zfs_vfsops.c revision 304135
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29/* Portions Copyright 2010 Robert Milkowski */
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/sysmacros.h>
36#include <sys/kmem.h>
37#include <sys/acl.h>
38#include <sys/vnode.h>
39#include <sys/vfs.h>
40#include <sys/mntent.h>
41#include <sys/mount.h>
42#include <sys/cmn_err.h>
43#include <sys/zfs_znode.h>
44#include <sys/zfs_dir.h>
45#include <sys/zil.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_dataset.h>
50#include <sys/dsl_deleg.h>
51#include <sys/spa.h>
52#include <sys/zap.h>
53#include <sys/sa.h>
54#include <sys/sa_impl.h>
55#include <sys/varargs.h>
56#include <sys/policy.h>
57#include <sys/atomic.h>
58#include <sys/zfs_ioctl.h>
59#include <sys/zfs_ctldir.h>
60#include <sys/zfs_fuid.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
65#include <sys/jail.h>
66#include "zfs_comutil.h"
67
68struct mtx zfs_debug_mtx;
69MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
70
71SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
72
73int zfs_super_owner;
74SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
75    "File system owner can perform privileged operation on his file systems");
76
77int zfs_debug_level;
78TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
79SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
80    "Debug level");
81
82SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
83static int zfs_version_acl = ZFS_ACL_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
85    "ZFS_ACL_VERSION");
86static int zfs_version_spa = SPA_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
88    "SPA_VERSION");
89static int zfs_version_zpl = ZPL_VERSION;
90SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
91    "ZPL_VERSION");
92
93static int zfs_mount(vfs_t *vfsp);
94static int zfs_umount(vfs_t *vfsp, int fflag);
95static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
96static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
97static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
98static int zfs_sync(vfs_t *vfsp, int waitfor);
99static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
100    struct ucred **credanonp, int *numsecflavors, int **secflavors);
101static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
102static void zfs_objset_close(zfsvfs_t *zfsvfs);
103static void zfs_freevfs(vfs_t *vfsp);
104
105static struct vfsops zfs_vfsops = {
106	.vfs_mount =		zfs_mount,
107	.vfs_unmount =		zfs_umount,
108	.vfs_root =		zfs_root,
109	.vfs_statfs =		zfs_statfs,
110	.vfs_vget =		zfs_vget,
111	.vfs_sync =		zfs_sync,
112	.vfs_checkexp =		zfs_checkexp,
113	.vfs_fhtovp =		zfs_fhtovp,
114};
115
116VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
117
118/*
119 * We need to keep a count of active fs's.
120 * This is necessary to prevent our module
121 * from being unloaded after a umount -f
122 */
123static uint32_t	zfs_active_fs_count = 0;
124
125/*ARGSUSED*/
126static int
127zfs_sync(vfs_t *vfsp, int waitfor)
128{
129
130	/*
131	 * Data integrity is job one.  We don't want a compromised kernel
132	 * writing to the storage pool, so we never sync during panic.
133	 */
134	if (panicstr)
135		return (0);
136
137	/*
138	 * Ignore the system syncher.  ZFS already commits async data
139	 * at zfs_txg_timeout intervals.
140	 */
141	if (waitfor == MNT_LAZY)
142		return (0);
143
144	if (vfsp != NULL) {
145		/*
146		 * Sync a specific filesystem.
147		 */
148		zfsvfs_t *zfsvfs = vfsp->vfs_data;
149		dsl_pool_t *dp;
150		int error;
151
152		error = vfs_stdsync(vfsp, waitfor);
153		if (error != 0)
154			return (error);
155
156		ZFS_ENTER(zfsvfs);
157		dp = dmu_objset_pool(zfsvfs->z_os);
158
159		/*
160		 * If the system is shutting down, then skip any
161		 * filesystems which may exist on a suspended pool.
162		 */
163		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164			ZFS_EXIT(zfsvfs);
165			return (0);
166		}
167
168		if (zfsvfs->z_log != NULL)
169			zil_commit(zfsvfs->z_log, 0);
170
171		ZFS_EXIT(zfsvfs);
172	} else {
173		/*
174		 * Sync all ZFS filesystems.  This is what happens when you
175		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176		 * request by waiting for all pools to commit all dirty data.
177		 */
178		spa_sync_allpools();
179	}
180
181	return (0);
182}
183
184#ifndef __FreeBSD_kernel__
185static int
186zfs_create_unique_device(dev_t *dev)
187{
188	major_t new_major;
189
190	do {
191		ASSERT3U(zfs_minor, <=, MAXMIN32);
192		minor_t start = zfs_minor;
193		do {
194			mutex_enter(&zfs_dev_mtx);
195			if (zfs_minor >= MAXMIN32) {
196				/*
197				 * If we're still using the real major
198				 * keep out of /dev/zfs and /dev/zvol minor
199				 * number space.  If we're using a getudev()'ed
200				 * major number, we can use all of its minors.
201				 */
202				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203					zfs_minor = ZFS_MIN_MINOR;
204				else
205					zfs_minor = 0;
206			} else {
207				zfs_minor++;
208			}
209			*dev = makedevice(zfs_major, zfs_minor);
210			mutex_exit(&zfs_dev_mtx);
211		} while (vfs_devismounted(*dev) && zfs_minor != start);
212		if (zfs_minor == start) {
213			/*
214			 * We are using all ~262,000 minor numbers for the
215			 * current major number.  Create a new major number.
216			 */
217			if ((new_major = getudev()) == (major_t)-1) {
218				cmn_err(CE_WARN,
219				    "zfs_mount: Can't get unique major "
220				    "device number.");
221				return (-1);
222			}
223			mutex_enter(&zfs_dev_mtx);
224			zfs_major = new_major;
225			zfs_minor = 0;
226
227			mutex_exit(&zfs_dev_mtx);
228		} else {
229			break;
230		}
231		/* CONSTANTCONDITION */
232	} while (1);
233
234	return (0);
235}
236#endif	/* !__FreeBSD_kernel__ */
237
238static void
239atime_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == TRUE) {
244		zfsvfs->z_atime = TRUE;
245		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
246		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248	} else {
249		zfsvfs->z_atime = FALSE;
250		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
251		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
252		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
253	}
254}
255
256static void
257xattr_changed_cb(void *arg, uint64_t newval)
258{
259	zfsvfs_t *zfsvfs = arg;
260
261	if (newval == TRUE) {
262		/* XXX locking on vfs_flag? */
263#ifdef TODO
264		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
265#endif
266		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
267		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
268	} else {
269		/* XXX locking on vfs_flag? */
270#ifdef TODO
271		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
272#endif
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
275	}
276}
277
278static void
279blksz_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
283	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
284	ASSERT(ISP2(newval));
285
286	zfsvfs->z_max_blksz = newval;
287	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
288}
289
290static void
291readonly_changed_cb(void *arg, uint64_t newval)
292{
293	zfsvfs_t *zfsvfs = arg;
294
295	if (newval) {
296		/* XXX locking on vfs_flag? */
297		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
298		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
299		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
300	} else {
301		/* XXX locking on vfs_flag? */
302		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
303		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
304		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
305	}
306}
307
308static void
309setuid_changed_cb(void *arg, uint64_t newval)
310{
311	zfsvfs_t *zfsvfs = arg;
312
313	if (newval == FALSE) {
314		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
315		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
316		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
317	} else {
318		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
319		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
320		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
321	}
322}
323
324static void
325exec_changed_cb(void *arg, uint64_t newval)
326{
327	zfsvfs_t *zfsvfs = arg;
328
329	if (newval == FALSE) {
330		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
331		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
332		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
333	} else {
334		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
335		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
336		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
337	}
338}
339
340/*
341 * The nbmand mount option can be changed at mount time.
342 * We can't allow it to be toggled on live file systems or incorrect
343 * behavior may be seen from cifs clients
344 *
345 * This property isn't registered via dsl_prop_register(), but this callback
346 * will be called when a file system is first mounted
347 */
348static void
349nbmand_changed_cb(void *arg, uint64_t newval)
350{
351	zfsvfs_t *zfsvfs = arg;
352	if (newval == FALSE) {
353		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
354		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
355	} else {
356		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
357		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
358	}
359}
360
361static void
362snapdir_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_show_ctldir = newval;
367}
368
369static void
370vscan_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_vscan = newval;
375}
376
377static void
378acl_mode_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_mode = newval;
383}
384
385static void
386acl_inherit_changed_cb(void *arg, uint64_t newval)
387{
388	zfsvfs_t *zfsvfs = arg;
389
390	zfsvfs->z_acl_inherit = newval;
391}
392
393static int
394zfs_register_callbacks(vfs_t *vfsp)
395{
396	struct dsl_dataset *ds = NULL;
397	objset_t *os = NULL;
398	zfsvfs_t *zfsvfs = NULL;
399	uint64_t nbmand;
400	boolean_t readonly = B_FALSE;
401	boolean_t do_readonly = B_FALSE;
402	boolean_t setuid = B_FALSE;
403	boolean_t do_setuid = B_FALSE;
404	boolean_t exec = B_FALSE;
405	boolean_t do_exec = B_FALSE;
406#ifdef illumos
407	boolean_t devices = B_FALSE;
408	boolean_t do_devices = B_FALSE;
409#endif
410	boolean_t xattr = B_FALSE;
411	boolean_t do_xattr = B_FALSE;
412	boolean_t atime = B_FALSE;
413	boolean_t do_atime = B_FALSE;
414	int error = 0;
415
416	ASSERT(vfsp);
417	zfsvfs = vfsp->vfs_data;
418	ASSERT(zfsvfs);
419	os = zfsvfs->z_os;
420
421	/*
422	 * This function can be called for a snapshot when we update snapshot's
423	 * mount point, which isn't really supported.
424	 */
425	if (dmu_objset_is_snapshot(os))
426		return (EOPNOTSUPP);
427
428	/*
429	 * The act of registering our callbacks will destroy any mount
430	 * options we may have.  In order to enable temporary overrides
431	 * of mount options, we stash away the current values and
432	 * restore them after we register the callbacks.
433	 */
434	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
435	    !spa_writeable(dmu_objset_spa(os))) {
436		readonly = B_TRUE;
437		do_readonly = B_TRUE;
438	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
439		readonly = B_FALSE;
440		do_readonly = B_TRUE;
441	}
442	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
443		setuid = B_FALSE;
444		do_setuid = B_TRUE;
445	} else {
446		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447			setuid = B_FALSE;
448			do_setuid = B_TRUE;
449		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450			setuid = B_TRUE;
451			do_setuid = B_TRUE;
452		}
453	}
454	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455		exec = B_FALSE;
456		do_exec = B_TRUE;
457	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458		exec = B_TRUE;
459		do_exec = B_TRUE;
460	}
461	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462		xattr = B_FALSE;
463		do_xattr = B_TRUE;
464	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465		xattr = B_TRUE;
466		do_xattr = B_TRUE;
467	}
468	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469		atime = B_FALSE;
470		do_atime = B_TRUE;
471	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472		atime = B_TRUE;
473		do_atime = B_TRUE;
474	}
475
476	/*
477	 * We need to enter pool configuration here, so that we can use
478	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
479	 * dsl_prop_get_integer() can not be used, because it has to acquire
480	 * spa_namespace_lock and we can not do that because we already hold
481	 * z_teardown_lock.  The problem is that spa_config_sync() is called
482	 * with spa_namespace_lock held and the function calls ZFS vnode
483	 * operations to write the cache file and thus z_teardown_lock is
484	 * acquired after spa_namespace_lock.
485	 */
486	ds = dmu_objset_ds(os);
487	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
488
489	/*
490	 * nbmand is a special property.  It can only be changed at
491	 * mount time.
492	 *
493	 * This is weird, but it is documented to only be changeable
494	 * at mount time.
495	 */
496	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
497		nbmand = B_FALSE;
498	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
499		nbmand = B_TRUE;
500	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
501		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
502		return (error);
503	}
504
505	/*
506	 * Register property callbacks.
507	 *
508	 * It would probably be fine to just check for i/o error from
509	 * the first prop_register(), but I guess I like to go
510	 * overboard...
511	 */
512	error = dsl_prop_register(ds,
513	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
520#ifdef illumos
521	error = error ? error : dsl_prop_register(ds,
522	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
523#endif
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
526	error = error ? error : dsl_prop_register(ds,
527	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
528	error = error ? error : dsl_prop_register(ds,
529	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
530	error = error ? error : dsl_prop_register(ds,
531	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
532	error = error ? error : dsl_prop_register(ds,
533	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
534	    zfsvfs);
535	error = error ? error : dsl_prop_register(ds,
536	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
537	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
538	if (error)
539		goto unregister;
540
541	/*
542	 * Invoke our callbacks to restore temporary mount options.
543	 */
544	if (do_readonly)
545		readonly_changed_cb(zfsvfs, readonly);
546	if (do_setuid)
547		setuid_changed_cb(zfsvfs, setuid);
548	if (do_exec)
549		exec_changed_cb(zfsvfs, exec);
550	if (do_xattr)
551		xattr_changed_cb(zfsvfs, xattr);
552	if (do_atime)
553		atime_changed_cb(zfsvfs, atime);
554
555	nbmand_changed_cb(zfsvfs, nbmand);
556
557	return (0);
558
559unregister:
560	dsl_prop_unregister_all(ds, zfsvfs);
561	return (error);
562}
563
564static int
565zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566    uint64_t *userp, uint64_t *groupp)
567{
568	/*
569	 * Is it a valid type of object to track?
570	 */
571	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
572		return (SET_ERROR(ENOENT));
573
574	/*
575	 * If we have a NULL data pointer
576	 * then assume the id's aren't changing and
577	 * return EEXIST to the dmu to let it know to
578	 * use the same ids
579	 */
580	if (data == NULL)
581		return (SET_ERROR(EEXIST));
582
583	if (bonustype == DMU_OT_ZNODE) {
584		znode_phys_t *znp = data;
585		*userp = znp->zp_uid;
586		*groupp = znp->zp_gid;
587	} else {
588		int hdrsize;
589		sa_hdr_phys_t *sap = data;
590		sa_hdr_phys_t sa = *sap;
591		boolean_t swap = B_FALSE;
592
593		ASSERT(bonustype == DMU_OT_SA);
594
595		if (sa.sa_magic == 0) {
596			/*
597			 * This should only happen for newly created
598			 * files that haven't had the znode data filled
599			 * in yet.
600			 */
601			*userp = 0;
602			*groupp = 0;
603			return (0);
604		}
605		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
606			sa.sa_magic = SA_MAGIC;
607			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
608			swap = B_TRUE;
609		} else {
610			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
611		}
612
613		hdrsize = sa_hdrsize(&sa);
614		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
615		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
616		    SA_UID_OFFSET));
617		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
618		    SA_GID_OFFSET));
619		if (swap) {
620			*userp = BSWAP_64(*userp);
621			*groupp = BSWAP_64(*groupp);
622		}
623	}
624	return (0);
625}
626
627static void
628fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
629    char *domainbuf, int buflen, uid_t *ridp)
630{
631	uint64_t fuid;
632	const char *domain;
633
634	fuid = strtonum(fuidstr, NULL);
635
636	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
637	if (domain)
638		(void) strlcpy(domainbuf, domain, buflen);
639	else
640		domainbuf[0] = '\0';
641	*ridp = FUID_RID(fuid);
642}
643
644static uint64_t
645zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
646{
647	switch (type) {
648	case ZFS_PROP_USERUSED:
649		return (DMU_USERUSED_OBJECT);
650	case ZFS_PROP_GROUPUSED:
651		return (DMU_GROUPUSED_OBJECT);
652	case ZFS_PROP_USERQUOTA:
653		return (zfsvfs->z_userquota_obj);
654	case ZFS_PROP_GROUPQUOTA:
655		return (zfsvfs->z_groupquota_obj);
656	}
657	return (0);
658}
659
660int
661zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
662    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
663{
664	int error;
665	zap_cursor_t zc;
666	zap_attribute_t za;
667	zfs_useracct_t *buf = vbuf;
668	uint64_t obj;
669
670	if (!dmu_objset_userspace_present(zfsvfs->z_os))
671		return (SET_ERROR(ENOTSUP));
672
673	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
674	if (obj == 0) {
675		*bufsizep = 0;
676		return (0);
677	}
678
679	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
680	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
681	    zap_cursor_advance(&zc)) {
682		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
683		    *bufsizep)
684			break;
685
686		fuidstr_to_sid(zfsvfs, za.za_name,
687		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
688
689		buf->zu_space = za.za_first_integer;
690		buf++;
691	}
692	if (error == ENOENT)
693		error = 0;
694
695	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
696	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
697	*cookiep = zap_cursor_serialize(&zc);
698	zap_cursor_fini(&zc);
699	return (error);
700}
701
702/*
703 * buf must be big enough (eg, 32 bytes)
704 */
705static int
706id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
707    char *buf, boolean_t addok)
708{
709	uint64_t fuid;
710	int domainid = 0;
711
712	if (domain && domain[0]) {
713		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
714		if (domainid == -1)
715			return (SET_ERROR(ENOENT));
716	}
717	fuid = FUID_ENCODE(domainid, rid);
718	(void) sprintf(buf, "%llx", (longlong_t)fuid);
719	return (0);
720}
721
722int
723zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
724    const char *domain, uint64_t rid, uint64_t *valp)
725{
726	char buf[32];
727	int err;
728	uint64_t obj;
729
730	*valp = 0;
731
732	if (!dmu_objset_userspace_present(zfsvfs->z_os))
733		return (SET_ERROR(ENOTSUP));
734
735	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
736	if (obj == 0)
737		return (0);
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
740	if (err)
741		return (err);
742
743	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
744	if (err == ENOENT)
745		err = 0;
746	return (err);
747}
748
749int
750zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
751    const char *domain, uint64_t rid, uint64_t quota)
752{
753	char buf[32];
754	int err;
755	dmu_tx_t *tx;
756	uint64_t *objp;
757	boolean_t fuid_dirtied;
758
759	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
760		return (SET_ERROR(EINVAL));
761
762	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
763		return (SET_ERROR(ENOTSUP));
764
765	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
766	    &zfsvfs->z_groupquota_obj;
767
768	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
769	if (err)
770		return (err);
771	fuid_dirtied = zfsvfs->z_fuid_dirty;
772
773	tx = dmu_tx_create(zfsvfs->z_os);
774	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
775	if (*objp == 0) {
776		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
777		    zfs_userquota_prop_prefixes[type]);
778	}
779	if (fuid_dirtied)
780		zfs_fuid_txhold(zfsvfs, tx);
781	err = dmu_tx_assign(tx, TXG_WAIT);
782	if (err) {
783		dmu_tx_abort(tx);
784		return (err);
785	}
786
787	mutex_enter(&zfsvfs->z_lock);
788	if (*objp == 0) {
789		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
790		    DMU_OT_NONE, 0, tx);
791		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
792		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
793	}
794	mutex_exit(&zfsvfs->z_lock);
795
796	if (quota == 0) {
797		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
798		if (err == ENOENT)
799			err = 0;
800	} else {
801		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
802	}
803	ASSERT(err == 0);
804	if (fuid_dirtied)
805		zfs_fuid_sync(zfsvfs, tx);
806	dmu_tx_commit(tx);
807	return (err);
808}
809
810boolean_t
811zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
812{
813	char buf[32];
814	uint64_t used, quota, usedobj, quotaobj;
815	int err;
816
817	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
818	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
819
820	if (quotaobj == 0 || zfsvfs->z_replay)
821		return (B_FALSE);
822
823	(void) sprintf(buf, "%llx", (longlong_t)fuid);
824	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
825	if (err != 0)
826		return (B_FALSE);
827
828	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
829	if (err != 0)
830		return (B_FALSE);
831	return (used >= quota);
832}
833
834boolean_t
835zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
836{
837	uint64_t fuid;
838	uint64_t quotaobj;
839
840	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
841
842	fuid = isgroup ? zp->z_gid : zp->z_uid;
843
844	if (quotaobj == 0 || zfsvfs->z_replay)
845		return (B_FALSE);
846
847	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
848}
849
850/*
851 * Associate this zfsvfs with the given objset, which must be owned.
852 * This will cache a bunch of on-disk state from the objset in the
853 * zfsvfs.
854 */
855static int
856zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
857{
858	int error;
859	uint64_t val;
860
861	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
862	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
863	zfsvfs->z_os = os;
864
865	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
866	if (error != 0)
867		return (error);
868	if (zfsvfs->z_version >
869	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
870		(void) printf("Can't mount a version %lld file system "
871		    "on a version %lld pool\n. Pool must be upgraded to mount "
872		    "this file system.", (u_longlong_t)zfsvfs->z_version,
873		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
874		return (SET_ERROR(ENOTSUP));
875	}
876	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
877	if (error != 0)
878		return (error);
879	zfsvfs->z_norm = (int)val;
880
881	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
882	if (error != 0)
883		return (error);
884	zfsvfs->z_utf8 = (val != 0);
885
886	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
887	if (error != 0)
888		return (error);
889	zfsvfs->z_case = (uint_t)val;
890
891	/*
892	 * Fold case on file systems that are always or sometimes case
893	 * insensitive.
894	 */
895	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
896	    zfsvfs->z_case == ZFS_CASE_MIXED)
897		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
898
899	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
900	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
901
902	uint64_t sa_obj = 0;
903	if (zfsvfs->z_use_sa) {
904		/* should either have both of these objects or none */
905		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
906		    &sa_obj);
907		if (error != 0)
908			return (error);
909	}
910
911	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
912	    &zfsvfs->z_attr_table);
913	if (error != 0)
914		return (error);
915
916	if (zfsvfs->z_version >= ZPL_VERSION_SA)
917		sa_register_update_callback(os, zfs_sa_upgrade);
918
919	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
920	    &zfsvfs->z_root);
921	if (error != 0)
922		return (error);
923	ASSERT(zfsvfs->z_root != 0);
924
925	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
926	    &zfsvfs->z_unlinkedobj);
927	if (error != 0)
928		return (error);
929
930	error = zap_lookup(os, MASTER_NODE_OBJ,
931	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
932	    8, 1, &zfsvfs->z_userquota_obj);
933	if (error == ENOENT)
934		zfsvfs->z_userquota_obj = 0;
935	else if (error != 0)
936		return (error);
937
938	error = zap_lookup(os, MASTER_NODE_OBJ,
939	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
940	    8, 1, &zfsvfs->z_groupquota_obj);
941	if (error == ENOENT)
942		zfsvfs->z_groupquota_obj = 0;
943	else if (error != 0)
944		return (error);
945
946	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
947	    &zfsvfs->z_fuid_obj);
948	if (error == ENOENT)
949		zfsvfs->z_fuid_obj = 0;
950	else if (error != 0)
951		return (error);
952
953	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
954	    &zfsvfs->z_shares_dir);
955	if (error == ENOENT)
956		zfsvfs->z_shares_dir = 0;
957	else if (error != 0)
958		return (error);
959
960	return (0);
961}
962
963int
964zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
965{
966	objset_t *os;
967	zfsvfs_t *zfsvfs;
968	int error;
969
970	/*
971	 * XXX: Fix struct statfs so this isn't necessary!
972	 *
973	 * The 'osname' is used as the filesystem's special node, which means
974	 * it must fit in statfs.f_mntfromname, or else it can't be
975	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
976	 * 'zfs unmount' to think it's not mounted when it is.
977	 */
978	if (strlen(osname) >= MNAMELEN)
979		return (SET_ERROR(ENAMETOOLONG));
980
981	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
982
983	/*
984	 * We claim to always be readonly so we can open snapshots;
985	 * other ZPL code will prevent us from writing to snapshots.
986	 */
987	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
988	if (error) {
989		kmem_free(zfsvfs, sizeof (zfsvfs_t));
990		return (error);
991	}
992
993	zfsvfs->z_vfs = NULL;
994	zfsvfs->z_parent = zfsvfs;
995
996	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
997	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
998	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
999	    offsetof(znode_t, z_link_node));
1000	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
1001	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
1002	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
1003	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1004		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1005
1006	error = zfsvfs_init(zfsvfs, os);
1007	if (error != 0) {
1008		dmu_objset_disown(os, zfsvfs);
1009		*zfvp = NULL;
1010		kmem_free(zfsvfs, sizeof (zfsvfs_t));
1011		return (error);
1012	}
1013
1014	*zfvp = zfsvfs;
1015	return (0);
1016}
1017
1018static int
1019zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1020{
1021	int error;
1022
1023	error = zfs_register_callbacks(zfsvfs->z_vfs);
1024	if (error)
1025		return (error);
1026
1027	/*
1028	 * Set the objset user_ptr to track its zfsvfs.
1029	 */
1030	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1031	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1032	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1033
1034	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1035
1036	/*
1037	 * If we are not mounting (ie: online recv), then we don't
1038	 * have to worry about replaying the log as we blocked all
1039	 * operations out since we closed the ZIL.
1040	 */
1041	if (mounting) {
1042		boolean_t readonly;
1043
1044		/*
1045		 * During replay we remove the read only flag to
1046		 * allow replays to succeed.
1047		 */
1048		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1049		if (readonly != 0)
1050			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1051		else
1052			zfs_unlinked_drain(zfsvfs);
1053
1054		/*
1055		 * Parse and replay the intent log.
1056		 *
1057		 * Because of ziltest, this must be done after
1058		 * zfs_unlinked_drain().  (Further note: ziltest
1059		 * doesn't use readonly mounts, where
1060		 * zfs_unlinked_drain() isn't called.)  This is because
1061		 * ziltest causes spa_sync() to think it's committed,
1062		 * but actually it is not, so the intent log contains
1063		 * many txg's worth of changes.
1064		 *
1065		 * In particular, if object N is in the unlinked set in
1066		 * the last txg to actually sync, then it could be
1067		 * actually freed in a later txg and then reallocated
1068		 * in a yet later txg.  This would write a "create
1069		 * object N" record to the intent log.  Normally, this
1070		 * would be fine because the spa_sync() would have
1071		 * written out the fact that object N is free, before
1072		 * we could write the "create object N" intent log
1073		 * record.
1074		 *
1075		 * But when we are in ziltest mode, we advance the "open
1076		 * txg" without actually spa_sync()-ing the changes to
1077		 * disk.  So we would see that object N is still
1078		 * allocated and in the unlinked set, and there is an
1079		 * intent log record saying to allocate it.
1080		 */
1081		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1082			if (zil_replay_disable) {
1083				zil_destroy(zfsvfs->z_log, B_FALSE);
1084			} else {
1085				zfsvfs->z_replay = B_TRUE;
1086				zil_replay(zfsvfs->z_os, zfsvfs,
1087				    zfs_replay_vector);
1088				zfsvfs->z_replay = B_FALSE;
1089			}
1090		}
1091		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1092	}
1093
1094	return (0);
1095}
1096
1097extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1098
1099void
1100zfsvfs_free(zfsvfs_t *zfsvfs)
1101{
1102	int i;
1103
1104	/*
1105	 * This is a barrier to prevent the filesystem from going away in
1106	 * zfs_znode_move() until we can safely ensure that the filesystem is
1107	 * not unmounted. We consider the filesystem valid before the barrier
1108	 * and invalid after the barrier.
1109	 */
1110	rw_enter(&zfsvfs_lock, RW_READER);
1111	rw_exit(&zfsvfs_lock);
1112
1113	zfs_fuid_destroy(zfsvfs);
1114
1115	mutex_destroy(&zfsvfs->z_znodes_lock);
1116	mutex_destroy(&zfsvfs->z_lock);
1117	list_destroy(&zfsvfs->z_all_znodes);
1118	rrm_destroy(&zfsvfs->z_teardown_lock);
1119	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1120	rw_destroy(&zfsvfs->z_fuid_lock);
1121	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1122		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1123	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1124}
1125
1126static void
1127zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1128{
1129	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1130	if (zfsvfs->z_vfs) {
1131		if (zfsvfs->z_use_fuids) {
1132			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1133			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1134			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1135			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1136			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1137			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1138		} else {
1139			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1140			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1141			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1142			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1143			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1144			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1145		}
1146	}
1147	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1148}
1149
1150static int
1151zfs_domount(vfs_t *vfsp, char *osname)
1152{
1153	uint64_t recordsize, fsid_guid;
1154	int error = 0;
1155	zfsvfs_t *zfsvfs;
1156	vnode_t *vp;
1157
1158	ASSERT(vfsp);
1159	ASSERT(osname);
1160
1161	error = zfsvfs_create(osname, &zfsvfs);
1162	if (error)
1163		return (error);
1164	zfsvfs->z_vfs = vfsp;
1165
1166#ifdef illumos
1167	/* Initialize the generic filesystem structure. */
1168	vfsp->vfs_bcount = 0;
1169	vfsp->vfs_data = NULL;
1170
1171	if (zfs_create_unique_device(&mount_dev) == -1) {
1172		error = SET_ERROR(ENODEV);
1173		goto out;
1174	}
1175	ASSERT(vfs_devismounted(mount_dev) == 0);
1176#endif
1177
1178	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1179	    NULL))
1180		goto out;
1181	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1182	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1183
1184	vfsp->vfs_data = zfsvfs;
1185	vfsp->mnt_flag |= MNT_LOCAL;
1186	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1187	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1188	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1189	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1190
1191	/*
1192	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1193	 * separates our fsid from any other filesystem types, and a
1194	 * 56-bit objset unique ID.  The objset unique ID is unique to
1195	 * all objsets open on this system, provided by unique_create().
1196	 * The 8-bit fs type must be put in the low bits of fsid[1]
1197	 * because that's where other Solaris filesystems put it.
1198	 */
1199	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1200	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1201	vfsp->vfs_fsid.val[0] = fsid_guid;
1202	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1203	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1204
1205	/*
1206	 * Set features for file system.
1207	 */
1208	zfs_set_fuid_feature(zfsvfs);
1209	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1210		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1211		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1212		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1213	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1214		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1215		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1216	}
1217	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1218
1219	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1220		uint64_t pval;
1221
1222		atime_changed_cb(zfsvfs, B_FALSE);
1223		readonly_changed_cb(zfsvfs, B_TRUE);
1224		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1225			goto out;
1226		xattr_changed_cb(zfsvfs, pval);
1227		zfsvfs->z_issnap = B_TRUE;
1228		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1229
1230		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1231		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1232		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1233	} else {
1234		error = zfsvfs_setup(zfsvfs, B_TRUE);
1235	}
1236
1237	vfs_mountedfrom(vfsp, osname);
1238
1239	if (!zfsvfs->z_issnap)
1240		zfsctl_create(zfsvfs);
1241out:
1242	if (error) {
1243		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1244		zfsvfs_free(zfsvfs);
1245	} else {
1246		atomic_inc_32(&zfs_active_fs_count);
1247	}
1248
1249	return (error);
1250}
1251
1252void
1253zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1254{
1255	objset_t *os = zfsvfs->z_os;
1256
1257	if (!dmu_objset_is_snapshot(os))
1258		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1259}
1260
1261#ifdef SECLABEL
1262/*
1263 * Convert a decimal digit string to a uint64_t integer.
1264 */
1265static int
1266str_to_uint64(char *str, uint64_t *objnum)
1267{
1268	uint64_t num = 0;
1269
1270	while (*str) {
1271		if (*str < '0' || *str > '9')
1272			return (SET_ERROR(EINVAL));
1273
1274		num = num*10 + *str++ - '0';
1275	}
1276
1277	*objnum = num;
1278	return (0);
1279}
1280
1281/*
1282 * The boot path passed from the boot loader is in the form of
1283 * "rootpool-name/root-filesystem-object-number'. Convert this
1284 * string to a dataset name: "rootpool-name/root-filesystem-name".
1285 */
1286static int
1287zfs_parse_bootfs(char *bpath, char *outpath)
1288{
1289	char *slashp;
1290	uint64_t objnum;
1291	int error;
1292
1293	if (*bpath == 0 || *bpath == '/')
1294		return (SET_ERROR(EINVAL));
1295
1296	(void) strcpy(outpath, bpath);
1297
1298	slashp = strchr(bpath, '/');
1299
1300	/* if no '/', just return the pool name */
1301	if (slashp == NULL) {
1302		return (0);
1303	}
1304
1305	/* if not a number, just return the root dataset name */
1306	if (str_to_uint64(slashp+1, &objnum)) {
1307		return (0);
1308	}
1309
1310	*slashp = '\0';
1311	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1312	*slashp = '/';
1313
1314	return (error);
1315}
1316
1317/*
1318 * Check that the hex label string is appropriate for the dataset being
1319 * mounted into the global_zone proper.
1320 *
1321 * Return an error if the hex label string is not default or
1322 * admin_low/admin_high.  For admin_low labels, the corresponding
1323 * dataset must be readonly.
1324 */
1325int
1326zfs_check_global_label(const char *dsname, const char *hexsl)
1327{
1328	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1329		return (0);
1330	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1331		return (0);
1332	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1333		/* must be readonly */
1334		uint64_t rdonly;
1335
1336		if (dsl_prop_get_integer(dsname,
1337		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1338			return (SET_ERROR(EACCES));
1339		return (rdonly ? 0 : EACCES);
1340	}
1341	return (SET_ERROR(EACCES));
1342}
1343
1344/*
1345 * Determine whether the mount is allowed according to MAC check.
1346 * by comparing (where appropriate) label of the dataset against
1347 * the label of the zone being mounted into.  If the dataset has
1348 * no label, create one.
1349 *
1350 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1351 */
1352static int
1353zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1354{
1355	int		error, retv;
1356	zone_t		*mntzone = NULL;
1357	ts_label_t	*mnt_tsl;
1358	bslabel_t	*mnt_sl;
1359	bslabel_t	ds_sl;
1360	char		ds_hexsl[MAXNAMELEN];
1361
1362	retv = EACCES;				/* assume the worst */
1363
1364	/*
1365	 * Start by getting the dataset label if it exists.
1366	 */
1367	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1368	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1369	if (error)
1370		return (SET_ERROR(EACCES));
1371
1372	/*
1373	 * If labeling is NOT enabled, then disallow the mount of datasets
1374	 * which have a non-default label already.  No other label checks
1375	 * are needed.
1376	 */
1377	if (!is_system_labeled()) {
1378		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1379			return (0);
1380		return (SET_ERROR(EACCES));
1381	}
1382
1383	/*
1384	 * Get the label of the mountpoint.  If mounting into the global
1385	 * zone (i.e. mountpoint is not within an active zone and the
1386	 * zoned property is off), the label must be default or
1387	 * admin_low/admin_high only; no other checks are needed.
1388	 */
1389	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1390	if (mntzone->zone_id == GLOBAL_ZONEID) {
1391		uint64_t zoned;
1392
1393		zone_rele(mntzone);
1394
1395		if (dsl_prop_get_integer(osname,
1396		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1397			return (SET_ERROR(EACCES));
1398		if (!zoned)
1399			return (zfs_check_global_label(osname, ds_hexsl));
1400		else
1401			/*
1402			 * This is the case of a zone dataset being mounted
1403			 * initially, before the zone has been fully created;
1404			 * allow this mount into global zone.
1405			 */
1406			return (0);
1407	}
1408
1409	mnt_tsl = mntzone->zone_slabel;
1410	ASSERT(mnt_tsl != NULL);
1411	label_hold(mnt_tsl);
1412	mnt_sl = label2bslabel(mnt_tsl);
1413
1414	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1415		/*
1416		 * The dataset doesn't have a real label, so fabricate one.
1417		 */
1418		char *str = NULL;
1419
1420		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1421		    dsl_prop_set_string(osname,
1422		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1423		    ZPROP_SRC_LOCAL, str) == 0)
1424			retv = 0;
1425		if (str != NULL)
1426			kmem_free(str, strlen(str) + 1);
1427	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1428		/*
1429		 * Now compare labels to complete the MAC check.  If the
1430		 * labels are equal then allow access.  If the mountpoint
1431		 * label dominates the dataset label, allow readonly access.
1432		 * Otherwise, access is denied.
1433		 */
1434		if (blequal(mnt_sl, &ds_sl))
1435			retv = 0;
1436		else if (bldominates(mnt_sl, &ds_sl)) {
1437			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1438			retv = 0;
1439		}
1440	}
1441
1442	label_rele(mnt_tsl);
1443	zone_rele(mntzone);
1444	return (retv);
1445}
1446#endif	/* SECLABEL */
1447
1448#ifdef OPENSOLARIS_MOUNTROOT
1449static int
1450zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1451{
1452	int error = 0;
1453	static int zfsrootdone = 0;
1454	zfsvfs_t *zfsvfs = NULL;
1455	znode_t *zp = NULL;
1456	vnode_t *vp = NULL;
1457	char *zfs_bootfs;
1458	char *zfs_devid;
1459
1460	ASSERT(vfsp);
1461
1462	/*
1463	 * The filesystem that we mount as root is defined in the
1464	 * boot property "zfs-bootfs" with a format of
1465	 * "poolname/root-dataset-objnum".
1466	 */
1467	if (why == ROOT_INIT) {
1468		if (zfsrootdone++)
1469			return (SET_ERROR(EBUSY));
1470		/*
1471		 * the process of doing a spa_load will require the
1472		 * clock to be set before we could (for example) do
1473		 * something better by looking at the timestamp on
1474		 * an uberblock, so just set it to -1.
1475		 */
1476		clkset(-1);
1477
1478		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1479			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1480			    "bootfs name");
1481			return (SET_ERROR(EINVAL));
1482		}
1483		zfs_devid = spa_get_bootprop("diskdevid");
1484		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1485		if (zfs_devid)
1486			spa_free_bootprop(zfs_devid);
1487		if (error) {
1488			spa_free_bootprop(zfs_bootfs);
1489			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1490			    error);
1491			return (error);
1492		}
1493		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1494			spa_free_bootprop(zfs_bootfs);
1495			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1496			    error);
1497			return (error);
1498		}
1499
1500		spa_free_bootprop(zfs_bootfs);
1501
1502		if (error = vfs_lock(vfsp))
1503			return (error);
1504
1505		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1506			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1507			goto out;
1508		}
1509
1510		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1511		ASSERT(zfsvfs);
1512		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1513			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1514			goto out;
1515		}
1516
1517		vp = ZTOV(zp);
1518		mutex_enter(&vp->v_lock);
1519		vp->v_flag |= VROOT;
1520		mutex_exit(&vp->v_lock);
1521		rootvp = vp;
1522
1523		/*
1524		 * Leave rootvp held.  The root file system is never unmounted.
1525		 */
1526
1527		vfs_add((struct vnode *)0, vfsp,
1528		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1529out:
1530		vfs_unlock(vfsp);
1531		return (error);
1532	} else if (why == ROOT_REMOUNT) {
1533		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1534		vfsp->vfs_flag |= VFS_REMOUNT;
1535
1536		/* refresh mount options */
1537		zfs_unregister_callbacks(vfsp->vfs_data);
1538		return (zfs_register_callbacks(vfsp));
1539
1540	} else if (why == ROOT_UNMOUNT) {
1541		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1542		(void) zfs_sync(vfsp, 0, 0);
1543		return (0);
1544	}
1545
1546	/*
1547	 * if "why" is equal to anything else other than ROOT_INIT,
1548	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1549	 */
1550	return (SET_ERROR(ENOTSUP));
1551}
1552#endif	/* OPENSOLARIS_MOUNTROOT */
1553
1554static int
1555getpoolname(const char *osname, char *poolname)
1556{
1557	char *p;
1558
1559	p = strchr(osname, '/');
1560	if (p == NULL) {
1561		if (strlen(osname) >= MAXNAMELEN)
1562			return (ENAMETOOLONG);
1563		(void) strcpy(poolname, osname);
1564	} else {
1565		if (p - osname >= MAXNAMELEN)
1566			return (ENAMETOOLONG);
1567		(void) strncpy(poolname, osname, p - osname);
1568		poolname[p - osname] = '\0';
1569	}
1570	return (0);
1571}
1572
1573/*ARGSUSED*/
1574static int
1575zfs_mount(vfs_t *vfsp)
1576{
1577	kthread_t	*td = curthread;
1578	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1579	cred_t		*cr = td->td_ucred;
1580	char		*osname;
1581	int		error = 0;
1582	int		canwrite;
1583
1584#ifdef illumos
1585	if (mvp->v_type != VDIR)
1586		return (SET_ERROR(ENOTDIR));
1587
1588	mutex_enter(&mvp->v_lock);
1589	if ((uap->flags & MS_REMOUNT) == 0 &&
1590	    (uap->flags & MS_OVERLAY) == 0 &&
1591	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1592		mutex_exit(&mvp->v_lock);
1593		return (SET_ERROR(EBUSY));
1594	}
1595	mutex_exit(&mvp->v_lock);
1596
1597	/*
1598	 * ZFS does not support passing unparsed data in via MS_DATA.
1599	 * Users should use the MS_OPTIONSTR interface; this means
1600	 * that all option parsing is already done and the options struct
1601	 * can be interrogated.
1602	 */
1603	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1604#else	/* !illumos */
1605	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1606		return (SET_ERROR(EPERM));
1607
1608	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1609		return (SET_ERROR(EINVAL));
1610#endif	/* illumos */
1611
1612	/*
1613	 * If full-owner-access is enabled and delegated administration is
1614	 * turned on, we must set nosuid.
1615	 */
1616	if (zfs_super_owner &&
1617	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1618		secpolicy_fs_mount_clearopts(cr, vfsp);
1619	}
1620
1621	/*
1622	 * Check for mount privilege?
1623	 *
1624	 * If we don't have privilege then see if
1625	 * we have local permission to allow it
1626	 */
1627	error = secpolicy_fs_mount(cr, mvp, vfsp);
1628	if (error) {
1629		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1630			goto out;
1631
1632		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1633			vattr_t		vattr;
1634
1635			/*
1636			 * Make sure user is the owner of the mount point
1637			 * or has sufficient privileges.
1638			 */
1639
1640			vattr.va_mask = AT_UID;
1641
1642			vn_lock(mvp, LK_SHARED | LK_RETRY);
1643			if (VOP_GETATTR(mvp, &vattr, cr)) {
1644				VOP_UNLOCK(mvp, 0);
1645				goto out;
1646			}
1647
1648			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1649			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1650				VOP_UNLOCK(mvp, 0);
1651				goto out;
1652			}
1653			VOP_UNLOCK(mvp, 0);
1654		}
1655
1656		secpolicy_fs_mount_clearopts(cr, vfsp);
1657	}
1658
1659	/*
1660	 * Refuse to mount a filesystem if we are in a local zone and the
1661	 * dataset is not visible.
1662	 */
1663	if (!INGLOBALZONE(curthread) &&
1664	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1665		error = SET_ERROR(EPERM);
1666		goto out;
1667	}
1668
1669#ifdef SECLABEL
1670	error = zfs_mount_label_policy(vfsp, osname);
1671	if (error)
1672		goto out;
1673#endif
1674
1675	vfsp->vfs_flag |= MNT_NFS4ACLS;
1676
1677	/*
1678	 * When doing a remount, we simply refresh our temporary properties
1679	 * according to those options set in the current VFS options.
1680	 */
1681	if (vfsp->vfs_flag & MS_REMOUNT) {
1682		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1683
1684		/*
1685		 * Refresh mount options with z_teardown_lock blocking I/O while
1686		 * the filesystem is in an inconsistent state.
1687		 * The lock also serializes this code with filesystem
1688		 * manipulations between entry to zfs_suspend_fs() and return
1689		 * from zfs_resume_fs().
1690		 */
1691		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1692		zfs_unregister_callbacks(zfsvfs);
1693		error = zfs_register_callbacks(vfsp);
1694		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1695		goto out;
1696	}
1697
1698	/* Initial root mount: try hard to import the requested root pool. */
1699	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1700	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1701		char pname[MAXNAMELEN];
1702
1703		error = getpoolname(osname, pname);
1704		if (error == 0)
1705			error = spa_import_rootpool(pname);
1706		if (error)
1707			goto out;
1708	}
1709	DROP_GIANT();
1710	error = zfs_domount(vfsp, osname);
1711	PICKUP_GIANT();
1712
1713#ifdef illumos
1714	/*
1715	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1716	 * disappear due to a forced unmount.
1717	 */
1718	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1719		VFS_HOLD(mvp->v_vfsp);
1720#endif
1721
1722out:
1723	return (error);
1724}
1725
1726static int
1727zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1728{
1729	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1730	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1731
1732	statp->f_version = STATFS_VERSION;
1733
1734	ZFS_ENTER(zfsvfs);
1735
1736	dmu_objset_space(zfsvfs->z_os,
1737	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1738
1739	/*
1740	 * The underlying storage pool actually uses multiple block sizes.
1741	 * We report the fragsize as the smallest block size we support,
1742	 * and we report our blocksize as the filesystem's maximum blocksize.
1743	 */
1744	statp->f_bsize = SPA_MINBLOCKSIZE;
1745	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1746
1747	/*
1748	 * The following report "total" blocks of various kinds in the
1749	 * file system, but reported in terms of f_frsize - the
1750	 * "fragment" size.
1751	 */
1752
1753	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1754	statp->f_bfree = availbytes / statp->f_bsize;
1755	statp->f_bavail = statp->f_bfree; /* no root reservation */
1756
1757	/*
1758	 * statvfs() should really be called statufs(), because it assumes
1759	 * static metadata.  ZFS doesn't preallocate files, so the best
1760	 * we can do is report the max that could possibly fit in f_files,
1761	 * and that minus the number actually used in f_ffree.
1762	 * For f_ffree, report the smaller of the number of object available
1763	 * and the number of blocks (each object will take at least a block).
1764	 */
1765	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1766	statp->f_files = statp->f_ffree + usedobjs;
1767
1768	/*
1769	 * We're a zfs filesystem.
1770	 */
1771	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1772
1773	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1774	    sizeof(statp->f_mntfromname));
1775	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1776	    sizeof(statp->f_mntonname));
1777
1778	statp->f_namemax = ZFS_MAXNAMELEN;
1779
1780	ZFS_EXIT(zfsvfs);
1781	return (0);
1782}
1783
1784static int
1785zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1786{
1787	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1788	znode_t *rootzp;
1789	int error;
1790
1791	ZFS_ENTER(zfsvfs);
1792
1793	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1794	if (error == 0)
1795		*vpp = ZTOV(rootzp);
1796
1797	ZFS_EXIT(zfsvfs);
1798
1799	if (error == 0) {
1800		error = vn_lock(*vpp, flags);
1801		if (error != 0) {
1802			VN_RELE(*vpp);
1803			*vpp = NULL;
1804		}
1805	}
1806	return (error);
1807}
1808
1809/*
1810 * Teardown the zfsvfs::z_os.
1811 *
1812 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1813 * and 'z_teardown_inactive_lock' held.
1814 */
1815static int
1816zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1817{
1818	znode_t	*zp;
1819
1820	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1821
1822	if (!unmounting) {
1823		/*
1824		 * We purge the parent filesystem's vfsp as the parent
1825		 * filesystem and all of its snapshots have their vnode's
1826		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1827		 * 'z_parent' is self referential for non-snapshots.
1828		 */
1829		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1830#ifdef FREEBSD_NAMECACHE
1831		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1832#endif
1833	}
1834
1835	/*
1836	 * Close the zil. NB: Can't close the zil while zfs_inactive
1837	 * threads are blocked as zil_close can call zfs_inactive.
1838	 */
1839	if (zfsvfs->z_log) {
1840		zil_close(zfsvfs->z_log);
1841		zfsvfs->z_log = NULL;
1842	}
1843
1844	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1845
1846	/*
1847	 * If we are not unmounting (ie: online recv) and someone already
1848	 * unmounted this file system while we were doing the switcheroo,
1849	 * or a reopen of z_os failed then just bail out now.
1850	 */
1851	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1852		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1853		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1854		return (SET_ERROR(EIO));
1855	}
1856
1857	/*
1858	 * At this point there are no vops active, and any new vops will
1859	 * fail with EIO since we have z_teardown_lock for writer (only
1860	 * relavent for forced unmount).
1861	 *
1862	 * Release all holds on dbufs.
1863	 */
1864	mutex_enter(&zfsvfs->z_znodes_lock);
1865	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1866	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1867		if (zp->z_sa_hdl) {
1868			ASSERT(ZTOV(zp)->v_count >= 0);
1869			zfs_znode_dmu_fini(zp);
1870		}
1871	mutex_exit(&zfsvfs->z_znodes_lock);
1872
1873	/*
1874	 * If we are unmounting, set the unmounted flag and let new vops
1875	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1876	 * other vops will fail with EIO.
1877	 */
1878	if (unmounting) {
1879		zfsvfs->z_unmounted = B_TRUE;
1880		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1881		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1882	}
1883
1884	/*
1885	 * z_os will be NULL if there was an error in attempting to reopen
1886	 * zfsvfs, so just return as the properties had already been
1887	 * unregistered and cached data had been evicted before.
1888	 */
1889	if (zfsvfs->z_os == NULL)
1890		return (0);
1891
1892	/*
1893	 * Unregister properties.
1894	 */
1895	zfs_unregister_callbacks(zfsvfs);
1896
1897	/*
1898	 * Evict cached data
1899	 */
1900	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1901	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1902		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1903	dmu_objset_evict_dbufs(zfsvfs->z_os);
1904
1905	return (0);
1906}
1907
1908/*ARGSUSED*/
1909static int
1910zfs_umount(vfs_t *vfsp, int fflag)
1911{
1912	kthread_t *td = curthread;
1913	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1914	objset_t *os;
1915	cred_t *cr = td->td_ucred;
1916	int ret;
1917
1918	ret = secpolicy_fs_unmount(cr, vfsp);
1919	if (ret) {
1920		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1921		    ZFS_DELEG_PERM_MOUNT, cr))
1922			return (ret);
1923	}
1924
1925	/*
1926	 * We purge the parent filesystem's vfsp as the parent filesystem
1927	 * and all of its snapshots have their vnode's v_vfsp set to the
1928	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1929	 * referential for non-snapshots.
1930	 */
1931	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1932
1933	/*
1934	 * Unmount any snapshots mounted under .zfs before unmounting the
1935	 * dataset itself.
1936	 */
1937	if (zfsvfs->z_ctldir != NULL) {
1938		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1939			return (ret);
1940		ret = vflush(vfsp, 0, 0, td);
1941		ASSERT(ret == EBUSY);
1942		if (!(fflag & MS_FORCE)) {
1943			if (zfsvfs->z_ctldir->v_count > 1)
1944				return (EBUSY);
1945			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1946		}
1947		zfsctl_destroy(zfsvfs);
1948		ASSERT(zfsvfs->z_ctldir == NULL);
1949	}
1950
1951	if (fflag & MS_FORCE) {
1952		/*
1953		 * Mark file system as unmounted before calling
1954		 * vflush(FORCECLOSE). This way we ensure no future vnops
1955		 * will be called and risk operating on DOOMED vnodes.
1956		 */
1957		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1958		zfsvfs->z_unmounted = B_TRUE;
1959		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1960	}
1961
1962	/*
1963	 * Flush all the files.
1964	 */
1965	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1966	if (ret != 0) {
1967		if (!zfsvfs->z_issnap) {
1968			zfsctl_create(zfsvfs);
1969			ASSERT(zfsvfs->z_ctldir != NULL);
1970		}
1971		return (ret);
1972	}
1973
1974#ifdef illumos
1975	if (!(fflag & MS_FORCE)) {
1976		/*
1977		 * Check the number of active vnodes in the file system.
1978		 * Our count is maintained in the vfs structure, but the
1979		 * number is off by 1 to indicate a hold on the vfs
1980		 * structure itself.
1981		 *
1982		 * The '.zfs' directory maintains a reference of its
1983		 * own, and any active references underneath are
1984		 * reflected in the vnode count.
1985		 */
1986		if (zfsvfs->z_ctldir == NULL) {
1987			if (vfsp->vfs_count > 1)
1988				return (SET_ERROR(EBUSY));
1989		} else {
1990			if (vfsp->vfs_count > 2 ||
1991			    zfsvfs->z_ctldir->v_count > 1)
1992				return (SET_ERROR(EBUSY));
1993		}
1994	}
1995#endif
1996
1997	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1998	os = zfsvfs->z_os;
1999
2000	/*
2001	 * z_os will be NULL if there was an error in
2002	 * attempting to reopen zfsvfs.
2003	 */
2004	if (os != NULL) {
2005		/*
2006		 * Unset the objset user_ptr.
2007		 */
2008		mutex_enter(&os->os_user_ptr_lock);
2009		dmu_objset_set_user(os, NULL);
2010		mutex_exit(&os->os_user_ptr_lock);
2011
2012		/*
2013		 * Finally release the objset
2014		 */
2015		dmu_objset_disown(os, zfsvfs);
2016	}
2017
2018	/*
2019	 * We can now safely destroy the '.zfs' directory node.
2020	 */
2021	if (zfsvfs->z_ctldir != NULL)
2022		zfsctl_destroy(zfsvfs);
2023	zfs_freevfs(vfsp);
2024
2025	return (0);
2026}
2027
2028static int
2029zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2030{
2031	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2032	znode_t		*zp;
2033	int 		err;
2034
2035	/*
2036	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2037	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2038	 * This will make NFS to switch to LOOKUP instead of using VGET.
2039	 */
2040	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2041	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2042		return (EOPNOTSUPP);
2043
2044	ZFS_ENTER(zfsvfs);
2045	err = zfs_zget(zfsvfs, ino, &zp);
2046	if (err == 0 && zp->z_unlinked) {
2047		VN_RELE(ZTOV(zp));
2048		err = EINVAL;
2049	}
2050	if (err == 0)
2051		*vpp = ZTOV(zp);
2052	ZFS_EXIT(zfsvfs);
2053	if (err == 0)
2054		err = vn_lock(*vpp, flags);
2055	if (err != 0)
2056		*vpp = NULL;
2057	return (err);
2058}
2059
2060static int
2061zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2062    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2063{
2064	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2065
2066	/*
2067	 * If this is regular file system vfsp is the same as
2068	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2069	 * zfsvfs->z_parent->z_vfs represents parent file system
2070	 * which we have to use here, because only this file system
2071	 * has mnt_export configured.
2072	 */
2073	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2074	    credanonp, numsecflavors, secflavors));
2075}
2076
2077CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2078CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2079
2080static int
2081zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2082{
2083	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2084	znode_t		*zp;
2085	uint64_t	object = 0;
2086	uint64_t	fid_gen = 0;
2087	uint64_t	gen_mask;
2088	uint64_t	zp_gen;
2089	int 		i, err;
2090
2091	*vpp = NULL;
2092
2093	ZFS_ENTER(zfsvfs);
2094
2095	/*
2096	 * On FreeBSD we can get snapshot's mount point or its parent file
2097	 * system mount point depending if snapshot is already mounted or not.
2098	 */
2099	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2100		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2101		uint64_t	objsetid = 0;
2102		uint64_t	setgen = 0;
2103
2104		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2105			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2106
2107		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2108			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2109
2110		ZFS_EXIT(zfsvfs);
2111
2112		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2113		if (err)
2114			return (SET_ERROR(EINVAL));
2115		ZFS_ENTER(zfsvfs);
2116	}
2117
2118	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2119		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2120
2121		for (i = 0; i < sizeof (zfid->zf_object); i++)
2122			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2123
2124		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2125			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2126	} else {
2127		ZFS_EXIT(zfsvfs);
2128		return (SET_ERROR(EINVAL));
2129	}
2130
2131	/*
2132	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2133	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2134	 * we are in the .zfs/shares directory tree.
2135	 */
2136	if ((fid_gen == 0 &&
2137	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2138	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2139		*vpp = zfsvfs->z_ctldir;
2140		ASSERT(*vpp != NULL);
2141		if (object == ZFSCTL_INO_SNAPDIR) {
2142			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2143			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2144		} else if (object == zfsvfs->z_shares_dir) {
2145			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2146			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2147		} else {
2148			VN_HOLD(*vpp);
2149		}
2150		ZFS_EXIT(zfsvfs);
2151		err = vn_lock(*vpp, flags);
2152		if (err != 0)
2153			*vpp = NULL;
2154		return (err);
2155	}
2156
2157	gen_mask = -1ULL >> (64 - 8 * i);
2158
2159	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2160	if (err = zfs_zget(zfsvfs, object, &zp)) {
2161		ZFS_EXIT(zfsvfs);
2162		return (err);
2163	}
2164	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2165	    sizeof (uint64_t));
2166	zp_gen = zp_gen & gen_mask;
2167	if (zp_gen == 0)
2168		zp_gen = 1;
2169	if (zp->z_unlinked || zp_gen != fid_gen) {
2170		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2171		VN_RELE(ZTOV(zp));
2172		ZFS_EXIT(zfsvfs);
2173		return (SET_ERROR(EINVAL));
2174	}
2175
2176	*vpp = ZTOV(zp);
2177	ZFS_EXIT(zfsvfs);
2178	err = vn_lock(*vpp, flags | LK_RETRY);
2179	if (err == 0)
2180		vnode_create_vobject(*vpp, zp->z_size, curthread);
2181	else
2182		*vpp = NULL;
2183	return (err);
2184}
2185
2186/*
2187 * Block out VOPs and close zfsvfs_t::z_os
2188 *
2189 * Note, if successful, then we return with the 'z_teardown_lock' and
2190 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2191 * dataset and objset intact so that they can be atomically handed off during
2192 * a subsequent rollback or recv operation and the resume thereafter.
2193 */
2194int
2195zfs_suspend_fs(zfsvfs_t *zfsvfs)
2196{
2197	int error;
2198
2199	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2200		return (error);
2201
2202	return (0);
2203}
2204
2205/*
2206 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2207 * is an invariant across any of the operations that can be performed while the
2208 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2209 * are the same: the relevant objset and associated dataset are owned by
2210 * zfsvfs, held, and long held on entry.
2211 */
2212int
2213zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2214{
2215	int err;
2216	znode_t *zp;
2217
2218	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2219	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2220
2221	/*
2222	 * We already own this, so just hold and rele it to update the
2223	 * objset_t, as the one we had before may have been evicted.
2224	 */
2225	objset_t *os;
2226	VERIFY0(dmu_objset_hold(osname, zfsvfs, &os));
2227	VERIFY3P(os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2228	VERIFY(dsl_dataset_long_held(os->os_dsl_dataset));
2229	dmu_objset_rele(os, zfsvfs);
2230
2231	err = zfsvfs_init(zfsvfs, os);
2232	if (err != 0)
2233		goto bail;
2234
2235	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2236
2237	zfs_set_fuid_feature(zfsvfs);
2238
2239	/*
2240	 * Attempt to re-establish all the active znodes with
2241	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2242	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2243	 * when they try to use their znode.
2244	 */
2245	mutex_enter(&zfsvfs->z_znodes_lock);
2246	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2247	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2248		(void) zfs_rezget(zp);
2249	}
2250	mutex_exit(&zfsvfs->z_znodes_lock);
2251
2252bail:
2253	/* release the VOPs */
2254	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2255	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2256
2257	if (err) {
2258		/*
2259		 * Since we couldn't setup the sa framework, try to force
2260		 * unmount this file system.
2261		 */
2262		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2263			vfs_ref(zfsvfs->z_vfs);
2264			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2265		}
2266	}
2267	return (err);
2268}
2269
2270static void
2271zfs_freevfs(vfs_t *vfsp)
2272{
2273	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2274
2275#ifdef illumos
2276	/*
2277	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2278	 * from zfs_mount().  Release it here.  If we came through
2279	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2280	 * skip the VFS_RELE for rootvfs.
2281	 */
2282	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2283		VFS_RELE(zfsvfs->z_parent->z_vfs);
2284#endif
2285
2286	zfsvfs_free(zfsvfs);
2287
2288	atomic_dec_32(&zfs_active_fs_count);
2289}
2290
2291#ifdef __i386__
2292static int desiredvnodes_backup;
2293#endif
2294
2295static void
2296zfs_vnodes_adjust(void)
2297{
2298#ifdef __i386__
2299	int newdesiredvnodes;
2300
2301	desiredvnodes_backup = desiredvnodes;
2302
2303	/*
2304	 * We calculate newdesiredvnodes the same way it is done in
2305	 * vntblinit(). If it is equal to desiredvnodes, it means that
2306	 * it wasn't tuned by the administrator and we can tune it down.
2307	 */
2308	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2309	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2310	    sizeof(struct vnode))));
2311	if (newdesiredvnodes == desiredvnodes)
2312		desiredvnodes = (3 * newdesiredvnodes) / 4;
2313#endif
2314}
2315
2316static void
2317zfs_vnodes_adjust_back(void)
2318{
2319
2320#ifdef __i386__
2321	desiredvnodes = desiredvnodes_backup;
2322#endif
2323}
2324
2325void
2326zfs_init(void)
2327{
2328
2329	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2330
2331	/*
2332	 * Initialize .zfs directory structures
2333	 */
2334	zfsctl_init();
2335
2336	/*
2337	 * Initialize znode cache, vnode ops, etc...
2338	 */
2339	zfs_znode_init();
2340
2341	/*
2342	 * Reduce number of vnodes. Originally number of vnodes is calculated
2343	 * with UFS inode in mind. We reduce it here, because it's too big for
2344	 * ZFS/i386.
2345	 */
2346	zfs_vnodes_adjust();
2347
2348	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2349}
2350
2351void
2352zfs_fini(void)
2353{
2354	zfsctl_fini();
2355	zfs_znode_fini();
2356	zfs_vnodes_adjust_back();
2357}
2358
2359int
2360zfs_busy(void)
2361{
2362	return (zfs_active_fs_count != 0);
2363}
2364
2365int
2366zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2367{
2368	int error;
2369	objset_t *os = zfsvfs->z_os;
2370	dmu_tx_t *tx;
2371
2372	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2373		return (SET_ERROR(EINVAL));
2374
2375	if (newvers < zfsvfs->z_version)
2376		return (SET_ERROR(EINVAL));
2377
2378	if (zfs_spa_version_map(newvers) >
2379	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2380		return (SET_ERROR(ENOTSUP));
2381
2382	tx = dmu_tx_create(os);
2383	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2384	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2385		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2386		    ZFS_SA_ATTRS);
2387		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2388	}
2389	error = dmu_tx_assign(tx, TXG_WAIT);
2390	if (error) {
2391		dmu_tx_abort(tx);
2392		return (error);
2393	}
2394
2395	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2396	    8, 1, &newvers, tx);
2397
2398	if (error) {
2399		dmu_tx_commit(tx);
2400		return (error);
2401	}
2402
2403	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2404		uint64_t sa_obj;
2405
2406		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2407		    SPA_VERSION_SA);
2408		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2409		    DMU_OT_NONE, 0, tx);
2410
2411		error = zap_add(os, MASTER_NODE_OBJ,
2412		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2413		ASSERT0(error);
2414
2415		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2416		sa_register_update_callback(os, zfs_sa_upgrade);
2417	}
2418
2419	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2420	    "from %llu to %llu", zfsvfs->z_version, newvers);
2421
2422	dmu_tx_commit(tx);
2423
2424	zfsvfs->z_version = newvers;
2425
2426	zfs_set_fuid_feature(zfsvfs);
2427
2428	return (0);
2429}
2430
2431/*
2432 * Read a property stored within the master node.
2433 */
2434int
2435zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2436{
2437	const char *pname;
2438	int error = ENOENT;
2439
2440	/*
2441	 * Look up the file system's value for the property.  For the
2442	 * version property, we look up a slightly different string.
2443	 */
2444	if (prop == ZFS_PROP_VERSION)
2445		pname = ZPL_VERSION_STR;
2446	else
2447		pname = zfs_prop_to_name(prop);
2448
2449	if (os != NULL)
2450		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2451
2452	if (error == ENOENT) {
2453		/* No value set, use the default value */
2454		switch (prop) {
2455		case ZFS_PROP_VERSION:
2456			*value = ZPL_VERSION;
2457			break;
2458		case ZFS_PROP_NORMALIZE:
2459		case ZFS_PROP_UTF8ONLY:
2460			*value = 0;
2461			break;
2462		case ZFS_PROP_CASE:
2463			*value = ZFS_CASE_SENSITIVE;
2464			break;
2465		default:
2466			return (error);
2467		}
2468		error = 0;
2469	}
2470	return (error);
2471}
2472
2473#ifdef _KERNEL
2474void
2475zfsvfs_update_fromname(const char *oldname, const char *newname)
2476{
2477	char tmpbuf[MAXPATHLEN];
2478	struct mount *mp;
2479	char *fromname;
2480	size_t oldlen;
2481
2482	oldlen = strlen(oldname);
2483
2484	mtx_lock(&mountlist_mtx);
2485	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2486		fromname = mp->mnt_stat.f_mntfromname;
2487		if (strcmp(fromname, oldname) == 0) {
2488			(void)strlcpy(fromname, newname,
2489			    sizeof(mp->mnt_stat.f_mntfromname));
2490			continue;
2491		}
2492		if (strncmp(fromname, oldname, oldlen) == 0 &&
2493		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2494			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2495			    newname, fromname + oldlen);
2496			(void)strlcpy(fromname, tmpbuf,
2497			    sizeof(mp->mnt_stat.f_mntfromname));
2498			continue;
2499		}
2500	}
2501	mtx_unlock(&mountlist_mtx);
2502}
2503#endif
2504