vdev_mirror.c revision 297078
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/vdev_impl.h>
33#include <sys/zio.h>
34#include <sys/fs/zfs.h>
35
36/*
37 * Virtual device vector for mirroring.
38 */
39
40typedef struct mirror_child {
41	vdev_t		*mc_vd;
42	uint64_t	mc_offset;
43	int		mc_error;
44	int		mc_load;
45	uint8_t		mc_tried;
46	uint8_t		mc_skipped;
47	uint8_t		mc_speculative;
48} mirror_child_t;
49
50typedef struct mirror_map {
51	int		*mm_preferred;
52	int		mm_preferred_cnt;
53	int		mm_children;
54	boolean_t	mm_replacing;
55	boolean_t	mm_root;
56	mirror_child_t	mm_child[];
57} mirror_map_t;
58
59static int vdev_mirror_shift = 21;
60
61SYSCTL_DECL(_vfs_zfs_vdev);
62static SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, mirror, CTLFLAG_RD, 0,
63    "ZFS VDEV Mirror");
64
65/*
66 * The load configuration settings below are tuned by default for
67 * the case where all devices are of the same rotational type.
68 *
69 * If there is a mixture of rotating and non-rotating media, setting
70 * non_rotating_seek_inc to 0 may well provide better results as it
71 * will direct more reads to the non-rotating vdevs which are more
72 * likely to have a higher performance.
73 */
74
75/* Rotating media load calculation configuration. */
76static int rotating_inc = 0;
77TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_inc", &rotating_inc);
78SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_inc, CTLFLAG_RW,
79    &rotating_inc, 0, "Rotating media load increment for non-seeking I/O's");
80
81static int rotating_seek_inc = 5;
82TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_inc", &rotating_seek_inc);
83SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_inc, CTLFLAG_RW,
84    &rotating_seek_inc, 0, "Rotating media load increment for seeking I/O's");
85
86static int rotating_seek_offset = 1 * 1024 * 1024;
87TUNABLE_INT("vfs.zfs.vdev.mirror.rotating_seek_offset", &rotating_seek_offset);
88SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, rotating_seek_offset, CTLFLAG_RW,
89    &rotating_seek_offset, 0, "Offset in bytes from the last I/O which "
90    "triggers a reduced rotating media seek increment");
91
92/* Non-rotating media load calculation configuration. */
93static int non_rotating_inc = 0;
94TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_inc", &non_rotating_inc);
95SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_inc, CTLFLAG_RW,
96    &non_rotating_inc, 0,
97    "Non-rotating media load increment for non-seeking I/O's");
98
99static int non_rotating_seek_inc = 1;
100TUNABLE_INT("vfs.zfs.vdev.mirror.non_rotating_seek_inc",
101     &non_rotating_seek_inc);
102SYSCTL_INT(_vfs_zfs_vdev_mirror, OID_AUTO, non_rotating_seek_inc, CTLFLAG_RW,
103    &non_rotating_seek_inc, 0,
104    "Non-rotating media load increment for seeking I/O's");
105
106
107static inline size_t
108vdev_mirror_map_size(int children)
109{
110	return (offsetof(mirror_map_t, mm_child[children]) +
111	    sizeof(int) * children);
112}
113
114static inline mirror_map_t *
115vdev_mirror_map_alloc(int children, boolean_t replacing, boolean_t root)
116{
117	mirror_map_t *mm;
118
119	mm = kmem_zalloc(vdev_mirror_map_size(children), KM_SLEEP);
120	mm->mm_children = children;
121	mm->mm_replacing = replacing;
122	mm->mm_root = root;
123	mm->mm_preferred = (int *)((uintptr_t)mm +
124	    offsetof(mirror_map_t, mm_child[children]));
125
126	return mm;
127}
128
129static void
130vdev_mirror_map_free(zio_t *zio)
131{
132	mirror_map_t *mm = zio->io_vsd;
133
134	kmem_free(mm, vdev_mirror_map_size(mm->mm_children));
135}
136
137static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
138	vdev_mirror_map_free,
139	zio_vsd_default_cksum_report
140};
141
142static int
143vdev_mirror_load(mirror_map_t *mm, vdev_t *vd, uint64_t zio_offset)
144{
145	uint64_t lastoffset;
146	int load;
147
148	/* All DVAs have equal weight at the root. */
149	if (mm->mm_root)
150		return (INT_MAX);
151
152	/*
153	 * We don't return INT_MAX if the device is resilvering i.e.
154	 * vdev_resilver_txg != 0 as when tested performance was slightly
155	 * worse overall when resilvering with compared to without.
156	 */
157
158	/* Standard load based on pending queue length. */
159	load = vdev_queue_length(vd);
160	lastoffset = vdev_queue_lastoffset(vd);
161
162	if (vd->vdev_rotation_rate == VDEV_RATE_NON_ROTATING) {
163		/* Non-rotating media. */
164		if (lastoffset == zio_offset)
165			return (load + non_rotating_inc);
166
167		/*
168		 * Apply a seek penalty even for non-rotating devices as
169		 * sequential I/O'a can be aggregated into fewer operations
170		 * on the device, thus avoiding unnecessary per-command
171		 * overhead and boosting performance.
172		 */
173		return (load + non_rotating_seek_inc);
174	}
175
176	/* Rotating media I/O's which directly follow the last I/O. */
177	if (lastoffset == zio_offset)
178		return (load + rotating_inc);
179
180	/*
181	 * Apply half the seek increment to I/O's within seek offset
182	 * of the last I/O queued to this vdev as they should incure less
183	 * of a seek increment.
184	 */
185	if (ABS(lastoffset - zio_offset) < rotating_seek_offset)
186		return (load + (rotating_seek_inc / 2));
187
188	/* Apply the full seek increment to all other I/O's. */
189	return (load + rotating_seek_inc);
190}
191
192
193static mirror_map_t *
194vdev_mirror_map_init(zio_t *zio)
195{
196	mirror_map_t *mm = NULL;
197	mirror_child_t *mc;
198	vdev_t *vd = zio->io_vd;
199	int c;
200
201	if (vd == NULL) {
202		dva_t *dva = zio->io_bp->blk_dva;
203		spa_t *spa = zio->io_spa;
204
205		mm = vdev_mirror_map_alloc(BP_GET_NDVAS(zio->io_bp), B_FALSE,
206		    B_TRUE);
207		for (c = 0; c < mm->mm_children; c++) {
208			mc = &mm->mm_child[c];
209			mc->mc_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[c]));
210			mc->mc_offset = DVA_GET_OFFSET(&dva[c]);
211		}
212	} else {
213		mm = vdev_mirror_map_alloc(vd->vdev_children,
214		    (vd->vdev_ops == &vdev_replacing_ops ||
215                    vd->vdev_ops == &vdev_spare_ops), B_FALSE);
216		for (c = 0; c < mm->mm_children; c++) {
217			mc = &mm->mm_child[c];
218			mc->mc_vd = vd->vdev_child[c];
219			mc->mc_offset = zio->io_offset;
220		}
221	}
222
223	zio->io_vsd = mm;
224	zio->io_vsd_ops = &vdev_mirror_vsd_ops;
225	return (mm);
226}
227
228static int
229vdev_mirror_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
230    uint64_t *logical_ashift, uint64_t *physical_ashift)
231{
232	int numerrors = 0;
233	int lasterror = 0;
234
235	if (vd->vdev_children == 0) {
236		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
237		return (SET_ERROR(EINVAL));
238	}
239
240	vdev_open_children(vd);
241
242	for (int c = 0; c < vd->vdev_children; c++) {
243		vdev_t *cvd = vd->vdev_child[c];
244
245		if (cvd->vdev_open_error) {
246			lasterror = cvd->vdev_open_error;
247			numerrors++;
248			continue;
249		}
250
251		*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
252		*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
253		*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
254		*physical_ashift = MAX(*physical_ashift,
255		    cvd->vdev_physical_ashift);
256	}
257
258	if (numerrors == vd->vdev_children) {
259		vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
260		return (lasterror);
261	}
262
263	return (0);
264}
265
266static void
267vdev_mirror_close(vdev_t *vd)
268{
269	for (int c = 0; c < vd->vdev_children; c++)
270		vdev_close(vd->vdev_child[c]);
271}
272
273static void
274vdev_mirror_child_done(zio_t *zio)
275{
276	mirror_child_t *mc = zio->io_private;
277
278	mc->mc_error = zio->io_error;
279	mc->mc_tried = 1;
280	mc->mc_skipped = 0;
281}
282
283static void
284vdev_mirror_scrub_done(zio_t *zio)
285{
286	mirror_child_t *mc = zio->io_private;
287
288	if (zio->io_error == 0) {
289		zio_t *pio;
290
291		mutex_enter(&zio->io_lock);
292		while ((pio = zio_walk_parents(zio)) != NULL) {
293			mutex_enter(&pio->io_lock);
294			ASSERT3U(zio->io_size, >=, pio->io_size);
295			bcopy(zio->io_data, pio->io_data, pio->io_size);
296			mutex_exit(&pio->io_lock);
297		}
298		mutex_exit(&zio->io_lock);
299	}
300
301	zio_buf_free(zio->io_data, zio->io_size);
302
303	mc->mc_error = zio->io_error;
304	mc->mc_tried = 1;
305	mc->mc_skipped = 0;
306}
307
308/*
309 * Check the other, lower-index DVAs to see if they're on the same
310 * vdev as the child we picked.  If they are, use them since they
311 * are likely to have been allocated from the primary metaslab in
312 * use at the time, and hence are more likely to have locality with
313 * single-copy data.
314 */
315static int
316vdev_mirror_dva_select(zio_t *zio, int p)
317{
318	dva_t *dva = zio->io_bp->blk_dva;
319	mirror_map_t *mm = zio->io_vsd;
320	int preferred;
321	int c;
322
323	preferred = mm->mm_preferred[p];
324	for (p-- ; p >= 0; p--) {
325		c = mm->mm_preferred[p];
326		if (DVA_GET_VDEV(&dva[c]) == DVA_GET_VDEV(&dva[preferred]))
327			preferred = c;
328	}
329	return (preferred);
330}
331
332static int
333vdev_mirror_preferred_child_randomize(zio_t *zio)
334{
335	mirror_map_t *mm = zio->io_vsd;
336	int p;
337
338	if (mm->mm_root) {
339		p = spa_get_random(mm->mm_preferred_cnt);
340		return (vdev_mirror_dva_select(zio, p));
341	}
342
343	/*
344	 * To ensure we don't always favour the first matching vdev,
345	 * which could lead to wear leveling issues on SSD's, we
346	 * use the I/O offset as a pseudo random seed into the vdevs
347	 * which have the lowest load.
348	 */
349	p = (zio->io_offset >> vdev_mirror_shift) % mm->mm_preferred_cnt;
350	return (mm->mm_preferred[p]);
351}
352
353/*
354 * Try to find a vdev whose DTL doesn't contain the block we want to read
355 * prefering vdevs based on determined load.
356 *
357 * If we can't, try the read on any vdev we haven't already tried.
358 */
359static int
360vdev_mirror_child_select(zio_t *zio)
361{
362	mirror_map_t *mm = zio->io_vsd;
363	uint64_t txg = zio->io_txg;
364	int c, lowest_load;
365
366	ASSERT(zio->io_bp == NULL || BP_PHYSICAL_BIRTH(zio->io_bp) == txg);
367
368	lowest_load = INT_MAX;
369	mm->mm_preferred_cnt = 0;
370	for (c = 0; c < mm->mm_children; c++) {
371		mirror_child_t *mc;
372
373		mc = &mm->mm_child[c];
374		if (mc->mc_tried || mc->mc_skipped)
375			continue;
376
377		if (!vdev_readable(mc->mc_vd)) {
378			mc->mc_error = SET_ERROR(ENXIO);
379			mc->mc_tried = 1;	/* don't even try */
380			mc->mc_skipped = 1;
381			continue;
382		}
383
384		if (vdev_dtl_contains(mc->mc_vd, DTL_MISSING, txg, 1)) {
385			mc->mc_error = SET_ERROR(ESTALE);
386			mc->mc_skipped = 1;
387			mc->mc_speculative = 1;
388			continue;
389		}
390
391		mc->mc_load = vdev_mirror_load(mm, mc->mc_vd, mc->mc_offset);
392		if (mc->mc_load > lowest_load)
393			continue;
394
395		if (mc->mc_load < lowest_load) {
396			lowest_load = mc->mc_load;
397			mm->mm_preferred_cnt = 0;
398		}
399		mm->mm_preferred[mm->mm_preferred_cnt] = c;
400		mm->mm_preferred_cnt++;
401	}
402
403	if (mm->mm_preferred_cnt == 1) {
404		vdev_queue_register_lastoffset(
405		    mm->mm_child[mm->mm_preferred[0]].mc_vd, zio);
406		return (mm->mm_preferred[0]);
407	}
408
409	if (mm->mm_preferred_cnt > 1) {
410		int c = vdev_mirror_preferred_child_randomize(zio);
411
412		vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd, zio);
413		return (c);
414	}
415
416	/*
417	 * Every device is either missing or has this txg in its DTL.
418	 * Look for any child we haven't already tried before giving up.
419	 */
420	for (c = 0; c < mm->mm_children; c++) {
421		if (!mm->mm_child[c].mc_tried) {
422			vdev_queue_register_lastoffset(mm->mm_child[c].mc_vd,
423			    zio);
424			return (c);
425		}
426	}
427
428	/*
429	 * Every child failed.  There's no place left to look.
430	 */
431	return (-1);
432}
433
434static void
435vdev_mirror_io_start(zio_t *zio)
436{
437	mirror_map_t *mm;
438	mirror_child_t *mc;
439	int c, children;
440
441	mm = vdev_mirror_map_init(zio);
442
443	if (zio->io_type == ZIO_TYPE_READ) {
444		if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_replacing &&
445		    mm->mm_children > 1) {
446			/*
447			 * For scrubbing reads we need to allocate a read
448			 * buffer for each child and issue reads to all
449			 * children.  If any child succeeds, it will copy its
450			 * data into zio->io_data in vdev_mirror_scrub_done.
451			 */
452			for (c = 0; c < mm->mm_children; c++) {
453				mc = &mm->mm_child[c];
454				zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
455				    mc->mc_vd, mc->mc_offset,
456				    zio_buf_alloc(zio->io_size), zio->io_size,
457				    zio->io_type, zio->io_priority, 0,
458				    vdev_mirror_scrub_done, mc));
459			}
460			zio_execute(zio);
461			return;
462		}
463		/*
464		 * For normal reads just pick one child.
465		 */
466		c = vdev_mirror_child_select(zio);
467		children = (c >= 0);
468	} else {
469		ASSERT(zio->io_type == ZIO_TYPE_WRITE ||
470		    zio->io_type == ZIO_TYPE_FREE);
471
472		/*
473		 * Writes and frees go to all children.
474		 */
475		c = 0;
476		children = mm->mm_children;
477	}
478
479	while (children--) {
480		mc = &mm->mm_child[c];
481		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
482		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
483		    zio->io_type, zio->io_priority, 0,
484		    vdev_mirror_child_done, mc));
485		c++;
486	}
487
488	zio_execute(zio);
489}
490
491static int
492vdev_mirror_worst_error(mirror_map_t *mm)
493{
494	int error[2] = { 0, 0 };
495
496	for (int c = 0; c < mm->mm_children; c++) {
497		mirror_child_t *mc = &mm->mm_child[c];
498		int s = mc->mc_speculative;
499		error[s] = zio_worst_error(error[s], mc->mc_error);
500	}
501
502	return (error[0] ? error[0] : error[1]);
503}
504
505static void
506vdev_mirror_io_done(zio_t *zio)
507{
508	mirror_map_t *mm = zio->io_vsd;
509	mirror_child_t *mc;
510	int c;
511	int good_copies = 0;
512	int unexpected_errors = 0;
513
514	for (c = 0; c < mm->mm_children; c++) {
515		mc = &mm->mm_child[c];
516
517		if (mc->mc_error) {
518			if (!mc->mc_skipped)
519				unexpected_errors++;
520		} else if (mc->mc_tried) {
521			good_copies++;
522		}
523	}
524
525	if (zio->io_type == ZIO_TYPE_WRITE) {
526		/*
527		 * XXX -- for now, treat partial writes as success.
528		 *
529		 * Now that we support write reallocation, it would be better
530		 * to treat partial failure as real failure unless there are
531		 * no non-degraded top-level vdevs left, and not update DTLs
532		 * if we intend to reallocate.
533		 */
534		/* XXPOLICY */
535		if (good_copies != mm->mm_children) {
536			/*
537			 * Always require at least one good copy.
538			 *
539			 * For ditto blocks (io_vd == NULL), require
540			 * all copies to be good.
541			 *
542			 * XXX -- for replacing vdevs, there's no great answer.
543			 * If the old device is really dead, we may not even
544			 * be able to access it -- so we only want to
545			 * require good writes to the new device.  But if
546			 * the new device turns out to be flaky, we want
547			 * to be able to detach it -- which requires all
548			 * writes to the old device to have succeeded.
549			 */
550			if (good_copies == 0 || zio->io_vd == NULL)
551				zio->io_error = vdev_mirror_worst_error(mm);
552		}
553		return;
554	} else if (zio->io_type == ZIO_TYPE_FREE) {
555		return;
556	}
557
558	ASSERT(zio->io_type == ZIO_TYPE_READ);
559
560	/*
561	 * If we don't have a good copy yet, keep trying other children.
562	 */
563	/* XXPOLICY */
564	if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
565		ASSERT(c >= 0 && c < mm->mm_children);
566		mc = &mm->mm_child[c];
567		zio_vdev_io_redone(zio);
568		zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
569		    mc->mc_vd, mc->mc_offset, zio->io_data, zio->io_size,
570		    ZIO_TYPE_READ, zio->io_priority, 0,
571		    vdev_mirror_child_done, mc));
572		return;
573	}
574
575	/* XXPOLICY */
576	if (good_copies == 0) {
577		zio->io_error = vdev_mirror_worst_error(mm);
578		ASSERT(zio->io_error != 0);
579	}
580
581	if (good_copies && spa_writeable(zio->io_spa) &&
582	    (unexpected_errors ||
583	    (zio->io_flags & ZIO_FLAG_RESILVER) ||
584	    ((zio->io_flags & ZIO_FLAG_SCRUB) && mm->mm_replacing))) {
585		/*
586		 * Use the good data we have in hand to repair damaged children.
587		 */
588		for (c = 0; c < mm->mm_children; c++) {
589			/*
590			 * Don't rewrite known good children.
591			 * Not only is it unnecessary, it could
592			 * actually be harmful: if the system lost
593			 * power while rewriting the only good copy,
594			 * there would be no good copies left!
595			 */
596			mc = &mm->mm_child[c];
597
598			if (mc->mc_error == 0) {
599				if (mc->mc_tried)
600					continue;
601				if (!(zio->io_flags & ZIO_FLAG_SCRUB) &&
602				    !vdev_dtl_contains(mc->mc_vd, DTL_PARTIAL,
603				    zio->io_txg, 1))
604					continue;
605				mc->mc_error = SET_ERROR(ESTALE);
606			}
607
608			zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
609			    mc->mc_vd, mc->mc_offset,
610			    zio->io_data, zio->io_size,
611			    ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
612			    ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
613			    ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
614		}
615	}
616}
617
618static void
619vdev_mirror_state_change(vdev_t *vd, int faulted, int degraded)
620{
621	if (faulted == vd->vdev_children)
622		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
623		    VDEV_AUX_NO_REPLICAS);
624	else if (degraded + faulted != 0)
625		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
626	else
627		vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
628}
629
630vdev_ops_t vdev_mirror_ops = {
631	vdev_mirror_open,
632	vdev_mirror_close,
633	vdev_default_asize,
634	vdev_mirror_io_start,
635	vdev_mirror_io_done,
636	vdev_mirror_state_change,
637	NULL,
638	NULL,
639	VDEV_TYPE_MIRROR,	/* name of this vdev type */
640	B_FALSE			/* not a leaf vdev */
641};
642
643vdev_ops_t vdev_replacing_ops = {
644	vdev_mirror_open,
645	vdev_mirror_close,
646	vdev_default_asize,
647	vdev_mirror_io_start,
648	vdev_mirror_io_done,
649	vdev_mirror_state_change,
650	NULL,
651	NULL,
652	VDEV_TYPE_REPLACING,	/* name of this vdev type */
653	B_FALSE			/* not a leaf vdev */
654};
655
656vdev_ops_t vdev_spare_ops = {
657	vdev_mirror_open,
658	vdev_mirror_close,
659	vdev_default_asize,
660	vdev_mirror_io_start,
661	vdev_mirror_io_done,
662	vdev_mirror_state_change,
663	NULL,
664	NULL,
665	VDEV_TYPE_SPARE,	/* name of this vdev type */
666	B_FALSE			/* not a leaf vdev */
667};
668