvnodeops_template[] = {
5574	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5575	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5576	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5577	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5578	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5579	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5580	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5581	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5582	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5583	NULL,			NULL
5584};
5585
5586/*
5587 * special share hidden files vnode operations template
5588 */
5589vnodeops_t *zfs_sharevnodeops;
5590const fs_operation_def_t zfs_sharevnodeops_template[] = {
5591	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5592	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5593	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5594	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5595	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5596	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5597	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5598	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5599	NULL,			NULL
5600};
5601
5602/*
5603 * Extended attribute directory vnode operations template
5604 *
5605 * This template is identical to the directory vnodes
5606 * operation template except for restricted operations:
5607 *	VOP_MKDIR()
5608 *	VOP_SYMLINK()
5609 *
5610 * Note that there are other restrictions embedded in:
5611 *	zfs_create()	- restrict type to VREG
5612 *	zfs_link()	- no links into/out of attribute space
5613 *	zfs_rename()	- no moves into/out of attribute space
5614 */
5615vnodeops_t *zfs_xdvnodeops;
5616const fs_operation_def_t zfs_xdvnodeops_template[] = {
5617	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5618	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5619	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5620	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5621	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5622	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5623	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5624	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5625	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5626	VOPNAME_LINK,		{ .vop_link = zfs_link },
5627	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5628	VOPNAME_MKDIR,		{ .error = zfs_inval },
5629	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5630	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5631	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5632	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5633	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5634	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5635	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5636	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5637	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5638	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5639	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5640	NULL,			NULL
5641};
5642
5643/*
5644 * Error vnode operations template
5645 */
5646vnodeops_t *zfs_evnodeops;
5647const fs_operation_def_t zfs_evnodeops_template[] = {
5648	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5649	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5650	NULL,			NULL
5651};
5652#endif	/* sun */
5653
5654static int
5655ioflags(int ioflags)
5656{
5657	int flags = 0;
5658
5659	if (ioflags & IO_APPEND)
5660		flags |= FAPPEND;
5661	if (ioflags & IO_NDELAY)
5662        	flags |= FNONBLOCK;
5663	if (ioflags & IO_SYNC)
5664		flags |= (FSYNC | FDSYNC | FRSYNC);
5665
5666	return (flags);
5667}
5668
5669static int
5670zfs_getpages(struct vnode *vp, vm_page_t *m, int count, int reqpage)
5671{
5672	znode_t *zp = VTOZ(vp);
5673	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5674	objset_t *os = zp->z_zfsvfs->z_os;
5675	vm_page_t mfirst, mlast, mreq;
5676	vm_object_t object;
5677	caddr_t va;
5678	struct sf_buf *sf;
5679	off_t startoff, endoff;
5680	int i, error;
5681	vm_pindex_t reqstart, reqend;
5682	int pcount, lsize, reqsize, size;
5683
5684	ZFS_ENTER(zfsvfs);
5685	ZFS_VERIFY_ZP(zp);
5686
5687	pcount = OFF_TO_IDX(round_page(count));
5688	mreq = m[reqpage];
5689	object = mreq->object;
5690	error = 0;
5691
5692	KASSERT(vp->v_object == object, ("mismatching object"));
5693
5694	if (pcount > 1 && zp->z_blksz > PAGESIZE) {
5695		startoff = rounddown(IDX_TO_OFF(mreq->pindex), zp->z_blksz);
5696		reqstart = OFF_TO_IDX(round_page(startoff));
5697		if (reqstart < m[0]->pindex)
5698			reqstart = 0;
5699		else
5700			reqstart = reqstart - m[0]->pindex;
5701		endoff = roundup(IDX_TO_OFF(mreq->pindex) + PAGE_SIZE,
5702		    zp->z_blksz);
5703		reqend = OFF_TO_IDX(trunc_page(endoff)) - 1;
5704		if (reqend > m[pcount - 1]->pindex)
5705			reqend = m[pcount - 1]->pindex;
5706		reqsize = reqend - m[reqstart]->pindex + 1;
5707		KASSERT(reqstart <= reqpage && reqpage < reqstart + reqsize,
5708		    ("reqpage beyond [reqstart, reqstart + reqsize[ bounds"));
5709	} else {
5710		reqstart = reqpage;
5711		reqsize = 1;
5712	}
5713	mfirst = m[reqstart];
5714	mlast = m[reqstart + reqsize - 1];
5715
5716	zfs_vmobject_wlock(object);
5717
5718	for (i = 0; i < reqstart; i++) {
5719		vm_page_lock(m[i]);
5720		vm_page_free(m[i]);
5721		vm_page_unlock(m[i]);
5722	}
5723	for (i = reqstart + reqsize; i < pcount; i++) {
5724		vm_page_lock(m[i]);
5725		vm_page_free(m[i]);
5726		vm_page_unlock(m[i]);
5727	}
5728
5729	if (mreq->valid && reqsize == 1) {
5730		if (mreq->valid != VM_PAGE_BITS_ALL)
5731			vm_page_zero_invalid(mreq, TRUE);
5732		zfs_vmobject_wunlock(object);
5733		ZFS_EXIT(zfsvfs);
5734		return (zfs_vm_pagerret_ok);
5735	}
5736
5737	PCPU_INC(cnt.v_vnodein);
5738	PCPU_ADD(cnt.v_vnodepgsin, reqsize);
5739
5740	if (IDX_TO_OFF(mreq->pindex) >= object->un_pager.vnp.vnp_size) {
5741		for (i = reqstart; i < reqstart + reqsize; i++) {
5742			if (i != reqpage) {
5743				vm_page_lock(m[i]);
5744				vm_page_free(m[i]);
5745				vm_page_unlock(m[i]);
5746			}
5747		}
5748		zfs_vmobject_wunlock(object);
5749		ZFS_EXIT(zfsvfs);
5750		return (zfs_vm_pagerret_bad);
5751	}
5752
5753	lsize = PAGE_SIZE;
5754	if (IDX_TO_OFF(mlast->pindex) + lsize > object->un_pager.vnp.vnp_size)
5755		lsize = object->un_pager.vnp.vnp_size - IDX_TO_OFF(mlast->pindex);
5756
5757	zfs_vmobject_wunlock(object);
5758
5759	for (i = reqstart; i < reqstart + reqsize; i++) {
5760		size = PAGE_SIZE;
5761		if (i == (reqstart + reqsize - 1))
5762			size = lsize;
5763		va = zfs_map_page(m[i], &sf);
5764		error = dmu_read(os, zp->z_id, IDX_TO_OFF(m[i]->pindex),
5765		    size, va, DMU_READ_PREFETCH);
5766		if (size != PAGE_SIZE)
5767			bzero(va + size, PAGE_SIZE - size);
5768		zfs_unmap_page(sf);
5769		if (error != 0)
5770			break;
5771	}
5772
5773	zfs_vmobject_wlock(object);
5774
5775	for (i = reqstart; i < reqstart + reqsize; i++) {
5776		if (!error)
5777			m[i]->valid = VM_PAGE_BITS_ALL;
5778		KASSERT(m[i]->dirty == 0, ("zfs_getpages: page %p is dirty", m[i]));
5779		if (i != reqpage)
5780			vm_page_readahead_finish(m[i]);
5781	}
5782
5783	zfs_vmobject_wunlock(object);
5784
5785	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
5786	ZFS_EXIT(zfsvfs);
5787	return (error ? zfs_vm_pagerret_error : zfs_vm_pagerret_ok);
5788}
5789
5790static int
5791zfs_freebsd_getpages(ap)
5792	struct vop_getpages_args /* {
5793		struct vnode *a_vp;
5794		vm_page_t *a_m;
5795		int a_count;
5796		int a_reqpage;
5797		vm_ooffset_t a_offset;
5798	} */ *ap;
5799{
5800
5801	return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_reqpage));
5802}
5803
5804static int
5805zfs_freebsd_bmap(ap)
5806	struct vop_bmap_args /* {
5807		struct vnode *a_vp;
5808		daddr_t  a_bn;
5809		struct bufobj **a_bop;
5810		daddr_t *a_bnp;
5811		int *a_runp;
5812		int *a_runb;
5813	} */ *ap;
5814{
5815
5816	if (ap->a_bop != NULL)
5817		*ap->a_bop = &ap->a_vp->v_bufobj;
5818	if (ap->a_bnp != NULL)
5819		*ap->a_bnp = ap->a_bn;
5820	if (ap->a_runp != NULL)
5821		*ap->a_runp = 0;
5822	if (ap->a_runb != NULL)
5823		*ap->a_runb = 0;
5824
5825	return (0);
5826}
5827
5828static int
5829zfs_freebsd_open(ap)
5830	struct vop_open_args /* {
5831		struct vnode *a_vp;
5832		int a_mode;
5833		struct ucred *a_cred;
5834		struct thread *a_td;
5835	} */ *ap;
5836{
5837	vnode_t	*vp = ap->a_vp;
5838	znode_t *zp = VTOZ(vp);
5839	int error;
5840
5841	error = zfs_open(&vp, ap->a_mode, ap->a_cred, NULL);
5842	if (error == 0)
5843		vnode_create_vobject(vp, zp->z_size, ap->a_td);
5844	return (error);
5845}
5846
5847static int
5848zfs_freebsd_close(ap)
5849	struct vop_close_args /* {
5850		struct vnode *a_vp;
5851		int  a_fflag;
5852		struct ucred *a_cred;
5853		struct thread *a_td;
5854	} */ *ap;
5855{
5856
5857	return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred, NULL));
5858}
5859
5860static int
5861zfs_freebsd_ioctl(ap)
5862	struct vop_ioctl_args /* {
5863		struct vnode *a_vp;
5864		u_long a_command;
5865		caddr_t a_data;
5866		int a_fflag;
5867		struct ucred *cred;
5868		struct thread *td;
5869	} */ *ap;
5870{
5871
5872	return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data,
5873	    ap->a_fflag, ap->a_cred, NULL, NULL));
5874}
5875
5876static int
5877zfs_freebsd_read(ap)
5878	struct vop_read_args /* {
5879		struct vnode *a_vp;
5880		struct uio *a_uio;
5881		int a_ioflag;
5882		struct ucred *a_cred;
5883	} */ *ap;
5884{
5885
5886	return (zfs_read(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
5887	    ap->a_cred, NULL));
5888}
5889
5890static int
5891zfs_freebsd_write(ap)
5892	struct vop_write_args /* {
5893		struct vnode *a_vp;
5894		struct uio *a_uio;
5895		int a_ioflag;
5896		struct ucred *a_cred;
5897	} */ *ap;
5898{
5899
5900	return (zfs_write(ap->a_vp, ap->a_uio, ioflags(ap->a_ioflag),
5901	    ap->a_cred, NULL));
5902}
5903
5904static int
5905zfs_freebsd_access(ap)
5906	struct vop_access_args /* {
5907		struct vnode *a_vp;
5908		accmode_t a_accmode;
5909		struct ucred *a_cred;
5910		struct thread *a_td;
5911	} */ *ap;
5912{
5913	vnode_t *vp = ap->a_vp;
5914	znode_t *zp = VTOZ(vp);
5915	accmode_t accmode;
5916	int error = 0;
5917
5918	/*
5919	 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND,
5920	 */
5921	accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND);
5922	if (accmode != 0)
5923		error = zfs_access(ap->a_vp, accmode, 0, ap->a_cred, NULL);
5924
5925	/*
5926	 * VADMIN has to be handled by vaccess().
5927	 */
5928	if (error == 0) {
5929		accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND);
5930		if (accmode != 0) {
5931			error = vaccess(vp->v_type, zp->z_mode, zp->z_uid,
5932			    zp->z_gid, accmode, ap->a_cred, NULL);
5933		}
5934	}
5935
5936	/*
5937	 * For VEXEC, ensure that at least one execute bit is set for
5938	 * non-directories.
5939	 */
5940	if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR &&
5941	    (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) {
5942		error = EACCES;
5943	}
5944
5945	return (error);
5946}
5947
5948static int
5949zfs_freebsd_lookup(ap)
5950	struct vop_lookup_args /* {
5951		struct vnode *a_dvp;
5952		struct vnode **a_vpp;
5953		struct componentname *a_cnp;
5954	} */ *ap;
5955{
5956	struct componentname *cnp = ap->a_cnp;
5957	char nm[NAME_MAX + 1];
5958
5959	ASSERT(cnp->cn_namelen < sizeof(nm));
5960	strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof(nm)));
5961
5962	return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop,
5963	    cnp->cn_cred, cnp->cn_thread, 0));
5964}
5965
5966static int
5967zfs_freebsd_create(ap)
5968	struct vop_create_args /* {
5969		struct vnode *a_dvp;
5970		struct vnode **a_vpp;
5971		struct componentname *a_cnp;
5972		struct vattr *a_vap;
5973	} */ *ap;
5974{
5975	struct componentname *cnp = ap->a_cnp;
5976	vattr_t *vap = ap->a_vap;
5977	int mode;
5978
5979	ASSERT(cnp->cn_flags & SAVENAME);
5980
5981	vattr_init_mask(vap);
5982	mode = vap->va_mode & ALLPERMS;
5983
5984	return (zfs_create(ap->a_dvp, cnp->cn_nameptr, vap, !EXCL, mode,
5985	    ap->a_vpp, cnp->cn_cred, cnp->cn_thread));
5986}
5987
5988static int
5989zfs_freebsd_remove(ap)
5990	struct vop_remove_args /* {
5991		struct vnode *a_dvp;
5992		struct vnode *a_vp;
5993		struct componentname *a_cnp;
5994	} */ *ap;
5995{
5996
5997	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
5998
5999	return (zfs_remove(ap->a_dvp, ap->a_cnp->cn_nameptr,
6000	    ap->a_cnp->cn_cred, NULL, 0));
6001}
6002
6003static int
6004zfs_freebsd_mkdir(ap)
6005	struct vop_mkdir_args /* {
6006		struct vnode *a_dvp;
6007		struct vnode **a_vpp;
6008		struct componentname *a_cnp;
6009		struct vattr *a_vap;
6010	} */ *ap;
6011{
6012	vattr_t *vap = ap->a_vap;
6013
6014	ASSERT(ap->a_cnp->cn_flags & SAVENAME);
6015
6016	vattr_init_mask(vap);
6017
6018	return (zfs_mkdir(ap->a_dvp, ap->a_cnp->cn_nameptr, vap, ap->a_vpp,
6019	    ap->a_cnp->cn_cred, NULL, 0, NULL));
6020}
6021
6022static int
6023zfs_freebsd_rmdir(ap)
6024	struct vop_rmdir_args /* {
6025		struct vnode *a_dvp;
6026		struct vnode *a_vp;
6027		struct componentname *a_cnp;
6028	} */ *ap;
6029{
6030	struct componentname *cnp = ap->a_cnp;
6031
6032	ASSERT(cnp->cn_flags & SAVENAME);
6033
6034	return (zfs_rmdir(ap->a_dvp, cnp->cn_nameptr, NULL, cnp->cn_cred, NULL, 0));
6035}
6036
6037static int
6038zfs_freebsd_readdir(ap)
6039	struct vop_readdir_args /* {
6040		struct vnode *a_vp;
6041		struct uio *a_uio;
6042		struct ucred *a_cred;
6043		int *a_eofflag;
6044		int *a_ncookies;
6045		u_long **a_cookies;
6046	} */ *ap;
6047{
6048
6049	return (zfs_readdir(ap->a_vp, ap->a_uio, ap->a_cred, ap->a_eofflag,
6050	    ap->a_ncookies, ap->a_cookies));
6051}
6052
6053static int
6054zfs_freebsd_fsync(ap)
6055	struct vop_fsync_args /* {
6056		struct vnode *a_vp;
6057		int a_waitfor;
6058		struct thread *a_td;
6059	} */ *ap;
6060{
6061
6062	vop_stdfsync(ap);
6063	return (zfs_fsync(ap->a_vp, 0, ap->a_td->td_ucred, NULL));
6064}
6065
6066static int
6067zfs_freebsd_getattr(ap)
6068	struct vop_getattr_args /* {
6069		struct vnode *a_vp;
6070		struct vattr *a_vap;
6071		struct ucred *a_cred;
6072	} */ *ap;
6073{
6074	vattr_t *vap = ap->a_vap;
6075	xvattr_t xvap;
6076	u_long fflags = 0;
6077	int error;
6078
6079	xva_init(&xvap);
6080	xvap.xva_vattr = *vap;
6081	xvap.xva_vattr.va_mask |= AT_XVATTR;
6082
6083	/* Convert chflags into ZFS-type flags. */
6084	/* XXX: what about SF_SETTABLE?. */
6085	XVA_SET_REQ(&xvap, XAT_IMMUTABLE);
6086	XVA_SET_REQ(&xvap, XAT_APPENDONLY);
6087	XVA_SET_REQ(&xvap, XAT_NOUNLINK);
6088	XVA_SET_REQ(&xvap, XAT_NODUMP);
6089	XVA_SET_REQ(&xvap, XAT_READONLY);
6090	XVA_SET_REQ(&xvap, XAT_ARCHIVE);
6091	XVA_SET_REQ(&xvap, XAT_SYSTEM);
6092	XVA_SET_REQ(&xvap, XAT_HIDDEN);
6093	XVA_SET_REQ(&xvap, XAT_REPARSE);
6094	XVA_SET_REQ(&xvap, XAT_OFFLINE);
6095	XVA_SET_REQ(&xvap, XAT_SPARSE);
6096
6097	error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred, NULL);
6098	if (error != 0)
6099		return (error);
6100
6101	/* Convert ZFS xattr into chflags. */
6102#define	FLAG_CHECK(fflag, xflag, xfield)	do {			\
6103	if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0)		\
6104		fflags |= (fflag);					\
6105} while (0)
6106	FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE,
6107	    xvap.xva_xoptattrs.xoa_immutable);
6108	FLAG_CHECK(SF_APPEND, XAT_APPENDONLY,
6109	    xvap.xva_xoptattrs.xoa_appendonly);
6110	FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK,
6111	    xvap.xva_xoptattrs.xoa_nounlink);
6112	FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE,
6113	    xvap.xva_xoptattrs.xoa_archive);
6114	FLAG_CHECK(UF_NODUMP, XAT_NODUMP,
6115	    xvap.xva_xoptattrs.xoa_nodump);
6116	FLAG_CHECK(UF_READONLY, XAT_READONLY,
6117	    xvap.xva_xoptattrs.xoa_readonly);
6118	FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM,
6119	    xvap.xva_xoptattrs.xoa_system);
6120	FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN,
6121	    xvap.xva_xoptattrs.xoa_hidden);
6122	FLAG_CHECK(UF_REPARSE, XAT_REPARSE,
6123	    xvap.xva_xoptattrs.xoa_reparse);
6124	FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE,
6125	    xvap.xva_xoptattrs.xoa_offline);
6126	FLAG_CHECK(UF_SPARSE, XAT_SPARSE,
6127	    xvap.xva_xoptattrs.xoa_sparse);
6128
6129#undef	FLAG_CHECK
6130	*vap = xvap.xva_vattr;
6131	vap->va_flags = fflags;
6132	return (0);
6133}
6134
6135static int
6136zfs_freebsd_setattr(ap)
6137	struct vop_setattr_args /* {
6138		struct vnode *a_vp;
6139		struct vattr *a_vap;
6140		struct ucred *a_cred;
6141	} */ *ap;
6142{
6143	vnode_t *vp = ap->a_vp;
6144	vattr_t *vap = ap->a_vap;
6145	cred_t *cred = ap->a_cred;
6146	xvattr_t xvap;
6147	u_long fflags;
6148	uint64_t zflags;
6149
6150	vattr_init_mask(vap);
6151	vap->va_mask &= ~AT_NOSET;
6152
6153	xva_init(&xvap);
6154	xvap.xva_vattr = *vap;
6155
6156	zflags = VTOZ(vp)->z_pflags;
6157
6158	if (vap->va_flags != VNOVAL) {
6159		zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs;
6160		int error;
6161
6162		if (zfsvfs->z_use_fuids == B_FALSE)
6163			return (EOPNOTSUPP);
6164
6165		fflags = vap->va_flags;
6166		/*
6167		 * XXX KDM
6168		 * We need to figure out whether it makes sense to allow
6169		 * UF_REPARSE through, since we don't really have other
6170		 * facilities to handle reparse points and zfs_setattr()
6171		 * doesn't currently allow setting that attribute anyway.
6172		 */
6173		if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE|
6174		     UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE|
6175		     UF_OFFLINE|UF_SPARSE)) != 0)
6176			return (EOPNOTSUPP);
6177		/*
6178		 * Unprivileged processes are not permitted to unset system
6179		 * flags, or modify flags if any system flags are set.
6180		 * Privileged non-jail processes may not modify system flags
6181		 * if securelevel > 0 and any existing system flags are set.
6182		 * Privileged jail processes behave like privileged non-jail
6183		 * processes if the security.jail.chflags_allowed sysctl is
6184		 * is non-zero; otherwise, they behave like unprivileged
6185		 * processes.
6186		 */
6187		if (secpolicy_fs_owner(vp->v_mount, cred) == 0 ||
6188		    priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0) == 0) {
6189			if (zflags &
6190			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6191				error = securelevel_gt(cred, 0);
6192				if (error != 0)
6193					return (error);
6194			}
6195		} else {
6196			/*
6197			 * Callers may only modify the file flags on objects they
6198			 * have VADMIN rights for.
6199			 */
6200			if ((error = VOP_ACCESS(vp, VADMIN, cred, curthread)) != 0)
6201				return (error);
6202			if (zflags &
6203			    (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) {
6204				return (EPERM);
6205			}
6206			if (fflags &
6207			    (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) {
6208				return (EPERM);
6209			}
6210		}
6211
6212#define	FLAG_CHANGE(fflag, zflag, xflag, xfield)	do {		\
6213	if (((fflags & (fflag)) && !(zflags & (zflag))) ||		\
6214	    ((zflags & (zflag)) && !(fflags & (fflag)))) {		\
6215		XVA_SET_REQ(&xvap, (xflag));				\
6216		(xfield) = ((fflags & (fflag)) != 0);			\
6217	}								\
6218} while (0)
6219		/* Convert chflags into ZFS-type flags. */
6220		/* XXX: what about SF_SETTABLE?. */
6221		FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE,
6222		    xvap.xva_xoptattrs.xoa_immutable);
6223		FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY,
6224		    xvap.xva_xoptattrs.xoa_appendonly);
6225		FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK,
6226		    xvap.xva_xoptattrs.xoa_nounlink);
6227		FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE,
6228		    xvap.xva_xoptattrs.xoa_archive);
6229		FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP,
6230		    xvap.xva_xoptattrs.xoa_nodump);
6231		FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY,
6232		    xvap.xva_xoptattrs.xoa_readonly);
6233		FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM,
6234		    xvap.xva_xoptattrs.xoa_system);
6235		FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN,
6236		    xvap.xva_xoptattrs.xoa_hidden);
6237		FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE,
6238		    xvap.xva_xoptattrs.xoa_hidden);
6239		FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE,
6240		    xvap.xva_xoptattrs.xoa_offline);
6241		FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE,
6242		    xvap.xva_xoptattrs.xoa_sparse);
6243#undef	FLAG_CHANGE
6244	}
6245	return (zfs_setattr(vp, (vattr_t *)&xvap, 0, cred, NULL));
6246}
6247
6248static int
6249zfs_freebsd_rename(ap)
6250	struct vop_rename_args  /* {
6251		struct vnode *a_fdvp;
6252		struct vnode *a_fvp;
6253		struct componentname *a_fcnp;
6254		struct vnode *a_tdvp;
6255		struct vnode *a_tvp;
6256		struct componentname *a_tcnp;
6257	} */ *ap;
6258{
6259	vnode_t *fdvp = ap->a_fdvp;
6260	vnode_t *fvp = ap->a_fvp;
6261	vnode_t *tdvp = ap->a_tdvp;
6262	vnode_t *tvp = ap->a_tvp;
6263	int error;
6264
6265	ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART));
6266	ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART));
6267
6268	/*
6269	 * Check for cross-device rename.
6270	 */
6271	if ((fdvp->v_mount != tdvp->v_mount) ||
6272	    (tvp && (fdvp->v_mount != tvp->v_mount)))
6273		error = EXDEV;
6274	else
6275		error = zfs_rename(fdvp, ap->a_fcnp->cn_nameptr, tdvp,
6276		    ap->a_tcnp->cn_nameptr, ap->a_fcnp->cn_cred, NULL, 0);
6277	if (tdvp == tvp)
6278		VN_RELE(tdvp);
6279	else
6280		VN_URELE(tdvp);
6281	if (tvp)
6282		VN_URELE(tvp);
6283	VN_RELE(fdvp);
6284	VN_RELE(fvp);
6285
6286	return (error);
6287}
6288
6289static int
6290zfs_freebsd_symlink(ap)
6291	struct vop_symlink_args /* {
6292		struct vnode *a_dvp;
6293		struct vnode **a_vpp;
6294		struct componentname *a_cnp;
6295		struct vattr *a_vap;
6296		char *a_target;
6297	} */ *ap;
6298{
6299	struct componentname *cnp = ap->a_cnp;
6300	vattr_t *vap = ap->a_vap;
6301
6302	ASSERT(cnp->cn_flags & SAVENAME);
6303
6304	vap->va_type = VLNK;	/* FreeBSD: Syscall only sets va_mode. */
6305	vattr_init_mask(vap);
6306
6307	return (zfs_symlink(ap->a_dvp, ap->a_vpp, cnp->cn_nameptr, vap,
6308	    ap->a_target, cnp->cn_cred, cnp->cn_thread));
6309}
6310
6311static int
6312zfs_freebsd_readlink(ap)
6313	struct vop_readlink_args /* {
6314		struct vnode *a_vp;
6315		struct uio *a_uio;
6316		struct ucred *a_cred;
6317	} */ *ap;
6318{
6319
6320	return (zfs_readlink(ap->a_vp, ap->a_uio, ap->a_cred, NULL));
6321}
6322
6323static int
6324zfs_freebsd_link(ap)
6325	struct vop_link_args /* {
6326		struct vnode *a_tdvp;
6327		struct vnode *a_vp;
6328		struct componentname *a_cnp;
6329	} */ *ap;
6330{
6331	struct componentname *cnp = ap->a_cnp;
6332	vnode_t *vp = ap->a_vp;
6333	vnode_t *tdvp = ap->a_tdvp;
6334
6335	if (tdvp->v_mount != vp->v_mount)
6336		return (EXDEV);
6337
6338	ASSERT(cnp->cn_flags & SAVENAME);
6339
6340	return (zfs_link(tdvp, vp, cnp->cn_nameptr, cnp->cn_cred, NULL, 0));
6341}
6342
6343static int
6344zfs_freebsd_inactive(ap)
6345	struct vop_inactive_args /* {
6346		struct vnode *a_vp;
6347		struct thread *a_td;
6348	} */ *ap;
6349{
6350	vnode_t *vp = ap->a_vp;
6351
6352	zfs_inactive(vp, ap->a_td->td_ucred, NULL);
6353	return (0);
6354}
6355
6356static int
6357zfs_freebsd_reclaim(ap)
6358	struct vop_reclaim_args /* {
6359		struct vnode *a_vp;
6360		struct thread *a_td;
6361	} */ *ap;
6362{
6363	vnode_t	*vp = ap->a_vp;
6364	znode_t	*zp = VTOZ(vp);
6365	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
6366
6367	ASSERT(zp != NULL);
6368
6369	/* Destroy the vm object and flush associated pages. */
6370	vnode_destroy_vobject(vp);
6371
6372	/*
6373	 * z_teardown_inactive_lock protects from a race with
6374	 * zfs_znode_dmu_fini in zfsvfs_teardown during
6375	 * force unmount.
6376	 */
6377	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
6378	if (zp->z_sa_hdl == NULL)
6379		zfs_znode_free(zp);
6380	else
6381		zfs_zinactive(zp);
6382	rw_exit(&zfsvfs->z_teardown_inactive_lock);
6383
6384	vp->v_data = NULL;
6385	return (0);
6386}
6387
6388static int
6389zfs_freebsd_fid(ap)
6390	struct vop_fid_args /* {
6391		struct vnode *a_vp;
6392		struct fid *a_fid;
6393	} */ *ap;
6394{
6395
6396	return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL));
6397}
6398
6399static int
6400zfs_freebsd_pathconf(ap)
6401	struct vop_pathconf_args /* {
6402		struct vnode *a_vp;
6403		int a_name;
6404		register_t *a_retval;
6405	} */ *ap;
6406{
6407	ulong_t val;
6408	int error;
6409
6410	error = zfs_pathconf(ap->a_vp, ap->a_name, &val, curthread->td_ucred, NULL);
6411	if (error == 0)
6412		*ap->a_retval = val;
6413	else if (error == EOPNOTSUPP)
6414		error = vop_stdpathconf(ap);
6415	return (error);
6416}
6417
6418static int
6419zfs_freebsd_fifo_pathconf(ap)
6420	struct vop_pathconf_args /* {
6421		struct vnode *a_vp;
6422		int a_name;
6423		register_t *a_retval;
6424	} */ *ap;
6425{
6426
6427	switch (ap->a_name) {
6428	case _PC_ACL_EXTENDED:
6429	case _PC_ACL_NFS4:
6430	case _PC_ACL_PATH_MAX:
6431	case _PC_MAC_PRESENT:
6432		return (zfs_freebsd_pathconf(ap));
6433	default:
6434		return (fifo_specops.vop_pathconf(ap));
6435	}
6436}
6437
6438/*
6439 * FreeBSD's extended attributes namespace defines file name prefix for ZFS'
6440 * extended attribute name:
6441 *
6442 *	NAMESPACE	PREFIX
6443 *	system		freebsd:system:
6444 *	user		(none, can be used to access ZFS fsattr(5) attributes
6445 *			created on Solaris)
6446 */
6447static int
6448zfs_create_attrname(int attrnamespace, const char *name, char *attrname,
6449    size_t size)
6450{
6451	const char *namespace, *prefix, *suffix;
6452
6453	/* We don't allow '/' character in attribute name. */
6454	if (strchr(name, '/') != NULL)
6455		return (EINVAL);
6456	/* We don't allow attribute names that start with "freebsd:" string. */
6457	if (strncmp(name, "freebsd:", 8) == 0)
6458		return (EINVAL);
6459
6460	bzero(attrname, size);
6461
6462	switch (attrnamespace) {
6463	case EXTATTR_NAMESPACE_USER:
6464#if 0
6465		prefix = "freebsd:";
6466		namespace = EXTATTR_NAMESPACE_USER_STRING;
6467		suffix = ":";
6468#else
6469		/*
6470		 * This is the default namespace by which we can access all
6471		 * attributes created on Solaris.
6472		 */
6473		prefix = namespace = suffix = "";
6474#endif
6475		break;
6476	case EXTATTR_NAMESPACE_SYSTEM:
6477		prefix = "freebsd:";
6478		namespace = EXTATTR_NAMESPACE_SYSTEM_STRING;
6479		suffix = ":";
6480		break;
6481	case EXTATTR_NAMESPACE_EMPTY:
6482	default:
6483		return (EINVAL);
6484	}
6485	if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix,
6486	    name) >= size) {
6487		return (ENAMETOOLONG);
6488	}
6489	return (0);
6490}
6491
6492/*
6493 * Vnode operating to retrieve a named extended attribute.
6494 */
6495static int
6496zfs_getextattr(struct vop_getextattr_args *ap)
6497/*
6498vop_getextattr {
6499	IN struct vnode *a_vp;
6500	IN int a_attrnamespace;
6501	IN const char *a_name;
6502	INOUT struct uio *a_uio;
6503	OUT size_t *a_size;
6504	IN struct ucred *a_cred;
6505	IN struct thread *a_td;
6506};
6507*/
6508{
6509	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6510	struct thread *td = ap->a_td;
6511	struct nameidata nd;
6512	char attrname[255];
6513	struct vattr va;
6514	vnode_t *xvp = NULL, *vp;
6515	int error, flags;
6516
6517	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6518	    ap->a_cred, ap->a_td, VREAD);
6519	if (error != 0)
6520		return (error);
6521
6522	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6523	    sizeof(attrname));
6524	if (error != 0)
6525		return (error);
6526
6527	ZFS_ENTER(zfsvfs);
6528
6529	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6530	    LOOKUP_XATTR);
6531	if (error != 0) {
6532		ZFS_EXIT(zfsvfs);
6533		return (error);
6534	}
6535
6536	flags = FREAD;
6537	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6538	    xvp, td);
6539	error = vn_open_cred(&nd, &flags, 0, 0, ap->a_cred, NULL);
6540	vp = nd.ni_vp;
6541	NDFREE(&nd, NDF_ONLY_PNBUF);
6542	if (error != 0) {
6543		ZFS_EXIT(zfsvfs);
6544		if (error == ENOENT)
6545			error = ENOATTR;
6546		return (error);
6547	}
6548
6549	if (ap->a_size != NULL) {
6550		error = VOP_GETATTR(vp, &va, ap->a_cred);
6551		if (error == 0)
6552			*ap->a_size = (size_t)va.va_size;
6553	} else if (ap->a_uio != NULL)
6554		error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred);
6555
6556	VOP_UNLOCK(vp, 0);
6557	vn_close(vp, flags, ap->a_cred, td);
6558	ZFS_EXIT(zfsvfs);
6559
6560	return (error);
6561}
6562
6563/*
6564 * Vnode operation to remove a named attribute.
6565 */
6566int
6567zfs_deleteextattr(struct vop_deleteextattr_args *ap)
6568/*
6569vop_deleteextattr {
6570	IN struct vnode *a_vp;
6571	IN int a_attrnamespace;
6572	IN const char *a_name;
6573	IN struct ucred *a_cred;
6574	IN struct thread *a_td;
6575};
6576*/
6577{
6578	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6579	struct thread *td = ap->a_td;
6580	struct nameidata nd;
6581	char attrname[255];
6582	struct vattr va;
6583	vnode_t *xvp = NULL, *vp;
6584	int error, flags;
6585
6586	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6587	    ap->a_cred, ap->a_td, VWRITE);
6588	if (error != 0)
6589		return (error);
6590
6591	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6592	    sizeof(attrname));
6593	if (error != 0)
6594		return (error);
6595
6596	ZFS_ENTER(zfsvfs);
6597
6598	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6599	    LOOKUP_XATTR);
6600	if (error != 0) {
6601		ZFS_EXIT(zfsvfs);
6602		return (error);
6603	}
6604
6605	NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF,
6606	    UIO_SYSSPACE, attrname, xvp, td);
6607	error = namei(&nd);
6608	vp = nd.ni_vp;
6609	NDFREE(&nd, NDF_ONLY_PNBUF);
6610	if (error != 0) {
6611		ZFS_EXIT(zfsvfs);
6612		if (error == ENOENT)
6613			error = ENOATTR;
6614		return (error);
6615	}
6616	error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd);
6617
6618	vput(nd.ni_dvp);
6619	if (vp == nd.ni_dvp)
6620		vrele(vp);
6621	else
6622		vput(vp);
6623	ZFS_EXIT(zfsvfs);
6624
6625	return (error);
6626}
6627
6628/*
6629 * Vnode operation to set a named attribute.
6630 */
6631static int
6632zfs_setextattr(struct vop_setextattr_args *ap)
6633/*
6634vop_setextattr {
6635	IN struct vnode *a_vp;
6636	IN int a_attrnamespace;
6637	IN const char *a_name;
6638	INOUT struct uio *a_uio;
6639	IN struct ucred *a_cred;
6640	IN struct thread *a_td;
6641};
6642*/
6643{
6644	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6645	struct thread *td = ap->a_td;
6646	struct nameidata nd;
6647	char attrname[255];
6648	struct vattr va;
6649	vnode_t *xvp = NULL, *vp;
6650	int error, flags;
6651
6652	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6653	    ap->a_cred, ap->a_td, VWRITE);
6654	if (error != 0)
6655		return (error);
6656
6657	error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname,
6658	    sizeof(attrname));
6659	if (error != 0)
6660		return (error);
6661
6662	ZFS_ENTER(zfsvfs);
6663
6664	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6665	    LOOKUP_XATTR | CREATE_XATTR_DIR);
6666	if (error != 0) {
6667		ZFS_EXIT(zfsvfs);
6668		return (error);
6669	}
6670
6671	flags = FFLAGS(O_WRONLY | O_CREAT);
6672	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname,
6673	    xvp, td);
6674	error = vn_open_cred(&nd, &flags, 0600, 0, ap->a_cred, NULL);
6675	vp = nd.ni_vp;
6676	NDFREE(&nd, NDF_ONLY_PNBUF);
6677	if (error != 0) {
6678		ZFS_EXIT(zfsvfs);
6679		return (error);
6680	}
6681
6682	VATTR_NULL(&va);
6683	va.va_size = 0;
6684	error = VOP_SETATTR(vp, &va, ap->a_cred);
6685	if (error == 0)
6686		VOP_WRITE(vp, ap->a_uio, IO_UNIT | IO_SYNC, ap->a_cred);
6687
6688	VOP_UNLOCK(vp, 0);
6689	vn_close(vp, flags, ap->a_cred, td);
6690	ZFS_EXIT(zfsvfs);
6691
6692	return (error);
6693}
6694
6695/*
6696 * Vnode operation to retrieve extended attributes on a vnode.
6697 */
6698static int
6699zfs_listextattr(struct vop_listextattr_args *ap)
6700/*
6701vop_listextattr {
6702	IN struct vnode *a_vp;
6703	IN int a_attrnamespace;
6704	INOUT struct uio *a_uio;
6705	OUT size_t *a_size;
6706	IN struct ucred *a_cred;
6707	IN struct thread *a_td;
6708};
6709*/
6710{
6711	zfsvfs_t *zfsvfs = VTOZ(ap->a_vp)->z_zfsvfs;
6712	struct thread *td = ap->a_td;
6713	struct nameidata nd;
6714	char attrprefix[16];
6715	u_char dirbuf[sizeof(struct dirent)];
6716	struct dirent *dp;
6717	struct iovec aiov;
6718	struct uio auio, *uio = ap->a_uio;
6719	size_t *sizep = ap->a_size;
6720	size_t plen;
6721	vnode_t *xvp = NULL, *vp;
6722	int done, error, eof, pos;
6723
6724	error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
6725	    ap->a_cred, ap->a_td, VREAD);
6726	if (error != 0)
6727		return (error);
6728
6729	error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix,
6730	    sizeof(attrprefix));
6731	if (error != 0)
6732		return (error);
6733	plen = strlen(attrprefix);
6734
6735	ZFS_ENTER(zfsvfs);
6736
6737	if (sizep != NULL)
6738		*sizep = 0;
6739
6740	error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, td,
6741	    LOOKUP_XATTR);
6742	if (error != 0) {
6743		ZFS_EXIT(zfsvfs);
6744		/*
6745		 * ENOATTR means that the EA directory does not yet exist,
6746		 * i.e. there are no extended attributes there.
6747		 */
6748		if (error == ENOATTR)
6749			error = 0;
6750		return (error);
6751	}
6752
6753	NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED,
6754	    UIO_SYSSPACE, ".", xvp, td);
6755	error = namei(&nd);
6756	vp = nd.ni_vp;
6757	NDFREE(&nd, NDF_ONLY_PNBUF);
6758	if (error != 0) {
6759		ZFS_EXIT(zfsvfs);
6760		return (error);
6761	}
6762
6763	auio.uio_iov = &aiov;
6764	auio.uio_iovcnt = 1;
6765	auio.uio_segflg = UIO_SYSSPACE;
6766	auio.uio_td = td;
6767	auio.uio_rw = UIO_READ;
6768	auio.uio_offset = 0;
6769
6770	do {
6771		u_char nlen;
6772
6773		aiov.iov_base = (void *)dirbuf;
6774		aiov.iov_len = sizeof(dirbuf);
6775		auio.uio_resid = sizeof(dirbuf);
6776		error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL);
6777		done = sizeof(dirbuf) - auio.uio_resid;
6778		if (error != 0)
6779			break;
6780		for (pos = 0; pos < done;) {
6781			dp = (struct dirent *)(dirbuf + pos);
6782			pos += dp->d_reclen;
6783			/*
6784			 * XXX: Temporarily we also accept DT_UNKNOWN, as this
6785			 * is what we get when attribute was created on Solaris.
6786			 */
6787			if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN)
6788				continue;
6789			if (plen == 0 && strncmp(dp->d_name, "freebsd:", 8) == 0)
6790				continue;
6791			else if (strncmp(dp->d_name, attrprefix, plen) != 0)
6792				continue;
6793			nlen = dp->d_namlen - plen;
6794			if (sizep != NULL)
6795				*sizep += 1 + nlen;
6796			else if (uio != NULL) {
6797				/*
6798				 * Format of extattr name entry is one byte for
6799				 * length and the rest for name.
6800				 */
6801				error = uiomove(&nlen, 1, uio->uio_rw, uio);
6802				if (error == 0) {
6803					error = uiomove(dp->d_name + plen, nlen,
6804					    uio->uio_rw, uio);
6805				}
6806				if (error != 0)
6807					break;
6808			}
6809		}
6810	} while (!eof && error == 0);
6811
6812	vput(vp);
6813	ZFS_EXIT(zfsvfs);
6814
6815	return (error);
6816}
6817
6818int
6819zfs_freebsd_getacl(ap)
6820	struct vop_getacl_args /* {
6821		struct vnode *vp;
6822		acl_type_t type;
6823		struct acl *aclp;
6824		struct ucred *cred;
6825		struct thread *td;
6826	} */ *ap;
6827{
6828	int		error;
6829	vsecattr_t      vsecattr;
6830
6831	if (ap->a_type != ACL_TYPE_NFS4)
6832		return (EINVAL);
6833
6834	vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT;
6835	if (error = zfs_getsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL))
6836		return (error);
6837
6838	error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt);
6839	if (vsecattr.vsa_aclentp != NULL)
6840		kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz);
6841
6842	return (error);
6843}
6844
6845int
6846zfs_freebsd_setacl(ap)
6847	struct vop_setacl_args /* {
6848		struct vnode *vp;
6849		acl_type_t type;
6850		struct acl *aclp;
6851		struct ucred *cred;
6852		struct thread *td;
6853	} */ *ap;
6854{
6855	int		error;
6856	vsecattr_t      vsecattr;
6857	int		aclbsize;	/* size of acl list in bytes */
6858	aclent_t	*aaclp;
6859
6860	if (ap->a_type != ACL_TYPE_NFS4)
6861		return (EINVAL);
6862
6863	if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES)
6864		return (EINVAL);
6865
6866	/*
6867	 * With NFSv4 ACLs, chmod(2) may need to add additional entries,
6868	 * splitting every entry into two and appending "canonical six"
6869	 * entries at the end.  Don't allow for setting an ACL that would
6870	 * cause chmod(2) to run out of ACL entries.
6871	 */
6872	if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES)
6873		return (ENOSPC);
6874
6875	error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR);
6876	if (error != 0)
6877		return (error);
6878
6879	vsecattr.vsa_mask = VSA_ACE;
6880	aclbsize = ap->a_aclp->acl_cnt * sizeof(ace_t);
6881	vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP);
6882	aaclp = vsecattr.vsa_aclentp;
6883	vsecattr.vsa_aclentsz = aclbsize;
6884
6885	aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp);
6886	error = zfs_setsecattr(ap->a_vp, &vsecattr, 0, ap->a_cred, NULL);
6887	kmem_free(aaclp, aclbsize);
6888
6889	return (error);
6890}
6891
6892int
6893zfs_freebsd_aclcheck(ap)
6894	struct vop_aclcheck_args /* {
6895		struct vnode *vp;
6896		acl_type_t type;
6897		struct acl *aclp;
6898		struct ucred *cred;
6899		struct thread *td;
6900	} */ *ap;
6901{
6902
6903	return (EOPNOTSUPP);
6904}
6905
6906struct vop_vector zfs_vnodeops;
6907struct vop_vector zfs_fifoops;
6908struct vop_vector zfs_shareops;
6909
6910struct vop_vector zfs_vnodeops = {
6911	.vop_default =		&default_vnodeops,
6912	.vop_inactive =		zfs_freebsd_inactive,
6913	.vop_reclaim =		zfs_freebsd_reclaim,
6914	.vop_access =		zfs_freebsd_access,
6915#ifdef FREEBSD_NAMECACHE
6916	.vop_lookup =		vfs_cache_lookup,
6917	.vop_cachedlookup =	zfs_freebsd_lookup,
6918#else
6919	.vop_lookup =		zfs_freebsd_lookup,
6920#endif
6921	.vop_getattr =		zfs_freebsd_getattr,
6922	.vop_setattr =		zfs_freebsd_setattr,
6923	.vop_create =		zfs_freebsd_create,
6924	.vop_mknod =		zfs_freebsd_create,
6925	.vop_mkdir =		zfs_freebsd_mkdir,
6926	.vop_readdir =		zfs_freebsd_readdir,
6927	.vop_fsync =		zfs_freebsd_fsync,
6928	.vop_open =		zfs_freebsd_open,
6929	.vop_close =		zfs_freebsd_close,
6930	.vop_rmdir =		zfs_freebsd_rmdir,
6931	.vop_ioctl =		zfs_freebsd_ioctl,
6932	.vop_link =		zfs_freebsd_link,
6933	.vop_symlink =		zfs_freebsd_symlink,
6934	.vop_readlink =		zfs_freebsd_readlink,
6935	.vop_read =		zfs_freebsd_read,
6936	.vop_write =		zfs_freebsd_write,
6937	.vop_remove =		zfs_freebsd_remove,
6938	.vop_rename =		zfs_freebsd_rename,
6939	.vop_pathconf =		zfs_freebsd_pathconf,
6940	.vop_bmap =		zfs_freebsd_bmap,
6941	.vop_fid =		zfs_freebsd_fid,
6942	.vop_getextattr =	zfs_getextattr,
6943	.vop_deleteextattr =	zfs_deleteextattr,
6944	.vop_setextattr =	zfs_setextattr,
6945	.vop_listextattr =	zfs_listextattr,
6946	.vop_getacl =		zfs_freebsd_getacl,
6947	.vop_setacl =		zfs_freebsd_setacl,
6948	.vop_aclcheck =		zfs_freebsd_aclcheck,
6949	.vop_getpages =		zfs_freebsd_getpages,
6950};
6951
6952struct vop_vector zfs_fifoops = {
6953	.vop_default =		&fifo_specops,
6954	.vop_fsync =		zfs_freebsd_fsync,
6955	.vop_access =		zfs_freebsd_access,
6956	.vop_getattr =		zfs_freebsd_getattr,
6957	.vop_inactive =		zfs_freebsd_inactive,
6958	.vop_read =		VOP_PANIC,
6959	.vop_reclaim =		zfs_freebsd_reclaim,
6960	.vop_setattr =		zfs_freebsd_setattr,
6961	.vop_write =		VOP_PANIC,
6962	.vop_pathconf = 	zfs_freebsd_fifo_pathconf,
6963	.vop_fid =		zfs_freebsd_fid,
6964	.vop_getacl =		zfs_freebsd_getacl,
6965	.vop_setacl =		zfs_freebsd_setacl,
6966	.vop_aclcheck =		zfs_freebsd_aclcheck,
6967};
6968
6969/*
6970 * special share hidden files vnode operations template
6971 */
6972struct vop_vector zfs_shareops = {
6973	.vop_default =		&default_vnodeops,
6974	.vop_access =		zfs_freebsd_access,
6975	.vop_inactive =		zfs_freebsd_inactive,
6976	.vop_reclaim =		zfs_freebsd_reclaim,
6977	.vop_fid =		zfs_freebsd_fid,
6978	.vop_pathconf =		zfs_freebsd_pathconf,
6979};
6980