vdev_mirror.c revision 307279
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34#include <sys/fs/zfs.h>
35
36/*
37 * Virtual device vector for mirroring.
38 */
39
40typedef struct mirror_child {
41	vdev_t		*mc_vd;
42	uint64_t	mc_offset;
43	int		mc_error;
44	int		mc_load;
45	uint8_t		mc_tried;
46	uint8_t		mc_skipped;
47	uint8_t		mc_speculative;
48} mirror_child_t;
49
50typedef struct mirror_map {
51	int		*mm_preferred;
52	int		mm_preferred_cnt;
53	int		mm_children;
54	boolean_t	mm_replacing;
55	boolean_t	mm_root;
56	mirror_child_t	mm_child[];
57} mirror_map_t;
58
59static int vdev_mirror_shift = 21;
60
61#ifdef _KERNEL
62SYSCTL_DECL(_vfs_zfs_vdev);
63static SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0,
64    "ZFS VDEV Mirror");
65#endif
66
67/*
68 * The load configuration settings below are tuned by default for
69 * the case where all devices are of the same rotational type.
70 *
71 * If there is a mixture of rotating and non-rotating media, setting
72 * non_rotating_seek_inc to 0 may well provide better results as it
73 * will direct more reads to the non-rotating vdevs which are more
74 * likely to have a higher performance.
75 */
76
77/* Rotating media load calculation configuration. */
78static int rotating_inc = 0;
79#ifdef _KERNEL
80TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_inc", &rotating_inc);
81SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_inc, CTLFLAG_RW,
82    &rotating_inc, 0, "Rotating media load increment for non-seeking I/O's");
83#endif
84
85static int rotating_seek_inc = 5;
86#ifdef _KERNEL
87TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_inc", &rotating_seek_inc);
88SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_inc, CTLFLAG_RW,
89    &rotating_seek_inc, 0, "Rotating media load increment for seeking I/O's");
90#endif
91
92static int rotating_seek_offset = 1 * 1024 * 1024;
93#ifdef _KERNEL
94TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_offset", &rotating_seek_offset);
95SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_offset, CTLFLAG_RW,
96    &rotating_seek_offset, 0, "Offset in bytes from the last I/O which "
97    "triggers a reduced rotating media seek increment");
98#endif
99
100/* Non-rotating media load calculation configuration. */
101static int non_rotating_inc = 0;
102#ifdef _KERNEL
103TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_inc", &non_rotating_inc);
104SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_inc, CTLFLAG_RW,
105    &non_rotating_inc, 0,
106    "Non-rotating media load increment for non-seeking I/O's");
107#endif
108
109static int non_rotating_seek_inc = 1;
110#ifdef _KERNEL
111TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_seek_inc",
112     &non_rotating_seek_inc);
113SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_seek_inc, CTLFLAG_RW,
114    &non_rotating_seek_inc, 0,
115    "Non-rotating media load increment for seeking I/O's");
116#endif
117
118
119static inline size_t
120vdev_mirror_map_size(int children)
121{
122	return (offsetof(mirror_map_t, mm_child[children]) +
123	    sizeof(int) * children);
124}
125
126static inline mirror_map_t *
127vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
128{
129	mirror_map_t *mm;
130
131	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
132	mm->mm_children = children;
133	mm->mm_replacing = replacing;
134	mm->mm_root = root;
135	mm->mm_preferred = (int *)((uintptr_t)mm +
136	    offsetof(mirror_map_t, mm_child[children]));
137
138	return mm;
139}
140
141static void
142vdev_mirror_map_free(zio_t *zio)
143{
144	mirror_map_t *mm = zio->io_vsd;
145
146	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
147}
148
149static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
150	vdev_mirror_map_free,
151	zio_vsd_default_cksum_report
152};
153
154static int
155vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
156{
157	uint64_t lastoffset;
158	int load;
159
160	/* All DVAs have equal weight at the root. */
161	if (mm->mm_root)
162		return (INT_MAX);
163
164	/*
165	 * We don't return INT_MAX if the device is resilvering i.e.
166	 * vdev_resilver_txg != 0 as when tested performance was slightly
167	 * worse overall when resilvering with compared to without.
168	 */
169
170	/* Standard load based on pending queue length. */
171	load = vdev_queue_length(vd);
172	lastoffset = vdev_queue_lastoffset(vd);
173
174	if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
175		/* Non-rotating media. */
176		if (lastoffset == zio_offset)
177			return (load + non_rotating_inc);
178
179		/*
180		 * Apply a seek penalty even for non-rotating devices as
181		 * sequential I/O'a can be aggregated into fewer operations
182		 * on the device, thus avoiding unnecessary per-command
183		 * overhead and boosting performance.
184		 */
185		return (load + non_rotating_seek_inc);
186	}
187
188	/* Rotating media I/O's which directly follow the last I/O. */
189	if (lastoffset == zio_offset)
190		return (load + rotating_inc);
191
192	/*
193	 * Apply half the seek increment to I/O's within seek offset
194	 * of the last I/O queued to this vdev as they should incure less
195	 * of a seek increment.
196	 */
197	if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
198		return (load + (rotating_seek_inc / 2));
199
200	/* Apply the full seek increment to all other I/O's. */
201	return (load + rotating_seek_inc);
202}
203
204
205static mirror_map_t *
206vdev_mirror_map_init(zio_t *zio)
207{
208	mirror_map_t *mm = NULL;
209	mirror_child_t *mc;
210	vdev_t *vd = zio->io_vd;
211	int c;
212
213	if (vd == NULL) {
214		dva_t *dva = zio->io_bp->blk_dva;
215		spa_t *spa = zio->io_spa;
216
217		mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
218		    B_TRUE);
219		for (c = 0; c < mm->mm_children; c++) {
220			mc = &mm->mm_child[c];
221			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
222			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
223		}
224	} else {
225		mm = vdev_mirror_map_alloc(vd->vdev_children,
226		    (vd->vdev_ops == &vdev_replacing_ops ||
227                    vd->vdev_ops == &vdev_spare_ops), B_FALSE);
228		for (c = 0; c < mm->mm_children; c++) {
229			mc = &mm->mm_child[c];
230			mc->mc_vd = vd->vdev_child[c];
231			mc->mc_offset = zio->io_offset;
232		}
233	}
234
235	zio->io_vsd = mm;
236	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
237	return (mm);
238}
239
240static int
241vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
242    uint64_t *logical_ashift, uint64_t *physical_ashift)
243{
244	int numerrors = 0;
245	int lasterror = 0;
246
247	if (vd->vdev_children == 0) {
248		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
249		return (SET_ERROR(EINVAL));
250	}
251
252	vdev_open_children(vd);
253
254	for (int c = 0; c < vd->vdev_children; c++) {
255		vdev_t *cvd = vd->vdev_child[c];
256
257		if (cvd->vdev_open_error) {
258			lasterror = cvd->vdev_open_error;
259			numerrors++;
260			continue;
261		}
262
263		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
264		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
265		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
266		*physical_ashift = MAX(*physical_ashift,
267		    cvd->vdev_physical_ashift);
268	}
269
270	if (numerrors == vd->vdev_children) {
271		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
272		return (lasterror);
273	}
274
275	return (0);
276}
277
278static void
279vdev_mirror_close(vdev_t *vd)
280{
281	for (int c = 0; c < vd->vdev_children; c++)
282		vdev_close(vd->vdev_child[c]);
283}
284
285static void
286vdev_mirror_child_done(zio_t *zio)
287{
288	mirror_child_t *mc = zio->io_private;
289
290	mc->mc_error = zio->io_error;
291	mc->mc_tried = 1;
292	mc->mc_skipped = 0;
293}
294
295static void
296vdev_mirror_scrub_done(zio_t *zio)
297{
298	mirror_child_t *mc = zio->io_private;
299
300	if (zio->io_error == 0) {
301		zio_t *pio;
302		zio_link_t *zl = NULL;
303
304		mutex_enter(&zio->io_lock);
305		while ((pio = zio_walk_parents(zio, &zl)) != NULL) {
306			mutex_enter(&pio->io_lock);
307			ASSERT3U(zio->io_size, >=, pio->io_size);
308			bcopy(zio->io_data, pio->io_data, pio->io_size);
309			mutex_exit(&pio->io_lock);
310		}
311		mutex_exit(&zio->io_lock);
312	}
313
314	zio_buf_free(zio->io_data, zio->io_size);
315
316	mc->mc_error = zio->io_error;
317	mc->mc_tried = 1;
318	mc->mc_skipped = 0;
319}
320
321/*
322 * Check the other, lower-index DVAs to see if they're on the same
323 * vdev as the child we picked.  If they are, use them since they
324 * are likely to have been allocated from the primary metaslab in
325 * use at the time, and hence are more likely to have locality with
326 * single-copy data.
327 */
328static int
329vdev_mirror_dva_select(zio_t *zio, int p)
330{
331	dva_t *dva = zio->io_bp->blk_dva;
332	mirror_map_t *mm = zio->io_vsd;
333	int preferred;
334	int c;
335
336	preferred = mm->mm_preferred[p];
337	for (p-- ; p >= 0; p--) {
338		c = mm->mm_preferred[p];
339		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
340			preferred = c;
341	}
342	return (preferred);
343}
344
345static int
346vdev_mirror_preferred_child_randomize(zio_t *zio)
347{
348	mirror_map_t *mm = zio->io_vsd;
349	int p;
350
351	if (mm->mm_root) {
352		p = spa_get_random(mm->mm_preferred_cnt);
353		return (vdev_mirror_dva_select(zio, p));
354	}
355
356	/*
357	 * To ensure we don't always favour the first matching vdev,
358	 * which could lead to wear leveling issues on SSD's, we
359	 * use the I/O offset as a pseudo random seed into the vdevs
360	 * which have the lowest load.
361	 */
362	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
363	return (mm->mm_preferred[p]);
364}
365
366/*
367 * Try to find a vdev whose DTL doesn't contain the block we want to read
368 * prefering vdevs based on determined load.
369 *
370 * If we can't, try the read on any vdev we haven't already tried.
371 */
372static int
373vdev_mirror_child_select(zio_t *zio)
374{
375	mirror_map_t *mm = zio->io_vsd;
376	uint64_t txg = zio->io_txg;
377	int c, lowest_load;
378
379	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
380
381	lowest_load = INT_MAX;
382	mm->mm_preferred_cnt = 0;
383	for (c = 0; c < mm->mm_children; c++) {
384		mirror_child_t *mc;
385
386		mc = &mm->mm_child[c];
387		if (mc->mc_tried || mc->mc_skipped)
388			continue;
389
390		if (!vdev_readable(mc->mc_vd)) {
391			mc->mc_error = SET_ERROR(ENXIO);
392			mc->mc_tried = 1;	/* don't even try */
393			mc->mc_skipped = 1;
394			continue;
395		}
396
397		if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
398			mc->mc_error = SET_ERROR(ESTALE);
399			mc->mc_skipped = 1;
400			mc->mc_speculative = 1;
401			continue;
402		}
403
404		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
405		if (mc->mc_load > lowest_load)
406			continue;
407
408		if (mc->mc_load < lowest_load) {
409			lowest_load = mc->mc_load;
410			mm->mm_preferred_cnt = 0;
411		}
412		mm->mm_preferred[mm->mm_preferred_cnt] = c;
413		mm->mm_preferred_cnt++;
414	}
415
416	if (mm->mm_preferred_cnt == 1) {
417		vdev_queue_register_lastoffset(
418		    mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
419		return (mm->mm_preferred[0]);
420	}
421
422	if (mm->mm_preferred_cnt > 1) {
423		int c = vdev_mirror_preferred_child_randomize(zio);
424
425		vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
426		return (c);
427	}
428
429	/*
430	 * Every device is either missing or has this txg in its DTL.
431	 * Look for any child we haven't already tried before giving up.
432	 */
433	for (c = 0; c < mm->mm_children; c++) {
434		if (!mm->mm_child[c].mc_tried) {
435			vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
436			    zio);
437			return (c);
438		}
439	}
440
441	/*
442	 * Every child failed.  There's no place left to look.
443	 */
444	return (-1);
445}
446
447static void
448vdev_mirror_io_start(zio_t *zio)
449{
450	mirror_map_t *mm;
451	mirror_child_t *mc;
452	int c, children;
453
454	mm = vdev_mirror_map_init(zio);
455
456	if (zio->io_type == ZIO_TYPE_READ) {
457		if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing &&
458		    mm->mm_children > 1) {
459			/*
460			 * For scrubbing reads we need to allocate a read
461			 * buffer for each child and issue reads to all
462			 * children.  If any child succeeds, it will copy its
463			 * data into zio->io_data in vdev_mirror_scrub_done.
464			 */
465			for (c = 0; c < mm->mm_children; c++) {
466				mc = &mm->mm_child[c];
467				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
468				    mc->mc_vd, mc->mc_offset,
469				    zio_buf_alloc(zio->io_size), zio->io_size,
470				    zio->io_type, zio->io_priority, 0,
471				    vdev_mirror_scrub_done, mc));
472			}
473			zio_execute(zio);
474			return;
475		}
476		/*
477		 * For normal reads just pick one child.
478		 */
479		c = vdev_mirror_child_select(zio);
480		children = (c >= 0);
481	} else {
482		ASSERT(zio->io_type == ZIO_TYPE_WRITE ||
483		    zio->io_type == ZIO_TYPE_FREE);
484
485		/*
486		 * Writes and frees go to all children.
487		 */
488		c = 0;
489		children = mm->mm_children;
490	}
491
492	while (children--) {
493		mc = &mm->mm_child[c];
494		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
495		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
496		    zio->io_type, zio->io_priority, 0,
497		    vdev_mirror_child_done, mc));
498		c++;
499	}
500
501	zio_execute(zio);
502}
503
504static int
505vdev_mirror_worst_error(mirror_map_t *mm)
506{
507	int error[2] = { 0, 0 };
508
509	for (int c = 0; c < mm->mm_children; c++) {
510		mirror_child_t *mc = &mm->mm_child[c];
511		int s = mc->mc_speculative;
512		error[s] = zio_worst_error(error[s], mc->mc_error);
513	}
514
515	return (error[0] ? error[0] : error[1]);
516}
517
518static void
519vdev_mirror_io_done(zio_t *zio)
520{
521	mirror_map_t *mm = zio->io_vsd;
522	mirror_child_t *mc;
523	int c;
524	int good_copies = 0;
525	int unexpected_errors = 0;
526
527	for (c = 0; c < mm->mm_children; c++) {
528		mc = &mm->mm_child[c];
529
530		if (mc->mc_error) {
531			if (!mc->mc_skipped)
532				unexpected_errors++;
533		} else if (mc->mc_tried) {
534			good_copies++;
535		}
536	}
537
538	if (zio->io_type == ZIO_TYPE_WRITE) {
539		/*
540		 * XXX -- for now, treat partial writes as success.
541		 *
542		 * Now that we support write reallocation, it would be better
543		 * to treat partial failure as real failure unless there are
544		 * no non-degraded top-level vdevs left, and not update DTLs
545		 * if we intend to reallocate.
546		 */
547		/* XXPOLICY */
548		if (good_copies != mm->mm_children) {
549			/*
550			 * Always require at least one good copy.
551			 *
552			 * For ditto blocks (io_vd == NULL), require
553			 * all copies to be good.
554			 *
555			 * XXX -- for replacing vdevs, there's no great answer.
556			 * If the old device is really dead, we may not even
557			 * be able to access it -- so we only want to
558			 * require good writes to the new device.  But if
559			 * the new device turns out to be flaky, we want
560			 * to be able to detach it -- which requires all
561			 * writes to the old device to have succeeded.
562			 */
563			if (good_copies == 0 || zio->io_vd == NULL)
564				zio->io_error = vdev_mirror_worst_error(mm);
565		}
566		return;
567	} else if (zio->io_type == ZIO_TYPE_FREE) {
568		return;
569	}
570
571	ASSERT(zio->io_type == ZIO_TYPE_READ);
572
573	/*
574	 * If we don't have a good copy yet, keep trying other children.
575	 */
576	/* XXPOLICY */
577	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
578		ASSERT(c >= 0 && c < mm->mm_children);
579		mc = &mm->mm_child[c];
580		zio_vdev_io_redone(zio);
581		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
582		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
583		    ZIO_TYPE_READ, zio->io_priority, 0,
584		    vdev_mirror_child_done, mc));
585		return;
586	}
587
588	/* XXPOLICY */
589	if (good_copies == 0) {
590		zio->io_error = vdev_mirror_worst_error(mm);
591		ASSERT(zio->io_error != 0);
592	}
593
594	if (good_copies && spa_writeable(zio->io_spa) &&
595	    (unexpected_errors ||
596	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
597	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
598		/*
599		 * Use the good data we have in hand to repair damaged children.
600		 */
601		for (c = 0; c < mm->mm_children; c++) {
602			/*
603			 * Don't rewrite known good children.
604			 * Not only is it unnecessary, it could
605			 * actually be harmful: if the system lost
606			 * power while rewriting the only good copy,
607			 * there would be no good copies left!
608			 */
609			mc = &mm->mm_child[c];
610
611			if (mc->mc_error == 0) {
612				if (mc->mc_tried)
613					continue;
614				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
615				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
616				    zio->io_txg, 1))
617					continue;
618				mc->mc_error = SET_ERROR(ESTALE);
619			}
620
621			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
622			    mc->mc_vd, mc->mc_offset,
623			    zio->io_data, zio->io_size,
624			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
625			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
626			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
627		}
628	}
629}
630
631static void
632vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
633{
634	if (faulted == vd->vdev_children)
635		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
636		    VDEV_AUX_NO_REPLICAS);
637	else if (degraded + faulted != 0)
638		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
639	else
640		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
641}
642
643vdev_ops_t vdev_mirror_ops = {
644	vdev_mirror_open,
645	vdev_mirror_close,
646	vdev_default_asize,
647	vdev_mirror_io_start,
648	vdev_mirror_io_done,
649	vdev_mirror_state_change,
650	NULL,
651	NULL,
652	VDEV_TYPE_MIRROR,	/* name of this vdev type */
653	B_FALSE			/* not a leaf vdev */
654};
655
656vdev_ops_t vdev_replacing_ops = {
657	vdev_mirror_open,
658	vdev_mirror_close,
659	vdev_default_asize,
660	vdev_mirror_io_start,
661	vdev_mirror_io_done,
662	vdev_mirror_state_change,
663	NULL,
664	NULL,
665	VDEV_TYPE_REPLACING,	/* name of this vdev type */
666	B_FALSE			/* not a leaf vdev */
667};
668
669vdev_ops_t vdev_spare_ops = {
670	vdev_mirror_open,
671	vdev_mirror_close,
672	vdev_default_asize,
673	vdev_mirror_io_start,
674	vdev_mirror_io_done,
675	vdev_mirror_state_change,
676	NULL,
677	NULL,
678	VDEV_TYPE_SPARE,	/* name of this vdev type */
679	B_FALSE			/* not a leaf vdev */
680};
681