zfs_vfsops.c revision 307122
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29/* Portions Copyright 2010 Robert Milkowski */
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/sysmacros.h>
36#include <sys/kmem.h>
37#include <sys/acl.h>
38#include <sys/vnode.h>
39#include <sys/vfs.h>
40#include <sys/mntent.h>
41#include <sys/mount.h>
42#include <sys/cmn_err.h>
43#include <sys/zfs_znode.h>
44#include <sys/zfs_dir.h>
45#include <sys/zil.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_dataset.h>
50#include <sys/dsl_deleg.h>
51#include <sys/spa.h>
52#include <sys/zap.h>
53#include <sys/sa.h>
54#include <sys/sa_impl.h>
55#include <sys/varargs.h>
56#include <sys/policy.h>
57#include <sys/atomic.h>
58#include <sys/zfs_ioctl.h>
59#include <sys/zfs_ctldir.h>
60#include <sys/zfs_fuid.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
65#include <sys/jail.h>
66#include "zfs_comutil.h"
67
68struct mtx zfs_debug_mtx;
69MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
70
71SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
72
73int zfs_super_owner;
74SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
75    "File system owner can perform privileged operation on his file systems");
76
77int zfs_debug_level;
78TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
79SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
80    "Debug level");
81
82SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
83static int zfs_version_acl = ZFS_ACL_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
85    "ZFS_ACL_VERSION");
86static int zfs_version_spa = SPA_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
88    "SPA_VERSION");
89static int zfs_version_zpl = ZPL_VERSION;
90SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
91    "ZPL_VERSION");
92
93static int zfs_mount(vfs_t *vfsp);
94static int zfs_umount(vfs_t *vfsp, int fflag);
95static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
96static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
97static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
98static int zfs_sync(vfs_t *vfsp, int waitfor);
99static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
100    struct ucred **credanonp, int *numsecflavors, int **secflavors);
101static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
102static void zfs_objset_close(zfsvfs_t *zfsvfs);
103static void zfs_freevfs(vfs_t *vfsp);
104
105static struct vfsops zfs_vfsops = {
106	.vfs_mount =		zfs_mount,
107	.vfs_unmount =		zfs_umount,
108	.vfs_root =		zfs_root,
109	.vfs_statfs =		zfs_statfs,
110	.vfs_vget =		zfs_vget,
111	.vfs_sync =		zfs_sync,
112	.vfs_checkexp =		zfs_checkexp,
113	.vfs_fhtovp =		zfs_fhtovp,
114};
115
116VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
117
118/*
119 * We need to keep a count of active fs's.
120 * This is necessary to prevent our module
121 * from being unloaded after a umount -f
122 */
123static uint32_t	zfs_active_fs_count = 0;
124
125/*ARGSUSED*/
126static int
127zfs_sync(vfs_t *vfsp, int waitfor)
128{
129
130	/*
131	 * Data integrity is job one.  We don't want a compromised kernel
132	 * writing to the storage pool, so we never sync during panic.
133	 */
134	if (panicstr)
135		return (0);
136
137	/*
138	 * Ignore the system syncher.  ZFS already commits async data
139	 * at zfs_txg_timeout intervals.
140	 */
141	if (waitfor == MNT_LAZY)
142		return (0);
143
144	if (vfsp != NULL) {
145		/*
146		 * Sync a specific filesystem.
147		 */
148		zfsvfs_t *zfsvfs = vfsp->vfs_data;
149		dsl_pool_t *dp;
150		int error;
151
152		error = vfs_stdsync(vfsp, waitfor);
153		if (error != 0)
154			return (error);
155
156		ZFS_ENTER(zfsvfs);
157		dp = dmu_objset_pool(zfsvfs->z_os);
158
159		/*
160		 * If the system is shutting down, then skip any
161		 * filesystems which may exist on a suspended pool.
162		 */
163		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164			ZFS_EXIT(zfsvfs);
165			return (0);
166		}
167
168		if (zfsvfs->z_log != NULL)
169			zil_commit(zfsvfs->z_log, 0);
170
171		ZFS_EXIT(zfsvfs);
172	} else {
173		/*
174		 * Sync all ZFS filesystems.  This is what happens when you
175		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176		 * request by waiting for all pools to commit all dirty data.
177		 */
178		spa_sync_allpools();
179	}
180
181	return (0);
182}
183
184#ifndef __FreeBSD_kernel__
185static int
186zfs_create_unique_device(dev_t *dev)
187{
188	major_t new_major;
189
190	do {
191		ASSERT3U(zfs_minor, <=, MAXMIN32);
192		minor_t start = zfs_minor;
193		do {
194			mutex_enter(&zfs_dev_mtx);
195			if (zfs_minor >= MAXMIN32) {
196				/*
197				 * If we're still using the real major
198				 * keep out of /dev/zfs and /dev/zvol minor
199				 * number space.  If we're using a getudev()'ed
200				 * major number, we can use all of its minors.
201				 */
202				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203					zfs_minor = ZFS_MIN_MINOR;
204				else
205					zfs_minor = 0;
206			} else {
207				zfs_minor++;
208			}
209			*dev = makedevice(zfs_major, zfs_minor);
210			mutex_exit(&zfs_dev_mtx);
211		} while (vfs_devismounted(*dev) && zfs_minor != start);
212		if (zfs_minor == start) {
213			/*
214			 * We are using all ~262,000 minor numbers for the
215			 * current major number.  Create a new major number.
216			 */
217			if ((new_major = getudev()) == (major_t)-1) {
218				cmn_err(CE_WARN,
219				    "zfs_mount: Can't get unique major "
220				    "device number.");
221				return (-1);
222			}
223			mutex_enter(&zfs_dev_mtx);
224			zfs_major = new_major;
225			zfs_minor = 0;
226
227			mutex_exit(&zfs_dev_mtx);
228		} else {
229			break;
230		}
231		/* CONSTANTCONDITION */
232	} while (1);
233
234	return (0);
235}
236#endif	/* !__FreeBSD_kernel__ */
237
238static void
239atime_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == TRUE) {
244		zfsvfs->z_atime = TRUE;
245		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
246		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248	} else {
249		zfsvfs->z_atime = FALSE;
250		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
251		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
252		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
253	}
254}
255
256static void
257xattr_changed_cb(void *arg, uint64_t newval)
258{
259	zfsvfs_t *zfsvfs = arg;
260
261	if (newval == TRUE) {
262		/* XXX locking on vfs_flag? */
263#ifdef TODO
264		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
265#endif
266		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
267		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
268	} else {
269		/* XXX locking on vfs_flag? */
270#ifdef TODO
271		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
272#endif
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
275	}
276}
277
278static void
279blksz_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
283	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
284	ASSERT(ISP2(newval));
285
286	zfsvfs->z_max_blksz = newval;
287	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
288}
289
290static void
291readonly_changed_cb(void *arg, uint64_t newval)
292{
293	zfsvfs_t *zfsvfs = arg;
294
295	if (newval) {
296		/* XXX locking on vfs_flag? */
297		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
298		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
299		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
300	} else {
301		/* XXX locking on vfs_flag? */
302		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
303		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
304		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
305	}
306}
307
308static void
309setuid_changed_cb(void *arg, uint64_t newval)
310{
311	zfsvfs_t *zfsvfs = arg;
312
313	if (newval == FALSE) {
314		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
315		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
316		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
317	} else {
318		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
319		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
320		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
321	}
322}
323
324static void
325exec_changed_cb(void *arg, uint64_t newval)
326{
327	zfsvfs_t *zfsvfs = arg;
328
329	if (newval == FALSE) {
330		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
331		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
332		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
333	} else {
334		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
335		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
336		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
337	}
338}
339
340/*
341 * The nbmand mount option can be changed at mount time.
342 * We can't allow it to be toggled on live file systems or incorrect
343 * behavior may be seen from cifs clients
344 *
345 * This property isn't registered via dsl_prop_register(), but this callback
346 * will be called when a file system is first mounted
347 */
348static void
349nbmand_changed_cb(void *arg, uint64_t newval)
350{
351	zfsvfs_t *zfsvfs = arg;
352	if (newval == FALSE) {
353		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
354		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
355	} else {
356		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
357		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
358	}
359}
360
361static void
362snapdir_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_show_ctldir = newval;
367}
368
369static void
370vscan_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_vscan = newval;
375}
376
377static void
378acl_mode_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_mode = newval;
383}
384
385static void
386acl_inherit_changed_cb(void *arg, uint64_t newval)
387{
388	zfsvfs_t *zfsvfs = arg;
389
390	zfsvfs->z_acl_inherit = newval;
391}
392
393static int
394zfs_register_callbacks(vfs_t *vfsp)
395{
396	struct dsl_dataset *ds = NULL;
397	objset_t *os = NULL;
398	zfsvfs_t *zfsvfs = NULL;
399	uint64_t nbmand;
400	boolean_t readonly = B_FALSE;
401	boolean_t do_readonly = B_FALSE;
402	boolean_t setuid = B_FALSE;
403	boolean_t do_setuid = B_FALSE;
404	boolean_t exec = B_FALSE;
405	boolean_t do_exec = B_FALSE;
406#ifdef illumos
407	boolean_t devices = B_FALSE;
408	boolean_t do_devices = B_FALSE;
409#endif
410	boolean_t xattr = B_FALSE;
411	boolean_t do_xattr = B_FALSE;
412	boolean_t atime = B_FALSE;
413	boolean_t do_atime = B_FALSE;
414	int error = 0;
415
416	ASSERT(vfsp);
417	zfsvfs = vfsp->vfs_data;
418	ASSERT(zfsvfs);
419	os = zfsvfs->z_os;
420
421	/*
422	 * This function can be called for a snapshot when we update snapshot's
423	 * mount point, which isn't really supported.
424	 */
425	if (dmu_objset_is_snapshot(os))
426		return (EOPNOTSUPP);
427
428	/*
429	 * The act of registering our callbacks will destroy any mount
430	 * options we may have.  In order to enable temporary overrides
431	 * of mount options, we stash away the current values and
432	 * restore them after we register the callbacks.
433	 */
434	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
435	    !spa_writeable(dmu_objset_spa(os))) {
436		readonly = B_TRUE;
437		do_readonly = B_TRUE;
438	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
439		readonly = B_FALSE;
440		do_readonly = B_TRUE;
441	}
442	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
443		setuid = B_FALSE;
444		do_setuid = B_TRUE;
445	} else {
446		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447			setuid = B_FALSE;
448			do_setuid = B_TRUE;
449		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450			setuid = B_TRUE;
451			do_setuid = B_TRUE;
452		}
453	}
454	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455		exec = B_FALSE;
456		do_exec = B_TRUE;
457	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458		exec = B_TRUE;
459		do_exec = B_TRUE;
460	}
461	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462		xattr = B_FALSE;
463		do_xattr = B_TRUE;
464	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465		xattr = B_TRUE;
466		do_xattr = B_TRUE;
467	}
468	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469		atime = B_FALSE;
470		do_atime = B_TRUE;
471	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472		atime = B_TRUE;
473		do_atime = B_TRUE;
474	}
475
476	/*
477	 * We need to enter pool configuration here, so that we can use
478	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
479	 * dsl_prop_get_integer() can not be used, because it has to acquire
480	 * spa_namespace_lock and we can not do that because we already hold
481	 * z_teardown_lock.  The problem is that spa_config_sync() is called
482	 * with spa_namespace_lock held and the function calls ZFS vnode
483	 * operations to write the cache file and thus z_teardown_lock is
484	 * acquired after spa_namespace_lock.
485	 */
486	ds = dmu_objset_ds(os);
487	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
488
489	/*
490	 * nbmand is a special property.  It can only be changed at
491	 * mount time.
492	 *
493	 * This is weird, but it is documented to only be changeable
494	 * at mount time.
495	 */
496	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
497		nbmand = B_FALSE;
498	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
499		nbmand = B_TRUE;
500	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
501		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
502		return (error);
503	}
504
505	/*
506	 * Register property callbacks.
507	 *
508	 * It would probably be fine to just check for i/o error from
509	 * the first prop_register(), but I guess I like to go
510	 * overboard...
511	 */
512	error = dsl_prop_register(ds,
513	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
520#ifdef illumos
521	error = error ? error : dsl_prop_register(ds,
522	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
523#endif
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
526	error = error ? error : dsl_prop_register(ds,
527	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
528	error = error ? error : dsl_prop_register(ds,
529	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
530	error = error ? error : dsl_prop_register(ds,
531	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
532	error = error ? error : dsl_prop_register(ds,
533	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
534	    zfsvfs);
535	error = error ? error : dsl_prop_register(ds,
536	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
537	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
538	if (error)
539		goto unregister;
540
541	/*
542	 * Invoke our callbacks to restore temporary mount options.
543	 */
544	if (do_readonly)
545		readonly_changed_cb(zfsvfs, readonly);
546	if (do_setuid)
547		setuid_changed_cb(zfsvfs, setuid);
548	if (do_exec)
549		exec_changed_cb(zfsvfs, exec);
550	if (do_xattr)
551		xattr_changed_cb(zfsvfs, xattr);
552	if (do_atime)
553		atime_changed_cb(zfsvfs, atime);
554
555	nbmand_changed_cb(zfsvfs, nbmand);
556
557	return (0);
558
559unregister:
560	dsl_prop_unregister_all(ds, zfsvfs);
561	return (error);
562}
563
564static int
565zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566    uint64_t *userp, uint64_t *groupp)
567{
568	/*
569	 * Is it a valid type of object to track?
570	 */
571	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
572		return (SET_ERROR(ENOENT));
573
574	/*
575	 * If we have a NULL data pointer
576	 * then assume the id's aren't changing and
577	 * return EEXIST to the dmu to let it know to
578	 * use the same ids
579	 */
580	if (data == NULL)
581		return (SET_ERROR(EEXIST));
582
583	if (bonustype == DMU_OT_ZNODE) {
584		znode_phys_t *znp = data;
585		*userp = znp->zp_uid;
586		*groupp = znp->zp_gid;
587	} else {
588		int hdrsize;
589		sa_hdr_phys_t *sap = data;
590		sa_hdr_phys_t sa = *sap;
591		boolean_t swap = B_FALSE;
592
593		ASSERT(bonustype == DMU_OT_SA);
594
595		if (sa.sa_magic == 0) {
596			/*
597			 * This should only happen for newly created
598			 * files that haven't had the znode data filled
599			 * in yet.
600			 */
601			*userp = 0;
602			*groupp = 0;
603			return (0);
604		}
605		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
606			sa.sa_magic = SA_MAGIC;
607			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
608			swap = B_TRUE;
609		} else {
610			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
611		}
612
613		hdrsize = sa_hdrsize(&sa);
614		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
615		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
616		    SA_UID_OFFSET));
617		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
618		    SA_GID_OFFSET));
619		if (swap) {
620			*userp = BSWAP_64(*userp);
621			*groupp = BSWAP_64(*groupp);
622		}
623	}
624	return (0);
625}
626
627static void
628fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
629    char *domainbuf, int buflen, uid_t *ridp)
630{
631	uint64_t fuid;
632	const char *domain;
633
634	fuid = strtonum(fuidstr, NULL);
635
636	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
637	if (domain)
638		(void) strlcpy(domainbuf, domain, buflen);
639	else
640		domainbuf[0] = '\0';
641	*ridp = FUID_RID(fuid);
642}
643
644static uint64_t
645zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
646{
647	switch (type) {
648	case ZFS_PROP_USERUSED:
649		return (DMU_USERUSED_OBJECT);
650	case ZFS_PROP_GROUPUSED:
651		return (DMU_GROUPUSED_OBJECT);
652	case ZFS_PROP_USERQUOTA:
653		return (zfsvfs->z_userquota_obj);
654	case ZFS_PROP_GROUPQUOTA:
655		return (zfsvfs->z_groupquota_obj);
656	}
657	return (0);
658}
659
660int
661zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
662    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
663{
664	int error;
665	zap_cursor_t zc;
666	zap_attribute_t za;
667	zfs_useracct_t *buf = vbuf;
668	uint64_t obj;
669
670	if (!dmu_objset_userspace_present(zfsvfs->z_os))
671		return (SET_ERROR(ENOTSUP));
672
673	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
674	if (obj == 0) {
675		*bufsizep = 0;
676		return (0);
677	}
678
679	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
680	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
681	    zap_cursor_advance(&zc)) {
682		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
683		    *bufsizep)
684			break;
685
686		fuidstr_to_sid(zfsvfs, za.za_name,
687		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
688
689		buf->zu_space = za.za_first_integer;
690		buf++;
691	}
692	if (error == ENOENT)
693		error = 0;
694
695	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
696	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
697	*cookiep = zap_cursor_serialize(&zc);
698	zap_cursor_fini(&zc);
699	return (error);
700}
701
702/*
703 * buf must be big enough (eg, 32 bytes)
704 */
705static int
706id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
707    char *buf, boolean_t addok)
708{
709	uint64_t fuid;
710	int domainid = 0;
711
712	if (domain && domain[0]) {
713		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
714		if (domainid == -1)
715			return (SET_ERROR(ENOENT));
716	}
717	fuid = FUID_ENCODE(domainid, rid);
718	(void) sprintf(buf, "%llx", (longlong_t)fuid);
719	return (0);
720}
721
722int
723zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
724    const char *domain, uint64_t rid, uint64_t *valp)
725{
726	char buf[32];
727	int err;
728	uint64_t obj;
729
730	*valp = 0;
731
732	if (!dmu_objset_userspace_present(zfsvfs->z_os))
733		return (SET_ERROR(ENOTSUP));
734
735	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
736	if (obj == 0)
737		return (0);
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
740	if (err)
741		return (err);
742
743	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
744	if (err == ENOENT)
745		err = 0;
746	return (err);
747}
748
749int
750zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
751    const char *domain, uint64_t rid, uint64_t quota)
752{
753	char buf[32];
754	int err;
755	dmu_tx_t *tx;
756	uint64_t *objp;
757	boolean_t fuid_dirtied;
758
759	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
760		return (SET_ERROR(EINVAL));
761
762	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
763		return (SET_ERROR(ENOTSUP));
764
765	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
766	    &zfsvfs->z_groupquota_obj;
767
768	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
769	if (err)
770		return (err);
771	fuid_dirtied = zfsvfs->z_fuid_dirty;
772
773	tx = dmu_tx_create(zfsvfs->z_os);
774	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
775	if (*objp == 0) {
776		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
777		    zfs_userquota_prop_prefixes[type]);
778	}
779	if (fuid_dirtied)
780		zfs_fuid_txhold(zfsvfs, tx);
781	err = dmu_tx_assign(tx, TXG_WAIT);
782	if (err) {
783		dmu_tx_abort(tx);
784		return (err);
785	}
786
787	mutex_enter(&zfsvfs->z_lock);
788	if (*objp == 0) {
789		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
790		    DMU_OT_NONE, 0, tx);
791		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
792		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
793	}
794	mutex_exit(&zfsvfs->z_lock);
795
796	if (quota == 0) {
797		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
798		if (err == ENOENT)
799			err = 0;
800	} else {
801		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
802	}
803	ASSERT(err == 0);
804	if (fuid_dirtied)
805		zfs_fuid_sync(zfsvfs, tx);
806	dmu_tx_commit(tx);
807	return (err);
808}
809
810boolean_t
811zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
812{
813	char buf[32];
814	uint64_t used, quota, usedobj, quotaobj;
815	int err;
816
817	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
818	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
819
820	if (quotaobj == 0 || zfsvfs->z_replay)
821		return (B_FALSE);
822
823	(void) sprintf(buf, "%llx", (longlong_t)fuid);
824	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
825	if (err != 0)
826		return (B_FALSE);
827
828	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
829	if (err != 0)
830		return (B_FALSE);
831	return (used >= quota);
832}
833
834boolean_t
835zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
836{
837	uint64_t fuid;
838	uint64_t quotaobj;
839
840	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
841
842	fuid = isgroup ? zp->z_gid : zp->z_uid;
843
844	if (quotaobj == 0 || zfsvfs->z_replay)
845		return (B_FALSE);
846
847	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
848}
849
850/*
851 * Associate this zfsvfs with the given objset, which must be owned.
852 * This will cache a bunch of on-disk state from the objset in the
853 * zfsvfs.
854 */
855static int
856zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
857{
858	int error;
859	uint64_t val;
860
861	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
862	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
863	zfsvfs->z_os = os;
864
865	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
866	if (error != 0)
867		return (error);
868	if (zfsvfs->z_version >
869	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
870		(void) printf("Can't mount a version %lld file system "
871		    "on a version %lld pool\n. Pool must be upgraded to mount "
872		    "this file system.", (u_longlong_t)zfsvfs->z_version,
873		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
874		return (SET_ERROR(ENOTSUP));
875	}
876	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
877	if (error != 0)
878		return (error);
879	zfsvfs->z_norm = (int)val;
880
881	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
882	if (error != 0)
883		return (error);
884	zfsvfs->z_utf8 = (val != 0);
885
886	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
887	if (error != 0)
888		return (error);
889	zfsvfs->z_case = (uint_t)val;
890
891	/*
892	 * Fold case on file systems that are always or sometimes case
893	 * insensitive.
894	 */
895	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
896	    zfsvfs->z_case == ZFS_CASE_MIXED)
897		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
898
899	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
900	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
901
902	uint64_t sa_obj = 0;
903	if (zfsvfs->z_use_sa) {
904		/* should either have both of these objects or none */
905		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
906		    &sa_obj);
907		if (error != 0)
908			return (error);
909	}
910
911	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
912	    &zfsvfs->z_attr_table);
913	if (error != 0)
914		return (error);
915
916	if (zfsvfs->z_version >= ZPL_VERSION_SA)
917		sa_register_update_callback(os, zfs_sa_upgrade);
918
919	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
920	    &zfsvfs->z_root);
921	if (error != 0)
922		return (error);
923	ASSERT(zfsvfs->z_root != 0);
924
925	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
926	    &zfsvfs->z_unlinkedobj);
927	if (error != 0)
928		return (error);
929
930	error = zap_lookup(os, MASTER_NODE_OBJ,
931	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
932	    8, 1, &zfsvfs->z_userquota_obj);
933	if (error == ENOENT)
934		zfsvfs->z_userquota_obj = 0;
935	else if (error != 0)
936		return (error);
937
938	error = zap_lookup(os, MASTER_NODE_OBJ,
939	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
940	    8, 1, &zfsvfs->z_groupquota_obj);
941	if (error == ENOENT)
942		zfsvfs->z_groupquota_obj = 0;
943	else if (error != 0)
944		return (error);
945
946	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
947	    &zfsvfs->z_fuid_obj);
948	if (error == ENOENT)
949		zfsvfs->z_fuid_obj = 0;
950	else if (error != 0)
951		return (error);
952
953	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
954	    &zfsvfs->z_shares_dir);
955	if (error == ENOENT)
956		zfsvfs->z_shares_dir = 0;
957	else if (error != 0)
958		return (error);
959
960	/*
961	 * Only use the name cache if we are looking for a
962	 * name on a file system that does not require normalization
963	 * or case folding.  We can also look there if we happen to be
964	 * on a non-normalizing, mixed sensitivity file system IF we
965	 * are looking for the exact name (which is always the case on
966	 * FreeBSD).
967	 */
968	zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
969	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
970	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
971
972	return (0);
973}
974
975int
976zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
977{
978	objset_t *os;
979	zfsvfs_t *zfsvfs;
980	int error;
981
982	/*
983	 * XXX: Fix struct statfs so this isn't necessary!
984	 *
985	 * The 'osname' is used as the filesystem's special node, which means
986	 * it must fit in statfs.f_mntfromname, or else it can't be
987	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
988	 * 'zfs unmount' to think it's not mounted when it is.
989	 */
990	if (strlen(osname) >= MNAMELEN)
991		return (SET_ERROR(ENAMETOOLONG));
992
993	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
994
995	/*
996	 * We claim to always be readonly so we can open snapshots;
997	 * other ZPL code will prevent us from writing to snapshots.
998	 */
999	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
1000	if (error) {
1001		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1002		return (error);
1003	}
1004
1005	zfsvfs->z_vfs = NULL;
1006	zfsvfs->z_parent = zfsvfs;
1007
1008	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1009	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
1010	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
1011	    offsetof(znode_t, z_link_node));
1012#ifdef DIAGNOSTIC
1013	rrm_init(&zfsvfs->z_teardown_lock, B_TRUE);
1014#else
1015	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1016#endif
1017	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1018	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1019	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1020		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1021
1022	error = zfsvfs_init(zfsvfs, os);
1023	if (error != 0) {
1024		dmu_objset_disown(os, zfsvfs);
1025		*zfvp = NULL;
1026		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1027		return (error);
1028	}
1029
1030	*zfvp = zfsvfs;
1031	return (0);
1032}
1033
1034static int
1035zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1036{
1037	int error;
1038
1039	error = zfs_register_callbacks(zfsvfs->z_vfs);
1040	if (error)
1041		return (error);
1042
1043	/*
1044	 * Set the objset user_ptr to track its zfsvfs.
1045	 */
1046	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1047	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1048	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1049
1050	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1051
1052	/*
1053	 * If we are not mounting (ie: online recv), then we don't
1054	 * have to worry about replaying the log as we blocked all
1055	 * operations out since we closed the ZIL.
1056	 */
1057	if (mounting) {
1058		boolean_t readonly;
1059
1060		/*
1061		 * During replay we remove the read only flag to
1062		 * allow replays to succeed.
1063		 */
1064		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1065		if (readonly != 0)
1066			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1067		else
1068			zfs_unlinked_drain(zfsvfs);
1069
1070		/*
1071		 * Parse and replay the intent log.
1072		 *
1073		 * Because of ziltest, this must be done after
1074		 * zfs_unlinked_drain().  (Further note: ziltest
1075		 * doesn't use readonly mounts, where
1076		 * zfs_unlinked_drain() isn't called.)  This is because
1077		 * ziltest causes spa_sync() to think it's committed,
1078		 * but actually it is not, so the intent log contains
1079		 * many txg's worth of changes.
1080		 *
1081		 * In particular, if object N is in the unlinked set in
1082		 * the last txg to actually sync, then it could be
1083		 * actually freed in a later txg and then reallocated
1084		 * in a yet later txg.  This would write a "create
1085		 * object N" record to the intent log.  Normally, this
1086		 * would be fine because the spa_sync() would have
1087		 * written out the fact that object N is free, before
1088		 * we could write the "create object N" intent log
1089		 * record.
1090		 *
1091		 * But when we are in ziltest mode, we advance the "open
1092		 * txg" without actually spa_sync()-ing the changes to
1093		 * disk.  So we would see that object N is still
1094		 * allocated and in the unlinked set, and there is an
1095		 * intent log record saying to allocate it.
1096		 */
1097		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1098			if (zil_replay_disable) {
1099				zil_destroy(zfsvfs->z_log, B_FALSE);
1100			} else {
1101				zfsvfs->z_replay = B_TRUE;
1102				zil_replay(zfsvfs->z_os, zfsvfs,
1103				    zfs_replay_vector);
1104				zfsvfs->z_replay = B_FALSE;
1105			}
1106		}
1107		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1108	}
1109
1110	return (0);
1111}
1112
1113extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1114
1115void
1116zfsvfs_free(zfsvfs_t *zfsvfs)
1117{
1118	int i;
1119
1120	/*
1121	 * This is a barrier to prevent the filesystem from going away in
1122	 * zfs_znode_move() until we can safely ensure that the filesystem is
1123	 * not unmounted. We consider the filesystem valid before the barrier
1124	 * and invalid after the barrier.
1125	 */
1126	rw_enter(&zfsvfs_lock, RW_READER);
1127	rw_exit(&zfsvfs_lock);
1128
1129	zfs_fuid_destroy(zfsvfs);
1130
1131	mutex_destroy(&zfsvfs->z_znodes_lock);
1132	mutex_destroy(&zfsvfs->z_lock);
1133	list_destroy(&zfsvfs->z_all_znodes);
1134	rrm_destroy(&zfsvfs->z_teardown_lock);
1135	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1136	rw_destroy(&zfsvfs->z_fuid_lock);
1137	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1138		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1139	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1140}
1141
1142static void
1143zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1144{
1145	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1146	if (zfsvfs->z_vfs) {
1147		if (zfsvfs->z_use_fuids) {
1148			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1149			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1150			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1151			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1152			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1153			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1154		} else {
1155			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1156			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1157			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1158			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1159			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1160			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1161		}
1162	}
1163	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1164}
1165
1166static int
1167zfs_domount(vfs_t *vfsp, char *osname)
1168{
1169	uint64_t recordsize, fsid_guid;
1170	int error = 0;
1171	zfsvfs_t *zfsvfs;
1172	vnode_t *vp;
1173
1174	ASSERT(vfsp);
1175	ASSERT(osname);
1176
1177	error = zfsvfs_create(osname, &zfsvfs);
1178	if (error)
1179		return (error);
1180	zfsvfs->z_vfs = vfsp;
1181
1182#ifdef illumos
1183	/* Initialize the generic filesystem structure. */
1184	vfsp->vfs_bcount = 0;
1185	vfsp->vfs_data = NULL;
1186
1187	if (zfs_create_unique_device(&mount_dev) == -1) {
1188		error = SET_ERROR(ENODEV);
1189		goto out;
1190	}
1191	ASSERT(vfs_devismounted(mount_dev) == 0);
1192#endif
1193
1194	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1195	    NULL))
1196		goto out;
1197	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1198	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1199
1200	vfsp->vfs_data = zfsvfs;
1201	vfsp->mnt_flag |= MNT_LOCAL;
1202	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1203	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1204	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1205	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1206
1207	/*
1208	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1209	 * separates our fsid from any other filesystem types, and a
1210	 * 56-bit objset unique ID.  The objset unique ID is unique to
1211	 * all objsets open on this system, provided by unique_create().
1212	 * The 8-bit fs type must be put in the low bits of fsid[1]
1213	 * because that's where other Solaris filesystems put it.
1214	 */
1215	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1216	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1217	vfsp->vfs_fsid.val[0] = fsid_guid;
1218	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1219	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1220
1221	/*
1222	 * Set features for file system.
1223	 */
1224	zfs_set_fuid_feature(zfsvfs);
1225	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1226		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1227		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1228		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1229	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1230		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1231		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1232	}
1233	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1234
1235	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1236		uint64_t pval;
1237
1238		atime_changed_cb(zfsvfs, B_FALSE);
1239		readonly_changed_cb(zfsvfs, B_TRUE);
1240		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1241			goto out;
1242		xattr_changed_cb(zfsvfs, pval);
1243		zfsvfs->z_issnap = B_TRUE;
1244		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1245
1246		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1247		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1248		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1249	} else {
1250		error = zfsvfs_setup(zfsvfs, B_TRUE);
1251	}
1252
1253	vfs_mountedfrom(vfsp, osname);
1254
1255	if (!zfsvfs->z_issnap)
1256		zfsctl_create(zfsvfs);
1257out:
1258	if (error) {
1259		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1260		zfsvfs_free(zfsvfs);
1261	} else {
1262		atomic_inc_32(&zfs_active_fs_count);
1263	}
1264
1265	return (error);
1266}
1267
1268void
1269zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1270{
1271	objset_t *os = zfsvfs->z_os;
1272
1273	if (!dmu_objset_is_snapshot(os))
1274		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1275}
1276
1277#ifdef SECLABEL
1278/*
1279 * Convert a decimal digit string to a uint64_t integer.
1280 */
1281static int
1282str_to_uint64(char *str, uint64_t *objnum)
1283{
1284	uint64_t num = 0;
1285
1286	while (*str) {
1287		if (*str < '0' || *str > '9')
1288			return (SET_ERROR(EINVAL));
1289
1290		num = num*10 + *str++ - '0';
1291	}
1292
1293	*objnum = num;
1294	return (0);
1295}
1296
1297/*
1298 * The boot path passed from the boot loader is in the form of
1299 * "rootpool-name/root-filesystem-object-number'. Convert this
1300 * string to a dataset name: "rootpool-name/root-filesystem-name".
1301 */
1302static int
1303zfs_parse_bootfs(char *bpath, char *outpath)
1304{
1305	char *slashp;
1306	uint64_t objnum;
1307	int error;
1308
1309	if (*bpath == 0 || *bpath == '/')
1310		return (SET_ERROR(EINVAL));
1311
1312	(void) strcpy(outpath, bpath);
1313
1314	slashp = strchr(bpath, '/');
1315
1316	/* if no '/', just return the pool name */
1317	if (slashp == NULL) {
1318		return (0);
1319	}
1320
1321	/* if not a number, just return the root dataset name */
1322	if (str_to_uint64(slashp+1, &objnum)) {
1323		return (0);
1324	}
1325
1326	*slashp = '\0';
1327	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1328	*slashp = '/';
1329
1330	return (error);
1331}
1332
1333/*
1334 * Check that the hex label string is appropriate for the dataset being
1335 * mounted into the global_zone proper.
1336 *
1337 * Return an error if the hex label string is not default or
1338 * admin_low/admin_high.  For admin_low labels, the corresponding
1339 * dataset must be readonly.
1340 */
1341int
1342zfs_check_global_label(const char *dsname, const char *hexsl)
1343{
1344	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1345		return (0);
1346	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1347		return (0);
1348	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1349		/* must be readonly */
1350		uint64_t rdonly;
1351
1352		if (dsl_prop_get_integer(dsname,
1353		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1354			return (SET_ERROR(EACCES));
1355		return (rdonly ? 0 : EACCES);
1356	}
1357	return (SET_ERROR(EACCES));
1358}
1359
1360/*
1361 * Determine whether the mount is allowed according to MAC check.
1362 * by comparing (where appropriate) label of the dataset against
1363 * the label of the zone being mounted into.  If the dataset has
1364 * no label, create one.
1365 *
1366 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1367 */
1368static int
1369zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1370{
1371	int		error, retv;
1372	zone_t		*mntzone = NULL;
1373	ts_label_t	*mnt_tsl;
1374	bslabel_t	*mnt_sl;
1375	bslabel_t	ds_sl;
1376	char		ds_hexsl[MAXNAMELEN];
1377
1378	retv = EACCES;				/* assume the worst */
1379
1380	/*
1381	 * Start by getting the dataset label if it exists.
1382	 */
1383	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1384	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1385	if (error)
1386		return (SET_ERROR(EACCES));
1387
1388	/*
1389	 * If labeling is NOT enabled, then disallow the mount of datasets
1390	 * which have a non-default label already.  No other label checks
1391	 * are needed.
1392	 */
1393	if (!is_system_labeled()) {
1394		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1395			return (0);
1396		return (SET_ERROR(EACCES));
1397	}
1398
1399	/*
1400	 * Get the label of the mountpoint.  If mounting into the global
1401	 * zone (i.e. mountpoint is not within an active zone and the
1402	 * zoned property is off), the label must be default or
1403	 * admin_low/admin_high only; no other checks are needed.
1404	 */
1405	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1406	if (mntzone->zone_id == GLOBAL_ZONEID) {
1407		uint64_t zoned;
1408
1409		zone_rele(mntzone);
1410
1411		if (dsl_prop_get_integer(osname,
1412		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1413			return (SET_ERROR(EACCES));
1414		if (!zoned)
1415			return (zfs_check_global_label(osname, ds_hexsl));
1416		else
1417			/*
1418			 * This is the case of a zone dataset being mounted
1419			 * initially, before the zone has been fully created;
1420			 * allow this mount into global zone.
1421			 */
1422			return (0);
1423	}
1424
1425	mnt_tsl = mntzone->zone_slabel;
1426	ASSERT(mnt_tsl != NULL);
1427	label_hold(mnt_tsl);
1428	mnt_sl = label2bslabel(mnt_tsl);
1429
1430	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1431		/*
1432		 * The dataset doesn't have a real label, so fabricate one.
1433		 */
1434		char *str = NULL;
1435
1436		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1437		    dsl_prop_set_string(osname,
1438		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1439		    ZPROP_SRC_LOCAL, str) == 0)
1440			retv = 0;
1441		if (str != NULL)
1442			kmem_free(str, strlen(str) + 1);
1443	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1444		/*
1445		 * Now compare labels to complete the MAC check.  If the
1446		 * labels are equal then allow access.  If the mountpoint
1447		 * label dominates the dataset label, allow readonly access.
1448		 * Otherwise, access is denied.
1449		 */
1450		if (blequal(mnt_sl, &ds_sl))
1451			retv = 0;
1452		else if (bldominates(mnt_sl, &ds_sl)) {
1453			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1454			retv = 0;
1455		}
1456	}
1457
1458	label_rele(mnt_tsl);
1459	zone_rele(mntzone);
1460	return (retv);
1461}
1462#endif	/* SECLABEL */
1463
1464#ifdef OPENSOLARIS_MOUNTROOT
1465static int
1466zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1467{
1468	int error = 0;
1469	static int zfsrootdone = 0;
1470	zfsvfs_t *zfsvfs = NULL;
1471	znode_t *zp = NULL;
1472	vnode_t *vp = NULL;
1473	char *zfs_bootfs;
1474	char *zfs_devid;
1475
1476	ASSERT(vfsp);
1477
1478	/*
1479	 * The filesystem that we mount as root is defined in the
1480	 * boot property "zfs-bootfs" with a format of
1481	 * "poolname/root-dataset-objnum".
1482	 */
1483	if (why == ROOT_INIT) {
1484		if (zfsrootdone++)
1485			return (SET_ERROR(EBUSY));
1486		/*
1487		 * the process of doing a spa_load will require the
1488		 * clock to be set before we could (for example) do
1489		 * something better by looking at the timestamp on
1490		 * an uberblock, so just set it to -1.
1491		 */
1492		clkset(-1);
1493
1494		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1495			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1496			    "bootfs name");
1497			return (SET_ERROR(EINVAL));
1498		}
1499		zfs_devid = spa_get_bootprop("diskdevid");
1500		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1501		if (zfs_devid)
1502			spa_free_bootprop(zfs_devid);
1503		if (error) {
1504			spa_free_bootprop(zfs_bootfs);
1505			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1506			    error);
1507			return (error);
1508		}
1509		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1510			spa_free_bootprop(zfs_bootfs);
1511			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1512			    error);
1513			return (error);
1514		}
1515
1516		spa_free_bootprop(zfs_bootfs);
1517
1518		if (error = vfs_lock(vfsp))
1519			return (error);
1520
1521		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1522			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1523			goto out;
1524		}
1525
1526		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1527		ASSERT(zfsvfs);
1528		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1529			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1530			goto out;
1531		}
1532
1533		vp = ZTOV(zp);
1534		mutex_enter(&vp->v_lock);
1535		vp->v_flag |= VROOT;
1536		mutex_exit(&vp->v_lock);
1537		rootvp = vp;
1538
1539		/*
1540		 * Leave rootvp held.  The root file system is never unmounted.
1541		 */
1542
1543		vfs_add((struct vnode *)0, vfsp,
1544		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1545out:
1546		vfs_unlock(vfsp);
1547		return (error);
1548	} else if (why == ROOT_REMOUNT) {
1549		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1550		vfsp->vfs_flag |= VFS_REMOUNT;
1551
1552		/* refresh mount options */
1553		zfs_unregister_callbacks(vfsp->vfs_data);
1554		return (zfs_register_callbacks(vfsp));
1555
1556	} else if (why == ROOT_UNMOUNT) {
1557		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1558		(void) zfs_sync(vfsp, 0, 0);
1559		return (0);
1560	}
1561
1562	/*
1563	 * if "why" is equal to anything else other than ROOT_INIT,
1564	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1565	 */
1566	return (SET_ERROR(ENOTSUP));
1567}
1568#endif	/* OPENSOLARIS_MOUNTROOT */
1569
1570static int
1571getpoolname(const char *osname, char *poolname)
1572{
1573	char *p;
1574
1575	p = strchr(osname, '/');
1576	if (p == NULL) {
1577		if (strlen(osname) >= MAXNAMELEN)
1578			return (ENAMETOOLONG);
1579		(void) strcpy(poolname, osname);
1580	} else {
1581		if (p - osname >= MAXNAMELEN)
1582			return (ENAMETOOLONG);
1583		(void) strncpy(poolname, osname, p - osname);
1584		poolname[p - osname] = '\0';
1585	}
1586	return (0);
1587}
1588
1589/*ARGSUSED*/
1590static int
1591zfs_mount(vfs_t *vfsp)
1592{
1593	kthread_t	*td = curthread;
1594	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1595	cred_t		*cr = td->td_ucred;
1596	char		*osname;
1597	int		error = 0;
1598	int		canwrite;
1599
1600#ifdef illumos
1601	if (mvp->v_type != VDIR)
1602		return (SET_ERROR(ENOTDIR));
1603
1604	mutex_enter(&mvp->v_lock);
1605	if ((uap->flags & MS_REMOUNT) == 0 &&
1606	    (uap->flags & MS_OVERLAY) == 0 &&
1607	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1608		mutex_exit(&mvp->v_lock);
1609		return (SET_ERROR(EBUSY));
1610	}
1611	mutex_exit(&mvp->v_lock);
1612
1613	/*
1614	 * ZFS does not support passing unparsed data in via MS_DATA.
1615	 * Users should use the MS_OPTIONSTR interface; this means
1616	 * that all option parsing is already done and the options struct
1617	 * can be interrogated.
1618	 */
1619	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1620#else	/* !illumos */
1621	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1622		return (SET_ERROR(EPERM));
1623
1624	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1625		return (SET_ERROR(EINVAL));
1626#endif	/* illumos */
1627
1628	/*
1629	 * If full-owner-access is enabled and delegated administration is
1630	 * turned on, we must set nosuid.
1631	 */
1632	if (zfs_super_owner &&
1633	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1634		secpolicy_fs_mount_clearopts(cr, vfsp);
1635	}
1636
1637	/*
1638	 * Check for mount privilege?
1639	 *
1640	 * If we don't have privilege then see if
1641	 * we have local permission to allow it
1642	 */
1643	error = secpolicy_fs_mount(cr, mvp, vfsp);
1644	if (error) {
1645		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1646			goto out;
1647
1648		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1649			vattr_t		vattr;
1650
1651			/*
1652			 * Make sure user is the owner of the mount point
1653			 * or has sufficient privileges.
1654			 */
1655
1656			vattr.va_mask = AT_UID;
1657
1658			vn_lock(mvp, LK_SHARED | LK_RETRY);
1659			if (VOP_GETATTR(mvp, &vattr, cr)) {
1660				VOP_UNLOCK(mvp, 0);
1661				goto out;
1662			}
1663
1664			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1665			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1666				VOP_UNLOCK(mvp, 0);
1667				goto out;
1668			}
1669			VOP_UNLOCK(mvp, 0);
1670		}
1671
1672		secpolicy_fs_mount_clearopts(cr, vfsp);
1673	}
1674
1675	/*
1676	 * Refuse to mount a filesystem if we are in a local zone and the
1677	 * dataset is not visible.
1678	 */
1679	if (!INGLOBALZONE(curthread) &&
1680	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1681		error = SET_ERROR(EPERM);
1682		goto out;
1683	}
1684
1685#ifdef SECLABEL
1686	error = zfs_mount_label_policy(vfsp, osname);
1687	if (error)
1688		goto out;
1689#endif
1690
1691	vfsp->vfs_flag |= MNT_NFS4ACLS;
1692
1693	/*
1694	 * When doing a remount, we simply refresh our temporary properties
1695	 * according to those options set in the current VFS options.
1696	 */
1697	if (vfsp->vfs_flag & MS_REMOUNT) {
1698		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1699
1700		/*
1701		 * Refresh mount options with z_teardown_lock blocking I/O while
1702		 * the filesystem is in an inconsistent state.
1703		 * The lock also serializes this code with filesystem
1704		 * manipulations between entry to zfs_suspend_fs() and return
1705		 * from zfs_resume_fs().
1706		 */
1707		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1708		zfs_unregister_callbacks(zfsvfs);
1709		error = zfs_register_callbacks(vfsp);
1710		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1711		goto out;
1712	}
1713
1714	/* Initial root mount: try hard to import the requested root pool. */
1715	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1716	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1717		char pname[MAXNAMELEN];
1718
1719		error = getpoolname(osname, pname);
1720		if (error == 0)
1721			error = spa_import_rootpool(pname);
1722		if (error)
1723			goto out;
1724	}
1725	DROP_GIANT();
1726	error = zfs_domount(vfsp, osname);
1727	PICKUP_GIANT();
1728
1729#ifdef illumos
1730	/*
1731	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1732	 * disappear due to a forced unmount.
1733	 */
1734	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1735		VFS_HOLD(mvp->v_vfsp);
1736#endif
1737
1738out:
1739	return (error);
1740}
1741
1742static int
1743zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1744{
1745	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1746	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1747
1748	statp->f_version = STATFS_VERSION;
1749
1750	ZFS_ENTER(zfsvfs);
1751
1752	dmu_objset_space(zfsvfs->z_os,
1753	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1754
1755	/*
1756	 * The underlying storage pool actually uses multiple block sizes.
1757	 * We report the fragsize as the smallest block size we support,
1758	 * and we report our blocksize as the filesystem's maximum blocksize.
1759	 */
1760	statp->f_bsize = SPA_MINBLOCKSIZE;
1761	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1762
1763	/*
1764	 * The following report "total" blocks of various kinds in the
1765	 * file system, but reported in terms of f_frsize - the
1766	 * "fragment" size.
1767	 */
1768
1769	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1770	statp->f_bfree = availbytes / statp->f_bsize;
1771	statp->f_bavail = statp->f_bfree; /* no root reservation */
1772
1773	/*
1774	 * statvfs() should really be called statufs(), because it assumes
1775	 * static metadata.  ZFS doesn't preallocate files, so the best
1776	 * we can do is report the max that could possibly fit in f_files,
1777	 * and that minus the number actually used in f_ffree.
1778	 * For f_ffree, report the smaller of the number of object available
1779	 * and the number of blocks (each object will take at least a block).
1780	 */
1781	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1782	statp->f_files = statp->f_ffree + usedobjs;
1783
1784	/*
1785	 * We're a zfs filesystem.
1786	 */
1787	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1788
1789	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1790	    sizeof(statp->f_mntfromname));
1791	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1792	    sizeof(statp->f_mntonname));
1793
1794	statp->f_namemax = MAXNAMELEN - 1;
1795
1796	ZFS_EXIT(zfsvfs);
1797	return (0);
1798}
1799
1800static int
1801zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1802{
1803	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1804	znode_t *rootzp;
1805	int error;
1806
1807	ZFS_ENTER(zfsvfs);
1808
1809	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1810	if (error == 0)
1811		*vpp = ZTOV(rootzp);
1812
1813	ZFS_EXIT(zfsvfs);
1814
1815	if (error == 0) {
1816		error = vn_lock(*vpp, flags);
1817		if (error != 0) {
1818			VN_RELE(*vpp);
1819			*vpp = NULL;
1820		}
1821	}
1822	return (error);
1823}
1824
1825/*
1826 * Teardown the zfsvfs::z_os.
1827 *
1828 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1829 * and 'z_teardown_inactive_lock' held.
1830 */
1831static int
1832zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1833{
1834	znode_t	*zp;
1835
1836	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1837
1838	if (!unmounting) {
1839		/*
1840		 * We purge the parent filesystem's vfsp as the parent
1841		 * filesystem and all of its snapshots have their vnode's
1842		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1843		 * 'z_parent' is self referential for non-snapshots.
1844		 */
1845		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1846#ifdef FREEBSD_NAMECACHE
1847		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1848#endif
1849	}
1850
1851	/*
1852	 * Close the zil. NB: Can't close the zil while zfs_inactive
1853	 * threads are blocked as zil_close can call zfs_inactive.
1854	 */
1855	if (zfsvfs->z_log) {
1856		zil_close(zfsvfs->z_log);
1857		zfsvfs->z_log = NULL;
1858	}
1859
1860	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1861
1862	/*
1863	 * If we are not unmounting (ie: online recv) and someone already
1864	 * unmounted this file system while we were doing the switcheroo,
1865	 * or a reopen of z_os failed then just bail out now.
1866	 */
1867	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1868		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1869		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1870		return (SET_ERROR(EIO));
1871	}
1872
1873	/*
1874	 * At this point there are no vops active, and any new vops will
1875	 * fail with EIO since we have z_teardown_lock for writer (only
1876	 * relavent for forced unmount).
1877	 *
1878	 * Release all holds on dbufs.
1879	 */
1880	mutex_enter(&zfsvfs->z_znodes_lock);
1881	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1882	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1883		if (zp->z_sa_hdl) {
1884			ASSERT(ZTOV(zp)->v_count >= 0);
1885			zfs_znode_dmu_fini(zp);
1886		}
1887	mutex_exit(&zfsvfs->z_znodes_lock);
1888
1889	/*
1890	 * If we are unmounting, set the unmounted flag and let new vops
1891	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1892	 * other vops will fail with EIO.
1893	 */
1894	if (unmounting) {
1895		zfsvfs->z_unmounted = B_TRUE;
1896		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1897		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1898	}
1899
1900	/*
1901	 * z_os will be NULL if there was an error in attempting to reopen
1902	 * zfsvfs, so just return as the properties had already been
1903	 * unregistered and cached data had been evicted before.
1904	 */
1905	if (zfsvfs->z_os == NULL)
1906		return (0);
1907
1908	/*
1909	 * Unregister properties.
1910	 */
1911	zfs_unregister_callbacks(zfsvfs);
1912
1913	/*
1914	 * Evict cached data
1915	 */
1916	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1917	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1918		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1919	dmu_objset_evict_dbufs(zfsvfs->z_os);
1920
1921	return (0);
1922}
1923
1924/*ARGSUSED*/
1925static int
1926zfs_umount(vfs_t *vfsp, int fflag)
1927{
1928	kthread_t *td = curthread;
1929	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1930	objset_t *os;
1931	cred_t *cr = td->td_ucred;
1932	int ret;
1933
1934	ret = secpolicy_fs_unmount(cr, vfsp);
1935	if (ret) {
1936		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1937		    ZFS_DELEG_PERM_MOUNT, cr))
1938			return (ret);
1939	}
1940
1941	/*
1942	 * We purge the parent filesystem's vfsp as the parent filesystem
1943	 * and all of its snapshots have their vnode's v_vfsp set to the
1944	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1945	 * referential for non-snapshots.
1946	 */
1947	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1948
1949	/*
1950	 * Unmount any snapshots mounted under .zfs before unmounting the
1951	 * dataset itself.
1952	 */
1953	if (zfsvfs->z_ctldir != NULL) {
1954		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1955			return (ret);
1956		ret = vflush(vfsp, 0, 0, td);
1957		ASSERT(ret == EBUSY);
1958		if (!(fflag & MS_FORCE)) {
1959			if (zfsvfs->z_ctldir->v_count > 1)
1960				return (EBUSY);
1961			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1962		}
1963		zfsctl_destroy(zfsvfs);
1964		ASSERT(zfsvfs->z_ctldir == NULL);
1965	}
1966
1967	if (fflag & MS_FORCE) {
1968		/*
1969		 * Mark file system as unmounted before calling
1970		 * vflush(FORCECLOSE). This way we ensure no future vnops
1971		 * will be called and risk operating on DOOMED vnodes.
1972		 */
1973		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1974		zfsvfs->z_unmounted = B_TRUE;
1975		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1976	}
1977
1978	/*
1979	 * Flush all the files.
1980	 */
1981	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1982	if (ret != 0) {
1983		if (!zfsvfs->z_issnap) {
1984			zfsctl_create(zfsvfs);
1985			ASSERT(zfsvfs->z_ctldir != NULL);
1986		}
1987		return (ret);
1988	}
1989
1990#ifdef illumos
1991	if (!(fflag & MS_FORCE)) {
1992		/*
1993		 * Check the number of active vnodes in the file system.
1994		 * Our count is maintained in the vfs structure, but the
1995		 * number is off by 1 to indicate a hold on the vfs
1996		 * structure itself.
1997		 *
1998		 * The '.zfs' directory maintains a reference of its
1999		 * own, and any active references underneath are
2000		 * reflected in the vnode count.
2001		 */
2002		if (zfsvfs->z_ctldir == NULL) {
2003			if (vfsp->vfs_count > 1)
2004				return (SET_ERROR(EBUSY));
2005		} else {
2006			if (vfsp->vfs_count > 2 ||
2007			    zfsvfs->z_ctldir->v_count > 1)
2008				return (SET_ERROR(EBUSY));
2009		}
2010	}
2011#endif
2012
2013	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2014	os = zfsvfs->z_os;
2015
2016	/*
2017	 * z_os will be NULL if there was an error in
2018	 * attempting to reopen zfsvfs.
2019	 */
2020	if (os != NULL) {
2021		/*
2022		 * Unset the objset user_ptr.
2023		 */
2024		mutex_enter(&os->os_user_ptr_lock);
2025		dmu_objset_set_user(os, NULL);
2026		mutex_exit(&os->os_user_ptr_lock);
2027
2028		/*
2029		 * Finally release the objset
2030		 */
2031		dmu_objset_disown(os, zfsvfs);
2032	}
2033
2034	/*
2035	 * We can now safely destroy the '.zfs' directory node.
2036	 */
2037	if (zfsvfs->z_ctldir != NULL)
2038		zfsctl_destroy(zfsvfs);
2039	zfs_freevfs(vfsp);
2040
2041	return (0);
2042}
2043
2044static int
2045zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2046{
2047	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2048	znode_t		*zp;
2049	int 		err;
2050
2051	/*
2052	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2053	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2054	 * This will make NFS to switch to LOOKUP instead of using VGET.
2055	 */
2056	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2057	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2058		return (EOPNOTSUPP);
2059
2060	ZFS_ENTER(zfsvfs);
2061	err = zfs_zget(zfsvfs, ino, &zp);
2062	if (err == 0 && zp->z_unlinked) {
2063		vrele(ZTOV(zp));
2064		err = EINVAL;
2065	}
2066	if (err == 0)
2067		*vpp = ZTOV(zp);
2068	ZFS_EXIT(zfsvfs);
2069	if (err == 0)
2070		err = vn_lock(*vpp, flags);
2071	if (err != 0)
2072		*vpp = NULL;
2073	return (err);
2074}
2075
2076static int
2077zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2078    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2079{
2080	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2081
2082	/*
2083	 * If this is regular file system vfsp is the same as
2084	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2085	 * zfsvfs->z_parent->z_vfs represents parent file system
2086	 * which we have to use here, because only this file system
2087	 * has mnt_export configured.
2088	 */
2089	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2090	    credanonp, numsecflavors, secflavors));
2091}
2092
2093CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2094CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2095
2096static int
2097zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2098{
2099	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2100	znode_t		*zp;
2101	uint64_t	object = 0;
2102	uint64_t	fid_gen = 0;
2103	uint64_t	gen_mask;
2104	uint64_t	zp_gen;
2105	int 		i, err;
2106
2107	*vpp = NULL;
2108
2109	ZFS_ENTER(zfsvfs);
2110
2111	/*
2112	 * On FreeBSD we can get snapshot's mount point or its parent file
2113	 * system mount point depending if snapshot is already mounted or not.
2114	 */
2115	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2116		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2117		uint64_t	objsetid = 0;
2118		uint64_t	setgen = 0;
2119
2120		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2121			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2122
2123		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2124			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2125
2126		ZFS_EXIT(zfsvfs);
2127
2128		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2129		if (err)
2130			return (SET_ERROR(EINVAL));
2131		ZFS_ENTER(zfsvfs);
2132	}
2133
2134	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2135		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2136
2137		for (i = 0; i < sizeof (zfid->zf_object); i++)
2138			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2139
2140		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2141			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2142	} else {
2143		ZFS_EXIT(zfsvfs);
2144		return (SET_ERROR(EINVAL));
2145	}
2146
2147	/*
2148	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2149	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2150	 * we are in the .zfs/shares directory tree.
2151	 */
2152	if ((fid_gen == 0 &&
2153	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2154	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2155		*vpp = zfsvfs->z_ctldir;
2156		ASSERT(*vpp != NULL);
2157		if (object == ZFSCTL_INO_SNAPDIR) {
2158			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2159			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2160		} else if (object == zfsvfs->z_shares_dir) {
2161			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2162			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2163		} else {
2164			vref(*vpp);
2165		}
2166		ZFS_EXIT(zfsvfs);
2167		err = vn_lock(*vpp, flags);
2168		if (err != 0)
2169			*vpp = NULL;
2170		return (err);
2171	}
2172
2173	gen_mask = -1ULL >> (64 - 8 * i);
2174
2175	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2176	if (err = zfs_zget(zfsvfs, object, &zp)) {
2177		ZFS_EXIT(zfsvfs);
2178		return (err);
2179	}
2180	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2181	    sizeof (uint64_t));
2182	zp_gen = zp_gen & gen_mask;
2183	if (zp_gen == 0)
2184		zp_gen = 1;
2185	if (zp->z_unlinked || zp_gen != fid_gen) {
2186		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2187		vrele(ZTOV(zp));
2188		ZFS_EXIT(zfsvfs);
2189		return (SET_ERROR(EINVAL));
2190	}
2191
2192	*vpp = ZTOV(zp);
2193	ZFS_EXIT(zfsvfs);
2194	err = vn_lock(*vpp, flags | LK_RETRY);
2195	if (err == 0)
2196		vnode_create_vobject(*vpp, zp->z_size, curthread);
2197	else
2198		*vpp = NULL;
2199	return (err);
2200}
2201
2202/*
2203 * Block out VOPs and close zfsvfs_t::z_os
2204 *
2205 * Note, if successful, then we return with the 'z_teardown_lock' and
2206 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2207 * dataset and objset intact so that they can be atomically handed off during
2208 * a subsequent rollback or recv operation and the resume thereafter.
2209 */
2210int
2211zfs_suspend_fs(zfsvfs_t *zfsvfs)
2212{
2213	int error;
2214
2215	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2216		return (error);
2217
2218	return (0);
2219}
2220
2221/*
2222 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2223 * is an invariant across any of the operations that can be performed while the
2224 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2225 * are the same: the relevant objset and associated dataset are owned by
2226 * zfsvfs, held, and long held on entry.
2227 */
2228int
2229zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2230{
2231	int err;
2232	znode_t *zp;
2233
2234	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2235	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2236
2237	/*
2238	 * We already own this, so just hold and rele it to update the
2239	 * objset_t, as the one we had before may have been evicted.
2240	 */
2241	objset_t *os;
2242	VERIFY0(dmu_objset_hold(osname, zfsvfs, &os));
2243	VERIFY3P(os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2244	VERIFY(dsl_dataset_long_held(os->os_dsl_dataset));
2245	dmu_objset_rele(os, zfsvfs);
2246
2247	err = zfsvfs_init(zfsvfs, os);
2248	if (err != 0)
2249		goto bail;
2250
2251	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2252
2253	zfs_set_fuid_feature(zfsvfs);
2254
2255	/*
2256	 * Attempt to re-establish all the active znodes with
2257	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2258	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2259	 * when they try to use their znode.
2260	 */
2261	mutex_enter(&zfsvfs->z_znodes_lock);
2262	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2263	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2264		(void) zfs_rezget(zp);
2265	}
2266	mutex_exit(&zfsvfs->z_znodes_lock);
2267
2268bail:
2269	/* release the VOPs */
2270	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2271	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2272
2273	if (err) {
2274		/*
2275		 * Since we couldn't setup the sa framework, try to force
2276		 * unmount this file system.
2277		 */
2278		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2279			vfs_ref(zfsvfs->z_vfs);
2280			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2281		}
2282	}
2283	return (err);
2284}
2285
2286static void
2287zfs_freevfs(vfs_t *vfsp)
2288{
2289	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2290
2291#ifdef illumos
2292	/*
2293	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2294	 * from zfs_mount().  Release it here.  If we came through
2295	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2296	 * skip the VFS_RELE for rootvfs.
2297	 */
2298	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2299		VFS_RELE(zfsvfs->z_parent->z_vfs);
2300#endif
2301
2302	zfsvfs_free(zfsvfs);
2303
2304	atomic_dec_32(&zfs_active_fs_count);
2305}
2306
2307#ifdef __i386__
2308static int desiredvnodes_backup;
2309#endif
2310
2311static void
2312zfs_vnodes_adjust(void)
2313{
2314#ifdef __i386__
2315	int newdesiredvnodes;
2316
2317	desiredvnodes_backup = desiredvnodes;
2318
2319	/*
2320	 * We calculate newdesiredvnodes the same way it is done in
2321	 * vntblinit(). If it is equal to desiredvnodes, it means that
2322	 * it wasn't tuned by the administrator and we can tune it down.
2323	 */
2324	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2325	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2326	    sizeof(struct vnode))));
2327	if (newdesiredvnodes == desiredvnodes)
2328		desiredvnodes = (3 * newdesiredvnodes) / 4;
2329#endif
2330}
2331
2332static void
2333zfs_vnodes_adjust_back(void)
2334{
2335
2336#ifdef __i386__
2337	desiredvnodes = desiredvnodes_backup;
2338#endif
2339}
2340
2341void
2342zfs_init(void)
2343{
2344
2345	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2346
2347	/*
2348	 * Initialize .zfs directory structures
2349	 */
2350	zfsctl_init();
2351
2352	/*
2353	 * Initialize znode cache, vnode ops, etc...
2354	 */
2355	zfs_znode_init();
2356
2357	/*
2358	 * Reduce number of vnodes. Originally number of vnodes is calculated
2359	 * with UFS inode in mind. We reduce it here, because it's too big for
2360	 * ZFS/i386.
2361	 */
2362	zfs_vnodes_adjust();
2363
2364	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2365}
2366
2367void
2368zfs_fini(void)
2369{
2370	zfsctl_fini();
2371	zfs_znode_fini();
2372	zfs_vnodes_adjust_back();
2373}
2374
2375int
2376zfs_busy(void)
2377{
2378	return (zfs_active_fs_count != 0);
2379}
2380
2381int
2382zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2383{
2384	int error;
2385	objset_t *os = zfsvfs->z_os;
2386	dmu_tx_t *tx;
2387
2388	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2389		return (SET_ERROR(EINVAL));
2390
2391	if (newvers < zfsvfs->z_version)
2392		return (SET_ERROR(EINVAL));
2393
2394	if (zfs_spa_version_map(newvers) >
2395	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2396		return (SET_ERROR(ENOTSUP));
2397
2398	tx = dmu_tx_create(os);
2399	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2400	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2401		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2402		    ZFS_SA_ATTRS);
2403		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2404	}
2405	error = dmu_tx_assign(tx, TXG_WAIT);
2406	if (error) {
2407		dmu_tx_abort(tx);
2408		return (error);
2409	}
2410
2411	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2412	    8, 1, &newvers, tx);
2413
2414	if (error) {
2415		dmu_tx_commit(tx);
2416		return (error);
2417	}
2418
2419	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2420		uint64_t sa_obj;
2421
2422		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2423		    SPA_VERSION_SA);
2424		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2425		    DMU_OT_NONE, 0, tx);
2426
2427		error = zap_add(os, MASTER_NODE_OBJ,
2428		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2429		ASSERT0(error);
2430
2431		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2432		sa_register_update_callback(os, zfs_sa_upgrade);
2433	}
2434
2435	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2436	    "from %llu to %llu", zfsvfs->z_version, newvers);
2437
2438	dmu_tx_commit(tx);
2439
2440	zfsvfs->z_version = newvers;
2441
2442	zfs_set_fuid_feature(zfsvfs);
2443
2444	return (0);
2445}
2446
2447/*
2448 * Read a property stored within the master node.
2449 */
2450int
2451zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2452{
2453	const char *pname;
2454	int error = ENOENT;
2455
2456	/*
2457	 * Look up the file system's value for the property.  For the
2458	 * version property, we look up a slightly different string.
2459	 */
2460	if (prop == ZFS_PROP_VERSION)
2461		pname = ZPL_VERSION_STR;
2462	else
2463		pname = zfs_prop_to_name(prop);
2464
2465	if (os != NULL)
2466		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2467
2468	if (error == ENOENT) {
2469		/* No value set, use the default value */
2470		switch (prop) {
2471		case ZFS_PROP_VERSION:
2472			*value = ZPL_VERSION;
2473			break;
2474		case ZFS_PROP_NORMALIZE:
2475		case ZFS_PROP_UTF8ONLY:
2476			*value = 0;
2477			break;
2478		case ZFS_PROP_CASE:
2479			*value = ZFS_CASE_SENSITIVE;
2480			break;
2481		default:
2482			return (error);
2483		}
2484		error = 0;
2485	}
2486	return (error);
2487}
2488
2489#ifdef _KERNEL
2490void
2491zfsvfs_update_fromname(const char *oldname, const char *newname)
2492{
2493	char tmpbuf[MAXPATHLEN];
2494	struct mount *mp;
2495	char *fromname;
2496	size_t oldlen;
2497
2498	oldlen = strlen(oldname);
2499
2500	mtx_lock(&mountlist_mtx);
2501	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2502		fromname = mp->mnt_stat.f_mntfromname;
2503		if (strcmp(fromname, oldname) == 0) {
2504			(void)strlcpy(fromname, newname,
2505			    sizeof(mp->mnt_stat.f_mntfromname));
2506			continue;
2507		}
2508		if (strncmp(fromname, oldname, oldlen) == 0 &&
2509		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2510			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2511			    newname, fromname + oldlen);
2512			(void)strlcpy(fromname, tmpbuf,
2513			    sizeof(mp->mnt_stat.f_mntfromname));
2514			continue;
2515		}
2516	}
2517	mtx_unlock(&mountlist_mtx);
2518}
2519#endif
2520