zfs_vfsops.c revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	if (vfsp != NULL) {
137		/*
138		 * Sync a specific filesystem.
139		 */
140		zfsvfs_t *zfsvfs = vfsp->vfs_data;
141		dsl_pool_t *dp;
142		int error;
143
144		error = vfs_stdsync(vfsp, waitfor);
145		if (error != 0)
146			return (error);
147
148		ZFS_ENTER(zfsvfs);
149		dp = dmu_objset_pool(zfsvfs->z_os);
150
151		/*
152		 * If the system is shutting down, then skip any
153		 * filesystems which may exist on a suspended pool.
154		 */
155		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
156			ZFS_EXIT(zfsvfs);
157			return (0);
158		}
159
160		if (zfsvfs->z_log != NULL)
161			zil_commit(zfsvfs->z_log, 0);
162
163		ZFS_EXIT(zfsvfs);
164	} else {
165		/*
166		 * Sync all ZFS filesystems.  This is what happens when you
167		 * run sync(1M).  Unlike other filesystems, ZFS honors the
168		 * request by waiting for all pools to commit all dirty data.
169		 */
170		spa_sync_allpools();
171	}
172
173	return (0);
174}
175
176#ifndef __FreeBSD_kernel__
177static int
178zfs_create_unique_device(dev_t *dev)
179{
180	major_t new_major;
181
182	do {
183		ASSERT3U(zfs_minor, <=, MAXMIN32);
184		minor_t start = zfs_minor;
185		do {
186			mutex_enter(&zfs_dev_mtx);
187			if (zfs_minor >= MAXMIN32) {
188				/*
189				 * If we're still using the real major
190				 * keep out of /dev/zfs and /dev/zvol minor
191				 * number space.  If we're using a getudev()'ed
192				 * major number, we can use all of its minors.
193				 */
194				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
195					zfs_minor = ZFS_MIN_MINOR;
196				else
197					zfs_minor = 0;
198			} else {
199				zfs_minor++;
200			}
201			*dev = makedevice(zfs_major, zfs_minor);
202			mutex_exit(&zfs_dev_mtx);
203		} while (vfs_devismounted(*dev) && zfs_minor != start);
204		if (zfs_minor == start) {
205			/*
206			 * We are using all ~262,000 minor numbers for the
207			 * current major number.  Create a new major number.
208			 */
209			if ((new_major = getudev()) == (major_t)-1) {
210				cmn_err(CE_WARN,
211				    "zfs_mount: Can't get unique major "
212				    "device number.");
213				return (-1);
214			}
215			mutex_enter(&zfs_dev_mtx);
216			zfs_major = new_major;
217			zfs_minor = 0;
218
219			mutex_exit(&zfs_dev_mtx);
220		} else {
221			break;
222		}
223		/* CONSTANTCONDITION */
224	} while (1);
225
226	return (0);
227}
228#endif	/* !__FreeBSD_kernel__ */
229
230static void
231atime_changed_cb(void *arg, uint64_t newval)
232{
233	zfsvfs_t *zfsvfs = arg;
234
235	if (newval == TRUE) {
236		zfsvfs->z_atime = TRUE;
237		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
238		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
239		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
240	} else {
241		zfsvfs->z_atime = FALSE;
242		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
243		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
244		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
245	}
246}
247
248static void
249xattr_changed_cb(void *arg, uint64_t newval)
250{
251	zfsvfs_t *zfsvfs = arg;
252
253	if (newval == TRUE) {
254		/* XXX locking on vfs_flag? */
255#ifdef TODO
256		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257#endif
258		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
259		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
260	} else {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267	}
268}
269
270static void
271blksz_changed_cb(void *arg, uint64_t newval)
272{
273	zfsvfs_t *zfsvfs = arg;
274	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
275	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
276	ASSERT(ISP2(newval));
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	boolean_t readonly = B_FALSE;
393	boolean_t do_readonly = B_FALSE;
394	boolean_t setuid = B_FALSE;
395	boolean_t do_setuid = B_FALSE;
396	boolean_t exec = B_FALSE;
397	boolean_t do_exec = B_FALSE;
398#ifdef illumos
399	boolean_t devices = B_FALSE;
400	boolean_t do_devices = B_FALSE;
401#endif
402	boolean_t xattr = B_FALSE;
403	boolean_t do_xattr = B_FALSE;
404	boolean_t atime = B_FALSE;
405	boolean_t do_atime = B_FALSE;
406	int error = 0;
407
408	ASSERT(vfsp);
409	zfsvfs = vfsp->vfs_data;
410	ASSERT(zfsvfs);
411	os = zfsvfs->z_os;
412
413	/*
414	 * This function can be called for a snapshot when we update snapshot's
415	 * mount point, which isn't really supported.
416	 */
417	if (dmu_objset_is_snapshot(os))
418		return (EOPNOTSUPP);
419
420	/*
421	 * The act of registering our callbacks will destroy any mount
422	 * options we may have.  In order to enable temporary overrides
423	 * of mount options, we stash away the current values and
424	 * restore them after we register the callbacks.
425	 */
426	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
427	    !spa_writeable(dmu_objset_spa(os))) {
428		readonly = B_TRUE;
429		do_readonly = B_TRUE;
430	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
431		readonly = B_FALSE;
432		do_readonly = B_TRUE;
433	}
434	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
435		setuid = B_FALSE;
436		do_setuid = B_TRUE;
437	} else {
438		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
439			setuid = B_FALSE;
440			do_setuid = B_TRUE;
441		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
442			setuid = B_TRUE;
443			do_setuid = B_TRUE;
444		}
445	}
446	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
447		exec = B_FALSE;
448		do_exec = B_TRUE;
449	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
450		exec = B_TRUE;
451		do_exec = B_TRUE;
452	}
453	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
454		xattr = B_FALSE;
455		do_xattr = B_TRUE;
456	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
457		xattr = B_TRUE;
458		do_xattr = B_TRUE;
459	}
460	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
461		atime = B_FALSE;
462		do_atime = B_TRUE;
463	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
464		atime = B_TRUE;
465		do_atime = B_TRUE;
466	}
467
468	/*
469	 * We need to enter pool configuration here, so that we can use
470	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
471	 * dsl_prop_get_integer() can not be used, because it has to acquire
472	 * spa_namespace_lock and we can not do that because we already hold
473	 * z_teardown_lock.  The problem is that spa_config_sync() is called
474	 * with spa_namespace_lock held and the function calls ZFS vnode
475	 * operations to write the cache file and thus z_teardown_lock is
476	 * acquired after spa_namespace_lock.
477	 */
478	ds = dmu_objset_ds(os);
479	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
480
481	/*
482	 * nbmand is a special property.  It can only be changed at
483	 * mount time.
484	 *
485	 * This is weird, but it is documented to only be changeable
486	 * at mount time.
487	 */
488	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
489		nbmand = B_FALSE;
490	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
491		nbmand = B_TRUE;
492	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
493		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
494		return (error);
495	}
496
497	/*
498	 * Register property callbacks.
499	 *
500	 * It would probably be fine to just check for i/o error from
501	 * the first prop_register(), but I guess I like to go
502	 * overboard...
503	 */
504	error = dsl_prop_register(ds,
505	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
506	error = error ? error : dsl_prop_register(ds,
507	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
508	error = error ? error : dsl_prop_register(ds,
509	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
510	error = error ? error : dsl_prop_register(ds,
511	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
512#ifdef illumos
513	error = error ? error : dsl_prop_register(ds,
514	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
515#endif
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
520	error = error ? error : dsl_prop_register(ds,
521	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
522	error = error ? error : dsl_prop_register(ds,
523	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
526	    zfsvfs);
527	error = error ? error : dsl_prop_register(ds,
528	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
529	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
530	if (error)
531		goto unregister;
532
533	/*
534	 * Invoke our callbacks to restore temporary mount options.
535	 */
536	if (do_readonly)
537		readonly_changed_cb(zfsvfs, readonly);
538	if (do_setuid)
539		setuid_changed_cb(zfsvfs, setuid);
540	if (do_exec)
541		exec_changed_cb(zfsvfs, exec);
542	if (do_xattr)
543		xattr_changed_cb(zfsvfs, xattr);
544	if (do_atime)
545		atime_changed_cb(zfsvfs, atime);
546
547	nbmand_changed_cb(zfsvfs, nbmand);
548
549	return (0);
550
551unregister:
552	dsl_prop_unregister_all(ds, zfsvfs);
553	return (error);
554}
555
556static int
557zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
558    uint64_t *userp, uint64_t *groupp)
559{
560	/*
561	 * Is it a valid type of object to track?
562	 */
563	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
564		return (SET_ERROR(ENOENT));
565
566	/*
567	 * If we have a NULL data pointer
568	 * then assume the id's aren't changing and
569	 * return EEXIST to the dmu to let it know to
570	 * use the same ids
571	 */
572	if (data == NULL)
573		return (SET_ERROR(EEXIST));
574
575	if (bonustype == DMU_OT_ZNODE) {
576		znode_phys_t *znp = data;
577		*userp = znp->zp_uid;
578		*groupp = znp->zp_gid;
579	} else {
580		int hdrsize;
581		sa_hdr_phys_t *sap = data;
582		sa_hdr_phys_t sa = *sap;
583		boolean_t swap = B_FALSE;
584
585		ASSERT(bonustype == DMU_OT_SA);
586
587		if (sa.sa_magic == 0) {
588			/*
589			 * This should only happen for newly created
590			 * files that haven't had the znode data filled
591			 * in yet.
592			 */
593			*userp = 0;
594			*groupp = 0;
595			return (0);
596		}
597		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
598			sa.sa_magic = SA_MAGIC;
599			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
600			swap = B_TRUE;
601		} else {
602			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
603		}
604
605		hdrsize = sa_hdrsize(&sa);
606		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
607		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
608		    SA_UID_OFFSET));
609		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
610		    SA_GID_OFFSET));
611		if (swap) {
612			*userp = BSWAP_64(*userp);
613			*groupp = BSWAP_64(*groupp);
614		}
615	}
616	return (0);
617}
618
619static void
620fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
621    char *domainbuf, int buflen, uid_t *ridp)
622{
623	uint64_t fuid;
624	const char *domain;
625
626	fuid = strtonum(fuidstr, NULL);
627
628	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
629	if (domain)
630		(void) strlcpy(domainbuf, domain, buflen);
631	else
632		domainbuf[0] = '\0';
633	*ridp = FUID_RID(fuid);
634}
635
636static uint64_t
637zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
638{
639	switch (type) {
640	case ZFS_PROP_USERUSED:
641		return (DMU_USERUSED_OBJECT);
642	case ZFS_PROP_GROUPUSED:
643		return (DMU_GROUPUSED_OBJECT);
644	case ZFS_PROP_USERQUOTA:
645		return (zfsvfs->z_userquota_obj);
646	case ZFS_PROP_GROUPQUOTA:
647		return (zfsvfs->z_groupquota_obj);
648	}
649	return (0);
650}
651
652int
653zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
654    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
655{
656	int error;
657	zap_cursor_t zc;
658	zap_attribute_t za;
659	zfs_useracct_t *buf = vbuf;
660	uint64_t obj;
661
662	if (!dmu_objset_userspace_present(zfsvfs->z_os))
663		return (SET_ERROR(ENOTSUP));
664
665	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
666	if (obj == 0) {
667		*bufsizep = 0;
668		return (0);
669	}
670
671	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
672	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
673	    zap_cursor_advance(&zc)) {
674		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
675		    *bufsizep)
676			break;
677
678		fuidstr_to_sid(zfsvfs, za.za_name,
679		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
680
681		buf->zu_space = za.za_first_integer;
682		buf++;
683	}
684	if (error == ENOENT)
685		error = 0;
686
687	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
688	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
689	*cookiep = zap_cursor_serialize(&zc);
690	zap_cursor_fini(&zc);
691	return (error);
692}
693
694/*
695 * buf must be big enough (eg, 32 bytes)
696 */
697static int
698id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
699    char *buf, boolean_t addok)
700{
701	uint64_t fuid;
702	int domainid = 0;
703
704	if (domain && domain[0]) {
705		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
706		if (domainid == -1)
707			return (SET_ERROR(ENOENT));
708	}
709	fuid = FUID_ENCODE(domainid, rid);
710	(void) sprintf(buf, "%llx", (longlong_t)fuid);
711	return (0);
712}
713
714int
715zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
716    const char *domain, uint64_t rid, uint64_t *valp)
717{
718	char buf[32];
719	int err;
720	uint64_t obj;
721
722	*valp = 0;
723
724	if (!dmu_objset_userspace_present(zfsvfs->z_os))
725		return (SET_ERROR(ENOTSUP));
726
727	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
728	if (obj == 0)
729		return (0);
730
731	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
732	if (err)
733		return (err);
734
735	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
736	if (err == ENOENT)
737		err = 0;
738	return (err);
739}
740
741int
742zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
743    const char *domain, uint64_t rid, uint64_t quota)
744{
745	char buf[32];
746	int err;
747	dmu_tx_t *tx;
748	uint64_t *objp;
749	boolean_t fuid_dirtied;
750
751	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
752		return (SET_ERROR(EINVAL));
753
754	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
755		return (SET_ERROR(ENOTSUP));
756
757	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
758	    &zfsvfs->z_groupquota_obj;
759
760	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
761	if (err)
762		return (err);
763	fuid_dirtied = zfsvfs->z_fuid_dirty;
764
765	tx = dmu_tx_create(zfsvfs->z_os);
766	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
767	if (*objp == 0) {
768		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
769		    zfs_userquota_prop_prefixes[type]);
770	}
771	if (fuid_dirtied)
772		zfs_fuid_txhold(zfsvfs, tx);
773	err = dmu_tx_assign(tx, TXG_WAIT);
774	if (err) {
775		dmu_tx_abort(tx);
776		return (err);
777	}
778
779	mutex_enter(&zfsvfs->z_lock);
780	if (*objp == 0) {
781		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
782		    DMU_OT_NONE, 0, tx);
783		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
784		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
785	}
786	mutex_exit(&zfsvfs->z_lock);
787
788	if (quota == 0) {
789		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
790		if (err == ENOENT)
791			err = 0;
792	} else {
793		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
794	}
795	ASSERT(err == 0);
796	if (fuid_dirtied)
797		zfs_fuid_sync(zfsvfs, tx);
798	dmu_tx_commit(tx);
799	return (err);
800}
801
802boolean_t
803zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
804{
805	char buf[32];
806	uint64_t used, quota, usedobj, quotaobj;
807	int err;
808
809	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
810	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
811
812	if (quotaobj == 0 || zfsvfs->z_replay)
813		return (B_FALSE);
814
815	(void) sprintf(buf, "%llx", (longlong_t)fuid);
816	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
817	if (err != 0)
818		return (B_FALSE);
819
820	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
821	if (err != 0)
822		return (B_FALSE);
823	return (used >= quota);
824}
825
826boolean_t
827zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
828{
829	uint64_t fuid;
830	uint64_t quotaobj;
831
832	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
833
834	fuid = isgroup ? zp->z_gid : zp->z_uid;
835
836	if (quotaobj == 0 || zfsvfs->z_replay)
837		return (B_FALSE);
838
839	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
840}
841
842int
843zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
844{
845	objset_t *os;
846	zfsvfs_t *zfsvfs;
847	uint64_t zval;
848	int i, error;
849	uint64_t sa_obj;
850
851	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
852
853	/*
854	 * We claim to always be readonly so we can open snapshots;
855	 * other ZPL code will prevent us from writing to snapshots.
856	 */
857	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
858	if (error) {
859		kmem_free(zfsvfs, sizeof (zfsvfs_t));
860		return (error);
861	}
862
863	/*
864	 * Initialize the zfs-specific filesystem structure.
865	 * Should probably make this a kmem cache, shuffle fields,
866	 * and just bzero up to z_hold_mtx[].
867	 */
868	zfsvfs->z_vfs = NULL;
869	zfsvfs->z_parent = zfsvfs;
870	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
871	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
872	zfsvfs->z_os = os;
873
874	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
875	if (error) {
876		goto out;
877	} else if (zfsvfs->z_version >
878	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
879		(void) printf("Can't mount a version %lld file system "
880		    "on a version %lld pool\n. Pool must be upgraded to mount "
881		    "this file system.", (u_longlong_t)zfsvfs->z_version,
882		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
883		error = SET_ERROR(ENOTSUP);
884		goto out;
885	}
886	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
887		goto out;
888	zfsvfs->z_norm = (int)zval;
889
890	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
891		goto out;
892	zfsvfs->z_utf8 = (zval != 0);
893
894	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
895		goto out;
896	zfsvfs->z_case = (uint_t)zval;
897
898	/*
899	 * Fold case on file systems that are always or sometimes case
900	 * insensitive.
901	 */
902	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
903	    zfsvfs->z_case == ZFS_CASE_MIXED)
904		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
905
906	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
907	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
908
909	if (zfsvfs->z_use_sa) {
910		/* should either have both of these objects or none */
911		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
912		    &sa_obj);
913		if (error)
914			goto out;
915	} else {
916		/*
917		 * Pre SA versions file systems should never touch
918		 * either the attribute registration or layout objects.
919		 */
920		sa_obj = 0;
921	}
922
923	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
924	    &zfsvfs->z_attr_table);
925	if (error)
926		goto out;
927
928	if (zfsvfs->z_version >= ZPL_VERSION_SA)
929		sa_register_update_callback(os, zfs_sa_upgrade);
930
931	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
932	    &zfsvfs->z_root);
933	if (error)
934		goto out;
935	ASSERT(zfsvfs->z_root != 0);
936
937	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
938	    &zfsvfs->z_unlinkedobj);
939	if (error)
940		goto out;
941
942	error = zap_lookup(os, MASTER_NODE_OBJ,
943	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
944	    8, 1, &zfsvfs->z_userquota_obj);
945	if (error && error != ENOENT)
946		goto out;
947
948	error = zap_lookup(os, MASTER_NODE_OBJ,
949	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
950	    8, 1, &zfsvfs->z_groupquota_obj);
951	if (error && error != ENOENT)
952		goto out;
953
954	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
955	    &zfsvfs->z_fuid_obj);
956	if (error && error != ENOENT)
957		goto out;
958
959	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
960	    &zfsvfs->z_shares_dir);
961	if (error && error != ENOENT)
962		goto out;
963
964	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
965	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
966	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
967	    offsetof(znode_t, z_link_node));
968	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
969	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
970	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
971	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
972		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
973
974	*zfvp = zfsvfs;
975	return (0);
976
977out:
978	dmu_objset_disown(os, zfsvfs);
979	*zfvp = NULL;
980	kmem_free(zfsvfs, sizeof (zfsvfs_t));
981	return (error);
982}
983
984static int
985zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
986{
987	int error;
988
989	error = zfs_register_callbacks(zfsvfs->z_vfs);
990	if (error)
991		return (error);
992
993	/*
994	 * Set the objset user_ptr to track its zfsvfs.
995	 */
996	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
997	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
998	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
999
1000	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1001
1002	/*
1003	 * If we are not mounting (ie: online recv), then we don't
1004	 * have to worry about replaying the log as we blocked all
1005	 * operations out since we closed the ZIL.
1006	 */
1007	if (mounting) {
1008		boolean_t readonly;
1009
1010		/*
1011		 * During replay we remove the read only flag to
1012		 * allow replays to succeed.
1013		 */
1014		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1015		if (readonly != 0)
1016			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1017		else
1018			zfs_unlinked_drain(zfsvfs);
1019
1020		/*
1021		 * Parse and replay the intent log.
1022		 *
1023		 * Because of ziltest, this must be done after
1024		 * zfs_unlinked_drain().  (Further note: ziltest
1025		 * doesn't use readonly mounts, where
1026		 * zfs_unlinked_drain() isn't called.)  This is because
1027		 * ziltest causes spa_sync() to think it's committed,
1028		 * but actually it is not, so the intent log contains
1029		 * many txg's worth of changes.
1030		 *
1031		 * In particular, if object N is in the unlinked set in
1032		 * the last txg to actually sync, then it could be
1033		 * actually freed in a later txg and then reallocated
1034		 * in a yet later txg.  This would write a "create
1035		 * object N" record to the intent log.  Normally, this
1036		 * would be fine because the spa_sync() would have
1037		 * written out the fact that object N is free, before
1038		 * we could write the "create object N" intent log
1039		 * record.
1040		 *
1041		 * But when we are in ziltest mode, we advance the "open
1042		 * txg" without actually spa_sync()-ing the changes to
1043		 * disk.  So we would see that object N is still
1044		 * allocated and in the unlinked set, and there is an
1045		 * intent log record saying to allocate it.
1046		 */
1047		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1048			if (zil_replay_disable) {
1049				zil_destroy(zfsvfs->z_log, B_FALSE);
1050			} else {
1051				zfsvfs->z_replay = B_TRUE;
1052				zil_replay(zfsvfs->z_os, zfsvfs,
1053				    zfs_replay_vector);
1054				zfsvfs->z_replay = B_FALSE;
1055			}
1056		}
1057		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1058	}
1059
1060	return (0);
1061}
1062
1063extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1064
1065void
1066zfsvfs_free(zfsvfs_t *zfsvfs)
1067{
1068	int i;
1069
1070	/*
1071	 * This is a barrier to prevent the filesystem from going away in
1072	 * zfs_znode_move() until we can safely ensure that the filesystem is
1073	 * not unmounted. We consider the filesystem valid before the barrier
1074	 * and invalid after the barrier.
1075	 */
1076	rw_enter(&zfsvfs_lock, RW_READER);
1077	rw_exit(&zfsvfs_lock);
1078
1079	zfs_fuid_destroy(zfsvfs);
1080
1081	mutex_destroy(&zfsvfs->z_znodes_lock);
1082	mutex_destroy(&zfsvfs->z_lock);
1083	list_destroy(&zfsvfs->z_all_znodes);
1084	rrm_destroy(&zfsvfs->z_teardown_lock);
1085	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1086	rw_destroy(&zfsvfs->z_fuid_lock);
1087	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1088		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1089	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1090}
1091
1092static void
1093zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1094{
1095	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1096	if (zfsvfs->z_vfs) {
1097		if (zfsvfs->z_use_fuids) {
1098			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1099			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1100			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1101			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1102			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1103			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1104		} else {
1105			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1106			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1107			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1108			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1109			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1110			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1111		}
1112	}
1113	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1114}
1115
1116static int
1117zfs_domount(vfs_t *vfsp, char *osname)
1118{
1119	uint64_t recordsize, fsid_guid;
1120	int error = 0;
1121	zfsvfs_t *zfsvfs;
1122	vnode_t *vp;
1123
1124	ASSERT(vfsp);
1125	ASSERT(osname);
1126
1127	error = zfsvfs_create(osname, &zfsvfs);
1128	if (error)
1129		return (error);
1130	zfsvfs->z_vfs = vfsp;
1131
1132#ifdef illumos
1133	/* Initialize the generic filesystem structure. */
1134	vfsp->vfs_bcount = 0;
1135	vfsp->vfs_data = NULL;
1136
1137	if (zfs_create_unique_device(&mount_dev) == -1) {
1138		error = SET_ERROR(ENODEV);
1139		goto out;
1140	}
1141	ASSERT(vfs_devismounted(mount_dev) == 0);
1142#endif
1143
1144	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1145	    NULL))
1146		goto out;
1147	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1148	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1149
1150	vfsp->vfs_data = zfsvfs;
1151	vfsp->mnt_flag |= MNT_LOCAL;
1152	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1153	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1154	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1155
1156	/*
1157	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1158	 * separates our fsid from any other filesystem types, and a
1159	 * 56-bit objset unique ID.  The objset unique ID is unique to
1160	 * all objsets open on this system, provided by unique_create().
1161	 * The 8-bit fs type must be put in the low bits of fsid[1]
1162	 * because that's where other Solaris filesystems put it.
1163	 */
1164	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1165	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1166	vfsp->vfs_fsid.val[0] = fsid_guid;
1167	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1168	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1169
1170	/*
1171	 * Set features for file system.
1172	 */
1173	zfs_set_fuid_feature(zfsvfs);
1174	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1175		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1176		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1177		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1178	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1179		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1180		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1181	}
1182	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1183
1184	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1185		uint64_t pval;
1186
1187		atime_changed_cb(zfsvfs, B_FALSE);
1188		readonly_changed_cb(zfsvfs, B_TRUE);
1189		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1190			goto out;
1191		xattr_changed_cb(zfsvfs, pval);
1192		zfsvfs->z_issnap = B_TRUE;
1193		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1194
1195		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1196		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1197		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1198	} else {
1199		error = zfsvfs_setup(zfsvfs, B_TRUE);
1200	}
1201
1202	vfs_mountedfrom(vfsp, osname);
1203
1204	if (!zfsvfs->z_issnap)
1205		zfsctl_create(zfsvfs);
1206out:
1207	if (error) {
1208		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1209		zfsvfs_free(zfsvfs);
1210	} else {
1211		atomic_inc_32(&zfs_active_fs_count);
1212	}
1213
1214	return (error);
1215}
1216
1217void
1218zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1219{
1220	objset_t *os = zfsvfs->z_os;
1221
1222	if (!dmu_objset_is_snapshot(os))
1223		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1224}
1225
1226#ifdef SECLABEL
1227/*
1228 * Convert a decimal digit string to a uint64_t integer.
1229 */
1230static int
1231str_to_uint64(char *str, uint64_t *objnum)
1232{
1233	uint64_t num = 0;
1234
1235	while (*str) {
1236		if (*str < '0' || *str > '9')
1237			return (SET_ERROR(EINVAL));
1238
1239		num = num*10 + *str++ - '0';
1240	}
1241
1242	*objnum = num;
1243	return (0);
1244}
1245
1246/*
1247 * The boot path passed from the boot loader is in the form of
1248 * "rootpool-name/root-filesystem-object-number'. Convert this
1249 * string to a dataset name: "rootpool-name/root-filesystem-name".
1250 */
1251static int
1252zfs_parse_bootfs(char *bpath, char *outpath)
1253{
1254	char *slashp;
1255	uint64_t objnum;
1256	int error;
1257
1258	if (*bpath == 0 || *bpath == '/')
1259		return (SET_ERROR(EINVAL));
1260
1261	(void) strcpy(outpath, bpath);
1262
1263	slashp = strchr(bpath, '/');
1264
1265	/* if no '/', just return the pool name */
1266	if (slashp == NULL) {
1267		return (0);
1268	}
1269
1270	/* if not a number, just return the root dataset name */
1271	if (str_to_uint64(slashp+1, &objnum)) {
1272		return (0);
1273	}
1274
1275	*slashp = '\0';
1276	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1277	*slashp = '/';
1278
1279	return (error);
1280}
1281
1282/*
1283 * Check that the hex label string is appropriate for the dataset being
1284 * mounted into the global_zone proper.
1285 *
1286 * Return an error if the hex label string is not default or
1287 * admin_low/admin_high.  For admin_low labels, the corresponding
1288 * dataset must be readonly.
1289 */
1290int
1291zfs_check_global_label(const char *dsname, const char *hexsl)
1292{
1293	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1294		return (0);
1295	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1296		return (0);
1297	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1298		/* must be readonly */
1299		uint64_t rdonly;
1300
1301		if (dsl_prop_get_integer(dsname,
1302		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1303			return (SET_ERROR(EACCES));
1304		return (rdonly ? 0 : EACCES);
1305	}
1306	return (SET_ERROR(EACCES));
1307}
1308
1309/*
1310 * Determine whether the mount is allowed according to MAC check.
1311 * by comparing (where appropriate) label of the dataset against
1312 * the label of the zone being mounted into.  If the dataset has
1313 * no label, create one.
1314 *
1315 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1316 */
1317static int
1318zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1319{
1320	int		error, retv;
1321	zone_t		*mntzone = NULL;
1322	ts_label_t	*mnt_tsl;
1323	bslabel_t	*mnt_sl;
1324	bslabel_t	ds_sl;
1325	char		ds_hexsl[MAXNAMELEN];
1326
1327	retv = EACCES;				/* assume the worst */
1328
1329	/*
1330	 * Start by getting the dataset label if it exists.
1331	 */
1332	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1333	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1334	if (error)
1335		return (SET_ERROR(EACCES));
1336
1337	/*
1338	 * If labeling is NOT enabled, then disallow the mount of datasets
1339	 * which have a non-default label already.  No other label checks
1340	 * are needed.
1341	 */
1342	if (!is_system_labeled()) {
1343		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1344			return (0);
1345		return (SET_ERROR(EACCES));
1346	}
1347
1348	/*
1349	 * Get the label of the mountpoint.  If mounting into the global
1350	 * zone (i.e. mountpoint is not within an active zone and the
1351	 * zoned property is off), the label must be default or
1352	 * admin_low/admin_high only; no other checks are needed.
1353	 */
1354	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1355	if (mntzone->zone_id == GLOBAL_ZONEID) {
1356		uint64_t zoned;
1357
1358		zone_rele(mntzone);
1359
1360		if (dsl_prop_get_integer(osname,
1361		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1362			return (SET_ERROR(EACCES));
1363		if (!zoned)
1364			return (zfs_check_global_label(osname, ds_hexsl));
1365		else
1366			/*
1367			 * This is the case of a zone dataset being mounted
1368			 * initially, before the zone has been fully created;
1369			 * allow this mount into global zone.
1370			 */
1371			return (0);
1372	}
1373
1374	mnt_tsl = mntzone->zone_slabel;
1375	ASSERT(mnt_tsl != NULL);
1376	label_hold(mnt_tsl);
1377	mnt_sl = label2bslabel(mnt_tsl);
1378
1379	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1380		/*
1381		 * The dataset doesn't have a real label, so fabricate one.
1382		 */
1383		char *str = NULL;
1384
1385		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1386		    dsl_prop_set_string(osname,
1387		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1388		    ZPROP_SRC_LOCAL, str) == 0)
1389			retv = 0;
1390		if (str != NULL)
1391			kmem_free(str, strlen(str) + 1);
1392	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1393		/*
1394		 * Now compare labels to complete the MAC check.  If the
1395		 * labels are equal then allow access.  If the mountpoint
1396		 * label dominates the dataset label, allow readonly access.
1397		 * Otherwise, access is denied.
1398		 */
1399		if (blequal(mnt_sl, &ds_sl))
1400			retv = 0;
1401		else if (bldominates(mnt_sl, &ds_sl)) {
1402			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1403			retv = 0;
1404		}
1405	}
1406
1407	label_rele(mnt_tsl);
1408	zone_rele(mntzone);
1409	return (retv);
1410}
1411#endif	/* SECLABEL */
1412
1413#ifdef OPENSOLARIS_MOUNTROOT
1414static int
1415zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1416{
1417	int error = 0;
1418	static int zfsrootdone = 0;
1419	zfsvfs_t *zfsvfs = NULL;
1420	znode_t *zp = NULL;
1421	vnode_t *vp = NULL;
1422	char *zfs_bootfs;
1423	char *zfs_devid;
1424
1425	ASSERT(vfsp);
1426
1427	/*
1428	 * The filesystem that we mount as root is defined in the
1429	 * boot property "zfs-bootfs" with a format of
1430	 * "poolname/root-dataset-objnum".
1431	 */
1432	if (why == ROOT_INIT) {
1433		if (zfsrootdone++)
1434			return (SET_ERROR(EBUSY));
1435		/*
1436		 * the process of doing a spa_load will require the
1437		 * clock to be set before we could (for example) do
1438		 * something better by looking at the timestamp on
1439		 * an uberblock, so just set it to -1.
1440		 */
1441		clkset(-1);
1442
1443		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1444			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1445			    "bootfs name");
1446			return (SET_ERROR(EINVAL));
1447		}
1448		zfs_devid = spa_get_bootprop("diskdevid");
1449		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1450		if (zfs_devid)
1451			spa_free_bootprop(zfs_devid);
1452		if (error) {
1453			spa_free_bootprop(zfs_bootfs);
1454			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1455			    error);
1456			return (error);
1457		}
1458		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1459			spa_free_bootprop(zfs_bootfs);
1460			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1461			    error);
1462			return (error);
1463		}
1464
1465		spa_free_bootprop(zfs_bootfs);
1466
1467		if (error = vfs_lock(vfsp))
1468			return (error);
1469
1470		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1471			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1472			goto out;
1473		}
1474
1475		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1476		ASSERT(zfsvfs);
1477		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1478			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1479			goto out;
1480		}
1481
1482		vp = ZTOV(zp);
1483		mutex_enter(&vp->v_lock);
1484		vp->v_flag |= VROOT;
1485		mutex_exit(&vp->v_lock);
1486		rootvp = vp;
1487
1488		/*
1489		 * Leave rootvp held.  The root file system is never unmounted.
1490		 */
1491
1492		vfs_add((struct vnode *)0, vfsp,
1493		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1494out:
1495		vfs_unlock(vfsp);
1496		return (error);
1497	} else if (why == ROOT_REMOUNT) {
1498		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1499		vfsp->vfs_flag |= VFS_REMOUNT;
1500
1501		/* refresh mount options */
1502		zfs_unregister_callbacks(vfsp->vfs_data);
1503		return (zfs_register_callbacks(vfsp));
1504
1505	} else if (why == ROOT_UNMOUNT) {
1506		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1507		(void) zfs_sync(vfsp, 0, 0);
1508		return (0);
1509	}
1510
1511	/*
1512	 * if "why" is equal to anything else other than ROOT_INIT,
1513	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1514	 */
1515	return (SET_ERROR(ENOTSUP));
1516}
1517#endif	/* OPENSOLARIS_MOUNTROOT */
1518
1519static int
1520getpoolname(const char *osname, char *poolname)
1521{
1522	char *p;
1523
1524	p = strchr(osname, '/');
1525	if (p == NULL) {
1526		if (strlen(osname) >= MAXNAMELEN)
1527			return (ENAMETOOLONG);
1528		(void) strcpy(poolname, osname);
1529	} else {
1530		if (p - osname >= MAXNAMELEN)
1531			return (ENAMETOOLONG);
1532		(void) strncpy(poolname, osname, p - osname);
1533		poolname[p - osname] = '\0';
1534	}
1535	return (0);
1536}
1537
1538/*ARGSUSED*/
1539static int
1540zfs_mount(vfs_t *vfsp)
1541{
1542	kthread_t	*td = curthread;
1543	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1544	cred_t		*cr = td->td_ucred;
1545	char		*osname;
1546	int		error = 0;
1547	int		canwrite;
1548
1549#ifdef illumos
1550	if (mvp->v_type != VDIR)
1551		return (SET_ERROR(ENOTDIR));
1552
1553	mutex_enter(&mvp->v_lock);
1554	if ((uap->flags & MS_REMOUNT) == 0 &&
1555	    (uap->flags & MS_OVERLAY) == 0 &&
1556	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1557		mutex_exit(&mvp->v_lock);
1558		return (SET_ERROR(EBUSY));
1559	}
1560	mutex_exit(&mvp->v_lock);
1561
1562	/*
1563	 * ZFS does not support passing unparsed data in via MS_DATA.
1564	 * Users should use the MS_OPTIONSTR interface; this means
1565	 * that all option parsing is already done and the options struct
1566	 * can be interrogated.
1567	 */
1568	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1569#else	/* !illumos */
1570	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1571		return (SET_ERROR(EPERM));
1572
1573	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1574		return (SET_ERROR(EINVAL));
1575#endif	/* illumos */
1576
1577	/*
1578	 * If full-owner-access is enabled and delegated administration is
1579	 * turned on, we must set nosuid.
1580	 */
1581	if (zfs_super_owner &&
1582	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1583		secpolicy_fs_mount_clearopts(cr, vfsp);
1584	}
1585
1586	/*
1587	 * Check for mount privilege?
1588	 *
1589	 * If we don't have privilege then see if
1590	 * we have local permission to allow it
1591	 */
1592	error = secpolicy_fs_mount(cr, mvp, vfsp);
1593	if (error) {
1594		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1595			goto out;
1596
1597		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1598			vattr_t		vattr;
1599
1600			/*
1601			 * Make sure user is the owner of the mount point
1602			 * or has sufficient privileges.
1603			 */
1604
1605			vattr.va_mask = AT_UID;
1606
1607			vn_lock(mvp, LK_SHARED | LK_RETRY);
1608			if (VOP_GETATTR(mvp, &vattr, cr)) {
1609				VOP_UNLOCK(mvp, 0);
1610				goto out;
1611			}
1612
1613			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1614			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1615				VOP_UNLOCK(mvp, 0);
1616				goto out;
1617			}
1618			VOP_UNLOCK(mvp, 0);
1619		}
1620
1621		secpolicy_fs_mount_clearopts(cr, vfsp);
1622	}
1623
1624	/*
1625	 * Refuse to mount a filesystem if we are in a local zone and the
1626	 * dataset is not visible.
1627	 */
1628	if (!INGLOBALZONE(curthread) &&
1629	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1630		error = SET_ERROR(EPERM);
1631		goto out;
1632	}
1633
1634#ifdef SECLABEL
1635	error = zfs_mount_label_policy(vfsp, osname);
1636	if (error)
1637		goto out;
1638#endif
1639
1640	vfsp->vfs_flag |= MNT_NFS4ACLS;
1641
1642	/*
1643	 * When doing a remount, we simply refresh our temporary properties
1644	 * according to those options set in the current VFS options.
1645	 */
1646	if (vfsp->vfs_flag & MS_REMOUNT) {
1647		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1648
1649		/*
1650		 * Refresh mount options with z_teardown_lock blocking I/O while
1651		 * the filesystem is in an inconsistent state.
1652		 * The lock also serializes this code with filesystem
1653		 * manipulations between entry to zfs_suspend_fs() and return
1654		 * from zfs_resume_fs().
1655		 */
1656		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1657		zfs_unregister_callbacks(zfsvfs);
1658		error = zfs_register_callbacks(vfsp);
1659		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1660		goto out;
1661	}
1662
1663	/* Initial root mount: try hard to import the requested root pool. */
1664	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1665	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1666		char pname[MAXNAMELEN];
1667
1668		error = getpoolname(osname, pname);
1669		if (error == 0)
1670			error = spa_import_rootpool(pname);
1671		if (error)
1672			goto out;
1673	}
1674	DROP_GIANT();
1675	error = zfs_domount(vfsp, osname);
1676	PICKUP_GIANT();
1677
1678#ifdef illumos
1679	/*
1680	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1681	 * disappear due to a forced unmount.
1682	 */
1683	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1684		VFS_HOLD(mvp->v_vfsp);
1685#endif
1686
1687out:
1688	return (error);
1689}
1690
1691static int
1692zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1693{
1694	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1695	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1696
1697	statp->f_version = STATFS_VERSION;
1698
1699	ZFS_ENTER(zfsvfs);
1700
1701	dmu_objset_space(zfsvfs->z_os,
1702	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1703
1704	/*
1705	 * The underlying storage pool actually uses multiple block sizes.
1706	 * We report the fragsize as the smallest block size we support,
1707	 * and we report our blocksize as the filesystem's maximum blocksize.
1708	 */
1709	statp->f_bsize = SPA_MINBLOCKSIZE;
1710	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1711
1712	/*
1713	 * The following report "total" blocks of various kinds in the
1714	 * file system, but reported in terms of f_frsize - the
1715	 * "fragment" size.
1716	 */
1717
1718	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1719	statp->f_bfree = availbytes / statp->f_bsize;
1720	statp->f_bavail = statp->f_bfree; /* no root reservation */
1721
1722	/*
1723	 * statvfs() should really be called statufs(), because it assumes
1724	 * static metadata.  ZFS doesn't preallocate files, so the best
1725	 * we can do is report the max that could possibly fit in f_files,
1726	 * and that minus the number actually used in f_ffree.
1727	 * For f_ffree, report the smaller of the number of object available
1728	 * and the number of blocks (each object will take at least a block).
1729	 */
1730	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1731	statp->f_files = statp->f_ffree + usedobjs;
1732
1733	/*
1734	 * We're a zfs filesystem.
1735	 */
1736	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1737
1738	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1739	    sizeof(statp->f_mntfromname));
1740	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1741	    sizeof(statp->f_mntonname));
1742
1743	statp->f_namemax = ZFS_MAXNAMELEN;
1744
1745	ZFS_EXIT(zfsvfs);
1746	return (0);
1747}
1748
1749static int
1750zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1751{
1752	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1753	znode_t *rootzp;
1754	int error;
1755
1756	ZFS_ENTER(zfsvfs);
1757
1758	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1759	if (error == 0)
1760		*vpp = ZTOV(rootzp);
1761
1762	ZFS_EXIT(zfsvfs);
1763
1764	if (error == 0) {
1765		error = vn_lock(*vpp, flags);
1766		if (error == 0)
1767			(*vpp)->v_vflag |= VV_ROOT;
1768	}
1769	if (error != 0)
1770		*vpp = NULL;
1771
1772	return (error);
1773}
1774
1775/*
1776 * Teardown the zfsvfs::z_os.
1777 *
1778 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1779 * and 'z_teardown_inactive_lock' held.
1780 */
1781static int
1782zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1783{
1784	znode_t	*zp;
1785
1786	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1787
1788	if (!unmounting) {
1789		/*
1790		 * We purge the parent filesystem's vfsp as the parent
1791		 * filesystem and all of its snapshots have their vnode's
1792		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1793		 * 'z_parent' is self referential for non-snapshots.
1794		 */
1795		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1796#ifdef FREEBSD_NAMECACHE
1797		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1798#endif
1799	}
1800
1801	/*
1802	 * Close the zil. NB: Can't close the zil while zfs_inactive
1803	 * threads are blocked as zil_close can call zfs_inactive.
1804	 */
1805	if (zfsvfs->z_log) {
1806		zil_close(zfsvfs->z_log);
1807		zfsvfs->z_log = NULL;
1808	}
1809
1810	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1811
1812	/*
1813	 * If we are not unmounting (ie: online recv) and someone already
1814	 * unmounted this file system while we were doing the switcheroo,
1815	 * or a reopen of z_os failed then just bail out now.
1816	 */
1817	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1818		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1819		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1820		return (SET_ERROR(EIO));
1821	}
1822
1823	/*
1824	 * At this point there are no vops active, and any new vops will
1825	 * fail with EIO since we have z_teardown_lock for writer (only
1826	 * relavent for forced unmount).
1827	 *
1828	 * Release all holds on dbufs.
1829	 */
1830	mutex_enter(&zfsvfs->z_znodes_lock);
1831	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1832	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1833		if (zp->z_sa_hdl) {
1834			ASSERT(ZTOV(zp)->v_count >= 0);
1835			zfs_znode_dmu_fini(zp);
1836		}
1837	mutex_exit(&zfsvfs->z_znodes_lock);
1838
1839	/*
1840	 * If we are unmounting, set the unmounted flag and let new vops
1841	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1842	 * other vops will fail with EIO.
1843	 */
1844	if (unmounting) {
1845		zfsvfs->z_unmounted = B_TRUE;
1846		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1847		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1848	}
1849
1850	/*
1851	 * z_os will be NULL if there was an error in attempting to reopen
1852	 * zfsvfs, so just return as the properties had already been
1853	 * unregistered and cached data had been evicted before.
1854	 */
1855	if (zfsvfs->z_os == NULL)
1856		return (0);
1857
1858	/*
1859	 * Unregister properties.
1860	 */
1861	zfs_unregister_callbacks(zfsvfs);
1862
1863	/*
1864	 * Evict cached data
1865	 */
1866	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1867	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1868		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1869	dmu_objset_evict_dbufs(zfsvfs->z_os);
1870
1871	return (0);
1872}
1873
1874/*ARGSUSED*/
1875static int
1876zfs_umount(vfs_t *vfsp, int fflag)
1877{
1878	kthread_t *td = curthread;
1879	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1880	objset_t *os;
1881	cred_t *cr = td->td_ucred;
1882	int ret;
1883
1884	ret = secpolicy_fs_unmount(cr, vfsp);
1885	if (ret) {
1886		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1887		    ZFS_DELEG_PERM_MOUNT, cr))
1888			return (ret);
1889	}
1890
1891	/*
1892	 * We purge the parent filesystem's vfsp as the parent filesystem
1893	 * and all of its snapshots have their vnode's v_vfsp set to the
1894	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1895	 * referential for non-snapshots.
1896	 */
1897	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1898
1899	/*
1900	 * Unmount any snapshots mounted under .zfs before unmounting the
1901	 * dataset itself.
1902	 */
1903	if (zfsvfs->z_ctldir != NULL) {
1904		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1905			return (ret);
1906		ret = vflush(vfsp, 0, 0, td);
1907		ASSERT(ret == EBUSY);
1908		if (!(fflag & MS_FORCE)) {
1909			if (zfsvfs->z_ctldir->v_count > 1)
1910				return (EBUSY);
1911			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1912		}
1913		zfsctl_destroy(zfsvfs);
1914		ASSERT(zfsvfs->z_ctldir == NULL);
1915	}
1916
1917	if (fflag & MS_FORCE) {
1918		/*
1919		 * Mark file system as unmounted before calling
1920		 * vflush(FORCECLOSE). This way we ensure no future vnops
1921		 * will be called and risk operating on DOOMED vnodes.
1922		 */
1923		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1924		zfsvfs->z_unmounted = B_TRUE;
1925		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1926	}
1927
1928	/*
1929	 * Flush all the files.
1930	 */
1931	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1932	if (ret != 0) {
1933		if (!zfsvfs->z_issnap) {
1934			zfsctl_create(zfsvfs);
1935			ASSERT(zfsvfs->z_ctldir != NULL);
1936		}
1937		return (ret);
1938	}
1939
1940#ifdef illumos
1941	if (!(fflag & MS_FORCE)) {
1942		/*
1943		 * Check the number of active vnodes in the file system.
1944		 * Our count is maintained in the vfs structure, but the
1945		 * number is off by 1 to indicate a hold on the vfs
1946		 * structure itself.
1947		 *
1948		 * The '.zfs' directory maintains a reference of its
1949		 * own, and any active references underneath are
1950		 * reflected in the vnode count.
1951		 */
1952		if (zfsvfs->z_ctldir == NULL) {
1953			if (vfsp->vfs_count > 1)
1954				return (SET_ERROR(EBUSY));
1955		} else {
1956			if (vfsp->vfs_count > 2 ||
1957			    zfsvfs->z_ctldir->v_count > 1)
1958				return (SET_ERROR(EBUSY));
1959		}
1960	}
1961#endif
1962
1963	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1964	os = zfsvfs->z_os;
1965
1966	/*
1967	 * z_os will be NULL if there was an error in
1968	 * attempting to reopen zfsvfs.
1969	 */
1970	if (os != NULL) {
1971		/*
1972		 * Unset the objset user_ptr.
1973		 */
1974		mutex_enter(&os->os_user_ptr_lock);
1975		dmu_objset_set_user(os, NULL);
1976		mutex_exit(&os->os_user_ptr_lock);
1977
1978		/*
1979		 * Finally release the objset
1980		 */
1981		dmu_objset_disown(os, zfsvfs);
1982	}
1983
1984	/*
1985	 * We can now safely destroy the '.zfs' directory node.
1986	 */
1987	if (zfsvfs->z_ctldir != NULL)
1988		zfsctl_destroy(zfsvfs);
1989	if (zfsvfs->z_issnap) {
1990		vnode_t *svp = vfsp->mnt_vnodecovered;
1991
1992		if (svp->v_count >= 2)
1993			VN_RELE(svp);
1994	}
1995	zfs_freevfs(vfsp);
1996
1997	return (0);
1998}
1999
2000static int
2001zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2002{
2003	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2004	znode_t		*zp;
2005	int 		err;
2006
2007	/*
2008	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2009	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2010	 * This will make NFS to switch to LOOKUP instead of using VGET.
2011	 */
2012	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2013	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2014		return (EOPNOTSUPP);
2015
2016	ZFS_ENTER(zfsvfs);
2017	err = zfs_zget(zfsvfs, ino, &zp);
2018	if (err == 0 && zp->z_unlinked) {
2019		VN_RELE(ZTOV(zp));
2020		err = EINVAL;
2021	}
2022	if (err == 0)
2023		*vpp = ZTOV(zp);
2024	ZFS_EXIT(zfsvfs);
2025	if (err == 0)
2026		err = vn_lock(*vpp, flags);
2027	if (err != 0)
2028		*vpp = NULL;
2029	return (err);
2030}
2031
2032static int
2033zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2034    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2035{
2036	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2037
2038	/*
2039	 * If this is regular file system vfsp is the same as
2040	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2041	 * zfsvfs->z_parent->z_vfs represents parent file system
2042	 * which we have to use here, because only this file system
2043	 * has mnt_export configured.
2044	 */
2045	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2046	    credanonp, numsecflavors, secflavors));
2047}
2048
2049CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2050CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2051
2052static int
2053zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2054{
2055	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2056	znode_t		*zp;
2057	uint64_t	object = 0;
2058	uint64_t	fid_gen = 0;
2059	uint64_t	gen_mask;
2060	uint64_t	zp_gen;
2061	int 		i, err;
2062
2063	*vpp = NULL;
2064
2065	ZFS_ENTER(zfsvfs);
2066
2067	/*
2068	 * On FreeBSD we can get snapshot's mount point or its parent file
2069	 * system mount point depending if snapshot is already mounted or not.
2070	 */
2071	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2072		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2073		uint64_t	objsetid = 0;
2074		uint64_t	setgen = 0;
2075
2076		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2077			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2078
2079		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2080			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2081
2082		ZFS_EXIT(zfsvfs);
2083
2084		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2085		if (err)
2086			return (SET_ERROR(EINVAL));
2087		ZFS_ENTER(zfsvfs);
2088	}
2089
2090	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2091		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2092
2093		for (i = 0; i < sizeof (zfid->zf_object); i++)
2094			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2095
2096		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2097			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2098	} else {
2099		ZFS_EXIT(zfsvfs);
2100		return (SET_ERROR(EINVAL));
2101	}
2102
2103	/*
2104	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2105	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2106	 * we are in the .zfs/shares directory tree.
2107	 */
2108	if ((fid_gen == 0 &&
2109	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2110	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2111		*vpp = zfsvfs->z_ctldir;
2112		ASSERT(*vpp != NULL);
2113		if (object == ZFSCTL_INO_SNAPDIR) {
2114			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2115			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2116		} else if (object == zfsvfs->z_shares_dir) {
2117			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2118			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2119		} else {
2120			VN_HOLD(*vpp);
2121		}
2122		ZFS_EXIT(zfsvfs);
2123		err = vn_lock(*vpp, flags);
2124		if (err != 0)
2125			*vpp = NULL;
2126		return (err);
2127	}
2128
2129	gen_mask = -1ULL >> (64 - 8 * i);
2130
2131	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2132	if (err = zfs_zget(zfsvfs, object, &zp)) {
2133		ZFS_EXIT(zfsvfs);
2134		return (err);
2135	}
2136	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2137	    sizeof (uint64_t));
2138	zp_gen = zp_gen & gen_mask;
2139	if (zp_gen == 0)
2140		zp_gen = 1;
2141	if (zp->z_unlinked || zp_gen != fid_gen) {
2142		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2143		VN_RELE(ZTOV(zp));
2144		ZFS_EXIT(zfsvfs);
2145		return (SET_ERROR(EINVAL));
2146	}
2147
2148	*vpp = ZTOV(zp);
2149	ZFS_EXIT(zfsvfs);
2150	err = vn_lock(*vpp, flags | LK_RETRY);
2151	if (err == 0)
2152		vnode_create_vobject(*vpp, zp->z_size, curthread);
2153	else
2154		*vpp = NULL;
2155	return (err);
2156}
2157
2158/*
2159 * Block out VOPs and close zfsvfs_t::z_os
2160 *
2161 * Note, if successful, then we return with the 'z_teardown_lock' and
2162 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2163 * dataset and objset intact so that they can be atomically handed off during
2164 * a subsequent rollback or recv operation and the resume thereafter.
2165 */
2166int
2167zfs_suspend_fs(zfsvfs_t *zfsvfs)
2168{
2169	int error;
2170
2171	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2172		return (error);
2173
2174	return (0);
2175}
2176
2177/*
2178 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2179 * is an invariant across any of the operations that can be performed while the
2180 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2181 * are the same: the relevant objset and associated dataset are owned by
2182 * zfsvfs, held, and long held on entry.
2183 */
2184int
2185zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2186{
2187	int err;
2188	znode_t *zp;
2189	uint64_t sa_obj = 0;
2190
2191	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2192	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2193
2194	/*
2195	 * We already own this, so just hold and rele it to update the
2196	 * objset_t, as the one we had before may have been evicted.
2197	 */
2198	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2199	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2200	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2201	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2202
2203	/*
2204	 * Make sure version hasn't changed
2205	 */
2206
2207	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2208	    &zfsvfs->z_version);
2209
2210	if (err)
2211		goto bail;
2212
2213	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2214	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2215
2216	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2217		goto bail;
2218
2219	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2220	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2221		goto bail;
2222
2223	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2224		sa_register_update_callback(zfsvfs->z_os,
2225		    zfs_sa_upgrade);
2226
2227	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2228
2229	zfs_set_fuid_feature(zfsvfs);
2230
2231	/*
2232	 * Attempt to re-establish all the active znodes with
2233	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2234	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2235	 * when they try to use their znode.
2236	 */
2237	mutex_enter(&zfsvfs->z_znodes_lock);
2238	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2239	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2240		(void) zfs_rezget(zp);
2241	}
2242	mutex_exit(&zfsvfs->z_znodes_lock);
2243
2244bail:
2245	/* release the VOPs */
2246	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2247	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2248
2249	if (err) {
2250		/*
2251		 * Since we couldn't setup the sa framework, try to force
2252		 * unmount this file system.
2253		 */
2254		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2255			vfs_ref(zfsvfs->z_vfs);
2256			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2257		}
2258	}
2259	return (err);
2260}
2261
2262static void
2263zfs_freevfs(vfs_t *vfsp)
2264{
2265	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2266
2267#ifdef illumos
2268	/*
2269	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2270	 * from zfs_mount().  Release it here.  If we came through
2271	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2272	 * skip the VFS_RELE for rootvfs.
2273	 */
2274	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2275		VFS_RELE(zfsvfs->z_parent->z_vfs);
2276#endif
2277
2278	zfsvfs_free(zfsvfs);
2279
2280	atomic_dec_32(&zfs_active_fs_count);
2281}
2282
2283#ifdef __i386__
2284static int desiredvnodes_backup;
2285#endif
2286
2287static void
2288zfs_vnodes_adjust(void)
2289{
2290#ifdef __i386__
2291	int newdesiredvnodes;
2292
2293	desiredvnodes_backup = desiredvnodes;
2294
2295	/*
2296	 * We calculate newdesiredvnodes the same way it is done in
2297	 * vntblinit(). If it is equal to desiredvnodes, it means that
2298	 * it wasn't tuned by the administrator and we can tune it down.
2299	 */
2300	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2301	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2302	    sizeof(struct vnode))));
2303	if (newdesiredvnodes == desiredvnodes)
2304		desiredvnodes = (3 * newdesiredvnodes) / 4;
2305#endif
2306}
2307
2308static void
2309zfs_vnodes_adjust_back(void)
2310{
2311
2312#ifdef __i386__
2313	desiredvnodes = desiredvnodes_backup;
2314#endif
2315}
2316
2317void
2318zfs_init(void)
2319{
2320
2321	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2322
2323	/*
2324	 * Initialize .zfs directory structures
2325	 */
2326	zfsctl_init();
2327
2328	/*
2329	 * Initialize znode cache, vnode ops, etc...
2330	 */
2331	zfs_znode_init();
2332
2333	/*
2334	 * Reduce number of vnodes. Originally number of vnodes is calculated
2335	 * with UFS inode in mind. We reduce it here, because it's too big for
2336	 * ZFS/i386.
2337	 */
2338	zfs_vnodes_adjust();
2339
2340	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2341}
2342
2343void
2344zfs_fini(void)
2345{
2346	zfsctl_fini();
2347	zfs_znode_fini();
2348	zfs_vnodes_adjust_back();
2349}
2350
2351int
2352zfs_busy(void)
2353{
2354	return (zfs_active_fs_count != 0);
2355}
2356
2357int
2358zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2359{
2360	int error;
2361	objset_t *os = zfsvfs->z_os;
2362	dmu_tx_t *tx;
2363
2364	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2365		return (SET_ERROR(EINVAL));
2366
2367	if (newvers < zfsvfs->z_version)
2368		return (SET_ERROR(EINVAL));
2369
2370	if (zfs_spa_version_map(newvers) >
2371	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2372		return (SET_ERROR(ENOTSUP));
2373
2374	tx = dmu_tx_create(os);
2375	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2376	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2377		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2378		    ZFS_SA_ATTRS);
2379		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2380	}
2381	error = dmu_tx_assign(tx, TXG_WAIT);
2382	if (error) {
2383		dmu_tx_abort(tx);
2384		return (error);
2385	}
2386
2387	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2388	    8, 1, &newvers, tx);
2389
2390	if (error) {
2391		dmu_tx_commit(tx);
2392		return (error);
2393	}
2394
2395	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2396		uint64_t sa_obj;
2397
2398		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2399		    SPA_VERSION_SA);
2400		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2401		    DMU_OT_NONE, 0, tx);
2402
2403		error = zap_add(os, MASTER_NODE_OBJ,
2404		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2405		ASSERT0(error);
2406
2407		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2408		sa_register_update_callback(os, zfs_sa_upgrade);
2409	}
2410
2411	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2412	    "from %llu to %llu", zfsvfs->z_version, newvers);
2413
2414	dmu_tx_commit(tx);
2415
2416	zfsvfs->z_version = newvers;
2417
2418	zfs_set_fuid_feature(zfsvfs);
2419
2420	return (0);
2421}
2422
2423/*
2424 * Read a property stored within the master node.
2425 */
2426int
2427zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2428{
2429	const char *pname;
2430	int error = ENOENT;
2431
2432	/*
2433	 * Look up the file system's value for the property.  For the
2434	 * version property, we look up a slightly different string.
2435	 */
2436	if (prop == ZFS_PROP_VERSION)
2437		pname = ZPL_VERSION_STR;
2438	else
2439		pname = zfs_prop_to_name(prop);
2440
2441	if (os != NULL)
2442		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2443
2444	if (error == ENOENT) {
2445		/* No value set, use the default value */
2446		switch (prop) {
2447		case ZFS_PROP_VERSION:
2448			*value = ZPL_VERSION;
2449			break;
2450		case ZFS_PROP_NORMALIZE:
2451		case ZFS_PROP_UTF8ONLY:
2452			*value = 0;
2453			break;
2454		case ZFS_PROP_CASE:
2455			*value = ZFS_CASE_SENSITIVE;
2456			break;
2457		default:
2458			return (error);
2459		}
2460		error = 0;
2461	}
2462	return (error);
2463}
2464
2465#ifdef _KERNEL
2466void
2467zfsvfs_update_fromname(const char *oldname, const char *newname)
2468{
2469	char tmpbuf[MAXPATHLEN];
2470	struct mount *mp;
2471	char *fromname;
2472	size_t oldlen;
2473
2474	oldlen = strlen(oldname);
2475
2476	mtx_lock(&mountlist_mtx);
2477	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2478		fromname = mp->mnt_stat.f_mntfromname;
2479		if (strcmp(fromname, oldname) == 0) {
2480			(void)strlcpy(fromname, newname,
2481			    sizeof(mp->mnt_stat.f_mntfromname));
2482			continue;
2483		}
2484		if (strncmp(fromname, oldname, oldlen) == 0 &&
2485		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2486			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2487			    newname, fromname + oldlen);
2488			(void)strlcpy(fromname, tmpbuf,
2489			    sizeof(mp->mnt_stat.f_mntfromname));
2490			continue;
2491		}
2492	}
2493	mtx_unlock(&mountlist_mtx);
2494}
2495#endif
2496