zfs_vfsops.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29/* Portions Copyright 2010 Robert Milkowski */
30
31#include <sys/types.h>
32#include <sys/param.h>
33#include <sys/systm.h>
34#include <sys/kernel.h>
35#include <sys/sysmacros.h>
36#include <sys/kmem.h>
37#include <sys/acl.h>
38#include <sys/vnode.h>
39#include <sys/vfs.h>
40#include <sys/mntent.h>
41#include <sys/mount.h>
42#include <sys/cmn_err.h>
43#include <sys/zfs_znode.h>
44#include <sys/zfs_dir.h>
45#include <sys/zil.h>
46#include <sys/fs/zfs.h>
47#include <sys/dmu.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_dataset.h>
50#include <sys/dsl_deleg.h>
51#include <sys/spa.h>
52#include <sys/zap.h>
53#include <sys/sa.h>
54#include <sys/sa_impl.h>
55#include <sys/varargs.h>
56#include <sys/policy.h>
57#include <sys/atomic.h>
58#include <sys/zfs_ioctl.h>
59#include <sys/zfs_ctldir.h>
60#include <sys/zfs_fuid.h>
61#include <sys/sunddi.h>
62#include <sys/dnlc.h>
63#include <sys/dmu_objset.h>
64#include <sys/spa_boot.h>
65#include <sys/jail.h>
66#include "zfs_comutil.h"
67
68struct mtx zfs_debug_mtx;
69MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
70
71SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
72
73int zfs_super_owner;
74SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
75    "File system owner can perform privileged operation on his file systems");
76
77int zfs_debug_level;
78TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
79SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
80    "Debug level");
81
82SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
83static int zfs_version_acl = ZFS_ACL_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
85    "ZFS_ACL_VERSION");
86static int zfs_version_spa = SPA_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
88    "SPA_VERSION");
89static int zfs_version_zpl = ZPL_VERSION;
90SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
91    "ZPL_VERSION");
92
93static int zfs_mount(vfs_t *vfsp);
94static int zfs_umount(vfs_t *vfsp, int fflag);
95static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
96static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
97static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
98static int zfs_sync(vfs_t *vfsp, int waitfor);
99static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
100    struct ucred **credanonp, int *numsecflavors, int **secflavors);
101static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
102static void zfs_objset_close(zfsvfs_t *zfsvfs);
103static void zfs_freevfs(vfs_t *vfsp);
104
105static struct vfsops zfs_vfsops = {
106	.vfs_mount =		zfs_mount,
107	.vfs_unmount =		zfs_umount,
108	.vfs_root =		zfs_root,
109	.vfs_statfs =		zfs_statfs,
110	.vfs_vget =		zfs_vget,
111	.vfs_sync =		zfs_sync,
112	.vfs_checkexp =		zfs_checkexp,
113	.vfs_fhtovp =		zfs_fhtovp,
114};
115
116VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
117
118/*
119 * We need to keep a count of active fs's.
120 * This is necessary to prevent our module
121 * from being unloaded after a umount -f
122 */
123static uint32_t	zfs_active_fs_count = 0;
124
125/*ARGSUSED*/
126static int
127zfs_sync(vfs_t *vfsp, int waitfor)
128{
129
130	/*
131	 * Data integrity is job one.  We don't want a compromised kernel
132	 * writing to the storage pool, so we never sync during panic.
133	 */
134	if (panicstr)
135		return (0);
136
137	/*
138	 * Ignore the system syncher.  ZFS already commits async data
139	 * at zfs_txg_timeout intervals.
140	 */
141	if (waitfor == MNT_LAZY)
142		return (0);
143
144	if (vfsp != NULL) {
145		/*
146		 * Sync a specific filesystem.
147		 */
148		zfsvfs_t *zfsvfs = vfsp->vfs_data;
149		dsl_pool_t *dp;
150		int error;
151
152		error = vfs_stdsync(vfsp, waitfor);
153		if (error != 0)
154			return (error);
155
156		ZFS_ENTER(zfsvfs);
157		dp = dmu_objset_pool(zfsvfs->z_os);
158
159		/*
160		 * If the system is shutting down, then skip any
161		 * filesystems which may exist on a suspended pool.
162		 */
163		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
164			ZFS_EXIT(zfsvfs);
165			return (0);
166		}
167
168		if (zfsvfs->z_log != NULL)
169			zil_commit(zfsvfs->z_log, 0);
170
171		ZFS_EXIT(zfsvfs);
172	} else {
173		/*
174		 * Sync all ZFS filesystems.  This is what happens when you
175		 * run sync(1M).  Unlike other filesystems, ZFS honors the
176		 * request by waiting for all pools to commit all dirty data.
177		 */
178		spa_sync_allpools();
179	}
180
181	return (0);
182}
183
184#ifndef __FreeBSD_kernel__
185static int
186zfs_create_unique_device(dev_t *dev)
187{
188	major_t new_major;
189
190	do {
191		ASSERT3U(zfs_minor, <=, MAXMIN32);
192		minor_t start = zfs_minor;
193		do {
194			mutex_enter(&zfs_dev_mtx);
195			if (zfs_minor >= MAXMIN32) {
196				/*
197				 * If we're still using the real major
198				 * keep out of /dev/zfs and /dev/zvol minor
199				 * number space.  If we're using a getudev()'ed
200				 * major number, we can use all of its minors.
201				 */
202				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203					zfs_minor = ZFS_MIN_MINOR;
204				else
205					zfs_minor = 0;
206			} else {
207				zfs_minor++;
208			}
209			*dev = makedevice(zfs_major, zfs_minor);
210			mutex_exit(&zfs_dev_mtx);
211		} while (vfs_devismounted(*dev) && zfs_minor != start);
212		if (zfs_minor == start) {
213			/*
214			 * We are using all ~262,000 minor numbers for the
215			 * current major number.  Create a new major number.
216			 */
217			if ((new_major = getudev()) == (major_t)-1) {
218				cmn_err(CE_WARN,
219				    "zfs_mount: Can't get unique major "
220				    "device number.");
221				return (-1);
222			}
223			mutex_enter(&zfs_dev_mtx);
224			zfs_major = new_major;
225			zfs_minor = 0;
226
227			mutex_exit(&zfs_dev_mtx);
228		} else {
229			break;
230		}
231		/* CONSTANTCONDITION */
232	} while (1);
233
234	return (0);
235}
236#endif	/* !__FreeBSD_kernel__ */
237
238static void
239atime_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == TRUE) {
244		zfsvfs->z_atime = TRUE;
245		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
246		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
247		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
248	} else {
249		zfsvfs->z_atime = FALSE;
250		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
251		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
252		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
253	}
254}
255
256static void
257xattr_changed_cb(void *arg, uint64_t newval)
258{
259	zfsvfs_t *zfsvfs = arg;
260
261	if (newval == TRUE) {
262		/* XXX locking on vfs_flag? */
263#ifdef TODO
264		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
265#endif
266		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
267		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
268	} else {
269		/* XXX locking on vfs_flag? */
270#ifdef TODO
271		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
272#endif
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
275	}
276}
277
278static void
279blksz_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
283	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
284	ASSERT(ISP2(newval));
285
286	zfsvfs->z_max_blksz = newval;
287	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
288}
289
290static void
291readonly_changed_cb(void *arg, uint64_t newval)
292{
293	zfsvfs_t *zfsvfs = arg;
294
295	if (newval) {
296		/* XXX locking on vfs_flag? */
297		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
298		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
299		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
300	} else {
301		/* XXX locking on vfs_flag? */
302		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
303		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
304		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
305	}
306}
307
308static void
309setuid_changed_cb(void *arg, uint64_t newval)
310{
311	zfsvfs_t *zfsvfs = arg;
312
313	if (newval == FALSE) {
314		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
315		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
316		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
317	} else {
318		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
319		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
320		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
321	}
322}
323
324static void
325exec_changed_cb(void *arg, uint64_t newval)
326{
327	zfsvfs_t *zfsvfs = arg;
328
329	if (newval == FALSE) {
330		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
331		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
332		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
333	} else {
334		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
335		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
336		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
337	}
338}
339
340/*
341 * The nbmand mount option can be changed at mount time.
342 * We can't allow it to be toggled on live file systems or incorrect
343 * behavior may be seen from cifs clients
344 *
345 * This property isn't registered via dsl_prop_register(), but this callback
346 * will be called when a file system is first mounted
347 */
348static void
349nbmand_changed_cb(void *arg, uint64_t newval)
350{
351	zfsvfs_t *zfsvfs = arg;
352	if (newval == FALSE) {
353		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
354		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
355	} else {
356		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
357		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
358	}
359}
360
361static void
362snapdir_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_show_ctldir = newval;
367}
368
369static void
370vscan_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_vscan = newval;
375}
376
377static void
378acl_mode_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_mode = newval;
383}
384
385static void
386acl_inherit_changed_cb(void *arg, uint64_t newval)
387{
388	zfsvfs_t *zfsvfs = arg;
389
390	zfsvfs->z_acl_inherit = newval;
391}
392
393static int
394zfs_register_callbacks(vfs_t *vfsp)
395{
396	struct dsl_dataset *ds = NULL;
397	objset_t *os = NULL;
398	zfsvfs_t *zfsvfs = NULL;
399	uint64_t nbmand;
400	boolean_t readonly = B_FALSE;
401	boolean_t do_readonly = B_FALSE;
402	boolean_t setuid = B_FALSE;
403	boolean_t do_setuid = B_FALSE;
404	boolean_t exec = B_FALSE;
405	boolean_t do_exec = B_FALSE;
406#ifdef illumos
407	boolean_t devices = B_FALSE;
408	boolean_t do_devices = B_FALSE;
409#endif
410	boolean_t xattr = B_FALSE;
411	boolean_t do_xattr = B_FALSE;
412	boolean_t atime = B_FALSE;
413	boolean_t do_atime = B_FALSE;
414	int error = 0;
415
416	ASSERT(vfsp);
417	zfsvfs = vfsp->vfs_data;
418	ASSERT(zfsvfs);
419	os = zfsvfs->z_os;
420
421	/*
422	 * This function can be called for a snapshot when we update snapshot's
423	 * mount point, which isn't really supported.
424	 */
425	if (dmu_objset_is_snapshot(os))
426		return (EOPNOTSUPP);
427
428	/*
429	 * The act of registering our callbacks will destroy any mount
430	 * options we may have.  In order to enable temporary overrides
431	 * of mount options, we stash away the current values and
432	 * restore them after we register the callbacks.
433	 */
434	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
435	    !spa_writeable(dmu_objset_spa(os))) {
436		readonly = B_TRUE;
437		do_readonly = B_TRUE;
438	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
439		readonly = B_FALSE;
440		do_readonly = B_TRUE;
441	}
442	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
443		setuid = B_FALSE;
444		do_setuid = B_TRUE;
445	} else {
446		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
447			setuid = B_FALSE;
448			do_setuid = B_TRUE;
449		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
450			setuid = B_TRUE;
451			do_setuid = B_TRUE;
452		}
453	}
454	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
455		exec = B_FALSE;
456		do_exec = B_TRUE;
457	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
458		exec = B_TRUE;
459		do_exec = B_TRUE;
460	}
461	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
462		xattr = B_FALSE;
463		do_xattr = B_TRUE;
464	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
465		xattr = B_TRUE;
466		do_xattr = B_TRUE;
467	}
468	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
469		atime = B_FALSE;
470		do_atime = B_TRUE;
471	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
472		atime = B_TRUE;
473		do_atime = B_TRUE;
474	}
475
476	/*
477	 * We need to enter pool configuration here, so that we can use
478	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
479	 * dsl_prop_get_integer() can not be used, because it has to acquire
480	 * spa_namespace_lock and we can not do that because we already hold
481	 * z_teardown_lock.  The problem is that spa_config_sync() is called
482	 * with spa_namespace_lock held and the function calls ZFS vnode
483	 * operations to write the cache file and thus z_teardown_lock is
484	 * acquired after spa_namespace_lock.
485	 */
486	ds = dmu_objset_ds(os);
487	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
488
489	/*
490	 * nbmand is a special property.  It can only be changed at
491	 * mount time.
492	 *
493	 * This is weird, but it is documented to only be changeable
494	 * at mount time.
495	 */
496	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
497		nbmand = B_FALSE;
498	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
499		nbmand = B_TRUE;
500	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
501		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
502		return (error);
503	}
504
505	/*
506	 * Register property callbacks.
507	 *
508	 * It would probably be fine to just check for i/o error from
509	 * the first prop_register(), but I guess I like to go
510	 * overboard...
511	 */
512	error = dsl_prop_register(ds,
513	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
520#ifdef illumos
521	error = error ? error : dsl_prop_register(ds,
522	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
523#endif
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
526	error = error ? error : dsl_prop_register(ds,
527	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
528	error = error ? error : dsl_prop_register(ds,
529	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
530	error = error ? error : dsl_prop_register(ds,
531	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
532	error = error ? error : dsl_prop_register(ds,
533	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
534	    zfsvfs);
535	error = error ? error : dsl_prop_register(ds,
536	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
537	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
538	if (error)
539		goto unregister;
540
541	/*
542	 * Invoke our callbacks to restore temporary mount options.
543	 */
544	if (do_readonly)
545		readonly_changed_cb(zfsvfs, readonly);
546	if (do_setuid)
547		setuid_changed_cb(zfsvfs, setuid);
548	if (do_exec)
549		exec_changed_cb(zfsvfs, exec);
550	if (do_xattr)
551		xattr_changed_cb(zfsvfs, xattr);
552	if (do_atime)
553		atime_changed_cb(zfsvfs, atime);
554
555	nbmand_changed_cb(zfsvfs, nbmand);
556
557	return (0);
558
559unregister:
560	dsl_prop_unregister_all(ds, zfsvfs);
561	return (error);
562}
563
564static int
565zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
566    uint64_t *userp, uint64_t *groupp)
567{
568	/*
569	 * Is it a valid type of object to track?
570	 */
571	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
572		return (SET_ERROR(ENOENT));
573
574	/*
575	 * If we have a NULL data pointer
576	 * then assume the id's aren't changing and
577	 * return EEXIST to the dmu to let it know to
578	 * use the same ids
579	 */
580	if (data == NULL)
581		return (SET_ERROR(EEXIST));
582
583	if (bonustype == DMU_OT_ZNODE) {
584		znode_phys_t *znp = data;
585		*userp = znp->zp_uid;
586		*groupp = znp->zp_gid;
587	} else {
588		int hdrsize;
589		sa_hdr_phys_t *sap = data;
590		sa_hdr_phys_t sa = *sap;
591		boolean_t swap = B_FALSE;
592
593		ASSERT(bonustype == DMU_OT_SA);
594
595		if (sa.sa_magic == 0) {
596			/*
597			 * This should only happen for newly created
598			 * files that haven't had the znode data filled
599			 * in yet.
600			 */
601			*userp = 0;
602			*groupp = 0;
603			return (0);
604		}
605		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
606			sa.sa_magic = SA_MAGIC;
607			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
608			swap = B_TRUE;
609		} else {
610			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
611		}
612
613		hdrsize = sa_hdrsize(&sa);
614		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
615		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
616		    SA_UID_OFFSET));
617		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
618		    SA_GID_OFFSET));
619		if (swap) {
620			*userp = BSWAP_64(*userp);
621			*groupp = BSWAP_64(*groupp);
622		}
623	}
624	return (0);
625}
626
627static void
628fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
629    char *domainbuf, int buflen, uid_t *ridp)
630{
631	uint64_t fuid;
632	const char *domain;
633
634	fuid = strtonum(fuidstr, NULL);
635
636	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
637	if (domain)
638		(void) strlcpy(domainbuf, domain, buflen);
639	else
640		domainbuf[0] = '\0';
641	*ridp = FUID_RID(fuid);
642}
643
644static uint64_t
645zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
646{
647	switch (type) {
648	case ZFS_PROP_USERUSED:
649		return (DMU_USERUSED_OBJECT);
650	case ZFS_PROP_GROUPUSED:
651		return (DMU_GROUPUSED_OBJECT);
652	case ZFS_PROP_USERQUOTA:
653		return (zfsvfs->z_userquota_obj);
654	case ZFS_PROP_GROUPQUOTA:
655		return (zfsvfs->z_groupquota_obj);
656	}
657	return (0);
658}
659
660int
661zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
662    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
663{
664	int error;
665	zap_cursor_t zc;
666	zap_attribute_t za;
667	zfs_useracct_t *buf = vbuf;
668	uint64_t obj;
669
670	if (!dmu_objset_userspace_present(zfsvfs->z_os))
671		return (SET_ERROR(ENOTSUP));
672
673	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
674	if (obj == 0) {
675		*bufsizep = 0;
676		return (0);
677	}
678
679	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
680	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
681	    zap_cursor_advance(&zc)) {
682		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
683		    *bufsizep)
684			break;
685
686		fuidstr_to_sid(zfsvfs, za.za_name,
687		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
688
689		buf->zu_space = za.za_first_integer;
690		buf++;
691	}
692	if (error == ENOENT)
693		error = 0;
694
695	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
696	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
697	*cookiep = zap_cursor_serialize(&zc);
698	zap_cursor_fini(&zc);
699	return (error);
700}
701
702/*
703 * buf must be big enough (eg, 32 bytes)
704 */
705static int
706id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
707    char *buf, boolean_t addok)
708{
709	uint64_t fuid;
710	int domainid = 0;
711
712	if (domain && domain[0]) {
713		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
714		if (domainid == -1)
715			return (SET_ERROR(ENOENT));
716	}
717	fuid = FUID_ENCODE(domainid, rid);
718	(void) sprintf(buf, "%llx", (longlong_t)fuid);
719	return (0);
720}
721
722int
723zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
724    const char *domain, uint64_t rid, uint64_t *valp)
725{
726	char buf[32];
727	int err;
728	uint64_t obj;
729
730	*valp = 0;
731
732	if (!dmu_objset_userspace_present(zfsvfs->z_os))
733		return (SET_ERROR(ENOTSUP));
734
735	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
736	if (obj == 0)
737		return (0);
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
740	if (err)
741		return (err);
742
743	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
744	if (err == ENOENT)
745		err = 0;
746	return (err);
747}
748
749int
750zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
751    const char *domain, uint64_t rid, uint64_t quota)
752{
753	char buf[32];
754	int err;
755	dmu_tx_t *tx;
756	uint64_t *objp;
757	boolean_t fuid_dirtied;
758
759	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
760		return (SET_ERROR(EINVAL));
761
762	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
763		return (SET_ERROR(ENOTSUP));
764
765	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
766	    &zfsvfs->z_groupquota_obj;
767
768	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
769	if (err)
770		return (err);
771	fuid_dirtied = zfsvfs->z_fuid_dirty;
772
773	tx = dmu_tx_create(zfsvfs->z_os);
774	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
775	if (*objp == 0) {
776		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
777		    zfs_userquota_prop_prefixes[type]);
778	}
779	if (fuid_dirtied)
780		zfs_fuid_txhold(zfsvfs, tx);
781	err = dmu_tx_assign(tx, TXG_WAIT);
782	if (err) {
783		dmu_tx_abort(tx);
784		return (err);
785	}
786
787	mutex_enter(&zfsvfs->z_lock);
788	if (*objp == 0) {
789		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
790		    DMU_OT_NONE, 0, tx);
791		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
792		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
793	}
794	mutex_exit(&zfsvfs->z_lock);
795
796	if (quota == 0) {
797		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
798		if (err == ENOENT)
799			err = 0;
800	} else {
801		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
802	}
803	ASSERT(err == 0);
804	if (fuid_dirtied)
805		zfs_fuid_sync(zfsvfs, tx);
806	dmu_tx_commit(tx);
807	return (err);
808}
809
810boolean_t
811zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
812{
813	char buf[32];
814	uint64_t used, quota, usedobj, quotaobj;
815	int err;
816
817	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
818	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
819
820	if (quotaobj == 0 || zfsvfs->z_replay)
821		return (B_FALSE);
822
823	(void) sprintf(buf, "%llx", (longlong_t)fuid);
824	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
825	if (err != 0)
826		return (B_FALSE);
827
828	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
829	if (err != 0)
830		return (B_FALSE);
831	return (used >= quota);
832}
833
834boolean_t
835zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
836{
837	uint64_t fuid;
838	uint64_t quotaobj;
839
840	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
841
842	fuid = isgroup ? zp->z_gid : zp->z_uid;
843
844	if (quotaobj == 0 || zfsvfs->z_replay)
845		return (B_FALSE);
846
847	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
848}
849
850int
851zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
852{
853	objset_t *os;
854	zfsvfs_t *zfsvfs;
855	uint64_t zval;
856	int i, error;
857	uint64_t sa_obj;
858
859	/*
860	 * XXX: Fix struct statfs so this isn't necessary!
861	 *
862	 * The 'osname' is used as the filesystem's special node, which means
863	 * it must fit in statfs.f_mntfromname, or else it can't be
864	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
865	 * 'zfs unmount' to think it's not mounted when it is.
866	 */
867	if (strlen(osname) >= MNAMELEN)
868		return (SET_ERROR(ENAMETOOLONG));
869
870	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
871
872	/*
873	 * We claim to always be readonly so we can open snapshots;
874	 * other ZPL code will prevent us from writing to snapshots.
875	 */
876	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
877	if (error) {
878		kmem_free(zfsvfs, sizeof (zfsvfs_t));
879		return (error);
880	}
881
882	/*
883	 * Initialize the zfs-specific filesystem structure.
884	 * Should probably make this a kmem cache, shuffle fields,
885	 * and just bzero up to z_hold_mtx[].
886	 */
887	zfsvfs->z_vfs = NULL;
888	zfsvfs->z_parent = zfsvfs;
889	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
890	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
891	zfsvfs->z_os = os;
892
893	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
894	if (error) {
895		goto out;
896	} else if (zfsvfs->z_version >
897	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
898		(void) printf("Can't mount a version %lld file system "
899		    "on a version %lld pool\n. Pool must be upgraded to mount "
900		    "this file system.", (u_longlong_t)zfsvfs->z_version,
901		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
902		error = SET_ERROR(ENOTSUP);
903		goto out;
904	}
905	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
906		goto out;
907	zfsvfs->z_norm = (int)zval;
908
909	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
910		goto out;
911	zfsvfs->z_utf8 = (zval != 0);
912
913	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
914		goto out;
915	zfsvfs->z_case = (uint_t)zval;
916
917	/*
918	 * Fold case on file systems that are always or sometimes case
919	 * insensitive.
920	 */
921	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
922	    zfsvfs->z_case == ZFS_CASE_MIXED)
923		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
924
925	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
926	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
927
928	if (zfsvfs->z_use_sa) {
929		/* should either have both of these objects or none */
930		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
931		    &sa_obj);
932		if (error)
933			goto out;
934	} else {
935		/*
936		 * Pre SA versions file systems should never touch
937		 * either the attribute registration or layout objects.
938		 */
939		sa_obj = 0;
940	}
941
942	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
943	    &zfsvfs->z_attr_table);
944	if (error)
945		goto out;
946
947	if (zfsvfs->z_version >= ZPL_VERSION_SA)
948		sa_register_update_callback(os, zfs_sa_upgrade);
949
950	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
951	    &zfsvfs->z_root);
952	if (error)
953		goto out;
954	ASSERT(zfsvfs->z_root != 0);
955
956	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
957	    &zfsvfs->z_unlinkedobj);
958	if (error)
959		goto out;
960
961	error = zap_lookup(os, MASTER_NODE_OBJ,
962	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
963	    8, 1, &zfsvfs->z_userquota_obj);
964	if (error && error != ENOENT)
965		goto out;
966
967	error = zap_lookup(os, MASTER_NODE_OBJ,
968	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
969	    8, 1, &zfsvfs->z_groupquota_obj);
970	if (error && error != ENOENT)
971		goto out;
972
973	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
974	    &zfsvfs->z_fuid_obj);
975	if (error && error != ENOENT)
976		goto out;
977
978	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
979	    &zfsvfs->z_shares_dir);
980	if (error && error != ENOENT)
981		goto out;
982
983	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
984	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
985	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
986	    offsetof(znode_t, z_link_node));
987	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
988	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
989	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
990	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
991		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
992
993	*zfvp = zfsvfs;
994	return (0);
995
996out:
997	dmu_objset_disown(os, zfsvfs);
998	*zfvp = NULL;
999	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1000	return (error);
1001}
1002
1003static int
1004zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1005{
1006	int error;
1007
1008	error = zfs_register_callbacks(zfsvfs->z_vfs);
1009	if (error)
1010		return (error);
1011
1012	/*
1013	 * Set the objset user_ptr to track its zfsvfs.
1014	 */
1015	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1016	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1017	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1018
1019	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1020
1021	/*
1022	 * If we are not mounting (ie: online recv), then we don't
1023	 * have to worry about replaying the log as we blocked all
1024	 * operations out since we closed the ZIL.
1025	 */
1026	if (mounting) {
1027		boolean_t readonly;
1028
1029		/*
1030		 * During replay we remove the read only flag to
1031		 * allow replays to succeed.
1032		 */
1033		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1034		if (readonly != 0)
1035			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1036		else
1037			zfs_unlinked_drain(zfsvfs);
1038
1039		/*
1040		 * Parse and replay the intent log.
1041		 *
1042		 * Because of ziltest, this must be done after
1043		 * zfs_unlinked_drain().  (Further note: ziltest
1044		 * doesn't use readonly mounts, where
1045		 * zfs_unlinked_drain() isn't called.)  This is because
1046		 * ziltest causes spa_sync() to think it's committed,
1047		 * but actually it is not, so the intent log contains
1048		 * many txg's worth of changes.
1049		 *
1050		 * In particular, if object N is in the unlinked set in
1051		 * the last txg to actually sync, then it could be
1052		 * actually freed in a later txg and then reallocated
1053		 * in a yet later txg.  This would write a "create
1054		 * object N" record to the intent log.  Normally, this
1055		 * would be fine because the spa_sync() would have
1056		 * written out the fact that object N is free, before
1057		 * we could write the "create object N" intent log
1058		 * record.
1059		 *
1060		 * But when we are in ziltest mode, we advance the "open
1061		 * txg" without actually spa_sync()-ing the changes to
1062		 * disk.  So we would see that object N is still
1063		 * allocated and in the unlinked set, and there is an
1064		 * intent log record saying to allocate it.
1065		 */
1066		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1067			if (zil_replay_disable) {
1068				zil_destroy(zfsvfs->z_log, B_FALSE);
1069			} else {
1070				zfsvfs->z_replay = B_TRUE;
1071				zil_replay(zfsvfs->z_os, zfsvfs,
1072				    zfs_replay_vector);
1073				zfsvfs->z_replay = B_FALSE;
1074			}
1075		}
1076		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1077	}
1078
1079	return (0);
1080}
1081
1082extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1083
1084void
1085zfsvfs_free(zfsvfs_t *zfsvfs)
1086{
1087	int i;
1088
1089	/*
1090	 * This is a barrier to prevent the filesystem from going away in
1091	 * zfs_znode_move() until we can safely ensure that the filesystem is
1092	 * not unmounted. We consider the filesystem valid before the barrier
1093	 * and invalid after the barrier.
1094	 */
1095	rw_enter(&zfsvfs_lock, RW_READER);
1096	rw_exit(&zfsvfs_lock);
1097
1098	zfs_fuid_destroy(zfsvfs);
1099
1100	mutex_destroy(&zfsvfs->z_znodes_lock);
1101	mutex_destroy(&zfsvfs->z_lock);
1102	list_destroy(&zfsvfs->z_all_znodes);
1103	rrm_destroy(&zfsvfs->z_teardown_lock);
1104	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1105	rw_destroy(&zfsvfs->z_fuid_lock);
1106	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1107		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1108	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1109}
1110
1111static void
1112zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1113{
1114	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1115	if (zfsvfs->z_vfs) {
1116		if (zfsvfs->z_use_fuids) {
1117			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1118			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1119			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1120			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1121			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1122			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1123		} else {
1124			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1125			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1126			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1127			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1128			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1129			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1130		}
1131	}
1132	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1133}
1134
1135static int
1136zfs_domount(vfs_t *vfsp, char *osname)
1137{
1138	uint64_t recordsize, fsid_guid;
1139	int error = 0;
1140	zfsvfs_t *zfsvfs;
1141	vnode_t *vp;
1142
1143	ASSERT(vfsp);
1144	ASSERT(osname);
1145
1146	error = zfsvfs_create(osname, &zfsvfs);
1147	if (error)
1148		return (error);
1149	zfsvfs->z_vfs = vfsp;
1150
1151#ifdef illumos
1152	/* Initialize the generic filesystem structure. */
1153	vfsp->vfs_bcount = 0;
1154	vfsp->vfs_data = NULL;
1155
1156	if (zfs_create_unique_device(&mount_dev) == -1) {
1157		error = SET_ERROR(ENODEV);
1158		goto out;
1159	}
1160	ASSERT(vfs_devismounted(mount_dev) == 0);
1161#endif
1162
1163	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1164	    NULL))
1165		goto out;
1166	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1167	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1168
1169	vfsp->vfs_data = zfsvfs;
1170	vfsp->mnt_flag |= MNT_LOCAL;
1171	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1172	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1173	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1174
1175	/*
1176	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1177	 * separates our fsid from any other filesystem types, and a
1178	 * 56-bit objset unique ID.  The objset unique ID is unique to
1179	 * all objsets open on this system, provided by unique_create().
1180	 * The 8-bit fs type must be put in the low bits of fsid[1]
1181	 * because that's where other Solaris filesystems put it.
1182	 */
1183	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1184	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1185	vfsp->vfs_fsid.val[0] = fsid_guid;
1186	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1187	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1188
1189	/*
1190	 * Set features for file system.
1191	 */
1192	zfs_set_fuid_feature(zfsvfs);
1193	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1194		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1195		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1196		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1197	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1198		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1199		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1200	}
1201	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1202
1203	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1204		uint64_t pval;
1205
1206		atime_changed_cb(zfsvfs, B_FALSE);
1207		readonly_changed_cb(zfsvfs, B_TRUE);
1208		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1209			goto out;
1210		xattr_changed_cb(zfsvfs, pval);
1211		zfsvfs->z_issnap = B_TRUE;
1212		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1213
1214		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1215		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1216		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1217	} else {
1218		error = zfsvfs_setup(zfsvfs, B_TRUE);
1219	}
1220
1221	vfs_mountedfrom(vfsp, osname);
1222
1223	if (!zfsvfs->z_issnap)
1224		zfsctl_create(zfsvfs);
1225out:
1226	if (error) {
1227		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1228		zfsvfs_free(zfsvfs);
1229	} else {
1230		atomic_inc_32(&zfs_active_fs_count);
1231	}
1232
1233	return (error);
1234}
1235
1236void
1237zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1238{
1239	objset_t *os = zfsvfs->z_os;
1240
1241	if (!dmu_objset_is_snapshot(os))
1242		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1243}
1244
1245#ifdef SECLABEL
1246/*
1247 * Convert a decimal digit string to a uint64_t integer.
1248 */
1249static int
1250str_to_uint64(char *str, uint64_t *objnum)
1251{
1252	uint64_t num = 0;
1253
1254	while (*str) {
1255		if (*str < '0' || *str > '9')
1256			return (SET_ERROR(EINVAL));
1257
1258		num = num*10 + *str++ - '0';
1259	}
1260
1261	*objnum = num;
1262	return (0);
1263}
1264
1265/*
1266 * The boot path passed from the boot loader is in the form of
1267 * "rootpool-name/root-filesystem-object-number'. Convert this
1268 * string to a dataset name: "rootpool-name/root-filesystem-name".
1269 */
1270static int
1271zfs_parse_bootfs(char *bpath, char *outpath)
1272{
1273	char *slashp;
1274	uint64_t objnum;
1275	int error;
1276
1277	if (*bpath == 0 || *bpath == '/')
1278		return (SET_ERROR(EINVAL));
1279
1280	(void) strcpy(outpath, bpath);
1281
1282	slashp = strchr(bpath, '/');
1283
1284	/* if no '/', just return the pool name */
1285	if (slashp == NULL) {
1286		return (0);
1287	}
1288
1289	/* if not a number, just return the root dataset name */
1290	if (str_to_uint64(slashp+1, &objnum)) {
1291		return (0);
1292	}
1293
1294	*slashp = '\0';
1295	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1296	*slashp = '/';
1297
1298	return (error);
1299}
1300
1301/*
1302 * Check that the hex label string is appropriate for the dataset being
1303 * mounted into the global_zone proper.
1304 *
1305 * Return an error if the hex label string is not default or
1306 * admin_low/admin_high.  For admin_low labels, the corresponding
1307 * dataset must be readonly.
1308 */
1309int
1310zfs_check_global_label(const char *dsname, const char *hexsl)
1311{
1312	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1313		return (0);
1314	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1315		return (0);
1316	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1317		/* must be readonly */
1318		uint64_t rdonly;
1319
1320		if (dsl_prop_get_integer(dsname,
1321		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1322			return (SET_ERROR(EACCES));
1323		return (rdonly ? 0 : EACCES);
1324	}
1325	return (SET_ERROR(EACCES));
1326}
1327
1328/*
1329 * Determine whether the mount is allowed according to MAC check.
1330 * by comparing (where appropriate) label of the dataset against
1331 * the label of the zone being mounted into.  If the dataset has
1332 * no label, create one.
1333 *
1334 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1335 */
1336static int
1337zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1338{
1339	int		error, retv;
1340	zone_t		*mntzone = NULL;
1341	ts_label_t	*mnt_tsl;
1342	bslabel_t	*mnt_sl;
1343	bslabel_t	ds_sl;
1344	char		ds_hexsl[MAXNAMELEN];
1345
1346	retv = EACCES;				/* assume the worst */
1347
1348	/*
1349	 * Start by getting the dataset label if it exists.
1350	 */
1351	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1352	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1353	if (error)
1354		return (SET_ERROR(EACCES));
1355
1356	/*
1357	 * If labeling is NOT enabled, then disallow the mount of datasets
1358	 * which have a non-default label already.  No other label checks
1359	 * are needed.
1360	 */
1361	if (!is_system_labeled()) {
1362		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1363			return (0);
1364		return (SET_ERROR(EACCES));
1365	}
1366
1367	/*
1368	 * Get the label of the mountpoint.  If mounting into the global
1369	 * zone (i.e. mountpoint is not within an active zone and the
1370	 * zoned property is off), the label must be default or
1371	 * admin_low/admin_high only; no other checks are needed.
1372	 */
1373	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1374	if (mntzone->zone_id == GLOBAL_ZONEID) {
1375		uint64_t zoned;
1376
1377		zone_rele(mntzone);
1378
1379		if (dsl_prop_get_integer(osname,
1380		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1381			return (SET_ERROR(EACCES));
1382		if (!zoned)
1383			return (zfs_check_global_label(osname, ds_hexsl));
1384		else
1385			/*
1386			 * This is the case of a zone dataset being mounted
1387			 * initially, before the zone has been fully created;
1388			 * allow this mount into global zone.
1389			 */
1390			return (0);
1391	}
1392
1393	mnt_tsl = mntzone->zone_slabel;
1394	ASSERT(mnt_tsl != NULL);
1395	label_hold(mnt_tsl);
1396	mnt_sl = label2bslabel(mnt_tsl);
1397
1398	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1399		/*
1400		 * The dataset doesn't have a real label, so fabricate one.
1401		 */
1402		char *str = NULL;
1403
1404		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1405		    dsl_prop_set_string(osname,
1406		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1407		    ZPROP_SRC_LOCAL, str) == 0)
1408			retv = 0;
1409		if (str != NULL)
1410			kmem_free(str, strlen(str) + 1);
1411	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1412		/*
1413		 * Now compare labels to complete the MAC check.  If the
1414		 * labels are equal then allow access.  If the mountpoint
1415		 * label dominates the dataset label, allow readonly access.
1416		 * Otherwise, access is denied.
1417		 */
1418		if (blequal(mnt_sl, &ds_sl))
1419			retv = 0;
1420		else if (bldominates(mnt_sl, &ds_sl)) {
1421			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1422			retv = 0;
1423		}
1424	}
1425
1426	label_rele(mnt_tsl);
1427	zone_rele(mntzone);
1428	return (retv);
1429}
1430#endif	/* SECLABEL */
1431
1432#ifdef OPENSOLARIS_MOUNTROOT
1433static int
1434zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1435{
1436	int error = 0;
1437	static int zfsrootdone = 0;
1438	zfsvfs_t *zfsvfs = NULL;
1439	znode_t *zp = NULL;
1440	vnode_t *vp = NULL;
1441	char *zfs_bootfs;
1442	char *zfs_devid;
1443
1444	ASSERT(vfsp);
1445
1446	/*
1447	 * The filesystem that we mount as root is defined in the
1448	 * boot property "zfs-bootfs" with a format of
1449	 * "poolname/root-dataset-objnum".
1450	 */
1451	if (why == ROOT_INIT) {
1452		if (zfsrootdone++)
1453			return (SET_ERROR(EBUSY));
1454		/*
1455		 * the process of doing a spa_load will require the
1456		 * clock to be set before we could (for example) do
1457		 * something better by looking at the timestamp on
1458		 * an uberblock, so just set it to -1.
1459		 */
1460		clkset(-1);
1461
1462		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1463			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1464			    "bootfs name");
1465			return (SET_ERROR(EINVAL));
1466		}
1467		zfs_devid = spa_get_bootprop("diskdevid");
1468		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1469		if (zfs_devid)
1470			spa_free_bootprop(zfs_devid);
1471		if (error) {
1472			spa_free_bootprop(zfs_bootfs);
1473			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1474			    error);
1475			return (error);
1476		}
1477		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1478			spa_free_bootprop(zfs_bootfs);
1479			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1480			    error);
1481			return (error);
1482		}
1483
1484		spa_free_bootprop(zfs_bootfs);
1485
1486		if (error = vfs_lock(vfsp))
1487			return (error);
1488
1489		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1490			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1491			goto out;
1492		}
1493
1494		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1495		ASSERT(zfsvfs);
1496		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1497			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1498			goto out;
1499		}
1500
1501		vp = ZTOV(zp);
1502		mutex_enter(&vp->v_lock);
1503		vp->v_flag |= VROOT;
1504		mutex_exit(&vp->v_lock);
1505		rootvp = vp;
1506
1507		/*
1508		 * Leave rootvp held.  The root file system is never unmounted.
1509		 */
1510
1511		vfs_add((struct vnode *)0, vfsp,
1512		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1513out:
1514		vfs_unlock(vfsp);
1515		return (error);
1516	} else if (why == ROOT_REMOUNT) {
1517		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1518		vfsp->vfs_flag |= VFS_REMOUNT;
1519
1520		/* refresh mount options */
1521		zfs_unregister_callbacks(vfsp->vfs_data);
1522		return (zfs_register_callbacks(vfsp));
1523
1524	} else if (why == ROOT_UNMOUNT) {
1525		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1526		(void) zfs_sync(vfsp, 0, 0);
1527		return (0);
1528	}
1529
1530	/*
1531	 * if "why" is equal to anything else other than ROOT_INIT,
1532	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1533	 */
1534	return (SET_ERROR(ENOTSUP));
1535}
1536#endif	/* OPENSOLARIS_MOUNTROOT */
1537
1538static int
1539getpoolname(const char *osname, char *poolname)
1540{
1541	char *p;
1542
1543	p = strchr(osname, '/');
1544	if (p == NULL) {
1545		if (strlen(osname) >= MAXNAMELEN)
1546			return (ENAMETOOLONG);
1547		(void) strcpy(poolname, osname);
1548	} else {
1549		if (p - osname >= MAXNAMELEN)
1550			return (ENAMETOOLONG);
1551		(void) strncpy(poolname, osname, p - osname);
1552		poolname[p - osname] = '\0';
1553	}
1554	return (0);
1555}
1556
1557/*ARGSUSED*/
1558static int
1559zfs_mount(vfs_t *vfsp)
1560{
1561	kthread_t	*td = curthread;
1562	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1563	cred_t		*cr = td->td_ucred;
1564	char		*osname;
1565	int		error = 0;
1566	int		canwrite;
1567
1568#ifdef illumos
1569	if (mvp->v_type != VDIR)
1570		return (SET_ERROR(ENOTDIR));
1571
1572	mutex_enter(&mvp->v_lock);
1573	if ((uap->flags & MS_REMOUNT) == 0 &&
1574	    (uap->flags & MS_OVERLAY) == 0 &&
1575	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1576		mutex_exit(&mvp->v_lock);
1577		return (SET_ERROR(EBUSY));
1578	}
1579	mutex_exit(&mvp->v_lock);
1580
1581	/*
1582	 * ZFS does not support passing unparsed data in via MS_DATA.
1583	 * Users should use the MS_OPTIONSTR interface; this means
1584	 * that all option parsing is already done and the options struct
1585	 * can be interrogated.
1586	 */
1587	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1588#else	/* !illumos */
1589	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1590		return (SET_ERROR(EPERM));
1591
1592	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1593		return (SET_ERROR(EINVAL));
1594#endif	/* illumos */
1595
1596	/*
1597	 * If full-owner-access is enabled and delegated administration is
1598	 * turned on, we must set nosuid.
1599	 */
1600	if (zfs_super_owner &&
1601	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1602		secpolicy_fs_mount_clearopts(cr, vfsp);
1603	}
1604
1605	/*
1606	 * Check for mount privilege?
1607	 *
1608	 * If we don't have privilege then see if
1609	 * we have local permission to allow it
1610	 */
1611	error = secpolicy_fs_mount(cr, mvp, vfsp);
1612	if (error) {
1613		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1614			goto out;
1615
1616		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1617			vattr_t		vattr;
1618
1619			/*
1620			 * Make sure user is the owner of the mount point
1621			 * or has sufficient privileges.
1622			 */
1623
1624			vattr.va_mask = AT_UID;
1625
1626			vn_lock(mvp, LK_SHARED | LK_RETRY);
1627			if (VOP_GETATTR(mvp, &vattr, cr)) {
1628				VOP_UNLOCK(mvp, 0);
1629				goto out;
1630			}
1631
1632			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1633			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1634				VOP_UNLOCK(mvp, 0);
1635				goto out;
1636			}
1637			VOP_UNLOCK(mvp, 0);
1638		}
1639
1640		secpolicy_fs_mount_clearopts(cr, vfsp);
1641	}
1642
1643	/*
1644	 * Refuse to mount a filesystem if we are in a local zone and the
1645	 * dataset is not visible.
1646	 */
1647	if (!INGLOBALZONE(curthread) &&
1648	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1649		error = SET_ERROR(EPERM);
1650		goto out;
1651	}
1652
1653#ifdef SECLABEL
1654	error = zfs_mount_label_policy(vfsp, osname);
1655	if (error)
1656		goto out;
1657#endif
1658
1659	vfsp->vfs_flag |= MNT_NFS4ACLS;
1660
1661	/*
1662	 * When doing a remount, we simply refresh our temporary properties
1663	 * according to those options set in the current VFS options.
1664	 */
1665	if (vfsp->vfs_flag & MS_REMOUNT) {
1666		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1667
1668		/*
1669		 * Refresh mount options with z_teardown_lock blocking I/O while
1670		 * the filesystem is in an inconsistent state.
1671		 * The lock also serializes this code with filesystem
1672		 * manipulations between entry to zfs_suspend_fs() and return
1673		 * from zfs_resume_fs().
1674		 */
1675		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1676		zfs_unregister_callbacks(zfsvfs);
1677		error = zfs_register_callbacks(vfsp);
1678		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1679		goto out;
1680	}
1681
1682	/* Initial root mount: try hard to import the requested root pool. */
1683	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1684	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1685		char pname[MAXNAMELEN];
1686
1687		error = getpoolname(osname, pname);
1688		if (error == 0)
1689			error = spa_import_rootpool(pname);
1690		if (error)
1691			goto out;
1692	}
1693	DROP_GIANT();
1694	error = zfs_domount(vfsp, osname);
1695	PICKUP_GIANT();
1696
1697#ifdef illumos
1698	/*
1699	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1700	 * disappear due to a forced unmount.
1701	 */
1702	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1703		VFS_HOLD(mvp->v_vfsp);
1704#endif
1705
1706out:
1707	return (error);
1708}
1709
1710static int
1711zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1712{
1713	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1714	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1715
1716	statp->f_version = STATFS_VERSION;
1717
1718	ZFS_ENTER(zfsvfs);
1719
1720	dmu_objset_space(zfsvfs->z_os,
1721	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1722
1723	/*
1724	 * The underlying storage pool actually uses multiple block sizes.
1725	 * We report the fragsize as the smallest block size we support,
1726	 * and we report our blocksize as the filesystem's maximum blocksize.
1727	 */
1728	statp->f_bsize = SPA_MINBLOCKSIZE;
1729	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1730
1731	/*
1732	 * The following report "total" blocks of various kinds in the
1733	 * file system, but reported in terms of f_frsize - the
1734	 * "fragment" size.
1735	 */
1736
1737	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1738	statp->f_bfree = availbytes / statp->f_bsize;
1739	statp->f_bavail = statp->f_bfree; /* no root reservation */
1740
1741	/*
1742	 * statvfs() should really be called statufs(), because it assumes
1743	 * static metadata.  ZFS doesn't preallocate files, so the best
1744	 * we can do is report the max that could possibly fit in f_files,
1745	 * and that minus the number actually used in f_ffree.
1746	 * For f_ffree, report the smaller of the number of object available
1747	 * and the number of blocks (each object will take at least a block).
1748	 */
1749	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1750	statp->f_files = statp->f_ffree + usedobjs;
1751
1752	/*
1753	 * We're a zfs filesystem.
1754	 */
1755	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1756
1757	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1758	    sizeof(statp->f_mntfromname));
1759	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1760	    sizeof(statp->f_mntonname));
1761
1762	statp->f_namemax = ZFS_MAXNAMELEN;
1763
1764	ZFS_EXIT(zfsvfs);
1765	return (0);
1766}
1767
1768static int
1769zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1770{
1771	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1772	znode_t *rootzp;
1773	int error;
1774
1775	ZFS_ENTER(zfsvfs);
1776
1777	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1778	if (error == 0)
1779		*vpp = ZTOV(rootzp);
1780
1781	ZFS_EXIT(zfsvfs);
1782
1783	if (error == 0) {
1784		error = vn_lock(*vpp, flags);
1785		if (error == 0)
1786			(*vpp)->v_vflag |= VV_ROOT;
1787	}
1788	if (error != 0)
1789		*vpp = NULL;
1790
1791	return (error);
1792}
1793
1794/*
1795 * Teardown the zfsvfs::z_os.
1796 *
1797 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1798 * and 'z_teardown_inactive_lock' held.
1799 */
1800static int
1801zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1802{
1803	znode_t	*zp;
1804
1805	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1806
1807	if (!unmounting) {
1808		/*
1809		 * We purge the parent filesystem's vfsp as the parent
1810		 * filesystem and all of its snapshots have their vnode's
1811		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1812		 * 'z_parent' is self referential for non-snapshots.
1813		 */
1814		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1815#ifdef FREEBSD_NAMECACHE
1816		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1817#endif
1818	}
1819
1820	/*
1821	 * Close the zil. NB: Can't close the zil while zfs_inactive
1822	 * threads are blocked as zil_close can call zfs_inactive.
1823	 */
1824	if (zfsvfs->z_log) {
1825		zil_close(zfsvfs->z_log);
1826		zfsvfs->z_log = NULL;
1827	}
1828
1829	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1830
1831	/*
1832	 * If we are not unmounting (ie: online recv) and someone already
1833	 * unmounted this file system while we were doing the switcheroo,
1834	 * or a reopen of z_os failed then just bail out now.
1835	 */
1836	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1837		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1838		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1839		return (SET_ERROR(EIO));
1840	}
1841
1842	/*
1843	 * At this point there are no vops active, and any new vops will
1844	 * fail with EIO since we have z_teardown_lock for writer (only
1845	 * relavent for forced unmount).
1846	 *
1847	 * Release all holds on dbufs.
1848	 */
1849	mutex_enter(&zfsvfs->z_znodes_lock);
1850	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1851	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1852		if (zp->z_sa_hdl) {
1853			ASSERT(ZTOV(zp)->v_count >= 0);
1854			zfs_znode_dmu_fini(zp);
1855		}
1856	mutex_exit(&zfsvfs->z_znodes_lock);
1857
1858	/*
1859	 * If we are unmounting, set the unmounted flag and let new vops
1860	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1861	 * other vops will fail with EIO.
1862	 */
1863	if (unmounting) {
1864		zfsvfs->z_unmounted = B_TRUE;
1865		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1866		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1867	}
1868
1869	/*
1870	 * z_os will be NULL if there was an error in attempting to reopen
1871	 * zfsvfs, so just return as the properties had already been
1872	 * unregistered and cached data had been evicted before.
1873	 */
1874	if (zfsvfs->z_os == NULL)
1875		return (0);
1876
1877	/*
1878	 * Unregister properties.
1879	 */
1880	zfs_unregister_callbacks(zfsvfs);
1881
1882	/*
1883	 * Evict cached data
1884	 */
1885	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1886	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1887		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1888	dmu_objset_evict_dbufs(zfsvfs->z_os);
1889
1890	return (0);
1891}
1892
1893/*ARGSUSED*/
1894static int
1895zfs_umount(vfs_t *vfsp, int fflag)
1896{
1897	kthread_t *td = curthread;
1898	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1899	objset_t *os;
1900	cred_t *cr = td->td_ucred;
1901	int ret;
1902
1903	ret = secpolicy_fs_unmount(cr, vfsp);
1904	if (ret) {
1905		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1906		    ZFS_DELEG_PERM_MOUNT, cr))
1907			return (ret);
1908	}
1909
1910	/*
1911	 * We purge the parent filesystem's vfsp as the parent filesystem
1912	 * and all of its snapshots have their vnode's v_vfsp set to the
1913	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1914	 * referential for non-snapshots.
1915	 */
1916	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1917
1918	/*
1919	 * Unmount any snapshots mounted under .zfs before unmounting the
1920	 * dataset itself.
1921	 */
1922	if (zfsvfs->z_ctldir != NULL) {
1923		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1924			return (ret);
1925		ret = vflush(vfsp, 0, 0, td);
1926		ASSERT(ret == EBUSY);
1927		if (!(fflag & MS_FORCE)) {
1928			if (zfsvfs->z_ctldir->v_count > 1)
1929				return (EBUSY);
1930			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1931		}
1932		zfsctl_destroy(zfsvfs);
1933		ASSERT(zfsvfs->z_ctldir == NULL);
1934	}
1935
1936	if (fflag & MS_FORCE) {
1937		/*
1938		 * Mark file system as unmounted before calling
1939		 * vflush(FORCECLOSE). This way we ensure no future vnops
1940		 * will be called and risk operating on DOOMED vnodes.
1941		 */
1942		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1943		zfsvfs->z_unmounted = B_TRUE;
1944		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1945	}
1946
1947	/*
1948	 * Flush all the files.
1949	 */
1950	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1951	if (ret != 0) {
1952		if (!zfsvfs->z_issnap) {
1953			zfsctl_create(zfsvfs);
1954			ASSERT(zfsvfs->z_ctldir != NULL);
1955		}
1956		return (ret);
1957	}
1958
1959#ifdef illumos
1960	if (!(fflag & MS_FORCE)) {
1961		/*
1962		 * Check the number of active vnodes in the file system.
1963		 * Our count is maintained in the vfs structure, but the
1964		 * number is off by 1 to indicate a hold on the vfs
1965		 * structure itself.
1966		 *
1967		 * The '.zfs' directory maintains a reference of its
1968		 * own, and any active references underneath are
1969		 * reflected in the vnode count.
1970		 */
1971		if (zfsvfs->z_ctldir == NULL) {
1972			if (vfsp->vfs_count > 1)
1973				return (SET_ERROR(EBUSY));
1974		} else {
1975			if (vfsp->vfs_count > 2 ||
1976			    zfsvfs->z_ctldir->v_count > 1)
1977				return (SET_ERROR(EBUSY));
1978		}
1979	}
1980#endif
1981
1982	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1983	os = zfsvfs->z_os;
1984
1985	/*
1986	 * z_os will be NULL if there was an error in
1987	 * attempting to reopen zfsvfs.
1988	 */
1989	if (os != NULL) {
1990		/*
1991		 * Unset the objset user_ptr.
1992		 */
1993		mutex_enter(&os->os_user_ptr_lock);
1994		dmu_objset_set_user(os, NULL);
1995		mutex_exit(&os->os_user_ptr_lock);
1996
1997		/*
1998		 * Finally release the objset
1999		 */
2000		dmu_objset_disown(os, zfsvfs);
2001	}
2002
2003	/*
2004	 * We can now safely destroy the '.zfs' directory node.
2005	 */
2006	if (zfsvfs->z_ctldir != NULL)
2007		zfsctl_destroy(zfsvfs);
2008	if (zfsvfs->z_issnap) {
2009		vnode_t *svp = vfsp->mnt_vnodecovered;
2010
2011		if (svp->v_count >= 2)
2012			VN_RELE(svp);
2013	}
2014	zfs_freevfs(vfsp);
2015
2016	return (0);
2017}
2018
2019static int
2020zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2021{
2022	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2023	znode_t		*zp;
2024	int 		err;
2025
2026	/*
2027	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2028	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2029	 * This will make NFS to switch to LOOKUP instead of using VGET.
2030	 */
2031	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2032	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2033		return (EOPNOTSUPP);
2034
2035	ZFS_ENTER(zfsvfs);
2036	err = zfs_zget(zfsvfs, ino, &zp);
2037	if (err == 0 && zp->z_unlinked) {
2038		VN_RELE(ZTOV(zp));
2039		err = EINVAL;
2040	}
2041	if (err == 0)
2042		*vpp = ZTOV(zp);
2043	ZFS_EXIT(zfsvfs);
2044	if (err == 0)
2045		err = vn_lock(*vpp, flags);
2046	if (err != 0)
2047		*vpp = NULL;
2048	return (err);
2049}
2050
2051static int
2052zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2053    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2054{
2055	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2056
2057	/*
2058	 * If this is regular file system vfsp is the same as
2059	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2060	 * zfsvfs->z_parent->z_vfs represents parent file system
2061	 * which we have to use here, because only this file system
2062	 * has mnt_export configured.
2063	 */
2064	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2065	    credanonp, numsecflavors, secflavors));
2066}
2067
2068CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2069CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2070
2071static int
2072zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2073{
2074	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2075	znode_t		*zp;
2076	uint64_t	object = 0;
2077	uint64_t	fid_gen = 0;
2078	uint64_t	gen_mask;
2079	uint64_t	zp_gen;
2080	int 		i, err;
2081
2082	*vpp = NULL;
2083
2084	ZFS_ENTER(zfsvfs);
2085
2086	/*
2087	 * On FreeBSD we can get snapshot's mount point or its parent file
2088	 * system mount point depending if snapshot is already mounted or not.
2089	 */
2090	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2091		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2092		uint64_t	objsetid = 0;
2093		uint64_t	setgen = 0;
2094
2095		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2096			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2097
2098		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2099			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2100
2101		ZFS_EXIT(zfsvfs);
2102
2103		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2104		if (err)
2105			return (SET_ERROR(EINVAL));
2106		ZFS_ENTER(zfsvfs);
2107	}
2108
2109	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2110		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2111
2112		for (i = 0; i < sizeof (zfid->zf_object); i++)
2113			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2114
2115		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2116			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2117	} else {
2118		ZFS_EXIT(zfsvfs);
2119		return (SET_ERROR(EINVAL));
2120	}
2121
2122	/*
2123	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2124	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2125	 * we are in the .zfs/shares directory tree.
2126	 */
2127	if ((fid_gen == 0 &&
2128	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2129	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2130		*vpp = zfsvfs->z_ctldir;
2131		ASSERT(*vpp != NULL);
2132		if (object == ZFSCTL_INO_SNAPDIR) {
2133			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2134			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2135		} else if (object == zfsvfs->z_shares_dir) {
2136			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2137			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2138		} else {
2139			VN_HOLD(*vpp);
2140		}
2141		ZFS_EXIT(zfsvfs);
2142		err = vn_lock(*vpp, flags);
2143		if (err != 0)
2144			*vpp = NULL;
2145		return (err);
2146	}
2147
2148	gen_mask = -1ULL >> (64 - 8 * i);
2149
2150	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2151	if (err = zfs_zget(zfsvfs, object, &zp)) {
2152		ZFS_EXIT(zfsvfs);
2153		return (err);
2154	}
2155	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2156	    sizeof (uint64_t));
2157	zp_gen = zp_gen & gen_mask;
2158	if (zp_gen == 0)
2159		zp_gen = 1;
2160	if (zp->z_unlinked || zp_gen != fid_gen) {
2161		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2162		VN_RELE(ZTOV(zp));
2163		ZFS_EXIT(zfsvfs);
2164		return (SET_ERROR(EINVAL));
2165	}
2166
2167	*vpp = ZTOV(zp);
2168	ZFS_EXIT(zfsvfs);
2169	err = vn_lock(*vpp, flags | LK_RETRY);
2170	if (err == 0)
2171		vnode_create_vobject(*vpp, zp->z_size, curthread);
2172	else
2173		*vpp = NULL;
2174	return (err);
2175}
2176
2177/*
2178 * Block out VOPs and close zfsvfs_t::z_os
2179 *
2180 * Note, if successful, then we return with the 'z_teardown_lock' and
2181 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2182 * dataset and objset intact so that they can be atomically handed off during
2183 * a subsequent rollback or recv operation and the resume thereafter.
2184 */
2185int
2186zfs_suspend_fs(zfsvfs_t *zfsvfs)
2187{
2188	int error;
2189
2190	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2191		return (error);
2192
2193	return (0);
2194}
2195
2196/*
2197 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2198 * is an invariant across any of the operations that can be performed while the
2199 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2200 * are the same: the relevant objset and associated dataset are owned by
2201 * zfsvfs, held, and long held on entry.
2202 */
2203int
2204zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2205{
2206	int err;
2207	znode_t *zp;
2208	uint64_t sa_obj = 0;
2209
2210	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2211	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2212
2213	/*
2214	 * We already own this, so just hold and rele it to update the
2215	 * objset_t, as the one we had before may have been evicted.
2216	 */
2217	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2218	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2219	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2220	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2221
2222	/*
2223	 * Make sure version hasn't changed
2224	 */
2225
2226	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2227	    &zfsvfs->z_version);
2228
2229	if (err)
2230		goto bail;
2231
2232	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2233	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2234
2235	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2236		goto bail;
2237
2238	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2239	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2240		goto bail;
2241
2242	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2243		sa_register_update_callback(zfsvfs->z_os,
2244		    zfs_sa_upgrade);
2245
2246	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2247
2248	zfs_set_fuid_feature(zfsvfs);
2249
2250	/*
2251	 * Attempt to re-establish all the active znodes with
2252	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2253	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2254	 * when they try to use their znode.
2255	 */
2256	mutex_enter(&zfsvfs->z_znodes_lock);
2257	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2258	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2259		(void) zfs_rezget(zp);
2260	}
2261	mutex_exit(&zfsvfs->z_znodes_lock);
2262
2263bail:
2264	/* release the VOPs */
2265	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2266	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2267
2268	if (err) {
2269		/*
2270		 * Since we couldn't setup the sa framework, try to force
2271		 * unmount this file system.
2272		 */
2273		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2274			vfs_ref(zfsvfs->z_vfs);
2275			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2276		}
2277	}
2278	return (err);
2279}
2280
2281static void
2282zfs_freevfs(vfs_t *vfsp)
2283{
2284	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2285
2286#ifdef illumos
2287	/*
2288	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2289	 * from zfs_mount().  Release it here.  If we came through
2290	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2291	 * skip the VFS_RELE for rootvfs.
2292	 */
2293	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2294		VFS_RELE(zfsvfs->z_parent->z_vfs);
2295#endif
2296
2297	zfsvfs_free(zfsvfs);
2298
2299	atomic_dec_32(&zfs_active_fs_count);
2300}
2301
2302#ifdef __i386__
2303static int desiredvnodes_backup;
2304#endif
2305
2306static void
2307zfs_vnodes_adjust(void)
2308{
2309#ifdef __i386__
2310	int newdesiredvnodes;
2311
2312	desiredvnodes_backup = desiredvnodes;
2313
2314	/*
2315	 * We calculate newdesiredvnodes the same way it is done in
2316	 * vntblinit(). If it is equal to desiredvnodes, it means that
2317	 * it wasn't tuned by the administrator and we can tune it down.
2318	 */
2319	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2320	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2321	    sizeof(struct vnode))));
2322	if (newdesiredvnodes == desiredvnodes)
2323		desiredvnodes = (3 * newdesiredvnodes) / 4;
2324#endif
2325}
2326
2327static void
2328zfs_vnodes_adjust_back(void)
2329{
2330
2331#ifdef __i386__
2332	desiredvnodes = desiredvnodes_backup;
2333#endif
2334}
2335
2336void
2337zfs_init(void)
2338{
2339
2340	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2341
2342	/*
2343	 * Initialize .zfs directory structures
2344	 */
2345	zfsctl_init();
2346
2347	/*
2348	 * Initialize znode cache, vnode ops, etc...
2349	 */
2350	zfs_znode_init();
2351
2352	/*
2353	 * Reduce number of vnodes. Originally number of vnodes is calculated
2354	 * with UFS inode in mind. We reduce it here, because it's too big for
2355	 * ZFS/i386.
2356	 */
2357	zfs_vnodes_adjust();
2358
2359	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2360}
2361
2362void
2363zfs_fini(void)
2364{
2365	zfsctl_fini();
2366	zfs_znode_fini();
2367	zfs_vnodes_adjust_back();
2368}
2369
2370int
2371zfs_busy(void)
2372{
2373	return (zfs_active_fs_count != 0);
2374}
2375
2376int
2377zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2378{
2379	int error;
2380	objset_t *os = zfsvfs->z_os;
2381	dmu_tx_t *tx;
2382
2383	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2384		return (SET_ERROR(EINVAL));
2385
2386	if (newvers < zfsvfs->z_version)
2387		return (SET_ERROR(EINVAL));
2388
2389	if (zfs_spa_version_map(newvers) >
2390	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2391		return (SET_ERROR(ENOTSUP));
2392
2393	tx = dmu_tx_create(os);
2394	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2395	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2396		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2397		    ZFS_SA_ATTRS);
2398		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2399	}
2400	error = dmu_tx_assign(tx, TXG_WAIT);
2401	if (error) {
2402		dmu_tx_abort(tx);
2403		return (error);
2404	}
2405
2406	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2407	    8, 1, &newvers, tx);
2408
2409	if (error) {
2410		dmu_tx_commit(tx);
2411		return (error);
2412	}
2413
2414	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2415		uint64_t sa_obj;
2416
2417		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2418		    SPA_VERSION_SA);
2419		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2420		    DMU_OT_NONE, 0, tx);
2421
2422		error = zap_add(os, MASTER_NODE_OBJ,
2423		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2424		ASSERT0(error);
2425
2426		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2427		sa_register_update_callback(os, zfs_sa_upgrade);
2428	}
2429
2430	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2431	    "from %llu to %llu", zfsvfs->z_version, newvers);
2432
2433	dmu_tx_commit(tx);
2434
2435	zfsvfs->z_version = newvers;
2436
2437	zfs_set_fuid_feature(zfsvfs);
2438
2439	return (0);
2440}
2441
2442/*
2443 * Read a property stored within the master node.
2444 */
2445int
2446zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2447{
2448	const char *pname;
2449	int error = ENOENT;
2450
2451	/*
2452	 * Look up the file system's value for the property.  For the
2453	 * version property, we look up a slightly different string.
2454	 */
2455	if (prop == ZFS_PROP_VERSION)
2456		pname = ZPL_VERSION_STR;
2457	else
2458		pname = zfs_prop_to_name(prop);
2459
2460	if (os != NULL)
2461		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2462
2463	if (error == ENOENT) {
2464		/* No value set, use the default value */
2465		switch (prop) {
2466		case ZFS_PROP_VERSION:
2467			*value = ZPL_VERSION;
2468			break;
2469		case ZFS_PROP_NORMALIZE:
2470		case ZFS_PROP_UTF8ONLY:
2471			*value = 0;
2472			break;
2473		case ZFS_PROP_CASE:
2474			*value = ZFS_CASE_SENSITIVE;
2475			break;
2476		default:
2477			return (error);
2478		}
2479		error = 0;
2480	}
2481	return (error);
2482}
2483
2484#ifdef _KERNEL
2485void
2486zfsvfs_update_fromname(const char *oldname, const char *newname)
2487{
2488	char tmpbuf[MAXPATHLEN];
2489	struct mount *mp;
2490	char *fromname;
2491	size_t oldlen;
2492
2493	oldlen = strlen(oldname);
2494
2495	mtx_lock(&mountlist_mtx);
2496	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2497		fromname = mp->mnt_stat.f_mntfromname;
2498		if (strcmp(fromname, oldname) == 0) {
2499			(void)strlcpy(fromname, newname,
2500			    sizeof(mp->mnt_stat.f_mntfromname));
2501			continue;
2502		}
2503		if (strncmp(fromname, oldname, oldlen) == 0 &&
2504		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2505			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2506			    newname, fromname + oldlen);
2507			(void)strlcpy(fromname, tmpbuf,
2508			    sizeof(mp->mnt_stat.f_mntfromname));
2509			continue;
2510		}
2511	}
2512	mtx_unlock(&mountlist_mtx);
2513}
2514#endif
2515