zfs_vfsops.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	if (vfsp != NULL) {
137		/*
138		 * Sync a specific filesystem.
139		 */
140		zfsvfs_t *zfsvfs = vfsp->vfs_data;
141		dsl_pool_t *dp;
142		int error;
143
144		error = vfs_stdsync(vfsp, waitfor);
145		if (error != 0)
146			return (error);
147
148		ZFS_ENTER(zfsvfs);
149		dp = dmu_objset_pool(zfsvfs->z_os);
150
151		/*
152		 * If the system is shutting down, then skip any
153		 * filesystems which may exist on a suspended pool.
154		 */
155		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
156			ZFS_EXIT(zfsvfs);
157			return (0);
158		}
159
160		if (zfsvfs->z_log != NULL)
161			zil_commit(zfsvfs->z_log, 0);
162
163		ZFS_EXIT(zfsvfs);
164	} else {
165		/*
166		 * Sync all ZFS filesystems.  This is what happens when you
167		 * run sync(1M).  Unlike other filesystems, ZFS honors the
168		 * request by waiting for all pools to commit all dirty data.
169		 */
170		spa_sync_allpools();
171	}
172
173	return (0);
174}
175
176#ifndef __FreeBSD_kernel__
177static int
178zfs_create_unique_device(dev_t *dev)
179{
180	major_t new_major;
181
182	do {
183		ASSERT3U(zfs_minor, <=, MAXMIN32);
184		minor_t start = zfs_minor;
185		do {
186			mutex_enter(&zfs_dev_mtx);
187			if (zfs_minor >= MAXMIN32) {
188				/*
189				 * If we're still using the real major
190				 * keep out of /dev/zfs and /dev/zvol minor
191				 * number space.  If we're using a getudev()'ed
192				 * major number, we can use all of its minors.
193				 */
194				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
195					zfs_minor = ZFS_MIN_MINOR;
196				else
197					zfs_minor = 0;
198			} else {
199				zfs_minor++;
200			}
201			*dev = makedevice(zfs_major, zfs_minor);
202			mutex_exit(&zfs_dev_mtx);
203		} while (vfs_devismounted(*dev) && zfs_minor != start);
204		if (zfs_minor == start) {
205			/*
206			 * We are using all ~262,000 minor numbers for the
207			 * current major number.  Create a new major number.
208			 */
209			if ((new_major = getudev()) == (major_t)-1) {
210				cmn_err(CE_WARN,
211				    "zfs_mount: Can't get unique major "
212				    "device number.");
213				return (-1);
214			}
215			mutex_enter(&zfs_dev_mtx);
216			zfs_major = new_major;
217			zfs_minor = 0;
218
219			mutex_exit(&zfs_dev_mtx);
220		} else {
221			break;
222		}
223		/* CONSTANTCONDITION */
224	} while (1);
225
226	return (0);
227}
228#endif	/* !__FreeBSD_kernel__ */
229
230static void
231atime_changed_cb(void *arg, uint64_t newval)
232{
233	zfsvfs_t *zfsvfs = arg;
234
235	if (newval == TRUE) {
236		zfsvfs->z_atime = TRUE;
237		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
238		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
239		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
240	} else {
241		zfsvfs->z_atime = FALSE;
242		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
243		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
244		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
245	}
246}
247
248static void
249xattr_changed_cb(void *arg, uint64_t newval)
250{
251	zfsvfs_t *zfsvfs = arg;
252
253	if (newval == TRUE) {
254		/* XXX locking on vfs_flag? */
255#ifdef TODO
256		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257#endif
258		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
259		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
260	} else {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267	}
268}
269
270static void
271blksz_changed_cb(void *arg, uint64_t newval)
272{
273	zfsvfs_t *zfsvfs = arg;
274	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
275	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
276	ASSERT(ISP2(newval));
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	boolean_t readonly = B_FALSE;
393	boolean_t do_readonly = B_FALSE;
394	boolean_t setuid = B_FALSE;
395	boolean_t do_setuid = B_FALSE;
396	boolean_t exec = B_FALSE;
397	boolean_t do_exec = B_FALSE;
398#ifdef illumos
399	boolean_t devices = B_FALSE;
400	boolean_t do_devices = B_FALSE;
401#endif
402	boolean_t xattr = B_FALSE;
403	boolean_t do_xattr = B_FALSE;
404	boolean_t atime = B_FALSE;
405	boolean_t do_atime = B_FALSE;
406	int error = 0;
407
408	ASSERT(vfsp);
409	zfsvfs = vfsp->vfs_data;
410	ASSERT(zfsvfs);
411	os = zfsvfs->z_os;
412
413	/*
414	 * This function can be called for a snapshot when we update snapshot's
415	 * mount point, which isn't really supported.
416	 */
417	if (dmu_objset_is_snapshot(os))
418		return (EOPNOTSUPP);
419
420	/*
421	 * The act of registering our callbacks will destroy any mount
422	 * options we may have.  In order to enable temporary overrides
423	 * of mount options, we stash away the current values and
424	 * restore them after we register the callbacks.
425	 */
426	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
427	    !spa_writeable(dmu_objset_spa(os))) {
428		readonly = B_TRUE;
429		do_readonly = B_TRUE;
430	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
431		readonly = B_FALSE;
432		do_readonly = B_TRUE;
433	}
434	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
435		setuid = B_FALSE;
436		do_setuid = B_TRUE;
437	} else {
438		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
439			setuid = B_FALSE;
440			do_setuid = B_TRUE;
441		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
442			setuid = B_TRUE;
443			do_setuid = B_TRUE;
444		}
445	}
446	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
447		exec = B_FALSE;
448		do_exec = B_TRUE;
449	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
450		exec = B_TRUE;
451		do_exec = B_TRUE;
452	}
453	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
454		xattr = B_FALSE;
455		do_xattr = B_TRUE;
456	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
457		xattr = B_TRUE;
458		do_xattr = B_TRUE;
459	}
460	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
461		atime = B_FALSE;
462		do_atime = B_TRUE;
463	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
464		atime = B_TRUE;
465		do_atime = B_TRUE;
466	}
467
468	/*
469	 * nbmand is a special property.  It can only be changed at
470	 * mount time.
471	 *
472	 * This is weird, but it is documented to only be changeable
473	 * at mount time.
474	 */
475	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
476		nbmand = B_FALSE;
477	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
478		nbmand = B_TRUE;
479	} else {
480		char osname[MAXNAMELEN];
481
482		dmu_objset_name(os, osname);
483		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
484		    NULL)) {
485			return (error);
486		}
487	}
488
489	/*
490	 * Register property callbacks.
491	 *
492	 * It would probably be fine to just check for i/o error from
493	 * the first prop_register(), but I guess I like to go
494	 * overboard...
495	 */
496	ds = dmu_objset_ds(os);
497	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
498	error = dsl_prop_register(ds,
499	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
500	error = error ? error : dsl_prop_register(ds,
501	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
502	error = error ? error : dsl_prop_register(ds,
503	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
504	error = error ? error : dsl_prop_register(ds,
505	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
506#ifdef illumos
507	error = error ? error : dsl_prop_register(ds,
508	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
509#endif
510	error = error ? error : dsl_prop_register(ds,
511	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
512	error = error ? error : dsl_prop_register(ds,
513	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
514	error = error ? error : dsl_prop_register(ds,
515	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
516	error = error ? error : dsl_prop_register(ds,
517	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
518	error = error ? error : dsl_prop_register(ds,
519	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
520	    zfsvfs);
521	error = error ? error : dsl_prop_register(ds,
522	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
523	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
524	if (error)
525		goto unregister;
526
527	/*
528	 * Invoke our callbacks to restore temporary mount options.
529	 */
530	if (do_readonly)
531		readonly_changed_cb(zfsvfs, readonly);
532	if (do_setuid)
533		setuid_changed_cb(zfsvfs, setuid);
534	if (do_exec)
535		exec_changed_cb(zfsvfs, exec);
536	if (do_xattr)
537		xattr_changed_cb(zfsvfs, xattr);
538	if (do_atime)
539		atime_changed_cb(zfsvfs, atime);
540
541	nbmand_changed_cb(zfsvfs, nbmand);
542
543	return (0);
544
545unregister:
546	/*
547	 * We may attempt to unregister some callbacks that are not
548	 * registered, but this is OK; it will simply return ENOMSG,
549	 * which we will ignore.
550	 */
551	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
552	    atime_changed_cb, zfsvfs);
553	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
554	    xattr_changed_cb, zfsvfs);
555	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
556	    blksz_changed_cb, zfsvfs);
557	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
558	    readonly_changed_cb, zfsvfs);
559#ifdef illumos
560	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
561	    devices_changed_cb, zfsvfs);
562#endif
563	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
564	    setuid_changed_cb, zfsvfs);
565	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
566	    exec_changed_cb, zfsvfs);
567	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
568	    snapdir_changed_cb, zfsvfs);
569	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
570	    acl_mode_changed_cb, zfsvfs);
571	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
572	    acl_inherit_changed_cb, zfsvfs);
573	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
574	    vscan_changed_cb, zfsvfs);
575	return (error);
576}
577
578static int
579zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
580    uint64_t *userp, uint64_t *groupp)
581{
582	/*
583	 * Is it a valid type of object to track?
584	 */
585	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
586		return (SET_ERROR(ENOENT));
587
588	/*
589	 * If we have a NULL data pointer
590	 * then assume the id's aren't changing and
591	 * return EEXIST to the dmu to let it know to
592	 * use the same ids
593	 */
594	if (data == NULL)
595		return (SET_ERROR(EEXIST));
596
597	if (bonustype == DMU_OT_ZNODE) {
598		znode_phys_t *znp = data;
599		*userp = znp->zp_uid;
600		*groupp = znp->zp_gid;
601	} else {
602		int hdrsize;
603		sa_hdr_phys_t *sap = data;
604		sa_hdr_phys_t sa = *sap;
605		boolean_t swap = B_FALSE;
606
607		ASSERT(bonustype == DMU_OT_SA);
608
609		if (sa.sa_magic == 0) {
610			/*
611			 * This should only happen for newly created
612			 * files that haven't had the znode data filled
613			 * in yet.
614			 */
615			*userp = 0;
616			*groupp = 0;
617			return (0);
618		}
619		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
620			sa.sa_magic = SA_MAGIC;
621			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
622			swap = B_TRUE;
623		} else {
624			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
625		}
626
627		hdrsize = sa_hdrsize(&sa);
628		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
629		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
630		    SA_UID_OFFSET));
631		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
632		    SA_GID_OFFSET));
633		if (swap) {
634			*userp = BSWAP_64(*userp);
635			*groupp = BSWAP_64(*groupp);
636		}
637	}
638	return (0);
639}
640
641static void
642fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
643    char *domainbuf, int buflen, uid_t *ridp)
644{
645	uint64_t fuid;
646	const char *domain;
647
648	fuid = strtonum(fuidstr, NULL);
649
650	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
651	if (domain)
652		(void) strlcpy(domainbuf, domain, buflen);
653	else
654		domainbuf[0] = '\0';
655	*ridp = FUID_RID(fuid);
656}
657
658static uint64_t
659zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
660{
661	switch (type) {
662	case ZFS_PROP_USERUSED:
663		return (DMU_USERUSED_OBJECT);
664	case ZFS_PROP_GROUPUSED:
665		return (DMU_GROUPUSED_OBJECT);
666	case ZFS_PROP_USERQUOTA:
667		return (zfsvfs->z_userquota_obj);
668	case ZFS_PROP_GROUPQUOTA:
669		return (zfsvfs->z_groupquota_obj);
670	}
671	return (0);
672}
673
674int
675zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
676    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
677{
678	int error;
679	zap_cursor_t zc;
680	zap_attribute_t za;
681	zfs_useracct_t *buf = vbuf;
682	uint64_t obj;
683
684	if (!dmu_objset_userspace_present(zfsvfs->z_os))
685		return (SET_ERROR(ENOTSUP));
686
687	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
688	if (obj == 0) {
689		*bufsizep = 0;
690		return (0);
691	}
692
693	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
694	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
695	    zap_cursor_advance(&zc)) {
696		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
697		    *bufsizep)
698			break;
699
700		fuidstr_to_sid(zfsvfs, za.za_name,
701		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
702
703		buf->zu_space = za.za_first_integer;
704		buf++;
705	}
706	if (error == ENOENT)
707		error = 0;
708
709	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
710	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
711	*cookiep = zap_cursor_serialize(&zc);
712	zap_cursor_fini(&zc);
713	return (error);
714}
715
716/*
717 * buf must be big enough (eg, 32 bytes)
718 */
719static int
720id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
721    char *buf, boolean_t addok)
722{
723	uint64_t fuid;
724	int domainid = 0;
725
726	if (domain && domain[0]) {
727		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
728		if (domainid == -1)
729			return (SET_ERROR(ENOENT));
730	}
731	fuid = FUID_ENCODE(domainid, rid);
732	(void) sprintf(buf, "%llx", (longlong_t)fuid);
733	return (0);
734}
735
736int
737zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
738    const char *domain, uint64_t rid, uint64_t *valp)
739{
740	char buf[32];
741	int err;
742	uint64_t obj;
743
744	*valp = 0;
745
746	if (!dmu_objset_userspace_present(zfsvfs->z_os))
747		return (SET_ERROR(ENOTSUP));
748
749	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
750	if (obj == 0)
751		return (0);
752
753	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
754	if (err)
755		return (err);
756
757	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
758	if (err == ENOENT)
759		err = 0;
760	return (err);
761}
762
763int
764zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
765    const char *domain, uint64_t rid, uint64_t quota)
766{
767	char buf[32];
768	int err;
769	dmu_tx_t *tx;
770	uint64_t *objp;
771	boolean_t fuid_dirtied;
772
773	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
774		return (SET_ERROR(EINVAL));
775
776	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
777		return (SET_ERROR(ENOTSUP));
778
779	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
780	    &zfsvfs->z_groupquota_obj;
781
782	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
783	if (err)
784		return (err);
785	fuid_dirtied = zfsvfs->z_fuid_dirty;
786
787	tx = dmu_tx_create(zfsvfs->z_os);
788	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
789	if (*objp == 0) {
790		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
791		    zfs_userquota_prop_prefixes[type]);
792	}
793	if (fuid_dirtied)
794		zfs_fuid_txhold(zfsvfs, tx);
795	err = dmu_tx_assign(tx, TXG_WAIT);
796	if (err) {
797		dmu_tx_abort(tx);
798		return (err);
799	}
800
801	mutex_enter(&zfsvfs->z_lock);
802	if (*objp == 0) {
803		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
804		    DMU_OT_NONE, 0, tx);
805		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
806		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
807	}
808	mutex_exit(&zfsvfs->z_lock);
809
810	if (quota == 0) {
811		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
812		if (err == ENOENT)
813			err = 0;
814	} else {
815		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
816	}
817	ASSERT(err == 0);
818	if (fuid_dirtied)
819		zfs_fuid_sync(zfsvfs, tx);
820	dmu_tx_commit(tx);
821	return (err);
822}
823
824boolean_t
825zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
826{
827	char buf[32];
828	uint64_t used, quota, usedobj, quotaobj;
829	int err;
830
831	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
832	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
833
834	if (quotaobj == 0 || zfsvfs->z_replay)
835		return (B_FALSE);
836
837	(void) sprintf(buf, "%llx", (longlong_t)fuid);
838	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
839	if (err != 0)
840		return (B_FALSE);
841
842	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
843	if (err != 0)
844		return (B_FALSE);
845	return (used >= quota);
846}
847
848boolean_t
849zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
850{
851	uint64_t fuid;
852	uint64_t quotaobj;
853
854	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
855
856	fuid = isgroup ? zp->z_gid : zp->z_uid;
857
858	if (quotaobj == 0 || zfsvfs->z_replay)
859		return (B_FALSE);
860
861	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
862}
863
864int
865zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
866{
867	objset_t *os;
868	zfsvfs_t *zfsvfs;
869	uint64_t zval;
870	int i, error;
871	uint64_t sa_obj;
872
873	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
874
875	/*
876	 * We claim to always be readonly so we can open snapshots;
877	 * other ZPL code will prevent us from writing to snapshots.
878	 */
879	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
880	if (error) {
881		kmem_free(zfsvfs, sizeof (zfsvfs_t));
882		return (error);
883	}
884
885	/*
886	 * Initialize the zfs-specific filesystem structure.
887	 * Should probably make this a kmem cache, shuffle fields,
888	 * and just bzero up to z_hold_mtx[].
889	 */
890	zfsvfs->z_vfs = NULL;
891	zfsvfs->z_parent = zfsvfs;
892	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
893	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
894	zfsvfs->z_os = os;
895
896	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
897	if (error) {
898		goto out;
899	} else if (zfsvfs->z_version >
900	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
901		(void) printf("Can't mount a version %lld file system "
902		    "on a version %lld pool\n. Pool must be upgraded to mount "
903		    "this file system.", (u_longlong_t)zfsvfs->z_version,
904		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
905		error = SET_ERROR(ENOTSUP);
906		goto out;
907	}
908	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
909		goto out;
910	zfsvfs->z_norm = (int)zval;
911
912	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
913		goto out;
914	zfsvfs->z_utf8 = (zval != 0);
915
916	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
917		goto out;
918	zfsvfs->z_case = (uint_t)zval;
919
920	/*
921	 * Fold case on file systems that are always or sometimes case
922	 * insensitive.
923	 */
924	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
925	    zfsvfs->z_case == ZFS_CASE_MIXED)
926		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
927
928	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
929	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
930
931	if (zfsvfs->z_use_sa) {
932		/* should either have both of these objects or none */
933		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
934		    &sa_obj);
935		if (error)
936			return (error);
937	} else {
938		/*
939		 * Pre SA versions file systems should never touch
940		 * either the attribute registration or layout objects.
941		 */
942		sa_obj = 0;
943	}
944
945	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
946	    &zfsvfs->z_attr_table);
947	if (error)
948		goto out;
949
950	if (zfsvfs->z_version >= ZPL_VERSION_SA)
951		sa_register_update_callback(os, zfs_sa_upgrade);
952
953	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
954	    &zfsvfs->z_root);
955	if (error)
956		goto out;
957	ASSERT(zfsvfs->z_root != 0);
958
959	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
960	    &zfsvfs->z_unlinkedobj);
961	if (error)
962		goto out;
963
964	error = zap_lookup(os, MASTER_NODE_OBJ,
965	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
966	    8, 1, &zfsvfs->z_userquota_obj);
967	if (error && error != ENOENT)
968		goto out;
969
970	error = zap_lookup(os, MASTER_NODE_OBJ,
971	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
972	    8, 1, &zfsvfs->z_groupquota_obj);
973	if (error && error != ENOENT)
974		goto out;
975
976	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
977	    &zfsvfs->z_fuid_obj);
978	if (error && error != ENOENT)
979		goto out;
980
981	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
982	    &zfsvfs->z_shares_dir);
983	if (error && error != ENOENT)
984		goto out;
985
986	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
987	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
988	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
989	    offsetof(znode_t, z_link_node));
990	rrm_init(&zfsvfs->z_teardown_lock, B_FALSE);
991	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
992	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
993	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
994		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
995
996	*zfvp = zfsvfs;
997	return (0);
998
999out:
1000	dmu_objset_disown(os, zfsvfs);
1001	*zfvp = NULL;
1002	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1003	return (error);
1004}
1005
1006static int
1007zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1008{
1009	int error;
1010
1011	error = zfs_register_callbacks(zfsvfs->z_vfs);
1012	if (error)
1013		return (error);
1014
1015	/*
1016	 * Set the objset user_ptr to track its zfsvfs.
1017	 */
1018	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1019	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1020	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1021
1022	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1023
1024	/*
1025	 * If we are not mounting (ie: online recv), then we don't
1026	 * have to worry about replaying the log as we blocked all
1027	 * operations out since we closed the ZIL.
1028	 */
1029	if (mounting) {
1030		boolean_t readonly;
1031
1032		/*
1033		 * During replay we remove the read only flag to
1034		 * allow replays to succeed.
1035		 */
1036		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1037		if (readonly != 0)
1038			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1039		else
1040			zfs_unlinked_drain(zfsvfs);
1041
1042		/*
1043		 * Parse and replay the intent log.
1044		 *
1045		 * Because of ziltest, this must be done after
1046		 * zfs_unlinked_drain().  (Further note: ziltest
1047		 * doesn't use readonly mounts, where
1048		 * zfs_unlinked_drain() isn't called.)  This is because
1049		 * ziltest causes spa_sync() to think it's committed,
1050		 * but actually it is not, so the intent log contains
1051		 * many txg's worth of changes.
1052		 *
1053		 * In particular, if object N is in the unlinked set in
1054		 * the last txg to actually sync, then it could be
1055		 * actually freed in a later txg and then reallocated
1056		 * in a yet later txg.  This would write a "create
1057		 * object N" record to the intent log.  Normally, this
1058		 * would be fine because the spa_sync() would have
1059		 * written out the fact that object N is free, before
1060		 * we could write the "create object N" intent log
1061		 * record.
1062		 *
1063		 * But when we are in ziltest mode, we advance the "open
1064		 * txg" without actually spa_sync()-ing the changes to
1065		 * disk.  So we would see that object N is still
1066		 * allocated and in the unlinked set, and there is an
1067		 * intent log record saying to allocate it.
1068		 */
1069		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1070			if (zil_replay_disable) {
1071				zil_destroy(zfsvfs->z_log, B_FALSE);
1072			} else {
1073				zfsvfs->z_replay = B_TRUE;
1074				zil_replay(zfsvfs->z_os, zfsvfs,
1075				    zfs_replay_vector);
1076				zfsvfs->z_replay = B_FALSE;
1077			}
1078		}
1079		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1080	}
1081
1082	return (0);
1083}
1084
1085extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1086
1087void
1088zfsvfs_free(zfsvfs_t *zfsvfs)
1089{
1090	int i;
1091
1092	/*
1093	 * This is a barrier to prevent the filesystem from going away in
1094	 * zfs_znode_move() until we can safely ensure that the filesystem is
1095	 * not unmounted. We consider the filesystem valid before the barrier
1096	 * and invalid after the barrier.
1097	 */
1098	rw_enter(&zfsvfs_lock, RW_READER);
1099	rw_exit(&zfsvfs_lock);
1100
1101	zfs_fuid_destroy(zfsvfs);
1102
1103	mutex_destroy(&zfsvfs->z_znodes_lock);
1104	mutex_destroy(&zfsvfs->z_lock);
1105	list_destroy(&zfsvfs->z_all_znodes);
1106	rrm_destroy(&zfsvfs->z_teardown_lock);
1107	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1108	rw_destroy(&zfsvfs->z_fuid_lock);
1109	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1110		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1111	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1112}
1113
1114static void
1115zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1116{
1117	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1118	if (zfsvfs->z_vfs) {
1119		if (zfsvfs->z_use_fuids) {
1120			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1121			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1122			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1123			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1124			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1125			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1126		} else {
1127			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1128			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1129			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1130			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1131			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1132			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1133		}
1134	}
1135	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1136}
1137
1138static int
1139zfs_domount(vfs_t *vfsp, char *osname)
1140{
1141	uint64_t recordsize, fsid_guid;
1142	int error = 0;
1143	zfsvfs_t *zfsvfs;
1144	vnode_t *vp;
1145
1146	ASSERT(vfsp);
1147	ASSERT(osname);
1148
1149	error = zfsvfs_create(osname, &zfsvfs);
1150	if (error)
1151		return (error);
1152	zfsvfs->z_vfs = vfsp;
1153
1154#ifdef illumos
1155	/* Initialize the generic filesystem structure. */
1156	vfsp->vfs_bcount = 0;
1157	vfsp->vfs_data = NULL;
1158
1159	if (zfs_create_unique_device(&mount_dev) == -1) {
1160		error = SET_ERROR(ENODEV);
1161		goto out;
1162	}
1163	ASSERT(vfs_devismounted(mount_dev) == 0);
1164#endif
1165
1166	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1167	    NULL))
1168		goto out;
1169	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1170	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1171
1172	vfsp->vfs_data = zfsvfs;
1173	vfsp->mnt_flag |= MNT_LOCAL;
1174	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1175	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1176	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1177
1178	/*
1179	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1180	 * separates our fsid from any other filesystem types, and a
1181	 * 56-bit objset unique ID.  The objset unique ID is unique to
1182	 * all objsets open on this system, provided by unique_create().
1183	 * The 8-bit fs type must be put in the low bits of fsid[1]
1184	 * because that's where other Solaris filesystems put it.
1185	 */
1186	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1187	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1188	vfsp->vfs_fsid.val[0] = fsid_guid;
1189	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1190	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1191
1192	/*
1193	 * Set features for file system.
1194	 */
1195	zfs_set_fuid_feature(zfsvfs);
1196	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1197		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1198		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1199		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1200	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1201		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1202		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1203	}
1204	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1205
1206	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1207		uint64_t pval;
1208
1209		atime_changed_cb(zfsvfs, B_FALSE);
1210		readonly_changed_cb(zfsvfs, B_TRUE);
1211		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1212			goto out;
1213		xattr_changed_cb(zfsvfs, pval);
1214		zfsvfs->z_issnap = B_TRUE;
1215		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1216
1217		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1218		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1219		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1220	} else {
1221		error = zfsvfs_setup(zfsvfs, B_TRUE);
1222	}
1223
1224	vfs_mountedfrom(vfsp, osname);
1225	/* Grab extra reference. */
1226	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1227	VOP_UNLOCK(vp, 0);
1228
1229	if (!zfsvfs->z_issnap)
1230		zfsctl_create(zfsvfs);
1231out:
1232	if (error) {
1233		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1234		zfsvfs_free(zfsvfs);
1235	} else {
1236		atomic_inc_32(&zfs_active_fs_count);
1237	}
1238
1239	return (error);
1240}
1241
1242void
1243zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1244{
1245	objset_t *os = zfsvfs->z_os;
1246	struct dsl_dataset *ds;
1247
1248	/*
1249	 * Unregister properties.
1250	 */
1251	if (!dmu_objset_is_snapshot(os)) {
1252		ds = dmu_objset_ds(os);
1253		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1254		    zfsvfs) == 0);
1255
1256		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1257		    zfsvfs) == 0);
1258
1259		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1260		    zfsvfs) == 0);
1261
1262		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1263		    zfsvfs) == 0);
1264
1265		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1266		    zfsvfs) == 0);
1267
1268		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1269		    zfsvfs) == 0);
1270
1271		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1272		    zfsvfs) == 0);
1273
1274		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1275		    zfsvfs) == 0);
1276
1277		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1278		    acl_inherit_changed_cb, zfsvfs) == 0);
1279
1280		VERIFY(dsl_prop_unregister(ds, "vscan",
1281		    vscan_changed_cb, zfsvfs) == 0);
1282	}
1283}
1284
1285#ifdef SECLABEL
1286/*
1287 * Convert a decimal digit string to a uint64_t integer.
1288 */
1289static int
1290str_to_uint64(char *str, uint64_t *objnum)
1291{
1292	uint64_t num = 0;
1293
1294	while (*str) {
1295		if (*str < '0' || *str > '9')
1296			return (SET_ERROR(EINVAL));
1297
1298		num = num*10 + *str++ - '0';
1299	}
1300
1301	*objnum = num;
1302	return (0);
1303}
1304
1305/*
1306 * The boot path passed from the boot loader is in the form of
1307 * "rootpool-name/root-filesystem-object-number'. Convert this
1308 * string to a dataset name: "rootpool-name/root-filesystem-name".
1309 */
1310static int
1311zfs_parse_bootfs(char *bpath, char *outpath)
1312{
1313	char *slashp;
1314	uint64_t objnum;
1315	int error;
1316
1317	if (*bpath == 0 || *bpath == '/')
1318		return (SET_ERROR(EINVAL));
1319
1320	(void) strcpy(outpath, bpath);
1321
1322	slashp = strchr(bpath, '/');
1323
1324	/* if no '/', just return the pool name */
1325	if (slashp == NULL) {
1326		return (0);
1327	}
1328
1329	/* if not a number, just return the root dataset name */
1330	if (str_to_uint64(slashp+1, &objnum)) {
1331		return (0);
1332	}
1333
1334	*slashp = '\0';
1335	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1336	*slashp = '/';
1337
1338	return (error);
1339}
1340
1341/*
1342 * Check that the hex label string is appropriate for the dataset being
1343 * mounted into the global_zone proper.
1344 *
1345 * Return an error if the hex label string is not default or
1346 * admin_low/admin_high.  For admin_low labels, the corresponding
1347 * dataset must be readonly.
1348 */
1349int
1350zfs_check_global_label(const char *dsname, const char *hexsl)
1351{
1352	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1353		return (0);
1354	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1355		return (0);
1356	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1357		/* must be readonly */
1358		uint64_t rdonly;
1359
1360		if (dsl_prop_get_integer(dsname,
1361		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1362			return (SET_ERROR(EACCES));
1363		return (rdonly ? 0 : EACCES);
1364	}
1365	return (SET_ERROR(EACCES));
1366}
1367
1368/*
1369 * Determine whether the mount is allowed according to MAC check.
1370 * by comparing (where appropriate) label of the dataset against
1371 * the label of the zone being mounted into.  If the dataset has
1372 * no label, create one.
1373 *
1374 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1375 */
1376static int
1377zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1378{
1379	int		error, retv;
1380	zone_t		*mntzone = NULL;
1381	ts_label_t	*mnt_tsl;
1382	bslabel_t	*mnt_sl;
1383	bslabel_t	ds_sl;
1384	char		ds_hexsl[MAXNAMELEN];
1385
1386	retv = EACCES;				/* assume the worst */
1387
1388	/*
1389	 * Start by getting the dataset label if it exists.
1390	 */
1391	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1392	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1393	if (error)
1394		return (SET_ERROR(EACCES));
1395
1396	/*
1397	 * If labeling is NOT enabled, then disallow the mount of datasets
1398	 * which have a non-default label already.  No other label checks
1399	 * are needed.
1400	 */
1401	if (!is_system_labeled()) {
1402		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1403			return (0);
1404		return (SET_ERROR(EACCES));
1405	}
1406
1407	/*
1408	 * Get the label of the mountpoint.  If mounting into the global
1409	 * zone (i.e. mountpoint is not within an active zone and the
1410	 * zoned property is off), the label must be default or
1411	 * admin_low/admin_high only; no other checks are needed.
1412	 */
1413	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1414	if (mntzone->zone_id == GLOBAL_ZONEID) {
1415		uint64_t zoned;
1416
1417		zone_rele(mntzone);
1418
1419		if (dsl_prop_get_integer(osname,
1420		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1421			return (SET_ERROR(EACCES));
1422		if (!zoned)
1423			return (zfs_check_global_label(osname, ds_hexsl));
1424		else
1425			/*
1426			 * This is the case of a zone dataset being mounted
1427			 * initially, before the zone has been fully created;
1428			 * allow this mount into global zone.
1429			 */
1430			return (0);
1431	}
1432
1433	mnt_tsl = mntzone->zone_slabel;
1434	ASSERT(mnt_tsl != NULL);
1435	label_hold(mnt_tsl);
1436	mnt_sl = label2bslabel(mnt_tsl);
1437
1438	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1439		/*
1440		 * The dataset doesn't have a real label, so fabricate one.
1441		 */
1442		char *str = NULL;
1443
1444		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1445		    dsl_prop_set_string(osname,
1446		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1447		    ZPROP_SRC_LOCAL, str) == 0)
1448			retv = 0;
1449		if (str != NULL)
1450			kmem_free(str, strlen(str) + 1);
1451	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1452		/*
1453		 * Now compare labels to complete the MAC check.  If the
1454		 * labels are equal then allow access.  If the mountpoint
1455		 * label dominates the dataset label, allow readonly access.
1456		 * Otherwise, access is denied.
1457		 */
1458		if (blequal(mnt_sl, &ds_sl))
1459			retv = 0;
1460		else if (bldominates(mnt_sl, &ds_sl)) {
1461			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1462			retv = 0;
1463		}
1464	}
1465
1466	label_rele(mnt_tsl);
1467	zone_rele(mntzone);
1468	return (retv);
1469}
1470#endif	/* SECLABEL */
1471
1472#ifdef OPENSOLARIS_MOUNTROOT
1473static int
1474zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1475{
1476	int error = 0;
1477	static int zfsrootdone = 0;
1478	zfsvfs_t *zfsvfs = NULL;
1479	znode_t *zp = NULL;
1480	vnode_t *vp = NULL;
1481	char *zfs_bootfs;
1482	char *zfs_devid;
1483
1484	ASSERT(vfsp);
1485
1486	/*
1487	 * The filesystem that we mount as root is defined in the
1488	 * boot property "zfs-bootfs" with a format of
1489	 * "poolname/root-dataset-objnum".
1490	 */
1491	if (why == ROOT_INIT) {
1492		if (zfsrootdone++)
1493			return (SET_ERROR(EBUSY));
1494		/*
1495		 * the process of doing a spa_load will require the
1496		 * clock to be set before we could (for example) do
1497		 * something better by looking at the timestamp on
1498		 * an uberblock, so just set it to -1.
1499		 */
1500		clkset(-1);
1501
1502		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1503			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1504			    "bootfs name");
1505			return (SET_ERROR(EINVAL));
1506		}
1507		zfs_devid = spa_get_bootprop("diskdevid");
1508		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1509		if (zfs_devid)
1510			spa_free_bootprop(zfs_devid);
1511		if (error) {
1512			spa_free_bootprop(zfs_bootfs);
1513			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1514			    error);
1515			return (error);
1516		}
1517		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1518			spa_free_bootprop(zfs_bootfs);
1519			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1520			    error);
1521			return (error);
1522		}
1523
1524		spa_free_bootprop(zfs_bootfs);
1525
1526		if (error = vfs_lock(vfsp))
1527			return (error);
1528
1529		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1530			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1531			goto out;
1532		}
1533
1534		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1535		ASSERT(zfsvfs);
1536		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1537			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1538			goto out;
1539		}
1540
1541		vp = ZTOV(zp);
1542		mutex_enter(&vp->v_lock);
1543		vp->v_flag |= VROOT;
1544		mutex_exit(&vp->v_lock);
1545		rootvp = vp;
1546
1547		/*
1548		 * Leave rootvp held.  The root file system is never unmounted.
1549		 */
1550
1551		vfs_add((struct vnode *)0, vfsp,
1552		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1553out:
1554		vfs_unlock(vfsp);
1555		return (error);
1556	} else if (why == ROOT_REMOUNT) {
1557		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1558		vfsp->vfs_flag |= VFS_REMOUNT;
1559
1560		/* refresh mount options */
1561		zfs_unregister_callbacks(vfsp->vfs_data);
1562		return (zfs_register_callbacks(vfsp));
1563
1564	} else if (why == ROOT_UNMOUNT) {
1565		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1566		(void) zfs_sync(vfsp, 0, 0);
1567		return (0);
1568	}
1569
1570	/*
1571	 * if "why" is equal to anything else other than ROOT_INIT,
1572	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1573	 */
1574	return (SET_ERROR(ENOTSUP));
1575}
1576#endif	/* OPENSOLARIS_MOUNTROOT */
1577
1578static int
1579getpoolname(const char *osname, char *poolname)
1580{
1581	char *p;
1582
1583	p = strchr(osname, '/');
1584	if (p == NULL) {
1585		if (strlen(osname) >= MAXNAMELEN)
1586			return (ENAMETOOLONG);
1587		(void) strcpy(poolname, osname);
1588	} else {
1589		if (p - osname >= MAXNAMELEN)
1590			return (ENAMETOOLONG);
1591		(void) strncpy(poolname, osname, p - osname);
1592		poolname[p - osname] = '\0';
1593	}
1594	return (0);
1595}
1596
1597/*ARGSUSED*/
1598static int
1599zfs_mount(vfs_t *vfsp)
1600{
1601	kthread_t	*td = curthread;
1602	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1603	cred_t		*cr = td->td_ucred;
1604	char		*osname;
1605	int		error = 0;
1606	int		canwrite;
1607
1608#ifdef illumos
1609	if (mvp->v_type != VDIR)
1610		return (SET_ERROR(ENOTDIR));
1611
1612	mutex_enter(&mvp->v_lock);
1613	if ((uap->flags & MS_REMOUNT) == 0 &&
1614	    (uap->flags & MS_OVERLAY) == 0 &&
1615	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1616		mutex_exit(&mvp->v_lock);
1617		return (SET_ERROR(EBUSY));
1618	}
1619	mutex_exit(&mvp->v_lock);
1620
1621	/*
1622	 * ZFS does not support passing unparsed data in via MS_DATA.
1623	 * Users should use the MS_OPTIONSTR interface; this means
1624	 * that all option parsing is already done and the options struct
1625	 * can be interrogated.
1626	 */
1627	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1628#else
1629	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1630		return (SET_ERROR(EPERM));
1631
1632	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1633		return (SET_ERROR(EINVAL));
1634#endif	/* ! illumos */
1635
1636	/*
1637	 * If full-owner-access is enabled and delegated administration is
1638	 * turned on, we must set nosuid.
1639	 */
1640	if (zfs_super_owner &&
1641	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1642		secpolicy_fs_mount_clearopts(cr, vfsp);
1643	}
1644
1645	/*
1646	 * Check for mount privilege?
1647	 *
1648	 * If we don't have privilege then see if
1649	 * we have local permission to allow it
1650	 */
1651	error = secpolicy_fs_mount(cr, mvp, vfsp);
1652	if (error) {
1653		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1654			goto out;
1655
1656		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1657			vattr_t		vattr;
1658
1659			/*
1660			 * Make sure user is the owner of the mount point
1661			 * or has sufficient privileges.
1662			 */
1663
1664			vattr.va_mask = AT_UID;
1665
1666			vn_lock(mvp, LK_SHARED | LK_RETRY);
1667			if (VOP_GETATTR(mvp, &vattr, cr)) {
1668				VOP_UNLOCK(mvp, 0);
1669				goto out;
1670			}
1671
1672			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1673			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1674				VOP_UNLOCK(mvp, 0);
1675				goto out;
1676			}
1677			VOP_UNLOCK(mvp, 0);
1678		}
1679
1680		secpolicy_fs_mount_clearopts(cr, vfsp);
1681	}
1682
1683	/*
1684	 * Refuse to mount a filesystem if we are in a local zone and the
1685	 * dataset is not visible.
1686	 */
1687	if (!INGLOBALZONE(curthread) &&
1688	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1689		error = SET_ERROR(EPERM);
1690		goto out;
1691	}
1692
1693#ifdef SECLABEL
1694	error = zfs_mount_label_policy(vfsp, osname);
1695	if (error)
1696		goto out;
1697#endif
1698
1699	vfsp->vfs_flag |= MNT_NFS4ACLS;
1700
1701	/*
1702	 * When doing a remount, we simply refresh our temporary properties
1703	 * according to those options set in the current VFS options.
1704	 */
1705	if (vfsp->vfs_flag & MS_REMOUNT) {
1706		/* refresh mount options */
1707		zfs_unregister_callbacks(vfsp->vfs_data);
1708		error = zfs_register_callbacks(vfsp);
1709		goto out;
1710	}
1711
1712	/* Initial root mount: try hard to import the requested root pool. */
1713	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1714	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1715		char pname[MAXNAMELEN];
1716
1717		error = getpoolname(osname, pname);
1718		if (error == 0)
1719			error = spa_import_rootpool(pname);
1720		if (error)
1721			goto out;
1722	}
1723	DROP_GIANT();
1724	error = zfs_domount(vfsp, osname);
1725	PICKUP_GIANT();
1726
1727#ifdef sun
1728	/*
1729	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1730	 * disappear due to a forced unmount.
1731	 */
1732	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1733		VFS_HOLD(mvp->v_vfsp);
1734#endif	/* sun */
1735
1736out:
1737	return (error);
1738}
1739
1740static int
1741zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1742{
1743	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1744	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1745
1746	statp->f_version = STATFS_VERSION;
1747
1748	ZFS_ENTER(zfsvfs);
1749
1750	dmu_objset_space(zfsvfs->z_os,
1751	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1752
1753	/*
1754	 * The underlying storage pool actually uses multiple block sizes.
1755	 * We report the fragsize as the smallest block size we support,
1756	 * and we report our blocksize as the filesystem's maximum blocksize.
1757	 */
1758	statp->f_bsize = SPA_MINBLOCKSIZE;
1759	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1760
1761	/*
1762	 * The following report "total" blocks of various kinds in the
1763	 * file system, but reported in terms of f_frsize - the
1764	 * "fragment" size.
1765	 */
1766
1767	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1768	statp->f_bfree = availbytes / statp->f_bsize;
1769	statp->f_bavail = statp->f_bfree; /* no root reservation */
1770
1771	/*
1772	 * statvfs() should really be called statufs(), because it assumes
1773	 * static metadata.  ZFS doesn't preallocate files, so the best
1774	 * we can do is report the max that could possibly fit in f_files,
1775	 * and that minus the number actually used in f_ffree.
1776	 * For f_ffree, report the smaller of the number of object available
1777	 * and the number of blocks (each object will take at least a block).
1778	 */
1779	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1780	statp->f_files = statp->f_ffree + usedobjs;
1781
1782	/*
1783	 * We're a zfs filesystem.
1784	 */
1785	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1786
1787	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1788	    sizeof(statp->f_mntfromname));
1789	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1790	    sizeof(statp->f_mntonname));
1791
1792	statp->f_namemax = ZFS_MAXNAMELEN;
1793
1794	ZFS_EXIT(zfsvfs);
1795	return (0);
1796}
1797
1798static int
1799zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1800{
1801	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1802	znode_t *rootzp;
1803	int error;
1804
1805	ZFS_ENTER_NOERROR(zfsvfs);
1806
1807	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1808	if (error == 0)
1809		*vpp = ZTOV(rootzp);
1810
1811	ZFS_EXIT(zfsvfs);
1812
1813	if (error == 0) {
1814		error = vn_lock(*vpp, flags);
1815		if (error == 0)
1816			(*vpp)->v_vflag |= VV_ROOT;
1817	}
1818	if (error != 0)
1819		*vpp = NULL;
1820
1821	return (error);
1822}
1823
1824/*
1825 * Teardown the zfsvfs::z_os.
1826 *
1827 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1828 * and 'z_teardown_inactive_lock' held.
1829 */
1830static int
1831zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1832{
1833	znode_t	*zp;
1834
1835	rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1836
1837	if (!unmounting) {
1838		/*
1839		 * We purge the parent filesystem's vfsp as the parent
1840		 * filesystem and all of its snapshots have their vnode's
1841		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1842		 * 'z_parent' is self referential for non-snapshots.
1843		 */
1844		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1845#ifdef FREEBSD_NAMECACHE
1846		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1847#endif
1848	}
1849
1850	/*
1851	 * Close the zil. NB: Can't close the zil while zfs_inactive
1852	 * threads are blocked as zil_close can call zfs_inactive.
1853	 */
1854	if (zfsvfs->z_log) {
1855		zil_close(zfsvfs->z_log);
1856		zfsvfs->z_log = NULL;
1857	}
1858
1859	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1860
1861	/*
1862	 * If we are not unmounting (ie: online recv) and someone already
1863	 * unmounted this file system while we were doing the switcheroo,
1864	 * or a reopen of z_os failed then just bail out now.
1865	 */
1866	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1867		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1868		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1869		return (SET_ERROR(EIO));
1870	}
1871
1872	/*
1873	 * At this point there are no vops active, and any new vops will
1874	 * fail with EIO since we have z_teardown_lock for writer (only
1875	 * relavent for forced unmount).
1876	 *
1877	 * Release all holds on dbufs.
1878	 */
1879	mutex_enter(&zfsvfs->z_znodes_lock);
1880	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1881	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1882		if (zp->z_sa_hdl) {
1883			ASSERT(ZTOV(zp)->v_count >= 0);
1884			zfs_znode_dmu_fini(zp);
1885		}
1886	mutex_exit(&zfsvfs->z_znodes_lock);
1887
1888	/*
1889	 * If we are unmounting, set the unmounted flag and let new vops
1890	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1891	 * other vops will fail with EIO.
1892	 */
1893	if (unmounting) {
1894		zfsvfs->z_unmounted = B_TRUE;
1895		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1896		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1897	}
1898
1899	/*
1900	 * z_os will be NULL if there was an error in attempting to reopen
1901	 * zfsvfs, so just return as the properties had already been
1902	 * unregistered and cached data had been evicted before.
1903	 */
1904	if (zfsvfs->z_os == NULL)
1905		return (0);
1906
1907	/*
1908	 * Unregister properties.
1909	 */
1910	zfs_unregister_callbacks(zfsvfs);
1911
1912	/*
1913	 * Evict cached data
1914	 */
1915	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1916	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1917		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1918	dmu_objset_evict_dbufs(zfsvfs->z_os);
1919
1920	return (0);
1921}
1922
1923/*ARGSUSED*/
1924static int
1925zfs_umount(vfs_t *vfsp, int fflag)
1926{
1927	kthread_t *td = curthread;
1928	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1929	objset_t *os;
1930	cred_t *cr = td->td_ucred;
1931	int ret;
1932
1933	ret = secpolicy_fs_unmount(cr, vfsp);
1934	if (ret) {
1935		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1936		    ZFS_DELEG_PERM_MOUNT, cr))
1937			return (ret);
1938	}
1939
1940	/*
1941	 * We purge the parent filesystem's vfsp as the parent filesystem
1942	 * and all of its snapshots have their vnode's v_vfsp set to the
1943	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1944	 * referential for non-snapshots.
1945	 */
1946	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1947
1948	/*
1949	 * Unmount any snapshots mounted under .zfs before unmounting the
1950	 * dataset itself.
1951	 */
1952	if (zfsvfs->z_ctldir != NULL) {
1953		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1954			return (ret);
1955		ret = vflush(vfsp, 0, 0, td);
1956		ASSERT(ret == EBUSY);
1957		if (!(fflag & MS_FORCE)) {
1958			if (zfsvfs->z_ctldir->v_count > 1)
1959				return (EBUSY);
1960			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1961		}
1962		zfsctl_destroy(zfsvfs);
1963		ASSERT(zfsvfs->z_ctldir == NULL);
1964	}
1965
1966	if (fflag & MS_FORCE) {
1967		/*
1968		 * Mark file system as unmounted before calling
1969		 * vflush(FORCECLOSE). This way we ensure no future vnops
1970		 * will be called and risk operating on DOOMED vnodes.
1971		 */
1972		rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1973		zfsvfs->z_unmounted = B_TRUE;
1974		rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
1975	}
1976
1977	/*
1978	 * Flush all the files.
1979	 */
1980	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1981	if (ret != 0) {
1982		if (!zfsvfs->z_issnap) {
1983			zfsctl_create(zfsvfs);
1984			ASSERT(zfsvfs->z_ctldir != NULL);
1985		}
1986		return (ret);
1987	}
1988
1989#ifdef sun
1990	if (!(fflag & MS_FORCE)) {
1991		/*
1992		 * Check the number of active vnodes in the file system.
1993		 * Our count is maintained in the vfs structure, but the
1994		 * number is off by 1 to indicate a hold on the vfs
1995		 * structure itself.
1996		 *
1997		 * The '.zfs' directory maintains a reference of its
1998		 * own, and any active references underneath are
1999		 * reflected in the vnode count.
2000		 */
2001		if (zfsvfs->z_ctldir == NULL) {
2002			if (vfsp->vfs_count > 1)
2003				return (SET_ERROR(EBUSY));
2004		} else {
2005			if (vfsp->vfs_count > 2 ||
2006			    zfsvfs->z_ctldir->v_count > 1)
2007				return (SET_ERROR(EBUSY));
2008		}
2009	}
2010#endif
2011
2012	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2013	os = zfsvfs->z_os;
2014
2015	/*
2016	 * z_os will be NULL if there was an error in
2017	 * attempting to reopen zfsvfs.
2018	 */
2019	if (os != NULL) {
2020		/*
2021		 * Unset the objset user_ptr.
2022		 */
2023		mutex_enter(&os->os_user_ptr_lock);
2024		dmu_objset_set_user(os, NULL);
2025		mutex_exit(&os->os_user_ptr_lock);
2026
2027		/*
2028		 * Finally release the objset
2029		 */
2030		dmu_objset_disown(os, zfsvfs);
2031	}
2032
2033	/*
2034	 * We can now safely destroy the '.zfs' directory node.
2035	 */
2036	if (zfsvfs->z_ctldir != NULL)
2037		zfsctl_destroy(zfsvfs);
2038	if (zfsvfs->z_issnap) {
2039		vnode_t *svp = vfsp->mnt_vnodecovered;
2040
2041		if (svp->v_count >= 2)
2042			VN_RELE(svp);
2043	}
2044	zfs_freevfs(vfsp);
2045
2046	return (0);
2047}
2048
2049static int
2050zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2051{
2052	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2053	znode_t		*zp;
2054	int 		err;
2055
2056	/*
2057	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2058	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2059	 * This will make NFS to switch to LOOKUP instead of using VGET.
2060	 */
2061	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2062	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2063		return (EOPNOTSUPP);
2064
2065	ZFS_ENTER(zfsvfs);
2066	err = zfs_zget(zfsvfs, ino, &zp);
2067	if (err == 0 && zp->z_unlinked) {
2068		VN_RELE(ZTOV(zp));
2069		err = EINVAL;
2070	}
2071	if (err == 0)
2072		*vpp = ZTOV(zp);
2073	ZFS_EXIT(zfsvfs);
2074	if (err == 0)
2075		err = vn_lock(*vpp, flags);
2076	if (err != 0)
2077		*vpp = NULL;
2078	return (err);
2079}
2080
2081static int
2082zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2083    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2084{
2085	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2086
2087	/*
2088	 * If this is regular file system vfsp is the same as
2089	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2090	 * zfsvfs->z_parent->z_vfs represents parent file system
2091	 * which we have to use here, because only this file system
2092	 * has mnt_export configured.
2093	 */
2094	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2095	    credanonp, numsecflavors, secflavors));
2096}
2097
2098CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2099CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2100
2101static int
2102zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2103{
2104	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2105	znode_t		*zp;
2106	uint64_t	object = 0;
2107	uint64_t	fid_gen = 0;
2108	uint64_t	gen_mask;
2109	uint64_t	zp_gen;
2110	int 		i, err;
2111
2112	*vpp = NULL;
2113
2114	ZFS_ENTER(zfsvfs);
2115
2116	/*
2117	 * On FreeBSD we can get snapshot's mount point or its parent file
2118	 * system mount point depending if snapshot is already mounted or not.
2119	 */
2120	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2121		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2122		uint64_t	objsetid = 0;
2123		uint64_t	setgen = 0;
2124
2125		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2126			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2127
2128		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2129			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2130
2131		ZFS_EXIT(zfsvfs);
2132
2133		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2134		if (err)
2135			return (SET_ERROR(EINVAL));
2136		ZFS_ENTER(zfsvfs);
2137	}
2138
2139	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2140		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2141
2142		for (i = 0; i < sizeof (zfid->zf_object); i++)
2143			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2144
2145		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2146			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2147	} else {
2148		ZFS_EXIT(zfsvfs);
2149		return (SET_ERROR(EINVAL));
2150	}
2151
2152	/*
2153	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2154	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2155	 * we are in the .zfs/shares directory tree.
2156	 */
2157	if ((fid_gen == 0 &&
2158	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2159	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2160		*vpp = zfsvfs->z_ctldir;
2161		ASSERT(*vpp != NULL);
2162		if (object == ZFSCTL_INO_SNAPDIR) {
2163			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2164			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2165		} else if (object == zfsvfs->z_shares_dir) {
2166			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2167			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2168		} else {
2169			VN_HOLD(*vpp);
2170		}
2171		ZFS_EXIT(zfsvfs);
2172		err = vn_lock(*vpp, flags);
2173		if (err != 0)
2174			*vpp = NULL;
2175		return (err);
2176	}
2177
2178	gen_mask = -1ULL >> (64 - 8 * i);
2179
2180	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2181	if (err = zfs_zget(zfsvfs, object, &zp)) {
2182		ZFS_EXIT(zfsvfs);
2183		return (err);
2184	}
2185	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2186	    sizeof (uint64_t));
2187	zp_gen = zp_gen & gen_mask;
2188	if (zp_gen == 0)
2189		zp_gen = 1;
2190	if (zp->z_unlinked || zp_gen != fid_gen) {
2191		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2192		VN_RELE(ZTOV(zp));
2193		ZFS_EXIT(zfsvfs);
2194		return (SET_ERROR(EINVAL));
2195	}
2196
2197	*vpp = ZTOV(zp);
2198	ZFS_EXIT(zfsvfs);
2199	err = vn_lock(*vpp, flags | LK_RETRY);
2200	if (err == 0)
2201		vnode_create_vobject(*vpp, zp->z_size, curthread);
2202	else
2203		*vpp = NULL;
2204	return (err);
2205}
2206
2207/*
2208 * Block out VOPs and close zfsvfs_t::z_os
2209 *
2210 * Note, if successful, then we return with the 'z_teardown_lock' and
2211 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2212 * dataset and objset intact so that they can be atomically handed off during
2213 * a subsequent rollback or recv operation and the resume thereafter.
2214 */
2215int
2216zfs_suspend_fs(zfsvfs_t *zfsvfs)
2217{
2218	int error;
2219
2220	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2221		return (error);
2222
2223	return (0);
2224}
2225
2226/*
2227 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2228 * is an invariant across any of the operations that can be performed while the
2229 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2230 * are the same: the relevant objset and associated dataset are owned by
2231 * zfsvfs, held, and long held on entry.
2232 */
2233int
2234zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2235{
2236	int err;
2237	znode_t *zp;
2238	uint64_t sa_obj = 0;
2239
2240	ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock));
2241	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2242
2243	/*
2244	 * We already own this, so just hold and rele it to update the
2245	 * objset_t, as the one we had before may have been evicted.
2246	 */
2247	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2248	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2249	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2250	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2251
2252	/*
2253	 * Make sure version hasn't changed
2254	 */
2255
2256	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2257	    &zfsvfs->z_version);
2258
2259	if (err)
2260		goto bail;
2261
2262	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2263	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2264
2265	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2266		goto bail;
2267
2268	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2269	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2270		goto bail;
2271
2272	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2273		sa_register_update_callback(zfsvfs->z_os,
2274		    zfs_sa_upgrade);
2275
2276	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2277
2278	zfs_set_fuid_feature(zfsvfs);
2279
2280	/*
2281	 * Attempt to re-establish all the active znodes with
2282	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2283	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2284	 * when they try to use their znode.
2285	 */
2286	mutex_enter(&zfsvfs->z_znodes_lock);
2287	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2288	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2289		(void) zfs_rezget(zp);
2290	}
2291	mutex_exit(&zfsvfs->z_znodes_lock);
2292
2293bail:
2294	/* release the VOPs */
2295	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2296	rrm_exit(&zfsvfs->z_teardown_lock, FTAG);
2297
2298	if (err) {
2299		/*
2300		 * Since we couldn't setup the sa framework, try to force
2301		 * unmount this file system.
2302		 */
2303		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2304			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2305	}
2306	return (err);
2307}
2308
2309static void
2310zfs_freevfs(vfs_t *vfsp)
2311{
2312	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2313
2314#ifdef sun
2315	/*
2316	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2317	 * from zfs_mount().  Release it here.  If we came through
2318	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2319	 * skip the VFS_RELE for rootvfs.
2320	 */
2321	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2322		VFS_RELE(zfsvfs->z_parent->z_vfs);
2323#endif	/* sun */
2324
2325	zfsvfs_free(zfsvfs);
2326
2327	atomic_dec_32(&zfs_active_fs_count);
2328}
2329
2330#ifdef __i386__
2331static int desiredvnodes_backup;
2332#endif
2333
2334static void
2335zfs_vnodes_adjust(void)
2336{
2337#ifdef __i386__
2338	int newdesiredvnodes;
2339
2340	desiredvnodes_backup = desiredvnodes;
2341
2342	/*
2343	 * We calculate newdesiredvnodes the same way it is done in
2344	 * vntblinit(). If it is equal to desiredvnodes, it means that
2345	 * it wasn't tuned by the administrator and we can tune it down.
2346	 */
2347	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2348	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2349	    sizeof(struct vnode))));
2350	if (newdesiredvnodes == desiredvnodes)
2351		desiredvnodes = (3 * newdesiredvnodes) / 4;
2352#endif
2353}
2354
2355static void
2356zfs_vnodes_adjust_back(void)
2357{
2358
2359#ifdef __i386__
2360	desiredvnodes = desiredvnodes_backup;
2361#endif
2362}
2363
2364void
2365zfs_init(void)
2366{
2367
2368	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2369
2370	/*
2371	 * Initialize .zfs directory structures
2372	 */
2373	zfsctl_init();
2374
2375	/*
2376	 * Initialize znode cache, vnode ops, etc...
2377	 */
2378	zfs_znode_init();
2379
2380	/*
2381	 * Reduce number of vnodes. Originally number of vnodes is calculated
2382	 * with UFS inode in mind. We reduce it here, because it's too big for
2383	 * ZFS/i386.
2384	 */
2385	zfs_vnodes_adjust();
2386
2387	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2388}
2389
2390void
2391zfs_fini(void)
2392{
2393	zfsctl_fini();
2394	zfs_znode_fini();
2395	zfs_vnodes_adjust_back();
2396}
2397
2398int
2399zfs_busy(void)
2400{
2401	return (zfs_active_fs_count != 0);
2402}
2403
2404int
2405zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2406{
2407	int error;
2408	objset_t *os = zfsvfs->z_os;
2409	dmu_tx_t *tx;
2410
2411	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2412		return (SET_ERROR(EINVAL));
2413
2414	if (newvers < zfsvfs->z_version)
2415		return (SET_ERROR(EINVAL));
2416
2417	if (zfs_spa_version_map(newvers) >
2418	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2419		return (SET_ERROR(ENOTSUP));
2420
2421	tx = dmu_tx_create(os);
2422	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2423	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2424		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2425		    ZFS_SA_ATTRS);
2426		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2427	}
2428	error = dmu_tx_assign(tx, TXG_WAIT);
2429	if (error) {
2430		dmu_tx_abort(tx);
2431		return (error);
2432	}
2433
2434	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2435	    8, 1, &newvers, tx);
2436
2437	if (error) {
2438		dmu_tx_commit(tx);
2439		return (error);
2440	}
2441
2442	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2443		uint64_t sa_obj;
2444
2445		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2446		    SPA_VERSION_SA);
2447		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2448		    DMU_OT_NONE, 0, tx);
2449
2450		error = zap_add(os, MASTER_NODE_OBJ,
2451		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2452		ASSERT0(error);
2453
2454		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2455		sa_register_update_callback(os, zfs_sa_upgrade);
2456	}
2457
2458	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2459	    "from %llu to %llu", zfsvfs->z_version, newvers);
2460
2461	dmu_tx_commit(tx);
2462
2463	zfsvfs->z_version = newvers;
2464
2465	zfs_set_fuid_feature(zfsvfs);
2466
2467	return (0);
2468}
2469
2470/*
2471 * Read a property stored within the master node.
2472 */
2473int
2474zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2475{
2476	const char *pname;
2477	int error = ENOENT;
2478
2479	/*
2480	 * Look up the file system's value for the property.  For the
2481	 * version property, we look up a slightly different string.
2482	 */
2483	if (prop == ZFS_PROP_VERSION)
2484		pname = ZPL_VERSION_STR;
2485	else
2486		pname = zfs_prop_to_name(prop);
2487
2488	if (os != NULL)
2489		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2490
2491	if (error == ENOENT) {
2492		/* No value set, use the default value */
2493		switch (prop) {
2494		case ZFS_PROP_VERSION:
2495			*value = ZPL_VERSION;
2496			break;
2497		case ZFS_PROP_NORMALIZE:
2498		case ZFS_PROP_UTF8ONLY:
2499			*value = 0;
2500			break;
2501		case ZFS_PROP_CASE:
2502			*value = ZFS_CASE_SENSITIVE;
2503			break;
2504		default:
2505			return (error);
2506		}
2507		error = 0;
2508	}
2509	return (error);
2510}
2511
2512#ifdef _KERNEL
2513void
2514zfsvfs_update_fromname(const char *oldname, const char *newname)
2515{
2516	char tmpbuf[MAXPATHLEN];
2517	struct mount *mp;
2518	char *fromname;
2519	size_t oldlen;
2520
2521	oldlen = strlen(oldname);
2522
2523	mtx_lock(&mountlist_mtx);
2524	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2525		fromname = mp->mnt_stat.f_mntfromname;
2526		if (strcmp(fromname, oldname) == 0) {
2527			(void)strlcpy(fromname, newname,
2528			    sizeof(mp->mnt_stat.f_mntfromname));
2529			continue;
2530		}
2531		if (strncmp(fromname, oldname, oldlen) == 0 &&
2532		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2533			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2534			    newname, fromname + oldlen);
2535			(void)strlcpy(fromname, tmpbuf,
2536			    sizeof(mp->mnt_stat.f_mntfromname));
2537			continue;
2538		}
2539	}
2540	mtx_unlock(&mountlist_mtx);
2541}
2542#endif
2543