zfs_vfsops.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	if (vfsp != NULL) {
137		/*
138		 * Sync a specific filesystem.
139		 */
140		zfsvfs_t *zfsvfs = vfsp->vfs_data;
141		dsl_pool_t *dp;
142		int error;
143
144		error = vfs_stdsync(vfsp, waitfor);
145		if (error != 0)
146			return (error);
147
148		ZFS_ENTER(zfsvfs);
149		dp = dmu_objset_pool(zfsvfs->z_os);
150
151		/*
152		 * If the system is shutting down, then skip any
153		 * filesystems which may exist on a suspended pool.
154		 */
155		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
156			ZFS_EXIT(zfsvfs);
157			return (0);
158		}
159
160		if (zfsvfs->z_log != NULL)
161			zil_commit(zfsvfs->z_log, 0);
162
163		ZFS_EXIT(zfsvfs);
164	} else {
165		/*
166		 * Sync all ZFS filesystems.  This is what happens when you
167		 * run sync(1M).  Unlike other filesystems, ZFS honors the
168		 * request by waiting for all pools to commit all dirty data.
169		 */
170		spa_sync_allpools();
171	}
172
173	return (0);
174}
175
176#ifndef __FreeBSD_kernel__
177static int
178zfs_create_unique_device(dev_t *dev)
179{
180	major_t new_major;
181
182	do {
183		ASSERT3U(zfs_minor, <=, MAXMIN32);
184		minor_t start = zfs_minor;
185		do {
186			mutex_enter(&zfs_dev_mtx);
187			if (zfs_minor >= MAXMIN32) {
188				/*
189				 * If we're still using the real major
190				 * keep out of /dev/zfs and /dev/zvol minor
191				 * number space.  If we're using a getudev()'ed
192				 * major number, we can use all of its minors.
193				 */
194				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
195					zfs_minor = ZFS_MIN_MINOR;
196				else
197					zfs_minor = 0;
198			} else {
199				zfs_minor++;
200			}
201			*dev = makedevice(zfs_major, zfs_minor);
202			mutex_exit(&zfs_dev_mtx);
203		} while (vfs_devismounted(*dev) && zfs_minor != start);
204		if (zfs_minor == start) {
205			/*
206			 * We are using all ~262,000 minor numbers for the
207			 * current major number.  Create a new major number.
208			 */
209			if ((new_major = getudev()) == (major_t)-1) {
210				cmn_err(CE_WARN,
211				    "zfs_mount: Can't get unique major "
212				    "device number.");
213				return (-1);
214			}
215			mutex_enter(&zfs_dev_mtx);
216			zfs_major = new_major;
217			zfs_minor = 0;
218
219			mutex_exit(&zfs_dev_mtx);
220		} else {
221			break;
222		}
223		/* CONSTANTCONDITION */
224	} while (1);
225
226	return (0);
227}
228#endif	/* !__FreeBSD_kernel__ */
229
230static void
231atime_changed_cb(void *arg, uint64_t newval)
232{
233	zfsvfs_t *zfsvfs = arg;
234
235	if (newval == TRUE) {
236		zfsvfs->z_atime = TRUE;
237		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
238		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
239		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
240	} else {
241		zfsvfs->z_atime = FALSE;
242		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
243		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
244		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
245	}
246}
247
248static void
249xattr_changed_cb(void *arg, uint64_t newval)
250{
251	zfsvfs_t *zfsvfs = arg;
252
253	if (newval == TRUE) {
254		/* XXX locking on vfs_flag? */
255#ifdef TODO
256		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257#endif
258		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
259		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
260	} else {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267	}
268}
269
270static void
271blksz_changed_cb(void *arg, uint64_t newval)
272{
273	zfsvfs_t *zfsvfs = arg;
274	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
275	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
276	ASSERT(ISP2(newval));
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	boolean_t readonly = B_FALSE;
393	boolean_t do_readonly = B_FALSE;
394	boolean_t setuid = B_FALSE;
395	boolean_t do_setuid = B_FALSE;
396	boolean_t exec = B_FALSE;
397	boolean_t do_exec = B_FALSE;
398#ifdef illumos
399	boolean_t devices = B_FALSE;
400	boolean_t do_devices = B_FALSE;
401#endif
402	boolean_t xattr = B_FALSE;
403	boolean_t do_xattr = B_FALSE;
404	boolean_t atime = B_FALSE;
405	boolean_t do_atime = B_FALSE;
406	int error = 0;
407
408	ASSERT(vfsp);
409	zfsvfs = vfsp->vfs_data;
410	ASSERT(zfsvfs);
411	os = zfsvfs->z_os;
412
413	/*
414	 * This function can be called for a snapshot when we update snapshot's
415	 * mount point, which isn't really supported.
416	 */
417	if (dmu_objset_is_snapshot(os))
418		return (EOPNOTSUPP);
419
420	/*
421	 * The act of registering our callbacks will destroy any mount
422	 * options we may have.  In order to enable temporary overrides
423	 * of mount options, we stash away the current values and
424	 * restore them after we register the callbacks.
425	 */
426	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
427	    !spa_writeable(dmu_objset_spa(os))) {
428		readonly = B_TRUE;
429		do_readonly = B_TRUE;
430	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
431		readonly = B_FALSE;
432		do_readonly = B_TRUE;
433	}
434	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
435		setuid = B_FALSE;
436		do_setuid = B_TRUE;
437	} else {
438		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
439			setuid = B_FALSE;
440			do_setuid = B_TRUE;
441		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
442			setuid = B_TRUE;
443			do_setuid = B_TRUE;
444		}
445	}
446	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
447		exec = B_FALSE;
448		do_exec = B_TRUE;
449	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
450		exec = B_TRUE;
451		do_exec = B_TRUE;
452	}
453	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
454		xattr = B_FALSE;
455		do_xattr = B_TRUE;
456	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
457		xattr = B_TRUE;
458		do_xattr = B_TRUE;
459	}
460	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
461		atime = B_FALSE;
462		do_atime = B_TRUE;
463	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
464		atime = B_TRUE;
465		do_atime = B_TRUE;
466	}
467
468	/*
469	 * We need to enter pool configuration here, so that we can use
470	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
471	 * dsl_prop_get_integer() can not be used, because it has to acquire
472	 * spa_namespace_lock and we can not do that because we already hold
473	 * z_teardown_lock.  The problem is that spa_config_sync() is called
474	 * with spa_namespace_lock held and the function calls ZFS vnode
475	 * operations to write the cache file and thus z_teardown_lock is
476	 * acquired after spa_namespace_lock.
477	 */
478	ds = dmu_objset_ds(os);
479	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
480
481	/*
482	 * nbmand is a special property.  It can only be changed at
483	 * mount time.
484	 *
485	 * This is weird, but it is documented to only be changeable
486	 * at mount time.
487	 */
488	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
489		nbmand = B_FALSE;
490	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
491		nbmand = B_TRUE;
492	} else if (error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0) {
493		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
494		return (error);
495	}
496
497	/*
498	 * Register property callbacks.
499	 *
500	 * It would probably be fine to just check for i/o error from
501	 * the first prop_register(), but I guess I like to go
502	 * overboard...
503	 */
504	error = dsl_prop_register(ds,
505	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
506	error = error ? error : dsl_prop_register(ds,
507	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
508	error = error ? error : dsl_prop_register(ds,
509	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
510	error = error ? error : dsl_prop_register(ds,
511	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
512#ifdef illumos
513	error = error ? error : dsl_prop_register(ds,
514	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
515#endif
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
520	error = error ? error : dsl_prop_register(ds,
521	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
522	error = error ? error : dsl_prop_register(ds,
523	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
524	error = error ? error : dsl_prop_register(ds,
525	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
526	    zfsvfs);
527	error = error ? error : dsl_prop_register(ds,
528	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
529	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
530	if (error)
531		goto unregister;
532
533	/*
534	 * Invoke our callbacks to restore temporary mount options.
535	 */
536	if (do_readonly)
537		readonly_changed_cb(zfsvfs, readonly);
538	if (do_setuid)
539		setuid_changed_cb(zfsvfs, setuid);
540	if (do_exec)
541		exec_changed_cb(zfsvfs, exec);
542	if (do_xattr)
543		xattr_changed_cb(zfsvfs, xattr);
544	if (do_atime)
545		atime_changed_cb(zfsvfs, atime);
546
547	nbmand_changed_cb(zfsvfs, nbmand);
548
549	return (0);
550
551unregister:
552	/*
553	 * We may attempt to unregister some callbacks that are not
554	 * registered, but this is OK; it will simply return ENOMSG,
555	 * which we will ignore.
556	 */
557	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
558	    atime_changed_cb, zfsvfs);
559	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
560	    xattr_changed_cb, zfsvfs);
561	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
562	    blksz_changed_cb, zfsvfs);
563	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
564	    readonly_changed_cb, zfsvfs);
565#ifdef illumos
566	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
567	    devices_changed_cb, zfsvfs);
568#endif
569	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
570	    setuid_changed_cb, zfsvfs);
571	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
572	    exec_changed_cb, zfsvfs);
573	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
574	    snapdir_changed_cb, zfsvfs);
575	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
576	    acl_mode_changed_cb, zfsvfs);
577	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
578	    acl_inherit_changed_cb, zfsvfs);
579	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
580	    vscan_changed_cb, zfsvfs);
581	return (error);
582}
583
584static int
585zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
586    uint64_t *userp, uint64_t *groupp)
587{
588	/*
589	 * Is it a valid type of object to track?
590	 */
591	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
592		return (SET_ERROR(ENOENT));
593
594	/*
595	 * If we have a NULL data pointer
596	 * then assume the id's aren't changing and
597	 * return EEXIST to the dmu to let it know to
598	 * use the same ids
599	 */
600	if (data == NULL)
601		return (SET_ERROR(EEXIST));
602
603	if (bonustype == DMU_OT_ZNODE) {
604		znode_phys_t *znp = data;
605		*userp = znp->zp_uid;
606		*groupp = znp->zp_gid;
607	} else {
608		int hdrsize;
609		sa_hdr_phys_t *sap = data;
610		sa_hdr_phys_t sa = *sap;
611		boolean_t swap = B_FALSE;
612
613		ASSERT(bonustype == DMU_OT_SA);
614
615		if (sa.sa_magic == 0) {
616			/*
617			 * This should only happen for newly created
618			 * files that haven't had the znode data filled
619			 * in yet.
620			 */
621			*userp = 0;
622			*groupp = 0;
623			return (0);
624		}
625		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
626			sa.sa_magic = SA_MAGIC;
627			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
628			swap = B_TRUE;
629		} else {
630			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
631		}
632
633		hdrsize = sa_hdrsize(&sa);
634		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
635		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
636		    SA_UID_OFFSET));
637		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
638		    SA_GID_OFFSET));
639		if (swap) {
640			*userp = BSWAP_64(*userp);
641			*groupp = BSWAP_64(*groupp);
642		}
643	}
644	return (0);
645}
646
647static void
648fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
649    char *domainbuf, int buflen, uid_t *ridp)
650{
651	uint64_t fuid;
652	const char *domain;
653
654	fuid = strtonum(fuidstr, NULL);
655
656	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
657	if (domain)
658		(void) strlcpy(domainbuf, domain, buflen);
659	else
660		domainbuf[0] = '\0';
661	*ridp = FUID_RID(fuid);
662}
663
664static uint64_t
665zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
666{
667	switch (type) {
668	case ZFS_PROP_USERUSED:
669		return (DMU_USERUSED_OBJECT);
670	case ZFS_PROP_GROUPUSED:
671		return (DMU_GROUPUSED_OBJECT);
672	case ZFS_PROP_USERQUOTA:
673		return (zfsvfs->z_userquota_obj);
674	case ZFS_PROP_GROUPQUOTA:
675		return (zfsvfs->z_groupquota_obj);
676	}
677	return (0);
678}
679
680int
681zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
682    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
683{
684	int error;
685	zap_cursor_t zc;
686	zap_attribute_t za;
687	zfs_useracct_t *buf = vbuf;
688	uint64_t obj;
689
690	if (!dmu_objset_userspace_present(zfsvfs->z_os))
691		return (SET_ERROR(ENOTSUP));
692
693	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
694	if (obj == 0) {
695		*bufsizep = 0;
696		return (0);
697	}
698
699	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
700	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
701	    zap_cursor_advance(&zc)) {
702		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
703		    *bufsizep)
704			break;
705
706		fuidstr_to_sid(zfsvfs, za.za_name,
707		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
708
709		buf->zu_space = za.za_first_integer;
710		buf++;
711	}
712	if (error == ENOENT)
713		error = 0;
714
715	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
716	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
717	*cookiep = zap_cursor_serialize(&zc);
718	zap_cursor_fini(&zc);
719	return (error);
720}
721
722/*
723 * buf must be big enough (eg, 32 bytes)
724 */
725static int
726id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
727    char *buf, boolean_t addok)
728{
729	uint64_t fuid;
730	int domainid = 0;
731
732	if (domain && domain[0]) {
733		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
734		if (domainid == -1)
735			return (SET_ERROR(ENOENT));
736	}
737	fuid = FUID_ENCODE(domainid, rid);
738	(void) sprintf(buf, "%llx", (longlong_t)fuid);
739	return (0);
740}
741
742int
743zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
744    const char *domain, uint64_t rid, uint64_t *valp)
745{
746	char buf[32];
747	int err;
748	uint64_t obj;
749
750	*valp = 0;
751
752	if (!dmu_objset_userspace_present(zfsvfs->z_os))
753		return (SET_ERROR(ENOTSUP));
754
755	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
756	if (obj == 0)
757		return (0);
758
759	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
760	if (err)
761		return (err);
762
763	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
764	if (err == ENOENT)
765		err = 0;
766	return (err);
767}
768
769int
770zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
771    const char *domain, uint64_t rid, uint64_t quota)
772{
773	char buf[32];
774	int err;
775	dmu_tx_t *tx;
776	uint64_t *objp;
777	boolean_t fuid_dirtied;
778
779	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
780		return (SET_ERROR(EINVAL));
781
782	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
783		return (SET_ERROR(ENOTSUP));
784
785	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
786	    &zfsvfs->z_groupquota_obj;
787
788	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
789	if (err)
790		return (err);
791	fuid_dirtied = zfsvfs->z_fuid_dirty;
792
793	tx = dmu_tx_create(zfsvfs->z_os);
794	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
795	if (*objp == 0) {
796		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
797		    zfs_userquota_prop_prefixes[type]);
798	}
799	if (fuid_dirtied)
800		zfs_fuid_txhold(zfsvfs, tx);
801	err = dmu_tx_assign(tx, TXG_WAIT);
802	if (err) {
803		dmu_tx_abort(tx);
804		return (err);
805	}
806
807	mutex_enter(&zfsvfs->z_lock);
808	if (*objp == 0) {
809		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
810		    DMU_OT_NONE, 0, tx);
811		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
812		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
813	}
814	mutex_exit(&zfsvfs->z_lock);
815
816	if (quota == 0) {
817		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
818		if (err == ENOENT)
819			err = 0;
820	} else {
821		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
822	}
823	ASSERT(err == 0);
824	if (fuid_dirtied)
825		zfs_fuid_sync(zfsvfs, tx);
826	dmu_tx_commit(tx);
827	return (err);
828}
829
830boolean_t
831zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
832{
833	char buf[32];
834	uint64_t used, quota, usedobj, quotaobj;
835	int err;
836
837	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
838	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
839
840	if (quotaobj == 0 || zfsvfs->z_replay)
841		return (B_FALSE);
842
843	(void) sprintf(buf, "%llx", (longlong_t)fuid);
844	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
845	if (err != 0)
846		return (B_FALSE);
847
848	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
849	if (err != 0)
850		return (B_FALSE);
851	return (used >= quota);
852}
853
854boolean_t
855zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
856{
857	uint64_t fuid;
858	uint64_t quotaobj;
859
860	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
861
862	fuid = isgroup ? zp->z_gid : zp->z_uid;
863
864	if (quotaobj == 0 || zfsvfs->z_replay)
865		return (B_FALSE);
866
867	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
868}
869
870int
871zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
872{
873	objset_t *os;
874	zfsvfs_t *zfsvfs;
875	uint64_t zval;
876	int i, error;
877	uint64_t sa_obj;
878
879	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
880
881	/*
882	 * We claim to always be readonly so we can open snapshots;
883	 * other ZPL code will prevent us from writing to snapshots.
884	 */
885	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
886	if (error) {
887		kmem_free(zfsvfs, sizeof (zfsvfs_t));
888		return (error);
889	}
890
891	/*
892	 * Initialize the zfs-specific filesystem structure.
893	 * Should probably make this a kmem cache, shuffle fields,
894	 * and just bzero up to z_hold_mtx[].
895	 */
896	zfsvfs->z_vfs = NULL;
897	zfsvfs->z_parent = zfsvfs;
898	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
899	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
900	zfsvfs->z_os = os;
901
902	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
903	if (error) {
904		goto out;
905	} else if (zfsvfs->z_version >
906	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
907		(void) printf("Can't mount a version %lld file system "
908		    "on a version %lld pool\n. Pool must be upgraded to mount "
909		    "this file system.", (u_longlong_t)zfsvfs->z_version,
910		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
911		error = SET_ERROR(ENOTSUP);
912		goto out;
913	}
914	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
915		goto out;
916	zfsvfs->z_norm = (int)zval;
917
918	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
919		goto out;
920	zfsvfs->z_utf8 = (zval != 0);
921
922	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
923		goto out;
924	zfsvfs->z_case = (uint_t)zval;
925
926	/*
927	 * Fold case on file systems that are always or sometimes case
928	 * insensitive.
929	 */
930	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
931	    zfsvfs->z_case == ZFS_CASE_MIXED)
932		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
933
934	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
935	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
936
937	if (zfsvfs->z_use_sa) {
938		/* should either have both of these objects or none */
939		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
940		    &sa_obj);
941		if (error)
942			goto out;
943	} else {
944		/*
945		 * Pre SA versions file systems should never touch
946		 * either the attribute registration or layout objects.
947		 */
948		sa_obj = 0;
949	}
950
951	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
952	    &zfsvfs->z_attr_table);
953	if (error)
954		goto out;
955
956	if (zfsvfs->z_version >= ZPL_VERSION_SA)
957		sa_register_update_callback(os, zfs_sa_upgrade);
958
959	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
960	    &zfsvfs->z_root);
961	if (error)
962		goto out;
963	ASSERT(zfsvfs->z_root != 0);
964
965	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
966	    &zfsvfs->z_unlinkedobj);
967	if (error)
968		goto out;
969
970	error = zap_lookup(os, MASTER_NODE_OBJ,
971	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
972	    8, 1, &zfsvfs->z_userquota_obj);
973	if (error && error != ENOENT)
974		goto out;
975
976	error = zap_lookup(os, MASTER_NODE_OBJ,
977	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
978	    8, 1, &zfsvfs->z_groupquota_obj);
979	if (error && error != ENOENT)
980		goto out;
981
982	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
983	    &zfsvfs->z_fuid_obj);
984	if (error && error != ENOENT)
985		goto out;
986
987	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
988	    &zfsvfs->z_shares_dir);
989	if (error && error != ENOENT)
990		goto out;
991
992	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
993	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
994	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
995	    offsetof(znode_t, z_link_node));
996	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
997	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
998	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
999	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1000		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1001
1002	*zfvp = zfsvfs;
1003	return (0);
1004
1005out:
1006	dmu_objset_disown(os, zfsvfs);
1007	*zfvp = NULL;
1008	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1009	return (error);
1010}
1011
1012static int
1013zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1014{
1015	int error;
1016
1017	error = zfs_register_callbacks(zfsvfs->z_vfs);
1018	if (error)
1019		return (error);
1020
1021	/*
1022	 * Set the objset user_ptr to track its zfsvfs.
1023	 */
1024	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1025	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1026	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1027
1028	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1029
1030	/*
1031	 * If we are not mounting (ie: online recv), then we don't
1032	 * have to worry about replaying the log as we blocked all
1033	 * operations out since we closed the ZIL.
1034	 */
1035	if (mounting) {
1036		boolean_t readonly;
1037
1038		/*
1039		 * During replay we remove the read only flag to
1040		 * allow replays to succeed.
1041		 */
1042		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1043		if (readonly != 0)
1044			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1045		else
1046			zfs_unlinked_drain(zfsvfs);
1047
1048		/*
1049		 * Parse and replay the intent log.
1050		 *
1051		 * Because of ziltest, this must be done after
1052		 * zfs_unlinked_drain().  (Further note: ziltest
1053		 * doesn't use readonly mounts, where
1054		 * zfs_unlinked_drain() isn't called.)  This is because
1055		 * ziltest causes spa_sync() to think it's committed,
1056		 * but actually it is not, so the intent log contains
1057		 * many txg's worth of changes.
1058		 *
1059		 * In particular, if object N is in the unlinked set in
1060		 * the last txg to actually sync, then it could be
1061		 * actually freed in a later txg and then reallocated
1062		 * in a yet later txg.  This would write a "create
1063		 * object N" record to the intent log.  Normally, this
1064		 * would be fine because the spa_sync() would have
1065		 * written out the fact that object N is free, before
1066		 * we could write the "create object N" intent log
1067		 * record.
1068		 *
1069		 * But when we are in ziltest mode, we advance the "open
1070		 * txg" without actually spa_sync()-ing the changes to
1071		 * disk.  So we would see that object N is still
1072		 * allocated and in the unlinked set, and there is an
1073		 * intent log record saying to allocate it.
1074		 */
1075		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1076			if (zil_replay_disable) {
1077				zil_destroy(zfsvfs->z_log, B_FALSE);
1078			} else {
1079				zfsvfs->z_replay = B_TRUE;
1080				zil_replay(zfsvfs->z_os, zfsvfs,
1081				    zfs_replay_vector);
1082				zfsvfs->z_replay = B_FALSE;
1083			}
1084		}
1085		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1086	}
1087
1088	return (0);
1089}
1090
1091extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1092
1093void
1094zfsvfs_free(zfsvfs_t *zfsvfs)
1095{
1096	int i;
1097
1098	/*
1099	 * This is a barrier to prevent the filesystem from going away in
1100	 * zfs_znode_move() until we can safely ensure that the filesystem is
1101	 * not unmounted. We consider the filesystem valid before the barrier
1102	 * and invalid after the barrier.
1103	 */
1104	rw_enter(&zfsvfs_lock, RW_READER);
1105	rw_exit(&zfsvfs_lock);
1106
1107	zfs_fuid_destroy(zfsvfs);
1108
1109	mutex_destroy(&zfsvfs->z_znodes_lock);
1110	mutex_destroy(&zfsvfs->z_lock);
1111	list_destroy(&zfsvfs->z_all_znodes);
1112	rrm_destroy(&zfsvfs->z_teardown_lock);
1113	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1114	rw_destroy(&zfsvfs->z_fuid_lock);
1115	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1116		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1117	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1118}
1119
1120static void
1121zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1122{
1123	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1124	if (zfsvfs->z_vfs) {
1125		if (zfsvfs->z_use_fuids) {
1126			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1127			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1128			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1129			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1130			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1131			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1132		} else {
1133			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1134			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1135			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1136			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1137			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1138			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1139		}
1140	}
1141	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1142}
1143
1144static int
1145zfs_domount(vfs_t *vfsp, char *osname)
1146{
1147	uint64_t recordsize, fsid_guid;
1148	int error = 0;
1149	zfsvfs_t *zfsvfs;
1150	vnode_t *vp;
1151
1152	ASSERT(vfsp);
1153	ASSERT(osname);
1154
1155	error = zfsvfs_create(osname, &zfsvfs);
1156	if (error)
1157		return (error);
1158	zfsvfs->z_vfs = vfsp;
1159
1160#ifdef illumos
1161	/* Initialize the generic filesystem structure. */
1162	vfsp->vfs_bcount = 0;
1163	vfsp->vfs_data = NULL;
1164
1165	if (zfs_create_unique_device(&mount_dev) == -1) {
1166		error = SET_ERROR(ENODEV);
1167		goto out;
1168	}
1169	ASSERT(vfs_devismounted(mount_dev) == 0);
1170#endif
1171
1172	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1173	    NULL))
1174		goto out;
1175	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1176	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1177
1178	vfsp->vfs_data = zfsvfs;
1179	vfsp->mnt_flag |= MNT_LOCAL;
1180	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1181	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1182	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1183
1184	/*
1185	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1186	 * separates our fsid from any other filesystem types, and a
1187	 * 56-bit objset unique ID.  The objset unique ID is unique to
1188	 * all objsets open on this system, provided by unique_create().
1189	 * The 8-bit fs type must be put in the low bits of fsid[1]
1190	 * because that's where other Solaris filesystems put it.
1191	 */
1192	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1193	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1194	vfsp->vfs_fsid.val[0] = fsid_guid;
1195	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1196	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1197
1198	/*
1199	 * Set features for file system.
1200	 */
1201	zfs_set_fuid_feature(zfsvfs);
1202	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1203		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1204		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1205		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1206	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1207		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1208		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1209	}
1210	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1211
1212	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1213		uint64_t pval;
1214
1215		atime_changed_cb(zfsvfs, B_FALSE);
1216		readonly_changed_cb(zfsvfs, B_TRUE);
1217		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1218			goto out;
1219		xattr_changed_cb(zfsvfs, pval);
1220		zfsvfs->z_issnap = B_TRUE;
1221		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1222
1223		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1224		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1225		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1226	} else {
1227		error = zfsvfs_setup(zfsvfs, B_TRUE);
1228	}
1229
1230	vfs_mountedfrom(vfsp, osname);
1231
1232	if (!zfsvfs->z_issnap)
1233		zfsctl_create(zfsvfs);
1234out:
1235	if (error) {
1236		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1237		zfsvfs_free(zfsvfs);
1238	} else {
1239		atomic_inc_32(&zfs_active_fs_count);
1240	}
1241
1242	return (error);
1243}
1244
1245void
1246zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1247{
1248	objset_t *os = zfsvfs->z_os;
1249	struct dsl_dataset *ds;
1250
1251	/*
1252	 * Unregister properties.
1253	 */
1254	if (!dmu_objset_is_snapshot(os)) {
1255		ds = dmu_objset_ds(os);
1256		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1257		    zfsvfs) == 0);
1258
1259		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1260		    zfsvfs) == 0);
1261
1262		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1263		    zfsvfs) == 0);
1264
1265		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1266		    zfsvfs) == 0);
1267
1268		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1269		    zfsvfs) == 0);
1270
1271		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1272		    zfsvfs) == 0);
1273
1274		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1275		    zfsvfs) == 0);
1276
1277		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1278		    zfsvfs) == 0);
1279
1280		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1281		    acl_inherit_changed_cb, zfsvfs) == 0);
1282
1283		VERIFY(dsl_prop_unregister(ds, "vscan",
1284		    vscan_changed_cb, zfsvfs) == 0);
1285	}
1286}
1287
1288#ifdef SECLABEL
1289/*
1290 * Convert a decimal digit string to a uint64_t integer.
1291 */
1292static int
1293str_to_uint64(char *str, uint64_t *objnum)
1294{
1295	uint64_t num = 0;
1296
1297	while (*str) {
1298		if (*str < '0' || *str > '9')
1299			return (SET_ERROR(EINVAL));
1300
1301		num = num*10 + *str++ - '0';
1302	}
1303
1304	*objnum = num;
1305	return (0);
1306}
1307
1308/*
1309 * The boot path passed from the boot loader is in the form of
1310 * "rootpool-name/root-filesystem-object-number'. Convert this
1311 * string to a dataset name: "rootpool-name/root-filesystem-name".
1312 */
1313static int
1314zfs_parse_bootfs(char *bpath, char *outpath)
1315{
1316	char *slashp;
1317	uint64_t objnum;
1318	int error;
1319
1320	if (*bpath == 0 || *bpath == '/')
1321		return (SET_ERROR(EINVAL));
1322
1323	(void) strcpy(outpath, bpath);
1324
1325	slashp = strchr(bpath, '/');
1326
1327	/* if no '/', just return the pool name */
1328	if (slashp == NULL) {
1329		return (0);
1330	}
1331
1332	/* if not a number, just return the root dataset name */
1333	if (str_to_uint64(slashp+1, &objnum)) {
1334		return (0);
1335	}
1336
1337	*slashp = '\0';
1338	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1339	*slashp = '/';
1340
1341	return (error);
1342}
1343
1344/*
1345 * Check that the hex label string is appropriate for the dataset being
1346 * mounted into the global_zone proper.
1347 *
1348 * Return an error if the hex label string is not default or
1349 * admin_low/admin_high.  For admin_low labels, the corresponding
1350 * dataset must be readonly.
1351 */
1352int
1353zfs_check_global_label(const char *dsname, const char *hexsl)
1354{
1355	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1356		return (0);
1357	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1358		return (0);
1359	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1360		/* must be readonly */
1361		uint64_t rdonly;
1362
1363		if (dsl_prop_get_integer(dsname,
1364		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1365			return (SET_ERROR(EACCES));
1366		return (rdonly ? 0 : EACCES);
1367	}
1368	return (SET_ERROR(EACCES));
1369}
1370
1371/*
1372 * Determine whether the mount is allowed according to MAC check.
1373 * by comparing (where appropriate) label of the dataset against
1374 * the label of the zone being mounted into.  If the dataset has
1375 * no label, create one.
1376 *
1377 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1378 */
1379static int
1380zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1381{
1382	int		error, retv;
1383	zone_t		*mntzone = NULL;
1384	ts_label_t	*mnt_tsl;
1385	bslabel_t	*mnt_sl;
1386	bslabel_t	ds_sl;
1387	char		ds_hexsl[MAXNAMELEN];
1388
1389	retv = EACCES;				/* assume the worst */
1390
1391	/*
1392	 * Start by getting the dataset label if it exists.
1393	 */
1394	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1395	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1396	if (error)
1397		return (SET_ERROR(EACCES));
1398
1399	/*
1400	 * If labeling is NOT enabled, then disallow the mount of datasets
1401	 * which have a non-default label already.  No other label checks
1402	 * are needed.
1403	 */
1404	if (!is_system_labeled()) {
1405		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1406			return (0);
1407		return (SET_ERROR(EACCES));
1408	}
1409
1410	/*
1411	 * Get the label of the mountpoint.  If mounting into the global
1412	 * zone (i.e. mountpoint is not within an active zone and the
1413	 * zoned property is off), the label must be default or
1414	 * admin_low/admin_high only; no other checks are needed.
1415	 */
1416	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1417	if (mntzone->zone_id == GLOBAL_ZONEID) {
1418		uint64_t zoned;
1419
1420		zone_rele(mntzone);
1421
1422		if (dsl_prop_get_integer(osname,
1423		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1424			return (SET_ERROR(EACCES));
1425		if (!zoned)
1426			return (zfs_check_global_label(osname, ds_hexsl));
1427		else
1428			/*
1429			 * This is the case of a zone dataset being mounted
1430			 * initially, before the zone has been fully created;
1431			 * allow this mount into global zone.
1432			 */
1433			return (0);
1434	}
1435
1436	mnt_tsl = mntzone->zone_slabel;
1437	ASSERT(mnt_tsl != NULL);
1438	label_hold(mnt_tsl);
1439	mnt_sl = label2bslabel(mnt_tsl);
1440
1441	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1442		/*
1443		 * The dataset doesn't have a real label, so fabricate one.
1444		 */
1445		char *str = NULL;
1446
1447		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1448		    dsl_prop_set_string(osname,
1449		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1450		    ZPROP_SRC_LOCAL, str) == 0)
1451			retv = 0;
1452		if (str != NULL)
1453			kmem_free(str, strlen(str) + 1);
1454	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1455		/*
1456		 * Now compare labels to complete the MAC check.  If the
1457		 * labels are equal then allow access.  If the mountpoint
1458		 * label dominates the dataset label, allow readonly access.
1459		 * Otherwise, access is denied.
1460		 */
1461		if (blequal(mnt_sl, &ds_sl))
1462			retv = 0;
1463		else if (bldominates(mnt_sl, &ds_sl)) {
1464			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1465			retv = 0;
1466		}
1467	}
1468
1469	label_rele(mnt_tsl);
1470	zone_rele(mntzone);
1471	return (retv);
1472}
1473#endif	/* SECLABEL */
1474
1475#ifdef OPENSOLARIS_MOUNTROOT
1476static int
1477zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1478{
1479	int error = 0;
1480	static int zfsrootdone = 0;
1481	zfsvfs_t *zfsvfs = NULL;
1482	znode_t *zp = NULL;
1483	vnode_t *vp = NULL;
1484	char *zfs_bootfs;
1485	char *zfs_devid;
1486
1487	ASSERT(vfsp);
1488
1489	/*
1490	 * The filesystem that we mount as root is defined in the
1491	 * boot property "zfs-bootfs" with a format of
1492	 * "poolname/root-dataset-objnum".
1493	 */
1494	if (why == ROOT_INIT) {
1495		if (zfsrootdone++)
1496			return (SET_ERROR(EBUSY));
1497		/*
1498		 * the process of doing a spa_load will require the
1499		 * clock to be set before we could (for example) do
1500		 * something better by looking at the timestamp on
1501		 * an uberblock, so just set it to -1.
1502		 */
1503		clkset(-1);
1504
1505		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1506			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1507			    "bootfs name");
1508			return (SET_ERROR(EINVAL));
1509		}
1510		zfs_devid = spa_get_bootprop("diskdevid");
1511		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1512		if (zfs_devid)
1513			spa_free_bootprop(zfs_devid);
1514		if (error) {
1515			spa_free_bootprop(zfs_bootfs);
1516			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1517			    error);
1518			return (error);
1519		}
1520		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1521			spa_free_bootprop(zfs_bootfs);
1522			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1523			    error);
1524			return (error);
1525		}
1526
1527		spa_free_bootprop(zfs_bootfs);
1528
1529		if (error = vfs_lock(vfsp))
1530			return (error);
1531
1532		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1533			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1534			goto out;
1535		}
1536
1537		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1538		ASSERT(zfsvfs);
1539		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1540			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1541			goto out;
1542		}
1543
1544		vp = ZTOV(zp);
1545		mutex_enter(&vp->v_lock);
1546		vp->v_flag |= VROOT;
1547		mutex_exit(&vp->v_lock);
1548		rootvp = vp;
1549
1550		/*
1551		 * Leave rootvp held.  The root file system is never unmounted.
1552		 */
1553
1554		vfs_add((struct vnode *)0, vfsp,
1555		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1556out:
1557		vfs_unlock(vfsp);
1558		return (error);
1559	} else if (why == ROOT_REMOUNT) {
1560		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1561		vfsp->vfs_flag |= VFS_REMOUNT;
1562
1563		/* refresh mount options */
1564		zfs_unregister_callbacks(vfsp->vfs_data);
1565		return (zfs_register_callbacks(vfsp));
1566
1567	} else if (why == ROOT_UNMOUNT) {
1568		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1569		(void) zfs_sync(vfsp, 0, 0);
1570		return (0);
1571	}
1572
1573	/*
1574	 * if "why" is equal to anything else other than ROOT_INIT,
1575	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1576	 */
1577	return (SET_ERROR(ENOTSUP));
1578}
1579#endif	/* OPENSOLARIS_MOUNTROOT */
1580
1581static int
1582getpoolname(const char *osname, char *poolname)
1583{
1584	char *p;
1585
1586	p = strchr(osname, '/');
1587	if (p == NULL) {
1588		if (strlen(osname) >= MAXNAMELEN)
1589			return (ENAMETOOLONG);
1590		(void) strcpy(poolname, osname);
1591	} else {
1592		if (p - osname >= MAXNAMELEN)
1593			return (ENAMETOOLONG);
1594		(void) strncpy(poolname, osname, p - osname);
1595		poolname[p - osname] = '\0';
1596	}
1597	return (0);
1598}
1599
1600/*ARGSUSED*/
1601static int
1602zfs_mount(vfs_t *vfsp)
1603{
1604	kthread_t	*td = curthread;
1605	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1606	cred_t		*cr = td->td_ucred;
1607	char		*osname;
1608	int		error = 0;
1609	int		canwrite;
1610
1611#ifdef illumos
1612	if (mvp->v_type != VDIR)
1613		return (SET_ERROR(ENOTDIR));
1614
1615	mutex_enter(&mvp->v_lock);
1616	if ((uap->flags & MS_REMOUNT) == 0 &&
1617	    (uap->flags & MS_OVERLAY) == 0 &&
1618	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1619		mutex_exit(&mvp->v_lock);
1620		return (SET_ERROR(EBUSY));
1621	}
1622	mutex_exit(&mvp->v_lock);
1623
1624	/*
1625	 * ZFS does not support passing unparsed data in via MS_DATA.
1626	 * Users should use the MS_OPTIONSTR interface; this means
1627	 * that all option parsing is already done and the options struct
1628	 * can be interrogated.
1629	 */
1630	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1631#else
1632	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1633		return (SET_ERROR(EPERM));
1634
1635	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1636		return (SET_ERROR(EINVAL));
1637#endif	/* ! illumos */
1638
1639	/*
1640	 * If full-owner-access is enabled and delegated administration is
1641	 * turned on, we must set nosuid.
1642	 */
1643	if (zfs_super_owner &&
1644	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1645		secpolicy_fs_mount_clearopts(cr, vfsp);
1646	}
1647
1648	/*
1649	 * Check for mount privilege?
1650	 *
1651	 * If we don't have privilege then see if
1652	 * we have local permission to allow it
1653	 */
1654	error = secpolicy_fs_mount(cr, mvp, vfsp);
1655	if (error) {
1656		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1657			goto out;
1658
1659		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1660			vattr_t		vattr;
1661
1662			/*
1663			 * Make sure user is the owner of the mount point
1664			 * or has sufficient privileges.
1665			 */
1666
1667			vattr.va_mask = AT_UID;
1668
1669			vn_lock(mvp, LK_SHARED | LK_RETRY);
1670			if (VOP_GETATTR(mvp, &vattr, cr)) {
1671				VOP_UNLOCK(mvp, 0);
1672				goto out;
1673			}
1674
1675			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1676			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1677				VOP_UNLOCK(mvp, 0);
1678				goto out;
1679			}
1680			VOP_UNLOCK(mvp, 0);
1681		}
1682
1683		secpolicy_fs_mount_clearopts(cr, vfsp);
1684	}
1685
1686	/*
1687	 * Refuse to mount a filesystem if we are in a local zone and the
1688	 * dataset is not visible.
1689	 */
1690	if (!INGLOBALZONE(curthread) &&
1691	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1692		error = SET_ERROR(EPERM);
1693		goto out;
1694	}
1695
1696#ifdef SECLABEL
1697	error = zfs_mount_label_policy(vfsp, osname);
1698	if (error)
1699		goto out;
1700#endif
1701
1702	vfsp->vfs_flag |= MNT_NFS4ACLS;
1703
1704	/*
1705	 * When doing a remount, we simply refresh our temporary properties
1706	 * according to those options set in the current VFS options.
1707	 */
1708	if (vfsp->vfs_flag & MS_REMOUNT) {
1709		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1710
1711		/*
1712		 * Refresh mount options with z_teardown_lock blocking I/O while
1713		 * the filesystem is in an inconsistent state.
1714		 * The lock also serializes this code with filesystem
1715		 * manipulations between entry to zfs_suspend_fs() and return
1716		 * from zfs_resume_fs().
1717		 */
1718		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1719		zfs_unregister_callbacks(zfsvfs);
1720		error = zfs_register_callbacks(vfsp);
1721		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1722		goto out;
1723	}
1724
1725	/* Initial root mount: try hard to import the requested root pool. */
1726	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1727	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1728		char pname[MAXNAMELEN];
1729
1730		error = getpoolname(osname, pname);
1731		if (error == 0)
1732			error = spa_import_rootpool(pname);
1733		if (error)
1734			goto out;
1735	}
1736	DROP_GIANT();
1737	error = zfs_domount(vfsp, osname);
1738	PICKUP_GIANT();
1739
1740#ifdef sun
1741	/*
1742	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1743	 * disappear due to a forced unmount.
1744	 */
1745	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1746		VFS_HOLD(mvp->v_vfsp);
1747#endif	/* sun */
1748
1749out:
1750	return (error);
1751}
1752
1753static int
1754zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1755{
1756	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1757	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1758
1759	statp->f_version = STATFS_VERSION;
1760
1761	ZFS_ENTER(zfsvfs);
1762
1763	dmu_objset_space(zfsvfs->z_os,
1764	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1765
1766	/*
1767	 * The underlying storage pool actually uses multiple block sizes.
1768	 * We report the fragsize as the smallest block size we support,
1769	 * and we report our blocksize as the filesystem's maximum blocksize.
1770	 */
1771	statp->f_bsize = SPA_MINBLOCKSIZE;
1772	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1773
1774	/*
1775	 * The following report "total" blocks of various kinds in the
1776	 * file system, but reported in terms of f_frsize - the
1777	 * "fragment" size.
1778	 */
1779
1780	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1781	statp->f_bfree = availbytes / statp->f_bsize;
1782	statp->f_bavail = statp->f_bfree; /* no root reservation */
1783
1784	/*
1785	 * statvfs() should really be called statufs(), because it assumes
1786	 * static metadata.  ZFS doesn't preallocate files, so the best
1787	 * we can do is report the max that could possibly fit in f_files,
1788	 * and that minus the number actually used in f_ffree.
1789	 * For f_ffree, report the smaller of the number of object available
1790	 * and the number of blocks (each object will take at least a block).
1791	 */
1792	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1793	statp->f_files = statp->f_ffree + usedobjs;
1794
1795	/*
1796	 * We're a zfs filesystem.
1797	 */
1798	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1799
1800	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1801	    sizeof(statp->f_mntfromname));
1802	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1803	    sizeof(statp->f_mntonname));
1804
1805	statp->f_namemax = ZFS_MAXNAMELEN;
1806
1807	ZFS_EXIT(zfsvfs);
1808	return (0);
1809}
1810
1811static int
1812zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1813{
1814	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1815	znode_t *rootzp;
1816	int error;
1817
1818	ZFS_ENTER(zfsvfs);
1819
1820	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1821	if (error == 0)
1822		*vpp = ZTOV(rootzp);
1823
1824	ZFS_EXIT(zfsvfs);
1825
1826	if (error == 0) {
1827		error = vn_lock(*vpp, flags);
1828		if (error == 0)
1829			(*vpp)->v_vflag |= VV_ROOT;
1830	}
1831	if (error != 0)
1832		*vpp = NULL;
1833
1834	return (error);
1835}
1836
1837/*
1838 * Teardown the zfsvfs::z_os.
1839 *
1840 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1841 * and 'z_teardown_inactive_lock' held.
1842 */
1843static int
1844zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1845{
1846	znode_t	*zp;
1847
1848	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1849
1850	if (!unmounting) {
1851		/*
1852		 * We purge the parent filesystem's vfsp as the parent
1853		 * filesystem and all of its snapshots have their vnode's
1854		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1855		 * 'z_parent' is self referential for non-snapshots.
1856		 */
1857		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1858#ifdef FREEBSD_NAMECACHE
1859		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1860#endif
1861	}
1862
1863	/*
1864	 * Close the zil. NB: Can't close the zil while zfs_inactive
1865	 * threads are blocked as zil_close can call zfs_inactive.
1866	 */
1867	if (zfsvfs->z_log) {
1868		zil_close(zfsvfs->z_log);
1869		zfsvfs->z_log = NULL;
1870	}
1871
1872	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1873
1874	/*
1875	 * If we are not unmounting (ie: online recv) and someone already
1876	 * unmounted this file system while we were doing the switcheroo,
1877	 * or a reopen of z_os failed then just bail out now.
1878	 */
1879	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1880		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1881		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1882		return (SET_ERROR(EIO));
1883	}
1884
1885	/*
1886	 * At this point there are no vops active, and any new vops will
1887	 * fail with EIO since we have z_teardown_lock for writer (only
1888	 * relavent for forced unmount).
1889	 *
1890	 * Release all holds on dbufs.
1891	 */
1892	mutex_enter(&zfsvfs->z_znodes_lock);
1893	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1894	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1895		if (zp->z_sa_hdl) {
1896			ASSERT(ZTOV(zp)->v_count >= 0);
1897			zfs_znode_dmu_fini(zp);
1898		}
1899	mutex_exit(&zfsvfs->z_znodes_lock);
1900
1901	/*
1902	 * If we are unmounting, set the unmounted flag and let new vops
1903	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1904	 * other vops will fail with EIO.
1905	 */
1906	if (unmounting) {
1907		zfsvfs->z_unmounted = B_TRUE;
1908		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1909		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1910	}
1911
1912	/*
1913	 * z_os will be NULL if there was an error in attempting to reopen
1914	 * zfsvfs, so just return as the properties had already been
1915	 * unregistered and cached data had been evicted before.
1916	 */
1917	if (zfsvfs->z_os == NULL)
1918		return (0);
1919
1920	/*
1921	 * Unregister properties.
1922	 */
1923	zfs_unregister_callbacks(zfsvfs);
1924
1925	/*
1926	 * Evict cached data
1927	 */
1928	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1929	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1930		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1931	dmu_objset_evict_dbufs(zfsvfs->z_os);
1932
1933	return (0);
1934}
1935
1936/*ARGSUSED*/
1937static int
1938zfs_umount(vfs_t *vfsp, int fflag)
1939{
1940	kthread_t *td = curthread;
1941	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1942	objset_t *os;
1943	cred_t *cr = td->td_ucred;
1944	int ret;
1945
1946	ret = secpolicy_fs_unmount(cr, vfsp);
1947	if (ret) {
1948		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1949		    ZFS_DELEG_PERM_MOUNT, cr))
1950			return (ret);
1951	}
1952
1953	/*
1954	 * We purge the parent filesystem's vfsp as the parent filesystem
1955	 * and all of its snapshots have their vnode's v_vfsp set to the
1956	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1957	 * referential for non-snapshots.
1958	 */
1959	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1960
1961	/*
1962	 * Unmount any snapshots mounted under .zfs before unmounting the
1963	 * dataset itself.
1964	 */
1965	if (zfsvfs->z_ctldir != NULL) {
1966		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1967			return (ret);
1968		ret = vflush(vfsp, 0, 0, td);
1969		ASSERT(ret == EBUSY);
1970		if (!(fflag & MS_FORCE)) {
1971			if (zfsvfs->z_ctldir->v_count > 1)
1972				return (EBUSY);
1973			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1974		}
1975		zfsctl_destroy(zfsvfs);
1976		ASSERT(zfsvfs->z_ctldir == NULL);
1977	}
1978
1979	if (fflag & MS_FORCE) {
1980		/*
1981		 * Mark file system as unmounted before calling
1982		 * vflush(FORCECLOSE). This way we ensure no future vnops
1983		 * will be called and risk operating on DOOMED vnodes.
1984		 */
1985		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1986		zfsvfs->z_unmounted = B_TRUE;
1987		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1988	}
1989
1990	/*
1991	 * Flush all the files.
1992	 */
1993	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1994	if (ret != 0) {
1995		if (!zfsvfs->z_issnap) {
1996			zfsctl_create(zfsvfs);
1997			ASSERT(zfsvfs->z_ctldir != NULL);
1998		}
1999		return (ret);
2000	}
2001
2002#ifdef sun
2003	if (!(fflag & MS_FORCE)) {
2004		/*
2005		 * Check the number of active vnodes in the file system.
2006		 * Our count is maintained in the vfs structure, but the
2007		 * number is off by 1 to indicate a hold on the vfs
2008		 * structure itself.
2009		 *
2010		 * The '.zfs' directory maintains a reference of its
2011		 * own, and any active references underneath are
2012		 * reflected in the vnode count.
2013		 */
2014		if (zfsvfs->z_ctldir == NULL) {
2015			if (vfsp->vfs_count > 1)
2016				return (SET_ERROR(EBUSY));
2017		} else {
2018			if (vfsp->vfs_count > 2 ||
2019			    zfsvfs->z_ctldir->v_count > 1)
2020				return (SET_ERROR(EBUSY));
2021		}
2022	}
2023#endif
2024
2025	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2026	os = zfsvfs->z_os;
2027
2028	/*
2029	 * z_os will be NULL if there was an error in
2030	 * attempting to reopen zfsvfs.
2031	 */
2032	if (os != NULL) {
2033		/*
2034		 * Unset the objset user_ptr.
2035		 */
2036		mutex_enter(&os->os_user_ptr_lock);
2037		dmu_objset_set_user(os, NULL);
2038		mutex_exit(&os->os_user_ptr_lock);
2039
2040		/*
2041		 * Finally release the objset
2042		 */
2043		dmu_objset_disown(os, zfsvfs);
2044	}
2045
2046	/*
2047	 * We can now safely destroy the '.zfs' directory node.
2048	 */
2049	if (zfsvfs->z_ctldir != NULL)
2050		zfsctl_destroy(zfsvfs);
2051	if (zfsvfs->z_issnap) {
2052		vnode_t *svp = vfsp->mnt_vnodecovered;
2053
2054		if (svp->v_count >= 2)
2055			VN_RELE(svp);
2056	}
2057	zfs_freevfs(vfsp);
2058
2059	return (0);
2060}
2061
2062static int
2063zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2064{
2065	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2066	znode_t		*zp;
2067	int 		err;
2068
2069	/*
2070	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2071	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2072	 * This will make NFS to switch to LOOKUP instead of using VGET.
2073	 */
2074	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2075	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2076		return (EOPNOTSUPP);
2077
2078	ZFS_ENTER(zfsvfs);
2079	err = zfs_zget(zfsvfs, ino, &zp);
2080	if (err == 0 && zp->z_unlinked) {
2081		VN_RELE(ZTOV(zp));
2082		err = EINVAL;
2083	}
2084	if (err == 0)
2085		*vpp = ZTOV(zp);
2086	ZFS_EXIT(zfsvfs);
2087	if (err == 0)
2088		err = vn_lock(*vpp, flags);
2089	if (err != 0)
2090		*vpp = NULL;
2091	return (err);
2092}
2093
2094static int
2095zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2096    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2097{
2098	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2099
2100	/*
2101	 * If this is regular file system vfsp is the same as
2102	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2103	 * zfsvfs->z_parent->z_vfs represents parent file system
2104	 * which we have to use here, because only this file system
2105	 * has mnt_export configured.
2106	 */
2107	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2108	    credanonp, numsecflavors, secflavors));
2109}
2110
2111CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2112CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2113
2114static int
2115zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2116{
2117	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2118	znode_t		*zp;
2119	uint64_t	object = 0;
2120	uint64_t	fid_gen = 0;
2121	uint64_t	gen_mask;
2122	uint64_t	zp_gen;
2123	int 		i, err;
2124
2125	*vpp = NULL;
2126
2127	ZFS_ENTER(zfsvfs);
2128
2129	/*
2130	 * On FreeBSD we can get snapshot's mount point or its parent file
2131	 * system mount point depending if snapshot is already mounted or not.
2132	 */
2133	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2134		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2135		uint64_t	objsetid = 0;
2136		uint64_t	setgen = 0;
2137
2138		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2139			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2140
2141		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2142			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2143
2144		ZFS_EXIT(zfsvfs);
2145
2146		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2147		if (err)
2148			return (SET_ERROR(EINVAL));
2149		ZFS_ENTER(zfsvfs);
2150	}
2151
2152	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2153		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2154
2155		for (i = 0; i < sizeof (zfid->zf_object); i++)
2156			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2157
2158		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2159			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2160	} else {
2161		ZFS_EXIT(zfsvfs);
2162		return (SET_ERROR(EINVAL));
2163	}
2164
2165	/*
2166	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2167	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2168	 * we are in the .zfs/shares directory tree.
2169	 */
2170	if ((fid_gen == 0 &&
2171	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2172	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2173		*vpp = zfsvfs->z_ctldir;
2174		ASSERT(*vpp != NULL);
2175		if (object == ZFSCTL_INO_SNAPDIR) {
2176			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2177			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2178		} else if (object == zfsvfs->z_shares_dir) {
2179			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2180			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2181		} else {
2182			VN_HOLD(*vpp);
2183		}
2184		ZFS_EXIT(zfsvfs);
2185		err = vn_lock(*vpp, flags);
2186		if (err != 0)
2187			*vpp = NULL;
2188		return (err);
2189	}
2190
2191	gen_mask = -1ULL >> (64 - 8 * i);
2192
2193	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2194	if (err = zfs_zget(zfsvfs, object, &zp)) {
2195		ZFS_EXIT(zfsvfs);
2196		return (err);
2197	}
2198	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2199	    sizeof (uint64_t));
2200	zp_gen = zp_gen & gen_mask;
2201	if (zp_gen == 0)
2202		zp_gen = 1;
2203	if (zp->z_unlinked || zp_gen != fid_gen) {
2204		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2205		VN_RELE(ZTOV(zp));
2206		ZFS_EXIT(zfsvfs);
2207		return (SET_ERROR(EINVAL));
2208	}
2209
2210	*vpp = ZTOV(zp);
2211	ZFS_EXIT(zfsvfs);
2212	err = vn_lock(*vpp, flags | LK_RETRY);
2213	if (err == 0)
2214		vnode_create_vobject(*vpp, zp->z_size, curthread);
2215	else
2216		*vpp = NULL;
2217	return (err);
2218}
2219
2220/*
2221 * Block out VOPs and close zfsvfs_t::z_os
2222 *
2223 * Note, if successful, then we return with the 'z_teardown_lock' and
2224 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2225 * dataset and objset intact so that they can be atomically handed off during
2226 * a subsequent rollback or recv operation and the resume thereafter.
2227 */
2228int
2229zfs_suspend_fs(zfsvfs_t *zfsvfs)
2230{
2231	int error;
2232
2233	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2234		return (error);
2235
2236	return (0);
2237}
2238
2239/*
2240 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2241 * is an invariant across any of the operations that can be performed while the
2242 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2243 * are the same: the relevant objset and associated dataset are owned by
2244 * zfsvfs, held, and long held on entry.
2245 */
2246int
2247zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2248{
2249	int err;
2250	znode_t *zp;
2251	uint64_t sa_obj = 0;
2252
2253	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2254	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2255
2256	/*
2257	 * We already own this, so just hold and rele it to update the
2258	 * objset_t, as the one we had before may have been evicted.
2259	 */
2260	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2261	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2262	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2263	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2264
2265	/*
2266	 * Make sure version hasn't changed
2267	 */
2268
2269	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2270	    &zfsvfs->z_version);
2271
2272	if (err)
2273		goto bail;
2274
2275	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2276	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2277
2278	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2279		goto bail;
2280
2281	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2282	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2283		goto bail;
2284
2285	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2286		sa_register_update_callback(zfsvfs->z_os,
2287		    zfs_sa_upgrade);
2288
2289	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2290
2291	zfs_set_fuid_feature(zfsvfs);
2292
2293	/*
2294	 * Attempt to re-establish all the active znodes with
2295	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2296	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2297	 * when they try to use their znode.
2298	 */
2299	mutex_enter(&zfsvfs->z_znodes_lock);
2300	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2301	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2302		(void) zfs_rezget(zp);
2303	}
2304	mutex_exit(&zfsvfs->z_znodes_lock);
2305
2306bail:
2307	/* release the VOPs */
2308	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2309	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2310
2311	if (err) {
2312		/*
2313		 * Since we couldn't setup the sa framework, try to force
2314		 * unmount this file system.
2315		 */
2316		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
2317			vfs_ref(zfsvfs->z_vfs);
2318			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2319		}
2320	}
2321	return (err);
2322}
2323
2324static void
2325zfs_freevfs(vfs_t *vfsp)
2326{
2327	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2328
2329#ifdef sun
2330	/*
2331	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2332	 * from zfs_mount().  Release it here.  If we came through
2333	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2334	 * skip the VFS_RELE for rootvfs.
2335	 */
2336	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2337		VFS_RELE(zfsvfs->z_parent->z_vfs);
2338#endif	/* sun */
2339
2340	zfsvfs_free(zfsvfs);
2341
2342	atomic_dec_32(&zfs_active_fs_count);
2343}
2344
2345#ifdef __i386__
2346static int desiredvnodes_backup;
2347#endif
2348
2349static void
2350zfs_vnodes_adjust(void)
2351{
2352#ifdef __i386__
2353	int newdesiredvnodes;
2354
2355	desiredvnodes_backup = desiredvnodes;
2356
2357	/*
2358	 * We calculate newdesiredvnodes the same way it is done in
2359	 * vntblinit(). If it is equal to desiredvnodes, it means that
2360	 * it wasn't tuned by the administrator and we can tune it down.
2361	 */
2362	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2363	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2364	    sizeof(struct vnode))));
2365	if (newdesiredvnodes == desiredvnodes)
2366		desiredvnodes = (3 * newdesiredvnodes) / 4;
2367#endif
2368}
2369
2370static void
2371zfs_vnodes_adjust_back(void)
2372{
2373
2374#ifdef __i386__
2375	desiredvnodes = desiredvnodes_backup;
2376#endif
2377}
2378
2379void
2380zfs_init(void)
2381{
2382
2383	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2384
2385	/*
2386	 * Initialize .zfs directory structures
2387	 */
2388	zfsctl_init();
2389
2390	/*
2391	 * Initialize znode cache, vnode ops, etc...
2392	 */
2393	zfs_znode_init();
2394
2395	/*
2396	 * Reduce number of vnodes. Originally number of vnodes is calculated
2397	 * with UFS inode in mind. We reduce it here, because it's too big for
2398	 * ZFS/i386.
2399	 */
2400	zfs_vnodes_adjust();
2401
2402	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2403}
2404
2405void
2406zfs_fini(void)
2407{
2408	zfsctl_fini();
2409	zfs_znode_fini();
2410	zfs_vnodes_adjust_back();
2411}
2412
2413int
2414zfs_busy(void)
2415{
2416	return (zfs_active_fs_count != 0);
2417}
2418
2419int
2420zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2421{
2422	int error;
2423	objset_t *os = zfsvfs->z_os;
2424	dmu_tx_t *tx;
2425
2426	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2427		return (SET_ERROR(EINVAL));
2428
2429	if (newvers < zfsvfs->z_version)
2430		return (SET_ERROR(EINVAL));
2431
2432	if (zfs_spa_version_map(newvers) >
2433	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2434		return (SET_ERROR(ENOTSUP));
2435
2436	tx = dmu_tx_create(os);
2437	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2438	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2439		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2440		    ZFS_SA_ATTRS);
2441		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2442	}
2443	error = dmu_tx_assign(tx, TXG_WAIT);
2444	if (error) {
2445		dmu_tx_abort(tx);
2446		return (error);
2447	}
2448
2449	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2450	    8, 1, &newvers, tx);
2451
2452	if (error) {
2453		dmu_tx_commit(tx);
2454		return (error);
2455	}
2456
2457	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2458		uint64_t sa_obj;
2459
2460		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2461		    SPA_VERSION_SA);
2462		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2463		    DMU_OT_NONE, 0, tx);
2464
2465		error = zap_add(os, MASTER_NODE_OBJ,
2466		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2467		ASSERT0(error);
2468
2469		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2470		sa_register_update_callback(os, zfs_sa_upgrade);
2471	}
2472
2473	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2474	    "from %llu to %llu", zfsvfs->z_version, newvers);
2475
2476	dmu_tx_commit(tx);
2477
2478	zfsvfs->z_version = newvers;
2479
2480	zfs_set_fuid_feature(zfsvfs);
2481
2482	return (0);
2483}
2484
2485/*
2486 * Read a property stored within the master node.
2487 */
2488int
2489zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2490{
2491	const char *pname;
2492	int error = ENOENT;
2493
2494	/*
2495	 * Look up the file system's value for the property.  For the
2496	 * version property, we look up a slightly different string.
2497	 */
2498	if (prop == ZFS_PROP_VERSION)
2499		pname = ZPL_VERSION_STR;
2500	else
2501		pname = zfs_prop_to_name(prop);
2502
2503	if (os != NULL)
2504		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2505
2506	if (error == ENOENT) {
2507		/* No value set, use the default value */
2508		switch (prop) {
2509		case ZFS_PROP_VERSION:
2510			*value = ZPL_VERSION;
2511			break;
2512		case ZFS_PROP_NORMALIZE:
2513		case ZFS_PROP_UTF8ONLY:
2514			*value = 0;
2515			break;
2516		case ZFS_PROP_CASE:
2517			*value = ZFS_CASE_SENSITIVE;
2518			break;
2519		default:
2520			return (error);
2521		}
2522		error = 0;
2523	}
2524	return (error);
2525}
2526
2527#ifdef _KERNEL
2528void
2529zfsvfs_update_fromname(const char *oldname, const char *newname)
2530{
2531	char tmpbuf[MAXPATHLEN];
2532	struct mount *mp;
2533	char *fromname;
2534	size_t oldlen;
2535
2536	oldlen = strlen(oldname);
2537
2538	mtx_lock(&mountlist_mtx);
2539	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2540		fromname = mp->mnt_stat.f_mntfromname;
2541		if (strcmp(fromname, oldname) == 0) {
2542			(void)strlcpy(fromname, newname,
2543			    sizeof(mp->mnt_stat.f_mntfromname));
2544			continue;
2545		}
2546		if (strncmp(fromname, oldname, oldlen) == 0 &&
2547		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2548			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2549			    newname, fromname + oldlen);
2550			(void)strlcpy(fromname, tmpbuf,
2551			    sizeof(mp->mnt_stat.f_mntfromname));
2552			continue;
2553		}
2554	}
2555	mtx_unlock(&mountlist_mtx);
2556}
2557#endif
2558