zfs_vfsops.c revision 297082
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	/*
137	 * Ignore the system syncher.  ZFS already commits async data
138	 * at zfs_txg_timeout intervals.
139	 */
140	if (waitfor == MNT_LAZY)
141		return (0);
142
143	if (vfsp != NULL) {
144		/*
145		 * Sync a specific filesystem.
146		 */
147		zfsvfs_t *zfsvfs = vfsp->vfs_data;
148		dsl_pool_t *dp;
149		int error;
150
151		error = vfs_stdsync(vfsp, waitfor);
152		if (error != 0)
153			return (error);
154
155		ZFS_ENTER(zfsvfs);
156		dp = dmu_objset_pool(zfsvfs->z_os);
157
158		/*
159		 * If the system is shutting down, then skip any
160		 * filesystems which may exist on a suspended pool.
161		 */
162		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
163			ZFS_EXIT(zfsvfs);
164			return (0);
165		}
166
167		if (zfsvfs->z_log != NULL)
168			zil_commit(zfsvfs->z_log, 0);
169
170		ZFS_EXIT(zfsvfs);
171	} else {
172		/*
173		 * Sync all ZFS filesystems.  This is what happens when you
174		 * run sync(1M).  Unlike other filesystems, ZFS honors the
175		 * request by waiting for all pools to commit all dirty data.
176		 */
177		spa_sync_allpools();
178	}
179
180	return (0);
181}
182
183#ifndef __FreeBSD_kernel__
184static int
185zfs_create_unique_device(dev_t *dev)
186{
187	major_t new_major;
188
189	do {
190		ASSERT3U(zfs_minor, <=, MAXMIN32);
191		minor_t start = zfs_minor;
192		do {
193			mutex_enter(&zfs_dev_mtx);
194			if (zfs_minor >= MAXMIN32) {
195				/*
196				 * If we're still using the real major
197				 * keep out of /dev/zfs and /dev/zvol minor
198				 * number space.  If we're using a getudev()'ed
199				 * major number, we can use all of its minors.
200				 */
201				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
202					zfs_minor = ZFS_MIN_MINOR;
203				else
204					zfs_minor = 0;
205			} else {
206				zfs_minor++;
207			}
208			*dev = makedevice(zfs_major, zfs_minor);
209			mutex_exit(&zfs_dev_mtx);
210		} while (vfs_devismounted(*dev) && zfs_minor != start);
211		if (zfs_minor == start) {
212			/*
213			 * We are using all ~262,000 minor numbers for the
214			 * current major number.  Create a new major number.
215			 */
216			if ((new_major = getudev()) == (major_t)-1) {
217				cmn_err(CE_WARN,
218				    "zfs_mount: Can't get unique major "
219				    "device number.");
220				return (-1);
221			}
222			mutex_enter(&zfs_dev_mtx);
223			zfs_major = new_major;
224			zfs_minor = 0;
225
226			mutex_exit(&zfs_dev_mtx);
227		} else {
228			break;
229		}
230		/* CONSTANTCONDITION */
231	} while (1);
232
233	return (0);
234}
235#endif	/* !__FreeBSD_kernel__ */
236
237static void
238atime_changed_cb(void *arg, uint64_t newval)
239{
240	zfsvfs_t *zfsvfs = arg;
241
242	if (newval == TRUE) {
243		zfsvfs->z_atime = TRUE;
244		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
245		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
246		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
247	} else {
248		zfsvfs->z_atime = FALSE;
249		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
250		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
251		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
252	}
253}
254
255static void
256xattr_changed_cb(void *arg, uint64_t newval)
257{
258	zfsvfs_t *zfsvfs = arg;
259
260	if (newval == TRUE) {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
267	} else {
268		/* XXX locking on vfs_flag? */
269#ifdef TODO
270		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
271#endif
272		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
273		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
274	}
275}
276
277static void
278blksz_changed_cb(void *arg, uint64_t newval)
279{
280	zfsvfs_t *zfsvfs = arg;
281	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
282	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
283	ASSERT(ISP2(newval));
284
285	zfsvfs->z_max_blksz = newval;
286	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
287}
288
289static void
290readonly_changed_cb(void *arg, uint64_t newval)
291{
292	zfsvfs_t *zfsvfs = arg;
293
294	if (newval) {
295		/* XXX locking on vfs_flag? */
296		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
297		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
298		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
299	} else {
300		/* XXX locking on vfs_flag? */
301		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
302		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
303		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
304	}
305}
306
307static void
308setuid_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	if (newval == FALSE) {
313		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
314		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
315		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
316	} else {
317		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
318		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
319		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
320	}
321}
322
323static void
324exec_changed_cb(void *arg, uint64_t newval)
325{
326	zfsvfs_t *zfsvfs = arg;
327
328	if (newval == FALSE) {
329		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
330		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
331		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
332	} else {
333		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
334		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
335		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
336	}
337}
338
339/*
340 * The nbmand mount option can be changed at mount time.
341 * We can't allow it to be toggled on live file systems or incorrect
342 * behavior may be seen from cifs clients
343 *
344 * This property isn't registered via dsl_prop_register(), but this callback
345 * will be called when a file system is first mounted
346 */
347static void
348nbmand_changed_cb(void *arg, uint64_t newval)
349{
350	zfsvfs_t *zfsvfs = arg;
351	if (newval == FALSE) {
352		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
353		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
354	} else {
355		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
356		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
357	}
358}
359
360static void
361snapdir_changed_cb(void *arg, uint64_t newval)
362{
363	zfsvfs_t *zfsvfs = arg;
364
365	zfsvfs->z_show_ctldir = newval;
366}
367
368static void
369vscan_changed_cb(void *arg, uint64_t newval)
370{
371	zfsvfs_t *zfsvfs = arg;
372
373	zfsvfs->z_vscan = newval;
374}
375
376static void
377acl_mode_changed_cb(void *arg, uint64_t newval)
378{
379	zfsvfs_t *zfsvfs = arg;
380
381	zfsvfs->z_acl_mode = newval;
382}
383
384static void
385acl_inherit_changed_cb(void *arg, uint64_t newval)
386{
387	zfsvfs_t *zfsvfs = arg;
388
389	zfsvfs->z_acl_inherit = newval;
390}
391
392static int
393zfs_register_callbacks(vfs_t *vfsp)
394{
395	struct dsl_dataset *ds = NULL;
396	objset_t *os = NULL;
397	zfsvfs_t *zfsvfs = NULL;
398	uint64_t nbmand;
399	boolean_t readonly = B_FALSE;
400	boolean_t do_readonly = B_FALSE;
401	boolean_t setuid = B_FALSE;
402	boolean_t do_setuid = B_FALSE;
403	boolean_t exec = B_FALSE;
404	boolean_t do_exec = B_FALSE;
405#ifdef illumos
406	boolean_t devices = B_FALSE;
407	boolean_t do_devices = B_FALSE;
408#endif
409	boolean_t xattr = B_FALSE;
410	boolean_t do_xattr = B_FALSE;
411	boolean_t atime = B_FALSE;
412	boolean_t do_atime = B_FALSE;
413	int error = 0;
414
415	ASSERT(vfsp);
416	zfsvfs = vfsp->vfs_data;
417	ASSERT(zfsvfs);
418	os = zfsvfs->z_os;
419
420	/*
421	 * This function can be called for a snapshot when we update snapshot's
422	 * mount point, which isn't really supported.
423	 */
424	if (dmu_objset_is_snapshot(os))
425		return (EOPNOTSUPP);
426
427	/*
428	 * The act of registering our callbacks will destroy any mount
429	 * options we may have.  In order to enable temporary overrides
430	 * of mount options, we stash away the current values and
431	 * restore them after we register the callbacks.
432	 */
433	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
434	    !spa_writeable(dmu_objset_spa(os))) {
435		readonly = B_TRUE;
436		do_readonly = B_TRUE;
437	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
438		readonly = B_FALSE;
439		do_readonly = B_TRUE;
440	}
441	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
442		setuid = B_FALSE;
443		do_setuid = B_TRUE;
444	} else {
445		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
446			setuid = B_FALSE;
447			do_setuid = B_TRUE;
448		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
449			setuid = B_TRUE;
450			do_setuid = B_TRUE;
451		}
452	}
453	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
454		exec = B_FALSE;
455		do_exec = B_TRUE;
456	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
457		exec = B_TRUE;
458		do_exec = B_TRUE;
459	}
460	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
461		xattr = B_FALSE;
462		do_xattr = B_TRUE;
463	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
464		xattr = B_TRUE;
465		do_xattr = B_TRUE;
466	}
467	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
468		atime = B_FALSE;
469		do_atime = B_TRUE;
470	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
471		atime = B_TRUE;
472		do_atime = B_TRUE;
473	}
474
475	/*
476	 * We need to enter pool configuration here, so that we can use
477	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
478	 * dsl_prop_get_integer() can not be used, because it has to acquire
479	 * spa_namespace_lock and we can not do that because we already hold
480	 * z_teardown_lock.  The problem is that spa_config_sync() is called
481	 * with spa_namespace_lock held and the function calls ZFS vnode
482	 * operations to write the cache file and thus z_teardown_lock is
483	 * acquired after spa_namespace_lock.
484	 */
485	ds = dmu_objset_ds(os);
486	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
487
488	/*
489	 * nbmand is a special property.  It can only be changed at
490	 * mount time.
491	 *
492	 * This is weird, but it is documented to only be changeable
493	 * at mount time.
494	 */
495	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
496		nbmand = B_FALSE;
497	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
498		nbmand = B_TRUE;
499	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
500		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
501		return (error);
502	}
503
504	/*
505	 * Register property callbacks.
506	 *
507	 * It would probably be fine to just check for i/o error from
508	 * the first prop_register(), but I guess I like to go
509	 * overboard...
510	 */
511	error = dsl_prop_register(ds,
512	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
513	error = error ? error : dsl_prop_register(ds,
514	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
515	error = error ? error : dsl_prop_register(ds,
516	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
517	error = error ? error : dsl_prop_register(ds,
518	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
519#ifdef illumos
520	error = error ? error : dsl_prop_register(ds,
521	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
522#endif
523	error = error ? error : dsl_prop_register(ds,
524	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
525	error = error ? error : dsl_prop_register(ds,
526	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
527	error = error ? error : dsl_prop_register(ds,
528	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
529	error = error ? error : dsl_prop_register(ds,
530	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
531	error = error ? error : dsl_prop_register(ds,
532	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
533	    zfsvfs);
534	error = error ? error : dsl_prop_register(ds,
535	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
536	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
537	if (error)
538		goto unregister;
539
540	/*
541	 * Invoke our callbacks to restore temporary mount options.
542	 */
543	if (do_readonly)
544		readonly_changed_cb(zfsvfs, readonly);
545	if (do_setuid)
546		setuid_changed_cb(zfsvfs, setuid);
547	if (do_exec)
548		exec_changed_cb(zfsvfs, exec);
549	if (do_xattr)
550		xattr_changed_cb(zfsvfs, xattr);
551	if (do_atime)
552		atime_changed_cb(zfsvfs, atime);
553
554	nbmand_changed_cb(zfsvfs, nbmand);
555
556	return (0);
557
558unregister:
559	dsl_prop_unregister_all(ds, zfsvfs);
560	return (error);
561}
562
563static int
564zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
565    uint64_t *userp, uint64_t *groupp)
566{
567	/*
568	 * Is it a valid type of object to track?
569	 */
570	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
571		return (SET_ERROR(ENOENT));
572
573	/*
574	 * If we have a NULL data pointer
575	 * then assume the id's aren't changing and
576	 * return EEXIST to the dmu to let it know to
577	 * use the same ids
578	 */
579	if (data == NULL)
580		return (SET_ERROR(EEXIST));
581
582	if (bonustype == DMU_OT_ZNODE) {
583		znode_phys_t *znp = data;
584		*userp = znp->zp_uid;
585		*groupp = znp->zp_gid;
586	} else {
587		int hdrsize;
588		sa_hdr_phys_t *sap = data;
589		sa_hdr_phys_t sa = *sap;
590		boolean_t swap = B_FALSE;
591
592		ASSERT(bonustype == DMU_OT_SA);
593
594		if (sa.sa_magic == 0) {
595			/*
596			 * This should only happen for newly created
597			 * files that haven't had the znode data filled
598			 * in yet.
599			 */
600			*userp = 0;
601			*groupp = 0;
602			return (0);
603		}
604		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
605			sa.sa_magic = SA_MAGIC;
606			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
607			swap = B_TRUE;
608		} else {
609			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
610		}
611
612		hdrsize = sa_hdrsize(&sa);
613		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
614		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
615		    SA_UID_OFFSET));
616		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
617		    SA_GID_OFFSET));
618		if (swap) {
619			*userp = BSWAP_64(*userp);
620			*groupp = BSWAP_64(*groupp);
621		}
622	}
623	return (0);
624}
625
626static void
627fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
628    char *domainbuf, int buflen, uid_t *ridp)
629{
630	uint64_t fuid;
631	const char *domain;
632
633	fuid = strtonum(fuidstr, NULL);
634
635	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
636	if (domain)
637		(void) strlcpy(domainbuf, domain, buflen);
638	else
639		domainbuf[0] = '\0';
640	*ridp = FUID_RID(fuid);
641}
642
643static uint64_t
644zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
645{
646	switch (type) {
647	case ZFS_PROP_USERUSED:
648		return (DMU_USERUSED_OBJECT);
649	case ZFS_PROP_GROUPUSED:
650		return (DMU_GROUPUSED_OBJECT);
651	case ZFS_PROP_USERQUOTA:
652		return (zfsvfs->z_userquota_obj);
653	case ZFS_PROP_GROUPQUOTA:
654		return (zfsvfs->z_groupquota_obj);
655	}
656	return (0);
657}
658
659int
660zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
661    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
662{
663	int error;
664	zap_cursor_t zc;
665	zap_attribute_t za;
666	zfs_useracct_t *buf = vbuf;
667	uint64_t obj;
668
669	if (!dmu_objset_userspace_present(zfsvfs->z_os))
670		return (SET_ERROR(ENOTSUP));
671
672	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
673	if (obj == 0) {
674		*bufsizep = 0;
675		return (0);
676	}
677
678	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
679	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
680	    zap_cursor_advance(&zc)) {
681		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
682		    *bufsizep)
683			break;
684
685		fuidstr_to_sid(zfsvfs, za.za_name,
686		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
687
688		buf->zu_space = za.za_first_integer;
689		buf++;
690	}
691	if (error == ENOENT)
692		error = 0;
693
694	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
695	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
696	*cookiep = zap_cursor_serialize(&zc);
697	zap_cursor_fini(&zc);
698	return (error);
699}
700
701/*
702 * buf must be big enough (eg, 32 bytes)
703 */
704static int
705id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
706    char *buf, boolean_t addok)
707{
708	uint64_t fuid;
709	int domainid = 0;
710
711	if (domain && domain[0]) {
712		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
713		if (domainid == -1)
714			return (SET_ERROR(ENOENT));
715	}
716	fuid = FUID_ENCODE(domainid, rid);
717	(void) sprintf(buf, "%llx", (longlong_t)fuid);
718	return (0);
719}
720
721int
722zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
723    const char *domain, uint64_t rid, uint64_t *valp)
724{
725	char buf[32];
726	int err;
727	uint64_t obj;
728
729	*valp = 0;
730
731	if (!dmu_objset_userspace_present(zfsvfs->z_os))
732		return (SET_ERROR(ENOTSUP));
733
734	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
735	if (obj == 0)
736		return (0);
737
738	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
739	if (err)
740		return (err);
741
742	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
743	if (err == ENOENT)
744		err = 0;
745	return (err);
746}
747
748int
749zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
750    const char *domain, uint64_t rid, uint64_t quota)
751{
752	char buf[32];
753	int err;
754	dmu_tx_t *tx;
755	uint64_t *objp;
756	boolean_t fuid_dirtied;
757
758	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
759		return (SET_ERROR(EINVAL));
760
761	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
762		return (SET_ERROR(ENOTSUP));
763
764	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
765	    &zfsvfs->z_groupquota_obj;
766
767	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
768	if (err)
769		return (err);
770	fuid_dirtied = zfsvfs->z_fuid_dirty;
771
772	tx = dmu_tx_create(zfsvfs->z_os);
773	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
774	if (*objp == 0) {
775		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
776		    zfs_userquota_prop_prefixes[type]);
777	}
778	if (fuid_dirtied)
779		zfs_fuid_txhold(zfsvfs, tx);
780	err = dmu_tx_assign(tx, TXG_WAIT);
781	if (err) {
782		dmu_tx_abort(tx);
783		return (err);
784	}
785
786	mutex_enter(&zfsvfs->z_lock);
787	if (*objp == 0) {
788		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
789		    DMU_OT_NONE, 0, tx);
790		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
791		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
792	}
793	mutex_exit(&zfsvfs->z_lock);
794
795	if (quota == 0) {
796		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
797		if (err == ENOENT)
798			err = 0;
799	} else {
800		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
801	}
802	ASSERT(err == 0);
803	if (fuid_dirtied)
804		zfs_fuid_sync(zfsvfs, tx);
805	dmu_tx_commit(tx);
806	return (err);
807}
808
809boolean_t
810zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
811{
812	char buf[32];
813	uint64_t used, quota, usedobj, quotaobj;
814	int err;
815
816	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
817	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
818
819	if (quotaobj == 0 || zfsvfs->z_replay)
820		return (B_FALSE);
821
822	(void) sprintf(buf, "%llx", (longlong_t)fuid);
823	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
824	if (err != 0)
825		return (B_FALSE);
826
827	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
828	if (err != 0)
829		return (B_FALSE);
830	return (used >= quota);
831}
832
833boolean_t
834zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
835{
836	uint64_t fuid;
837	uint64_t quotaobj;
838
839	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
840
841	fuid = isgroup ? zp->z_gid : zp->z_uid;
842
843	if (quotaobj == 0 || zfsvfs->z_replay)
844		return (B_FALSE);
845
846	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
847}
848
849int
850zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
851{
852	objset_t *os;
853	zfsvfs_t *zfsvfs;
854	uint64_t zval;
855	int i, error;
856	uint64_t sa_obj;
857
858	/*
859	 * XXX: Fix struct statfs so this isn't necessary!
860	 *
861	 * The 'osname' is used as the filesystem's special node, which means
862	 * it must fit in statfs.f_mntfromname, or else it can't be
863	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
864	 * 'zfs unmount' to think it's not mounted when it is.
865	 */
866	if (strlen(osname) >= MNAMELEN)
867		return (SET_ERROR(ENAMETOOLONG));
868
869	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
870
871	/*
872	 * We claim to always be readonly so we can open snapshots;
873	 * other ZPL code will prevent us from writing to snapshots.
874	 */
875	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
876	if (error) {
877		kmem_free(zfsvfs, sizeof (zfsvfs_t));
878		return (error);
879	}
880
881	/*
882	 * Initialize the zfs-specific filesystem structure.
883	 * Should probably make this a kmem cache, shuffle fields,
884	 * and just bzero up to z_hold_mtx[].
885	 */
886	zfsvfs->z_vfs = NULL;
887	zfsvfs->z_parent = zfsvfs;
888	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
889	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
890	zfsvfs->z_os = os;
891
892	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
893	if (error) {
894		goto out;
895	} else if (zfsvfs->z_version >
896	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
897		(void) printf("Can't mount a version %lld file system "
898		    "on a version %lld pool\n. Pool must be upgraded to mount "
899		    "this file system.", (u_longlong_t)zfsvfs->z_version,
900		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
901		error = SET_ERROR(ENOTSUP);
902		goto out;
903	}
904	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
905		goto out;
906	zfsvfs->z_norm = (int)zval;
907
908	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
909		goto out;
910	zfsvfs->z_utf8 = (zval != 0);
911
912	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
913		goto out;
914	zfsvfs->z_case = (uint_t)zval;
915
916	/*
917	 * Fold case on file systems that are always or sometimes case
918	 * insensitive.
919	 */
920	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
921	    zfsvfs->z_case == ZFS_CASE_MIXED)
922		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
923
924	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
925	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
926
927	if (zfsvfs->z_use_sa) {
928		/* should either have both of these objects or none */
929		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
930		    &sa_obj);
931		if (error)
932			goto out;
933	} else {
934		/*
935		 * Pre SA versions file systems should never touch
936		 * either the attribute registration or layout objects.
937		 */
938		sa_obj = 0;
939	}
940
941	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
942	    &zfsvfs->z_attr_table);
943	if (error)
944		goto out;
945
946	if (zfsvfs->z_version >= ZPL_VERSION_SA)
947		sa_register_update_callback(os, zfs_sa_upgrade);
948
949	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
950	    &zfsvfs->z_root);
951	if (error)
952		goto out;
953	ASSERT(zfsvfs->z_root != 0);
954
955	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
956	    &zfsvfs->z_unlinkedobj);
957	if (error)
958		goto out;
959
960	error = zap_lookup(os, MASTER_NODE_OBJ,
961	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
962	    8, 1, &zfsvfs->z_userquota_obj);
963	if (error && error != ENOENT)
964		goto out;
965
966	error = zap_lookup(os, MASTER_NODE_OBJ,
967	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
968	    8, 1, &zfsvfs->z_groupquota_obj);
969	if (error && error != ENOENT)
970		goto out;
971
972	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
973	    &zfsvfs->z_fuid_obj);
974	if (error && error != ENOENT)
975		goto out;
976
977	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
978	    &zfsvfs->z_shares_dir);
979	if (error && error != ENOENT)
980		goto out;
981
982	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
983	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
984	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
985	    offsetof(znode_t, z_link_node));
986	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
987	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
988	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
989	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
990		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
991
992	*zfvp = zfsvfs;
993	return (0);
994
995out:
996	dmu_objset_disown(os, zfsvfs);
997	*zfvp = NULL;
998	kmem_free(zfsvfs, sizeof (zfsvfs_t));
999	return (error);
1000}
1001
1002static int
1003zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1004{
1005	int error;
1006
1007	error = zfs_register_callbacks(zfsvfs->z_vfs);
1008	if (error)
1009		return (error);
1010
1011	/*
1012	 * Set the objset user_ptr to track its zfsvfs.
1013	 */
1014	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1015	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1016	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1017
1018	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1019
1020	/*
1021	 * If we are not mounting (ie: online recv), then we don't
1022	 * have to worry about replaying the log as we blocked all
1023	 * operations out since we closed the ZIL.
1024	 */
1025	if (mounting) {
1026		boolean_t readonly;
1027
1028		/*
1029		 * During replay we remove the read only flag to
1030		 * allow replays to succeed.
1031		 */
1032		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1033		if (readonly != 0)
1034			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1035		else
1036			zfs_unlinked_drain(zfsvfs);
1037
1038		/*
1039		 * Parse and replay the intent log.
1040		 *
1041		 * Because of ziltest, this must be done after
1042		 * zfs_unlinked_drain().  (Further note: ziltest
1043		 * doesn't use readonly mounts, where
1044		 * zfs_unlinked_drain() isn't called.)  This is because
1045		 * ziltest causes spa_sync() to think it's committed,
1046		 * but actually it is not, so the intent log contains
1047		 * many txg's worth of changes.
1048		 *
1049		 * In particular, if object N is in the unlinked set in
1050		 * the last txg to actually sync, then it could be
1051		 * actually freed in a later txg and then reallocated
1052		 * in a yet later txg.  This would write a "create
1053		 * object N" record to the intent log.  Normally, this
1054		 * would be fine because the spa_sync() would have
1055		 * written out the fact that object N is free, before
1056		 * we could write the "create object N" intent log
1057		 * record.
1058		 *
1059		 * But when we are in ziltest mode, we advance the "open
1060		 * txg" without actually spa_sync()-ing the changes to
1061		 * disk.  So we would see that object N is still
1062		 * allocated and in the unlinked set, and there is an
1063		 * intent log record saying to allocate it.
1064		 */
1065		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1066			if (zil_replay_disable) {
1067				zil_destroy(zfsvfs->z_log, B_FALSE);
1068			} else {
1069				zfsvfs->z_replay = B_TRUE;
1070				zil_replay(zfsvfs->z_os, zfsvfs,
1071				    zfs_replay_vector);
1072				zfsvfs->z_replay = B_FALSE;
1073			}
1074		}
1075		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1076	}
1077
1078	return (0);
1079}
1080
1081extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1082
1083void
1084zfsvfs_free(zfsvfs_t *zfsvfs)
1085{
1086	int i;
1087
1088	/*
1089	 * This is a barrier to prevent the filesystem from going away in
1090	 * zfs_znode_move() until we can safely ensure that the filesystem is
1091	 * not unmounted. We consider the filesystem valid before the barrier
1092	 * and invalid after the barrier.
1093	 */
1094	rw_enter(&zfsvfs_lock, RW_READER);
1095	rw_exit(&zfsvfs_lock);
1096
1097	zfs_fuid_destroy(zfsvfs);
1098
1099	mutex_destroy(&zfsvfs->z_znodes_lock);
1100	mutex_destroy(&zfsvfs->z_lock);
1101	list_destroy(&zfsvfs->z_all_znodes);
1102	rrm_destroy(&zfsvfs->z_teardown_lock);
1103	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1104	rw_destroy(&zfsvfs->z_fuid_lock);
1105	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1106		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1107	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1108}
1109
1110static void
1111zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1112{
1113	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1114	if (zfsvfs->z_vfs) {
1115		if (zfsvfs->z_use_fuids) {
1116			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1117			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1118			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1119			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1120			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1121			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1122		} else {
1123			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1124			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1125			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1126			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1127			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1128			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1129		}
1130	}
1131	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1132}
1133
1134static int
1135zfs_domount(vfs_t *vfsp, char *osname)
1136{
1137	uint64_t recordsize, fsid_guid;
1138	int error = 0;
1139	zfsvfs_t *zfsvfs;
1140	vnode_t *vp;
1141
1142	ASSERT(vfsp);
1143	ASSERT(osname);
1144
1145	error = zfsvfs_create(osname, &zfsvfs);
1146	if (error)
1147		return (error);
1148	zfsvfs->z_vfs = vfsp;
1149
1150#ifdef illumos
1151	/* Initialize the generic filesystem structure. */
1152	vfsp->vfs_bcount = 0;
1153	vfsp->vfs_data = NULL;
1154
1155	if (zfs_create_unique_device(&mount_dev) == -1) {
1156		error = SET_ERROR(ENODEV);
1157		goto out;
1158	}
1159	ASSERT(vfs_devismounted(mount_dev) == 0);
1160#endif
1161
1162	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1163	    NULL))
1164		goto out;
1165	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1166	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1167
1168	vfsp->vfs_data = zfsvfs;
1169	vfsp->mnt_flag |= MNT_LOCAL;
1170	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1171	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1172	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1173
1174	/*
1175	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1176	 * separates our fsid from any other filesystem types, and a
1177	 * 56-bit objset unique ID.  The objset unique ID is unique to
1178	 * all objsets open on this system, provided by unique_create().
1179	 * The 8-bit fs type must be put in the low bits of fsid[1]
1180	 * because that's where other Solaris filesystems put it.
1181	 */
1182	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1183	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1184	vfsp->vfs_fsid.val[0] = fsid_guid;
1185	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1186	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1187
1188	/*
1189	 * Set features for file system.
1190	 */
1191	zfs_set_fuid_feature(zfsvfs);
1192	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1193		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1194		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1195		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1196	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1197		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1198		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1199	}
1200	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1201
1202	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1203		uint64_t pval;
1204
1205		atime_changed_cb(zfsvfs, B_FALSE);
1206		readonly_changed_cb(zfsvfs, B_TRUE);
1207		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1208			goto out;
1209		xattr_changed_cb(zfsvfs, pval);
1210		zfsvfs->z_issnap = B_TRUE;
1211		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1212
1213		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1214		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1215		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1216	} else {
1217		error = zfsvfs_setup(zfsvfs, B_TRUE);
1218	}
1219
1220	vfs_mountedfrom(vfsp, osname);
1221
1222	if (!zfsvfs->z_issnap)
1223		zfsctl_create(zfsvfs);
1224out:
1225	if (error) {
1226		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1227		zfsvfs_free(zfsvfs);
1228	} else {
1229		atomic_inc_32(&zfs_active_fs_count);
1230	}
1231
1232	return (error);
1233}
1234
1235void
1236zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1237{
1238	objset_t *os = zfsvfs->z_os;
1239
1240	if (!dmu_objset_is_snapshot(os))
1241		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1242}
1243
1244#ifdef SECLABEL
1245/*
1246 * Convert a decimal digit string to a uint64_t integer.
1247 */
1248static int
1249str_to_uint64(char *str, uint64_t *objnum)
1250{
1251	uint64_t num = 0;
1252
1253	while (*str) {
1254		if (*str < '0' || *str > '9')
1255			return (SET_ERROR(EINVAL));
1256
1257		num = num*10 + *str++ - '0';
1258	}
1259
1260	*objnum = num;
1261	return (0);
1262}
1263
1264/*
1265 * The boot path passed from the boot loader is in the form of
1266 * "rootpool-name/root-filesystem-object-number'. Convert this
1267 * string to a dataset name: "rootpool-name/root-filesystem-name".
1268 */
1269static int
1270zfs_parse_bootfs(char *bpath, char *outpath)
1271{
1272	char *slashp;
1273	uint64_t objnum;
1274	int error;
1275
1276	if (*bpath == 0 || *bpath == '/')
1277		return (SET_ERROR(EINVAL));
1278
1279	(void) strcpy(outpath, bpath);
1280
1281	slashp = strchr(bpath, '/');
1282
1283	/* if no '/', just return the pool name */
1284	if (slashp == NULL) {
1285		return (0);
1286	}
1287
1288	/* if not a number, just return the root dataset name */
1289	if (str_to_uint64(slashp+1, &objnum)) {
1290		return (0);
1291	}
1292
1293	*slashp = '\0';
1294	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1295	*slashp = '/';
1296
1297	return (error);
1298}
1299
1300/*
1301 * Check that the hex label string is appropriate for the dataset being
1302 * mounted into the global_zone proper.
1303 *
1304 * Return an error if the hex label string is not default or
1305 * admin_low/admin_high.  For admin_low labels, the corresponding
1306 * dataset must be readonly.
1307 */
1308int
1309zfs_check_global_label(const char *dsname, const char *hexsl)
1310{
1311	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1312		return (0);
1313	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1314		return (0);
1315	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1316		/* must be readonly */
1317		uint64_t rdonly;
1318
1319		if (dsl_prop_get_integer(dsname,
1320		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1321			return (SET_ERROR(EACCES));
1322		return (rdonly ? 0 : EACCES);
1323	}
1324	return (SET_ERROR(EACCES));
1325}
1326
1327/*
1328 * Determine whether the mount is allowed according to MAC check.
1329 * by comparing (where appropriate) label of the dataset against
1330 * the label of the zone being mounted into.  If the dataset has
1331 * no label, create one.
1332 *
1333 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1334 */
1335static int
1336zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1337{
1338	int		error, retv;
1339	zone_t		*mntzone = NULL;
1340	ts_label_t	*mnt_tsl;
1341	bslabel_t	*mnt_sl;
1342	bslabel_t	ds_sl;
1343	char		ds_hexsl[MAXNAMELEN];
1344
1345	retv = EACCES;				/* assume the worst */
1346
1347	/*
1348	 * Start by getting the dataset label if it exists.
1349	 */
1350	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1351	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1352	if (error)
1353		return (SET_ERROR(EACCES));
1354
1355	/*
1356	 * If labeling is NOT enabled, then disallow the mount of datasets
1357	 * which have a non-default label already.  No other label checks
1358	 * are needed.
1359	 */
1360	if (!is_system_labeled()) {
1361		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1362			return (0);
1363		return (SET_ERROR(EACCES));
1364	}
1365
1366	/*
1367	 * Get the label of the mountpoint.  If mounting into the global
1368	 * zone (i.e. mountpoint is not within an active zone and the
1369	 * zoned property is off), the label must be default or
1370	 * admin_low/admin_high only; no other checks are needed.
1371	 */
1372	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1373	if (mntzone->zone_id == GLOBAL_ZONEID) {
1374		uint64_t zoned;
1375
1376		zone_rele(mntzone);
1377
1378		if (dsl_prop_get_integer(osname,
1379		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1380			return (SET_ERROR(EACCES));
1381		if (!zoned)
1382			return (zfs_check_global_label(osname, ds_hexsl));
1383		else
1384			/*
1385			 * This is the case of a zone dataset being mounted
1386			 * initially, before the zone has been fully created;
1387			 * allow this mount into global zone.
1388			 */
1389			return (0);
1390	}
1391
1392	mnt_tsl = mntzone->zone_slabel;
1393	ASSERT(mnt_tsl != NULL);
1394	label_hold(mnt_tsl);
1395	mnt_sl = label2bslabel(mnt_tsl);
1396
1397	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1398		/*
1399		 * The dataset doesn't have a real label, so fabricate one.
1400		 */
1401		char *str = NULL;
1402
1403		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1404		    dsl_prop_set_string(osname,
1405		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1406		    ZPROP_SRC_LOCAL, str) == 0)
1407			retv = 0;
1408		if (str != NULL)
1409			kmem_free(str, strlen(str) + 1);
1410	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1411		/*
1412		 * Now compare labels to complete the MAC check.  If the
1413		 * labels are equal then allow access.  If the mountpoint
1414		 * label dominates the dataset label, allow readonly access.
1415		 * Otherwise, access is denied.
1416		 */
1417		if (blequal(mnt_sl, &ds_sl))
1418			retv = 0;
1419		else if (bldominates(mnt_sl, &ds_sl)) {
1420			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1421			retv = 0;
1422		}
1423	}
1424
1425	label_rele(mnt_tsl);
1426	zone_rele(mntzone);
1427	return (retv);
1428}
1429#endif	/* SECLABEL */
1430
1431#ifdef OPENSOLARIS_MOUNTROOT
1432static int
1433zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1434{
1435	int error = 0;
1436	static int zfsrootdone = 0;
1437	zfsvfs_t *zfsvfs = NULL;
1438	znode_t *zp = NULL;
1439	vnode_t *vp = NULL;
1440	char *zfs_bootfs;
1441	char *zfs_devid;
1442
1443	ASSERT(vfsp);
1444
1445	/*
1446	 * The filesystem that we mount as root is defined in the
1447	 * boot property "zfs-bootfs" with a format of
1448	 * "poolname/root-dataset-objnum".
1449	 */
1450	if (why == ROOT_INIT) {
1451		if (zfsrootdone++)
1452			return (SET_ERROR(EBUSY));
1453		/*
1454		 * the process of doing a spa_load will require the
1455		 * clock to be set before we could (for example) do
1456		 * something better by looking at the timestamp on
1457		 * an uberblock, so just set it to -1.
1458		 */
1459		clkset(-1);
1460
1461		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1462			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1463			    "bootfs name");
1464			return (SET_ERROR(EINVAL));
1465		}
1466		zfs_devid = spa_get_bootprop("diskdevid");
1467		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1468		if (zfs_devid)
1469			spa_free_bootprop(zfs_devid);
1470		if (error) {
1471			spa_free_bootprop(zfs_bootfs);
1472			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1473			    error);
1474			return (error);
1475		}
1476		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1477			spa_free_bootprop(zfs_bootfs);
1478			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1479			    error);
1480			return (error);
1481		}
1482
1483		spa_free_bootprop(zfs_bootfs);
1484
1485		if (error = vfs_lock(vfsp))
1486			return (error);
1487
1488		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1489			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1490			goto out;
1491		}
1492
1493		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1494		ASSERT(zfsvfs);
1495		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1496			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1497			goto out;
1498		}
1499
1500		vp = ZTOV(zp);
1501		mutex_enter(&vp->v_lock);
1502		vp->v_flag |= VROOT;
1503		mutex_exit(&vp->v_lock);
1504		rootvp = vp;
1505
1506		/*
1507		 * Leave rootvp held.  The root file system is never unmounted.
1508		 */
1509
1510		vfs_add((struct vnode *)0, vfsp,
1511		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1512out:
1513		vfs_unlock(vfsp);
1514		return (error);
1515	} else if (why == ROOT_REMOUNT) {
1516		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1517		vfsp->vfs_flag |= VFS_REMOUNT;
1518
1519		/* refresh mount options */
1520		zfs_unregister_callbacks(vfsp->vfs_data);
1521		return (zfs_register_callbacks(vfsp));
1522
1523	} else if (why == ROOT_UNMOUNT) {
1524		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1525		(void) zfs_sync(vfsp, 0, 0);
1526		return (0);
1527	}
1528
1529	/*
1530	 * if "why" is equal to anything else other than ROOT_INIT,
1531	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1532	 */
1533	return (SET_ERROR(ENOTSUP));
1534}
1535#endif	/* OPENSOLARIS_MOUNTROOT */
1536
1537static int
1538getpoolname(const char *osname, char *poolname)
1539{
1540	char *p;
1541
1542	p = strchr(osname, '/');
1543	if (p == NULL) {
1544		if (strlen(osname) >= MAXNAMELEN)
1545			return (ENAMETOOLONG);
1546		(void) strcpy(poolname, osname);
1547	} else {
1548		if (p - osname >= MAXNAMELEN)
1549			return (ENAMETOOLONG);
1550		(void) strncpy(poolname, osname, p - osname);
1551		poolname[p - osname] = '\0';
1552	}
1553	return (0);
1554}
1555
1556/*ARGSUSED*/
1557static int
1558zfs_mount(vfs_t *vfsp)
1559{
1560	kthread_t	*td = curthread;
1561	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1562	cred_t		*cr = td->td_ucred;
1563	char		*osname;
1564	int		error = 0;
1565	int		canwrite;
1566
1567#ifdef illumos
1568	if (mvp->v_type != VDIR)
1569		return (SET_ERROR(ENOTDIR));
1570
1571	mutex_enter(&mvp->v_lock);
1572	if ((uap->flags & MS_REMOUNT) == 0 &&
1573	    (uap->flags & MS_OVERLAY) == 0 &&
1574	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1575		mutex_exit(&mvp->v_lock);
1576		return (SET_ERROR(EBUSY));
1577	}
1578	mutex_exit(&mvp->v_lock);
1579
1580	/*
1581	 * ZFS does not support passing unparsed data in via MS_DATA.
1582	 * Users should use the MS_OPTIONSTR interface; this means
1583	 * that all option parsing is already done and the options struct
1584	 * can be interrogated.
1585	 */
1586	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1587#else	/* !illumos */
1588	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1589		return (SET_ERROR(EPERM));
1590
1591	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1592		return (SET_ERROR(EINVAL));
1593#endif	/* illumos */
1594
1595	/*
1596	 * If full-owner-access is enabled and delegated administration is
1597	 * turned on, we must set nosuid.
1598	 */
1599	if (zfs_super_owner &&
1600	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1601		secpolicy_fs_mount_clearopts(cr, vfsp);
1602	}
1603
1604	/*
1605	 * Check for mount privilege?
1606	 *
1607	 * If we don't have privilege then see if
1608	 * we have local permission to allow it
1609	 */
1610	error = secpolicy_fs_mount(cr, mvp, vfsp);
1611	if (error) {
1612		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1613			goto out;
1614
1615		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1616			vattr_t		vattr;
1617
1618			/*
1619			 * Make sure user is the owner of the mount point
1620			 * or has sufficient privileges.
1621			 */
1622
1623			vattr.va_mask = AT_UID;
1624
1625			vn_lock(mvp, LK_SHARED | LK_RETRY);
1626			if (VOP_GETATTR(mvp, &vattr, cr)) {
1627				VOP_UNLOCK(mvp, 0);
1628				goto out;
1629			}
1630
1631			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1632			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1633				VOP_UNLOCK(mvp, 0);
1634				goto out;
1635			}
1636			VOP_UNLOCK(mvp, 0);
1637		}
1638
1639		secpolicy_fs_mount_clearopts(cr, vfsp);
1640	}
1641
1642	/*
1643	 * Refuse to mount a filesystem if we are in a local zone and the
1644	 * dataset is not visible.
1645	 */
1646	if (!INGLOBALZONE(curthread) &&
1647	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1648		error = SET_ERROR(EPERM);
1649		goto out;
1650	}
1651
1652#ifdef SECLABEL
1653	error = zfs_mount_label_policy(vfsp, osname);
1654	if (error)
1655		goto out;
1656#endif
1657
1658	vfsp->vfs_flag |= MNT_NFS4ACLS;
1659
1660	/*
1661	 * When doing a remount, we simply refresh our temporary properties
1662	 * according to those options set in the current VFS options.
1663	 */
1664	if (vfsp->vfs_flag & MS_REMOUNT) {
1665		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1666
1667		/*
1668		 * Refresh mount options with z_teardown_lock blocking I/O while
1669		 * the filesystem is in an inconsistent state.
1670		 * The lock also serializes this code with filesystem
1671		 * manipulations between entry to zfs_suspend_fs() and return
1672		 * from zfs_resume_fs().
1673		 */
1674		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1675		zfs_unregister_callbacks(zfsvfs);
1676		error = zfs_register_callbacks(vfsp);
1677		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1678		goto out;
1679	}
1680
1681	/* Initial root mount: try hard to import the requested root pool. */
1682	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1683	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1684		char pname[MAXNAMELEN];
1685
1686		error = getpoolname(osname, pname);
1687		if (error == 0)
1688			error = spa_import_rootpool(pname);
1689		if (error)
1690			goto out;
1691	}
1692	DROP_GIANT();
1693	error = zfs_domount(vfsp, osname);
1694	PICKUP_GIANT();
1695
1696#ifdef illumos
1697	/*
1698	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1699	 * disappear due to a forced unmount.
1700	 */
1701	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1702		VFS_HOLD(mvp->v_vfsp);
1703#endif
1704
1705out:
1706	return (error);
1707}
1708
1709static int
1710zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1711{
1712	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1713	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1714
1715	statp->f_version = STATFS_VERSION;
1716
1717	ZFS_ENTER(zfsvfs);
1718
1719	dmu_objset_space(zfsvfs->z_os,
1720	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1721
1722	/*
1723	 * The underlying storage pool actually uses multiple block sizes.
1724	 * We report the fragsize as the smallest block size we support,
1725	 * and we report our blocksize as the filesystem's maximum blocksize.
1726	 */
1727	statp->f_bsize = SPA_MINBLOCKSIZE;
1728	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1729
1730	/*
1731	 * The following report "total" blocks of various kinds in the
1732	 * file system, but reported in terms of f_frsize - the
1733	 * "fragment" size.
1734	 */
1735
1736	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1737	statp->f_bfree = availbytes / statp->f_bsize;
1738	statp->f_bavail = statp->f_bfree; /* no root reservation */
1739
1740	/*
1741	 * statvfs() should really be called statufs(), because it assumes
1742	 * static metadata.  ZFS doesn't preallocate files, so the best
1743	 * we can do is report the max that could possibly fit in f_files,
1744	 * and that minus the number actually used in f_ffree.
1745	 * For f_ffree, report the smaller of the number of object available
1746	 * and the number of blocks (each object will take at least a block).
1747	 */
1748	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1749	statp->f_files = statp->f_ffree + usedobjs;
1750
1751	/*
1752	 * We're a zfs filesystem.
1753	 */
1754	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1755
1756	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1757	    sizeof(statp->f_mntfromname));
1758	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1759	    sizeof(statp->f_mntonname));
1760
1761	statp->f_namemax = ZFS_MAXNAMELEN;
1762
1763	ZFS_EXIT(zfsvfs);
1764	return (0);
1765}
1766
1767static int
1768zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1769{
1770	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1771	znode_t *rootzp;
1772	int error;
1773
1774	ZFS_ENTER(zfsvfs);
1775
1776	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1777	if (error == 0)
1778		*vpp = ZTOV(rootzp);
1779
1780	ZFS_EXIT(zfsvfs);
1781
1782	if (error == 0) {
1783		error = vn_lock(*vpp, flags);
1784		if (error == 0)
1785			(*vpp)->v_vflag |= VV_ROOT;
1786	}
1787	if (error != 0)
1788		*vpp = NULL;
1789
1790	return (error);
1791}
1792
1793/*
1794 * Teardown the zfsvfs::z_os.
1795 *
1796 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1797 * and 'z_teardown_inactive_lock' held.
1798 */
1799static int
1800zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1801{
1802	znode_t	*zp;
1803
1804	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1805
1806	if (!unmounting) {
1807		/*
1808		 * We purge the parent filesystem's vfsp as the parent
1809		 * filesystem and all of its snapshots have their vnode's
1810		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1811		 * 'z_parent' is self referential for non-snapshots.
1812		 */
1813		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1814#ifdef FREEBSD_NAMECACHE
1815		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1816#endif
1817	}
1818
1819	/*
1820	 * Close the zil. NB: Can't close the zil while zfs_inactive
1821	 * threads are blocked as zil_close can call zfs_inactive.
1822	 */
1823	if (zfsvfs->z_log) {
1824		zil_close(zfsvfs->z_log);
1825		zfsvfs->z_log = NULL;
1826	}
1827
1828	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1829
1830	/*
1831	 * If we are not unmounting (ie: online recv) and someone already
1832	 * unmounted this file system while we were doing the switcheroo,
1833	 * or a reopen of z_os failed then just bail out now.
1834	 */
1835	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1836		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1837		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1838		return (SET_ERROR(EIO));
1839	}
1840
1841	/*
1842	 * At this point there are no vops active, and any new vops will
1843	 * fail with EIO since we have z_teardown_lock for writer (only
1844	 * relavent for forced unmount).
1845	 *
1846	 * Release all holds on dbufs.
1847	 */
1848	mutex_enter(&zfsvfs->z_znodes_lock);
1849	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1850	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1851		if (zp->z_sa_hdl) {
1852			ASSERT(ZTOV(zp)->v_count >= 0);
1853			zfs_znode_dmu_fini(zp);
1854		}
1855	mutex_exit(&zfsvfs->z_znodes_lock);
1856
1857	/*
1858	 * If we are unmounting, set the unmounted flag and let new vops
1859	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1860	 * other vops will fail with EIO.
1861	 */
1862	if (unmounting) {
1863		zfsvfs->z_unmounted = B_TRUE;
1864		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1865		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1866	}
1867
1868	/*
1869	 * z_os will be NULL if there was an error in attempting to reopen
1870	 * zfsvfs, so just return as the properties had already been
1871	 * unregistered and cached data had been evicted before.
1872	 */
1873	if (zfsvfs->z_os == NULL)
1874		return (0);
1875
1876	/*
1877	 * Unregister properties.
1878	 */
1879	zfs_unregister_callbacks(zfsvfs);
1880
1881	/*
1882	 * Evict cached data
1883	 */
1884	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1885	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1886		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1887	dmu_objset_evict_dbufs(zfsvfs->z_os);
1888
1889	return (0);
1890}
1891
1892/*ARGSUSED*/
1893static int
1894zfs_umount(vfs_t *vfsp, int fflag)
1895{
1896	kthread_t *td = curthread;
1897	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1898	objset_t *os;
1899	cred_t *cr = td->td_ucred;
1900	int ret;
1901
1902	ret = secpolicy_fs_unmount(cr, vfsp);
1903	if (ret) {
1904		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1905		    ZFS_DELEG_PERM_MOUNT, cr))
1906			return (ret);
1907	}
1908
1909	/*
1910	 * We purge the parent filesystem's vfsp as the parent filesystem
1911	 * and all of its snapshots have their vnode's v_vfsp set to the
1912	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1913	 * referential for non-snapshots.
1914	 */
1915	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1916
1917	/*
1918	 * Unmount any snapshots mounted under .zfs before unmounting the
1919	 * dataset itself.
1920	 */
1921	if (zfsvfs->z_ctldir != NULL) {
1922		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1923			return (ret);
1924		ret = vflush(vfsp, 0, 0, td);
1925		ASSERT(ret == EBUSY);
1926		if (!(fflag & MS_FORCE)) {
1927			if (zfsvfs->z_ctldir->v_count > 1)
1928				return (EBUSY);
1929			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1930		}
1931		zfsctl_destroy(zfsvfs);
1932		ASSERT(zfsvfs->z_ctldir == NULL);
1933	}
1934
1935	if (fflag & MS_FORCE) {
1936		/*
1937		 * Mark file system as unmounted before calling
1938		 * vflush(FORCECLOSE). This way we ensure no future vnops
1939		 * will be called and risk operating on DOOMED vnodes.
1940		 */
1941		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1942		zfsvfs->z_unmounted = B_TRUE;
1943		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1944	}
1945
1946	/*
1947	 * Flush all the files.
1948	 */
1949	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1950	if (ret != 0) {
1951		if (!zfsvfs->z_issnap) {
1952			zfsctl_create(zfsvfs);
1953			ASSERT(zfsvfs->z_ctldir != NULL);
1954		}
1955		return (ret);
1956	}
1957
1958#ifdef illumos
1959	if (!(fflag & MS_FORCE)) {
1960		/*
1961		 * Check the number of active vnodes in the file system.
1962		 * Our count is maintained in the vfs structure, but the
1963		 * number is off by 1 to indicate a hold on the vfs
1964		 * structure itself.
1965		 *
1966		 * The '.zfs' directory maintains a reference of its
1967		 * own, and any active references underneath are
1968		 * reflected in the vnode count.
1969		 */
1970		if (zfsvfs->z_ctldir == NULL) {
1971			if (vfsp->vfs_count > 1)
1972				return (SET_ERROR(EBUSY));
1973		} else {
1974			if (vfsp->vfs_count > 2 ||
1975			    zfsvfs->z_ctldir->v_count > 1)
1976				return (SET_ERROR(EBUSY));
1977		}
1978	}
1979#endif
1980
1981	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1982	os = zfsvfs->z_os;
1983
1984	/*
1985	 * z_os will be NULL if there was an error in
1986	 * attempting to reopen zfsvfs.
1987	 */
1988	if (os != NULL) {
1989		/*
1990		 * Unset the objset user_ptr.
1991		 */
1992		mutex_enter(&os->os_user_ptr_lock);
1993		dmu_objset_set_user(os, NULL);
1994		mutex_exit(&os->os_user_ptr_lock);
1995
1996		/*
1997		 * Finally release the objset
1998		 */
1999		dmu_objset_disown(os, zfsvfs);
2000	}
2001
2002	/*
2003	 * We can now safely destroy the '.zfs' directory node.
2004	 */
2005	if (zfsvfs->z_ctldir != NULL)
2006		zfsctl_destroy(zfsvfs);
2007	if (zfsvfs->z_issnap) {
2008		vnode_t *svp = vfsp->mnt_vnodecovered;
2009
2010		if (svp->v_count >= 2)
2011			VN_RELE(svp);
2012	}
2013	zfs_freevfs(vfsp);
2014
2015	return (0);
2016}
2017
2018static int
2019zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2020{
2021	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2022	znode_t		*zp;
2023	int 		err;
2024
2025	/*
2026	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2027	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2028	 * This will make NFS to switch to LOOKUP instead of using VGET.
2029	 */
2030	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2031	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2032		return (EOPNOTSUPP);
2033
2034	ZFS_ENTER(zfsvfs);
2035	err = zfs_zget(zfsvfs, ino, &zp);
2036	if (err == 0 && zp->z_unlinked) {
2037		VN_RELE(ZTOV(zp));
2038		err = EINVAL;
2039	}
2040	if (err == 0)
2041		*vpp = ZTOV(zp);
2042	ZFS_EXIT(zfsvfs);
2043	if (err == 0)
2044		err = vn_lock(*vpp, flags);
2045	if (err != 0)
2046		*vpp = NULL;
2047	return (err);
2048}
2049
2050static int
2051zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2052    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2053{
2054	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2055
2056	/*
2057	 * If this is regular file system vfsp is the same as
2058	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2059	 * zfsvfs->z_parent->z_vfs represents parent file system
2060	 * which we have to use here, because only this file system
2061	 * has mnt_export configured.
2062	 */
2063	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2064	    credanonp, numsecflavors, secflavors));
2065}
2066
2067CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2068CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2069
2070static int
2071zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2072{
2073	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2074	znode_t		*zp;
2075	uint64_t	object = 0;
2076	uint64_t	fid_gen = 0;
2077	uint64_t	gen_mask;
2078	uint64_t	zp_gen;
2079	int 		i, err;
2080
2081	*vpp = NULL;
2082
2083	ZFS_ENTER(zfsvfs);
2084
2085	/*
2086	 * On FreeBSD we can get snapshot's mount point or its parent file
2087	 * system mount point depending if snapshot is already mounted or not.
2088	 */
2089	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2090		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2091		uint64_t	objsetid = 0;
2092		uint64_t	setgen = 0;
2093
2094		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2095			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2096
2097		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2098			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2099
2100		ZFS_EXIT(zfsvfs);
2101
2102		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2103		if (err)
2104			return (SET_ERROR(EINVAL));
2105		ZFS_ENTER(zfsvfs);
2106	}
2107
2108	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2109		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2110
2111		for (i = 0; i < sizeof (zfid->zf_object); i++)
2112			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2113
2114		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2115			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2116	} else {
2117		ZFS_EXIT(zfsvfs);
2118		return (SET_ERROR(EINVAL));
2119	}
2120
2121	/*
2122	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2123	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2124	 * we are in the .zfs/shares directory tree.
2125	 */
2126	if ((fid_gen == 0 &&
2127	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2128	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2129		*vpp = zfsvfs->z_ctldir;
2130		ASSERT(*vpp != NULL);
2131		if (object == ZFSCTL_INO_SNAPDIR) {
2132			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2133			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2134		} else if (object == zfsvfs->z_shares_dir) {
2135			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2136			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2137		} else {
2138			VN_HOLD(*vpp);
2139		}
2140		ZFS_EXIT(zfsvfs);
2141		err = vn_lock(*vpp, flags);
2142		if (err != 0)
2143			*vpp = NULL;
2144		return (err);
2145	}
2146
2147	gen_mask = -1ULL >> (64 - 8 * i);
2148
2149	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2150	if (err = zfs_zget(zfsvfs, object, &zp)) {
2151		ZFS_EXIT(zfsvfs);
2152		return (err);
2153	}
2154	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2155	    sizeof (uint64_t));
2156	zp_gen = zp_gen & gen_mask;
2157	if (zp_gen == 0)
2158		zp_gen = 1;
2159	if (zp->z_unlinked || zp_gen != fid_gen) {
2160		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2161		VN_RELE(ZTOV(zp));
2162		ZFS_EXIT(zfsvfs);
2163		return (SET_ERROR(EINVAL));
2164	}
2165
2166	*vpp = ZTOV(zp);
2167	ZFS_EXIT(zfsvfs);
2168	err = vn_lock(*vpp, flags | LK_RETRY);
2169	if (err == 0)
2170		vnode_create_vobject(*vpp, zp->z_size, curthread);
2171	else
2172		*vpp = NULL;
2173	return (err);
2174}
2175
2176/*
2177 * Block out VOPs and close zfsvfs_t::z_os
2178 *
2179 * Note, if successful, then we return with the 'z_teardown_lock' and
2180 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2181 * dataset and objset intact so that they can be atomically handed off during
2182 * a subsequent rollback or recv operation and the resume thereafter.
2183 */
2184int
2185zfs_suspend_fs(zfsvfs_t *zfsvfs)
2186{
2187	int error;
2188
2189	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2190		return (error);
2191
2192	return (0);
2193}
2194
2195/*
2196 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2197 * is an invariant across any of the operations that can be performed while the
2198 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2199 * are the same: the relevant objset and associated dataset are owned by
2200 * zfsvfs, held, and long held on entry.
2201 */
2202int
2203zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2204{
2205	int err;
2206	znode_t *zp;
2207	uint64_t sa_obj = 0;
2208
2209	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2210	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2211
2212	/*
2213	 * We already own this, so just hold and rele it to update the
2214	 * objset_t, as the one we had before may have been evicted.
2215	 */
2216	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2217	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2218	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2219	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2220
2221	/*
2222	 * Make sure version hasn't changed
2223	 */
2224
2225	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2226	    &zfsvfs->z_version);
2227
2228	if (err)
2229		goto bail;
2230
2231	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2232	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2233
2234	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2235		goto bail;
2236
2237	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2238	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2239		goto bail;
2240
2241	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2242		sa_register_update_callback(zfsvfs->z_os,
2243		    zfs_sa_upgrade);
2244
2245	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2246
2247	zfs_set_fuid_feature(zfsvfs);
2248
2249	/*
2250	 * Attempt to re-establish all the active znodes with
2251	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2252	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2253	 * when they try to use their znode.
2254	 */
2255	mutex_enter(&zfsvfs->z_znodes_lock);
2256	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2257	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2258		(void) zfs_rezget(zp);
2259	}
2260	mutex_exit(&zfsvfs->z_znodes_lock);
2261
2262bail:
2263	/* release the VOPs */
2264	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2265	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2266
2267	if (err) {
2268		/*
2269		 * Since we couldn't setup the sa framework, try to force
2270		 * unmount this file system.
2271		 */
2272		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2273			vfs_ref(zfsvfs->z_vfs);
2274			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2275		}
2276	}
2277	return (err);
2278}
2279
2280static void
2281zfs_freevfs(vfs_t *vfsp)
2282{
2283	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2284
2285#ifdef illumos
2286	/*
2287	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2288	 * from zfs_mount().  Release it here.  If we came through
2289	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2290	 * skip the VFS_RELE for rootvfs.
2291	 */
2292	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2293		VFS_RELE(zfsvfs->z_parent->z_vfs);
2294#endif
2295
2296	zfsvfs_free(zfsvfs);
2297
2298	atomic_dec_32(&zfs_active_fs_count);
2299}
2300
2301#ifdef __i386__
2302static int desiredvnodes_backup;
2303#endif
2304
2305static void
2306zfs_vnodes_adjust(void)
2307{
2308#ifdef __i386__
2309	int newdesiredvnodes;
2310
2311	desiredvnodes_backup = desiredvnodes;
2312
2313	/*
2314	 * We calculate newdesiredvnodes the same way it is done in
2315	 * vntblinit(). If it is equal to desiredvnodes, it means that
2316	 * it wasn't tuned by the administrator and we can tune it down.
2317	 */
2318	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2319	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2320	    sizeof(struct vnode))));
2321	if (newdesiredvnodes == desiredvnodes)
2322		desiredvnodes = (3 * newdesiredvnodes) / 4;
2323#endif
2324}
2325
2326static void
2327zfs_vnodes_adjust_back(void)
2328{
2329
2330#ifdef __i386__
2331	desiredvnodes = desiredvnodes_backup;
2332#endif
2333}
2334
2335void
2336zfs_init(void)
2337{
2338
2339	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2340
2341	/*
2342	 * Initialize .zfs directory structures
2343	 */
2344	zfsctl_init();
2345
2346	/*
2347	 * Initialize znode cache, vnode ops, etc...
2348	 */
2349	zfs_znode_init();
2350
2351	/*
2352	 * Reduce number of vnodes. Originally number of vnodes is calculated
2353	 * with UFS inode in mind. We reduce it here, because it's too big for
2354	 * ZFS/i386.
2355	 */
2356	zfs_vnodes_adjust();
2357
2358	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2359}
2360
2361void
2362zfs_fini(void)
2363{
2364	zfsctl_fini();
2365	zfs_znode_fini();
2366	zfs_vnodes_adjust_back();
2367}
2368
2369int
2370zfs_busy(void)
2371{
2372	return (zfs_active_fs_count != 0);
2373}
2374
2375int
2376zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2377{
2378	int error;
2379	objset_t *os = zfsvfs->z_os;
2380	dmu_tx_t *tx;
2381
2382	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2383		return (SET_ERROR(EINVAL));
2384
2385	if (newvers < zfsvfs->z_version)
2386		return (SET_ERROR(EINVAL));
2387
2388	if (zfs_spa_version_map(newvers) >
2389	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2390		return (SET_ERROR(ENOTSUP));
2391
2392	tx = dmu_tx_create(os);
2393	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2394	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2395		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2396		    ZFS_SA_ATTRS);
2397		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2398	}
2399	error = dmu_tx_assign(tx, TXG_WAIT);
2400	if (error) {
2401		dmu_tx_abort(tx);
2402		return (error);
2403	}
2404
2405	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2406	    8, 1, &newvers, tx);
2407
2408	if (error) {
2409		dmu_tx_commit(tx);
2410		return (error);
2411	}
2412
2413	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2414		uint64_t sa_obj;
2415
2416		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2417		    SPA_VERSION_SA);
2418		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2419		    DMU_OT_NONE, 0, tx);
2420
2421		error = zap_add(os, MASTER_NODE_OBJ,
2422		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2423		ASSERT0(error);
2424
2425		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2426		sa_register_update_callback(os, zfs_sa_upgrade);
2427	}
2428
2429	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2430	    "from %llu to %llu", zfsvfs->z_version, newvers);
2431
2432	dmu_tx_commit(tx);
2433
2434	zfsvfs->z_version = newvers;
2435
2436	zfs_set_fuid_feature(zfsvfs);
2437
2438	return (0);
2439}
2440
2441/*
2442 * Read a property stored within the master node.
2443 */
2444int
2445zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2446{
2447	const char *pname;
2448	int error = ENOENT;
2449
2450	/*
2451	 * Look up the file system's value for the property.  For the
2452	 * version property, we look up a slightly different string.
2453	 */
2454	if (prop == ZFS_PROP_VERSION)
2455		pname = ZPL_VERSION_STR;
2456	else
2457		pname = zfs_prop_to_name(prop);
2458
2459	if (os != NULL)
2460		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2461
2462	if (error == ENOENT) {
2463		/* No value set, use the default value */
2464		switch (prop) {
2465		case ZFS_PROP_VERSION:
2466			*value = ZPL_VERSION;
2467			break;
2468		case ZFS_PROP_NORMALIZE:
2469		case ZFS_PROP_UTF8ONLY:
2470			*value = 0;
2471			break;
2472		case ZFS_PROP_CASE:
2473			*value = ZFS_CASE_SENSITIVE;
2474			break;
2475		default:
2476			return (error);
2477		}
2478		error = 0;
2479	}
2480	return (error);
2481}
2482
2483#ifdef _KERNEL
2484void
2485zfsvfs_update_fromname(const char *oldname, const char *newname)
2486{
2487	char tmpbuf[MAXPATHLEN];
2488	struct mount *mp;
2489	char *fromname;
2490	size_t oldlen;
2491
2492	oldlen = strlen(oldname);
2493
2494	mtx_lock(&mountlist_mtx);
2495	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2496		fromname = mp->mnt_stat.f_mntfromname;
2497		if (strcmp(fromname, oldname) == 0) {
2498			(void)strlcpy(fromname, newname,
2499			    sizeof(mp->mnt_stat.f_mntfromname));
2500			continue;
2501		}
2502		if (strncmp(fromname, oldname, oldlen) == 0 &&
2503		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2504			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2505			    newname, fromname + oldlen);
2506			(void)strlcpy(fromname, tmpbuf,
2507			    sizeof(mp->mnt_stat.f_mntfromname));
2508			continue;
2509		}
2510	}
2511	mtx_unlock(&mountlist_mtx);
2512}
2513#endif
2514