vdev_mirror.c revision 326334
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dsl_pool.h>
34#include <sys/dsl_scan.h>
35#include <sys/vdev_impl.h>
36#include <sys/zio.h>
37#include <sys/fs/zfs.h>
38
39/*
40 * Virtual device vector for mirroring.
41 */
42
43typedef struct mirror_child {
44	vdev_t		*mc_vd;
45	uint64_t	mc_offset;
46	int		mc_error;
47	int		mc_load;
48	uint8_t		mc_tried;
49	uint8_t		mc_skipped;
50	uint8_t		mc_speculative;
51} mirror_child_t;
52
53typedef struct mirror_map {
54	int		*mm_preferred;
55	int		mm_preferred_cnt;
56	int		mm_children;
57	boolean_t	mm_resilvering;
58	boolean_t	mm_root;
59	mirror_child_t	mm_child[];
60} mirror_map_t;
61
62static int vdev_mirror_shift = 21;
63
64#ifdef _KERNEL
65SYSCTL_DECL(_vfs_zfs_vdev);
66static SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0,
67    "ZFS VDEV Mirror");
68#endif
69
70/*
71 * The load configuration settings below are tuned by default for
72 * the case where all devices are of the same rotational type.
73 *
74 * If there is a mixture of rotating and non-rotating media, setting
75 * non_rotating_seek_inc to 0 may well provide better results as it
76 * will direct more reads to the non-rotating vdevs which are more
77 * likely to have a higher performance.
78 */
79
80/* Rotating media load calculation configuration. */
81static int rotating_inc = 0;
82#ifdef _KERNEL
83TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_inc", &rotating_inc);
84SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_inc, CTLFLAG_RW,
85    &rotating_inc, 0, "Rotating media load increment for non-seeking I/O's");
86#endif
87
88static int rotating_seek_inc = 5;
89#ifdef _KERNEL
90TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_inc", &rotating_seek_inc);
91SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_inc, CTLFLAG_RW,
92    &rotating_seek_inc, 0, "Rotating media load increment for seeking I/O's");
93#endif
94
95static int rotating_seek_offset = 1 * 1024 * 1024;
96#ifdef _KERNEL
97TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_offset", &rotating_seek_offset);
98SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_offset, CTLFLAG_RW,
99    &rotating_seek_offset, 0, "Offset in bytes from the last I/O which "
100    "triggers a reduced rotating media seek increment");
101#endif
102
103/* Non-rotating media load calculation configuration. */
104static int non_rotating_inc = 0;
105#ifdef _KERNEL
106TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_inc", &non_rotating_inc);
107SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_inc, CTLFLAG_RW,
108    &non_rotating_inc, 0,
109    "Non-rotating media load increment for non-seeking I/O's");
110#endif
111
112static int non_rotating_seek_inc = 1;
113#ifdef _KERNEL
114TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_seek_inc",
115     &non_rotating_seek_inc);
116SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_seek_inc, CTLFLAG_RW,
117    &non_rotating_seek_inc, 0,
118    "Non-rotating media load increment for seeking I/O's");
119#endif
120
121
122static inline size_t
123vdev_mirror_map_size(int children)
124{
125	return (offsetof(mirror_map_t, mm_child[children]) +
126	    sizeof(int) * children);
127}
128
129static inline mirror_map_t *
130vdev_mirror_map_alloc(int children, boolean_t resilvering, boolean_t root)
131{
132	mirror_map_t *mm;
133
134	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
135	mm->mm_children = children;
136	mm->mm_resilvering = resilvering;
137	mm->mm_root = root;
138	mm->mm_preferred = (int *)((uintptr_t)mm +
139	    offsetof(mirror_map_t, mm_child[children]));
140
141	return mm;
142}
143
144static void
145vdev_mirror_map_free(zio_t *zio)
146{
147	mirror_map_t *mm = zio->io_vsd;
148
149	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
150}
151
152static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
153	vdev_mirror_map_free,
154	zio_vsd_default_cksum_report
155};
156
157static int
158vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
159{
160	uint64_t lastoffset;
161	int load;
162
163	/* All DVAs have equal weight at the root. */
164	if (mm->mm_root)
165		return (INT_MAX);
166
167	/*
168	 * We don't return INT_MAX if the device is resilvering i.e.
169	 * vdev_resilver_txg != 0 as when tested performance was slightly
170	 * worse overall when resilvering with compared to without.
171	 */
172
173	/* Standard load based on pending queue length. */
174	load = vdev_queue_length(vd);
175	lastoffset = vdev_queue_lastoffset(vd);
176
177	if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
178		/* Non-rotating media. */
179		if (lastoffset == zio_offset)
180			return (load + non_rotating_inc);
181
182		/*
183		 * Apply a seek penalty even for non-rotating devices as
184		 * sequential I/O'a can be aggregated into fewer operations
185		 * on the device, thus avoiding unnecessary per-command
186		 * overhead and boosting performance.
187		 */
188		return (load + non_rotating_seek_inc);
189	}
190
191	/* Rotating media I/O's which directly follow the last I/O. */
192	if (lastoffset == zio_offset)
193		return (load + rotating_inc);
194
195	/*
196	 * Apply half the seek increment to I/O's within seek offset
197	 * of the last I/O queued to this vdev as they should incure less
198	 * of a seek increment.
199	 */
200	if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
201		return (load + (rotating_seek_inc / 2));
202
203	/* Apply the full seek increment to all other I/O's. */
204	return (load + rotating_seek_inc);
205}
206
207
208static mirror_map_t *
209vdev_mirror_map_init(zio_t *zio)
210{
211	mirror_map_t *mm = NULL;
212	mirror_child_t *mc;
213	vdev_t *vd = zio->io_vd;
214	int c;
215
216	if (vd == NULL) {
217		dva_t *dva = zio->io_bp->blk_dva;
218		spa_t *spa = zio->io_spa;
219
220		mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
221		    B_TRUE);
222		for (c = 0; c < mm->mm_children; c++) {
223			mc = &mm->mm_child[c];
224			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
225			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
226		}
227	} else {
228		/*
229		 * If we are resilvering, then we should handle scrub reads
230		 * differently; we shouldn't issue them to the resilvering
231		 * device because it might not have those blocks.
232		 *
233		 * We are resilvering iff:
234		 * 1) We are a replacing vdev (ie our name is "replacing-1" or
235		 *    "spare-1" or something like that), and
236		 * 2) The pool is currently being resilvered.
237		 *
238		 * We cannot simply check vd->vdev_resilver_txg, because it's
239		 * not set in this path.
240		 *
241		 * Nor can we just check our vdev_ops; there are cases (such as
242		 * when a user types "zpool replace pool odev spare_dev" and
243		 * spare_dev is in the spare list, or when a spare device is
244		 * automatically used to replace a DEGRADED device) when
245		 * resilvering is complete but both the original vdev and the
246		 * spare vdev remain in the pool.  That behavior is intentional.
247		 * It helps implement the policy that a spare should be
248		 * automatically removed from the pool after the user replaces
249		 * the device that originally failed.
250		 *
251		 * If a spa load is in progress, then spa_dsl_pool may be
252		 * uninitialized.  But we shouldn't be resilvering during a spa
253		 * load anyway.
254		 */
255		boolean_t replacing = (vd->vdev_ops == &vdev_replacing_ops ||
256		    vd->vdev_ops == &vdev_spare_ops) &&
257		    spa_load_state(vd->vdev_spa) == SPA_LOAD_NONE &&
258		    dsl_scan_resilvering(vd->vdev_spa->spa_dsl_pool);
259		mm = vdev_mirror_map_alloc(vd->vdev_children, replacing,
260		    B_FALSE);
261		for (c = 0; c < mm->mm_children; c++) {
262			mc = &mm->mm_child[c];
263			mc->mc_vd = vd->vdev_child[c];
264			mc->mc_offset = zio->io_offset;
265		}
266	}
267
268	zio->io_vsd = mm;
269	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
270	return (mm);
271}
272
273static int
274vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
275    uint64_t *logical_ashift, uint64_t *physical_ashift)
276{
277	int numerrors = 0;
278	int lasterror = 0;
279
280	if (vd->vdev_children == 0) {
281		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
282		return (SET_ERROR(EINVAL));
283	}
284
285	vdev_open_children(vd);
286
287	for (int c = 0; c < vd->vdev_children; c++) {
288		vdev_t *cvd = vd->vdev_child[c];
289
290		if (cvd->vdev_open_error) {
291			lasterror = cvd->vdev_open_error;
292			numerrors++;
293			continue;
294		}
295
296		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
297		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
298		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
299		*physical_ashift = MAX(*physical_ashift,
300		    cvd->vdev_physical_ashift);
301	}
302
303	if (numerrors == vd->vdev_children) {
304		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
305		return (lasterror);
306	}
307
308	return (0);
309}
310
311static void
312vdev_mirror_close(vdev_t *vd)
313{
314	for (int c = 0; c < vd->vdev_children; c++)
315		vdev_close(vd->vdev_child[c]);
316}
317
318static void
319vdev_mirror_child_done(zio_t *zio)
320{
321	mirror_child_t *mc = zio->io_private;
322
323	mc->mc_error = zio->io_error;
324	mc->mc_tried = 1;
325	mc->mc_skipped = 0;
326}
327
328static void
329vdev_mirror_scrub_done(zio_t *zio)
330{
331	mirror_child_t *mc = zio->io_private;
332
333	if (zio->io_error == 0) {
334		zio_t *pio;
335		zio_link_t *zl = NULL;
336
337		mutex_enter(&zio->io_lock);
338		while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
339			mutex_enter(&pio->io_lock);
340			ASSERT3U(zio->io_size, >=, pio->io_size);
341			bcopy(zio->io_data, pio->io_data, pio->io_size);
342			mutex_exit(&pio->io_lock);
343		}
344		mutex_exit(&zio->io_lock);
345	}
346
347	zio_buf_free(zio->io_data, zio->io_size);
348
349	mc->mc_error = zio->io_error;
350	mc->mc_tried = 1;
351	mc->mc_skipped = 0;
352}
353
354/*
355 * Check the other, lower-index DVAs to see if they're on the same
356 * vdev as the child we picked.  If they are, use them since they
357 * are likely to have been allocated from the primary metaslab in
358 * use at the time, and hence are more likely to have locality with
359 * single-copy data.
360 */
361static int
362vdev_mirror_dva_select(zio_t *zio, int p)
363{
364	dva_t *dva = zio->io_bp->blk_dva;
365	mirror_map_t *mm = zio->io_vsd;
366	int preferred;
367	int c;
368
369	preferred = mm->mm_preferred[p];
370	for (p-- ; p >= 0; p--) {
371		c = mm->mm_preferred[p];
372		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
373			preferred = c;
374	}
375	return (preferred);
376}
377
378static int
379vdev_mirror_preferred_child_randomize(zio_t *zio)
380{
381	mirror_map_t *mm = zio->io_vsd;
382	int p;
383
384	if (mm->mm_root) {
385		p = spa_get_random(mm->mm_preferred_cnt);
386		return (vdev_mirror_dva_select(zio, p));
387	}
388
389	/*
390	 * To ensure we don't always favour the first matching vdev,
391	 * which could lead to wear leveling issues on SSD's, we
392	 * use the I/O offset as a pseudo random seed into the vdevs
393	 * which have the lowest load.
394	 */
395	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
396	return (mm->mm_preferred[p]);
397}
398
399/*
400 * Try to find a vdev whose DTL doesn't contain the block we want to read
401 * prefering vdevs based on determined load.
402 *
403 * If we can't, try the read on any vdev we haven't already tried.
404 */
405static int
406vdev_mirror_child_select(zio_t *zio)
407{
408	mirror_map_t *mm = zio->io_vsd;
409	uint64_t txg = zio->io_txg;
410	int c, lowest_load;
411
412	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
413
414	lowest_load = INT_MAX;
415	mm->mm_preferred_cnt = 0;
416	for (c = 0; c < mm->mm_children; c++) {
417		mirror_child_t *mc;
418
419		mc = &mm->mm_child[c];
420		if (mc->mc_tried || mc->mc_skipped)
421			continue;
422
423		if (!vdev_readable(mc->mc_vd)) {
424			mc->mc_error = SET_ERROR(ENXIO);
425			mc->mc_tried = 1;	/* don't even try */
426			mc->mc_skipped = 1;
427			continue;
428		}
429
430		if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
431			mc->mc_error = SET_ERROR(ESTALE);
432			mc->mc_skipped = 1;
433			mc->mc_speculative = 1;
434			continue;
435		}
436
437		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
438		if (mc->mc_load > lowest_load)
439			continue;
440
441		if (mc->mc_load < lowest_load) {
442			lowest_load = mc->mc_load;
443			mm->mm_preferred_cnt = 0;
444		}
445		mm->mm_preferred[mm->mm_preferred_cnt] = c;
446		mm->mm_preferred_cnt++;
447	}
448
449	if (mm->mm_preferred_cnt == 1) {
450		vdev_queue_register_lastoffset(
451		    mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
452		return (mm->mm_preferred[0]);
453	}
454
455	if (mm->mm_preferred_cnt > 1) {
456		int c = vdev_mirror_preferred_child_randomize(zio);
457
458		vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
459		return (c);
460	}
461
462	/*
463	 * Every device is either missing or has this txg in its DTL.
464	 * Look for any child we haven't already tried before giving up.
465	 */
466	for (c = 0; c < mm->mm_children; c++) {
467		if (!mm->mm_child[c].mc_tried) {
468			vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
469			    zio);
470			return (c);
471		}
472	}
473
474	/*
475	 * Every child failed.  There's no place left to look.
476	 */
477	return (-1);
478}
479
480static void
481vdev_mirror_io_start(zio_t *zio)
482{
483	mirror_map_t *mm;
484	mirror_child_t *mc;
485	int c, children;
486
487	mm = vdev_mirror_map_init(zio);
488
489	if (zio->io_type == ZIO_TYPE_READ) {
490		if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering &&
491		    mm->mm_children > 1) {
492			/*
493			 * For scrubbing reads we need to allocate a read
494			 * buffer for each child and issue reads to all
495			 * children.  If any child succeeds, it will copy its
496			 * data into zio->io_data in vdev_mirror_scrub_done.
497			 */
498			for (c = 0; c < mm->mm_children; c++) {
499				mc = &mm->mm_child[c];
500				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
501				    mc->mc_vd, mc->mc_offset,
502				    zio_buf_alloc(zio->io_size), zio->io_size,
503				    zio->io_type, zio->io_priority, 0,
504				    vdev_mirror_scrub_done, mc));
505			}
506			zio_execute(zio);
507			return;
508		}
509		/*
510		 * For normal reads just pick one child.
511		 */
512		c = vdev_mirror_child_select(zio);
513		children = (c >= 0);
514	} else {
515		ASSERT(zio->io_type == ZIO_TYPE_WRITE ||
516		    zio->io_type == ZIO_TYPE_FREE);
517
518		/*
519		 * Writes and frees go to all children.
520		 */
521		c = 0;
522		children = mm->mm_children;
523	}
524
525	while (children--) {
526		mc = &mm->mm_child[c];
527		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
528		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
529		    zio->io_type, zio->io_priority, 0,
530		    vdev_mirror_child_done, mc));
531		c++;
532	}
533
534	zio_execute(zio);
535}
536
537static int
538vdev_mirror_worst_error(mirror_map_t *mm)
539{
540	int error[2] = { 0, 0 };
541
542	for (int c = 0; c < mm->mm_children; c++) {
543		mirror_child_t *mc = &mm->mm_child[c];
544		int s = mc->mc_speculative;
545		error[s] = zio_worst_error(error[s], mc->mc_error);
546	}
547
548	return (error[0] ? error[0] : error[1]);
549}
550
551static void
552vdev_mirror_io_done(zio_t *zio)
553{
554	mirror_map_t *mm = zio->io_vsd;
555	mirror_child_t *mc;
556	int c;
557	int good_copies = 0;
558	int unexpected_errors = 0;
559
560	for (c = 0; c < mm->mm_children; c++) {
561		mc = &mm->mm_child[c];
562
563		if (mc->mc_error) {
564			if (!mc->mc_skipped)
565				unexpected_errors++;
566		} else if (mc->mc_tried) {
567			good_copies++;
568		}
569	}
570
571	if (zio->io_type == ZIO_TYPE_WRITE) {
572		/*
573		 * XXX -- for now, treat partial writes as success.
574		 *
575		 * Now that we support write reallocation, it would be better
576		 * to treat partial failure as real failure unless there are
577		 * no non-degraded top-level vdevs left, and not update DTLs
578		 * if we intend to reallocate.
579		 */
580		/* XXPOLICY */
581		if (good_copies != mm->mm_children) {
582			/*
583			 * Always require at least one good copy.
584			 *
585			 * For ditto blocks (io_vd == NULL), require
586			 * all copies to be good.
587			 *
588			 * XXX -- for replacing vdevs, there's no great answer.
589			 * If the old device is really dead, we may not even
590			 * be able to access it -- so we only want to
591			 * require good writes to the new device.  But if
592			 * the new device turns out to be flaky, we want
593			 * to be able to detach it -- which requires all
594			 * writes to the old device to have succeeded.
595			 */
596			if (good_copies == 0 || zio->io_vd == NULL)
597				zio->io_error = vdev_mirror_worst_error(mm);
598		}
599		return;
600	} else if (zio->io_type == ZIO_TYPE_FREE) {
601		return;
602	}
603
604	ASSERT(zio->io_type == ZIO_TYPE_READ);
605
606	/*
607	 * If we don't have a good copy yet, keep trying other children.
608	 */
609	/* XXPOLICY */
610	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
611		ASSERT(c >= 0 && c < mm->mm_children);
612		mc = &mm->mm_child[c];
613		zio_vdev_io_redone(zio);
614		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
615		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
616		    ZIO_TYPE_READ, zio->io_priority, 0,
617		    vdev_mirror_child_done, mc));
618		return;
619	}
620
621	/* XXPOLICY */
622	if (good_copies == 0) {
623		zio->io_error = vdev_mirror_worst_error(mm);
624		ASSERT(zio->io_error != 0);
625	}
626
627	if (good_copies && spa_writeable(zio->io_spa) &&
628	    (unexpected_errors ||
629	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
630	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_resilvering))) {
631		/*
632		 * Use the good data we have in hand to repair damaged children.
633		 */
634		for (c = 0; c < mm->mm_children; c++) {
635			/*
636			 * Don't rewrite known good children.
637			 * Not only is it unnecessary, it could
638			 * actually be harmful: if the system lost
639			 * power while rewriting the only good copy,
640			 * there would be no good copies left!
641			 */
642			mc = &mm->mm_child[c];
643
644			if (mc->mc_error == 0) {
645				if (mc->mc_tried)
646					continue;
647				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
648				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
649				    zio->io_txg, 1))
650					continue;
651				mc->mc_error = SET_ERROR(ESTALE);
652			}
653
654			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
655			    mc->mc_vd, mc->mc_offset,
656			    zio->io_data, zio->io_size,
657			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
658			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
659			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
660		}
661	}
662}
663
664static void
665vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
666{
667	if (faulted == vd->vdev_children)
668		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
669		    VDEV_AUX_NO_REPLICAS);
670	else if (degraded + faulted != 0)
671		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
672	else
673		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
674}
675
676vdev_ops_t vdev_mirror_ops = {
677	vdev_mirror_open,
678	vdev_mirror_close,
679	vdev_default_asize,
680	vdev_mirror_io_start,
681	vdev_mirror_io_done,
682	vdev_mirror_state_change,
683	NULL,
684	NULL,
685	VDEV_TYPE_MIRROR,	/* name of this vdev type */
686	B_FALSE			/* not a leaf vdev */
687};
688
689vdev_ops_t vdev_replacing_ops = {
690	vdev_mirror_open,
691	vdev_mirror_close,
692	vdev_default_asize,
693	vdev_mirror_io_start,
694	vdev_mirror_io_done,
695	vdev_mirror_state_change,
696	NULL,
697	NULL,
698	VDEV_TYPE_REPLACING,	/* name of this vdev type */
699	B_FALSE			/* not a leaf vdev */
700};
701
702vdev_ops_t vdev_spare_ops = {
703	vdev_mirror_open,
704	vdev_mirror_close,
705	vdev_default_asize,
706	vdev_mirror_io_start,
707	vdev_mirror_io_done,
708	vdev_mirror_state_change,
709	NULL,
710	NULL,
711	VDEV_TYPE_SPARE,	/* name of this vdev type */
712	B_FALSE			/* not a leaf vdev */
713};
714