vdev_label.c revision 290765
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 */
26
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34 *	   identity within the pool.
35 *
36 * 	2. Verify that all the devices given in a configuration are present
37 *         within the pool.
38 *
39 * 	3. Determine the uberblock for the pool.
40 *
41 * 	4. In case of an import operation, determine the configuration of the
42 *         toplevel vdev of which it is a part.
43 *
44 * 	5. If an import operation cannot find all the devices in the pool,
45 *         provide enough information to the administrator to determine which
46 *         devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases.  The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point.  To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced.  Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 *              L1          UB          L2
67 *           +------+    +------+    +------+
68 *           |      |    |      |    |      |
69 *           | t10  |    | t10  |    | t10  |
70 *           |      |    |      |    |      |
71 *           +------+    +------+    +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10).  Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 	1. For each vdev, update 'L1' to the new label
81 * 	2. Update the uberblock
82 * 	3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group.  If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid.  If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced.  If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool.  This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information.  It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated.  When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * 	version		ZFS on-disk version
121 * 	name		Pool name
122 * 	state		Pool state
123 * 	txg		Transaction group in which this label was written
124 * 	pool_guid	Unique identifier for this pool
125 * 	vdev_tree	An nvlist describing vdev tree.
126 *	features_for_read
127 *			An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * 	top_guid	Unique ID for top-level vdev in which this is contained
132 * 	guid		Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/zio.h>
147#include <sys/dsl_scan.h>
148#include <sys/trim_map.h>
149#include <sys/fs/zfs.h>
150
151static boolean_t vdev_trim_on_init = B_TRUE;
152SYSCTL_DECL(_vfs_zfs_vdev);
153SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, trim_on_init, CTLFLAG_RW,
154    &vdev_trim_on_init, 0, "Enable/disable full vdev trim on initialisation");
155
156/*
157 * Basic routines to read and write from a vdev label.
158 * Used throughout the rest of this file.
159 */
160uint64_t
161vdev_label_offset(uint64_t psize, int l, uint64_t offset)
162{
163	ASSERT(offset < sizeof (vdev_label_t));
164	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
165
166	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
167	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
168}
169
170/*
171 * Returns back the vdev label associated with the passed in offset.
172 */
173int
174vdev_label_number(uint64_t psize, uint64_t offset)
175{
176	int l;
177
178	if (offset >= psize - VDEV_LABEL_END_SIZE) {
179		offset -= psize - VDEV_LABEL_END_SIZE;
180		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
181	}
182	l = offset / sizeof (vdev_label_t);
183	return (l < VDEV_LABELS ? l : -1);
184}
185
186static void
187vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
188    uint64_t size, zio_done_func_t *done, void *private, int flags)
189{
190	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
191	    SCL_STATE_ALL);
192	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
193
194	zio_nowait(zio_read_phys(zio, vd,
195	    vdev_label_offset(vd->vdev_psize, l, offset),
196	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
197	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
198}
199
200static void
201vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
202    uint64_t size, zio_done_func_t *done, void *private, int flags)
203{
204	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
205	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
206	    (SCL_CONFIG | SCL_STATE) &&
207	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
208	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
209
210	zio_nowait(zio_write_phys(zio, vd,
211	    vdev_label_offset(vd->vdev_psize, l, offset),
212	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
213	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
214}
215
216/*
217 * Generate the nvlist representing this vdev's config.
218 */
219nvlist_t *
220vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
221    vdev_config_flag_t flags)
222{
223	nvlist_t *nv = NULL;
224
225	nv = fnvlist_alloc();
226
227	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
228	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
229		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
230	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
231
232	if (vd->vdev_path != NULL)
233		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
234
235	if (vd->vdev_devid != NULL)
236		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
237
238	if (vd->vdev_physpath != NULL)
239		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
240		    vd->vdev_physpath);
241
242	if (vd->vdev_fru != NULL)
243		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
244
245	if (vd->vdev_nparity != 0) {
246		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
247		    VDEV_TYPE_RAIDZ) == 0);
248
249		/*
250		 * Make sure someone hasn't managed to sneak a fancy new vdev
251		 * into a crufty old storage pool.
252		 */
253		ASSERT(vd->vdev_nparity == 1 ||
254		    (vd->vdev_nparity <= 2 &&
255		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
256		    (vd->vdev_nparity <= 3 &&
257		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
258
259		/*
260		 * Note that we'll add the nparity tag even on storage pools
261		 * that only support a single parity device -- older software
262		 * will just ignore it.
263		 */
264		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
265	}
266
267	if (vd->vdev_wholedisk != -1ULL)
268		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
269		    vd->vdev_wholedisk);
270
271	if (vd->vdev_not_present)
272		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
273
274	if (vd->vdev_isspare)
275		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
276
277	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
278	    vd == vd->vdev_top) {
279		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
280		    vd->vdev_ms_array);
281		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
282		    vd->vdev_ms_shift);
283		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
284		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
285		    vd->vdev_asize);
286		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
287		if (vd->vdev_removing)
288			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
289			    vd->vdev_removing);
290	}
291
292	if (vd->vdev_dtl_sm != NULL) {
293		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
294		    space_map_object(vd->vdev_dtl_sm));
295	}
296
297	if (vd->vdev_crtxg)
298		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
299
300	if (getstats) {
301		vdev_stat_t vs;
302		pool_scan_stat_t ps;
303
304		vdev_get_stats(vd, &vs);
305		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
306		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
307
308		/* provide either current or previous scan information */
309		if (spa_scan_get_stats(spa, &ps) == 0) {
310			fnvlist_add_uint64_array(nv,
311			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
312			    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
313		}
314	}
315
316	if (!vd->vdev_ops->vdev_op_leaf) {
317		nvlist_t **child;
318		int c, idx;
319
320		ASSERT(!vd->vdev_ishole);
321
322		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
323		    KM_SLEEP);
324
325		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
326			vdev_t *cvd = vd->vdev_child[c];
327
328			/*
329			 * If we're generating an nvlist of removing
330			 * vdevs then skip over any device which is
331			 * not being removed.
332			 */
333			if ((flags & VDEV_CONFIG_REMOVING) &&
334			    !cvd->vdev_removing)
335				continue;
336
337			child[idx++] = vdev_config_generate(spa, cvd,
338			    getstats, flags);
339		}
340
341		if (idx) {
342			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
343			    child, idx);
344		}
345
346		for (c = 0; c < idx; c++)
347			nvlist_free(child[c]);
348
349		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
350
351	} else {
352		const char *aux = NULL;
353
354		if (vd->vdev_offline && !vd->vdev_tmpoffline)
355			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
356		if (vd->vdev_resilver_txg != 0)
357			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
358			    vd->vdev_resilver_txg);
359		if (vd->vdev_faulted)
360			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
361		if (vd->vdev_degraded)
362			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
363		if (vd->vdev_removed)
364			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
365		if (vd->vdev_unspare)
366			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
367		if (vd->vdev_ishole)
368			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
369
370		switch (vd->vdev_stat.vs_aux) {
371		case VDEV_AUX_ERR_EXCEEDED:
372			aux = "err_exceeded";
373			break;
374
375		case VDEV_AUX_EXTERNAL:
376			aux = "external";
377			break;
378		}
379
380		if (aux != NULL)
381			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
382
383		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
384			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
385			    vd->vdev_orig_guid);
386		}
387	}
388
389	return (nv);
390}
391
392/*
393 * Generate a view of the top-level vdevs.  If we currently have holes
394 * in the namespace, then generate an array which contains a list of holey
395 * vdevs.  Additionally, add the number of top-level children that currently
396 * exist.
397 */
398void
399vdev_top_config_generate(spa_t *spa, nvlist_t *config)
400{
401	vdev_t *rvd = spa->spa_root_vdev;
402	uint64_t *array;
403	uint_t c, idx;
404
405	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
406
407	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
408		vdev_t *tvd = rvd->vdev_child[c];
409
410		if (tvd->vdev_ishole)
411			array[idx++] = c;
412	}
413
414	if (idx) {
415		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
416		    array, idx) == 0);
417	}
418
419	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
420	    rvd->vdev_children) == 0);
421
422	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
423}
424
425/*
426 * Returns the configuration from the label of the given vdev. For vdevs
427 * which don't have a txg value stored on their label (i.e. spares/cache)
428 * or have not been completely initialized (txg = 0) just return
429 * the configuration from the first valid label we find. Otherwise,
430 * find the most up-to-date label that does not exceed the specified
431 * 'txg' value.
432 */
433nvlist_t *
434vdev_label_read_config(vdev_t *vd, uint64_t txg)
435{
436	spa_t *spa = vd->vdev_spa;
437	nvlist_t *config = NULL;
438	vdev_phys_t *vp;
439	zio_t *zio;
440	uint64_t best_txg = 0;
441	int error = 0;
442	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
443	    ZIO_FLAG_SPECULATIVE;
444
445	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
446
447	if (!vdev_readable(vd))
448		return (NULL);
449
450	vp = zio_buf_alloc(sizeof (vdev_phys_t));
451
452retry:
453	for (int l = 0; l < VDEV_LABELS; l++) {
454		nvlist_t *label = NULL;
455
456		zio = zio_root(spa, NULL, NULL, flags);
457
458		vdev_label_read(zio, vd, l, vp,
459		    offsetof(vdev_label_t, vl_vdev_phys),
460		    sizeof (vdev_phys_t), NULL, NULL, flags);
461
462		if (zio_wait(zio) == 0 &&
463		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
464		    &label, 0) == 0) {
465			uint64_t label_txg = 0;
466
467			/*
468			 * Auxiliary vdevs won't have txg values in their
469			 * labels and newly added vdevs may not have been
470			 * completely initialized so just return the
471			 * configuration from the first valid label we
472			 * encounter.
473			 */
474			error = nvlist_lookup_uint64(label,
475			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
476			if ((error || label_txg == 0) && !config) {
477				config = label;
478				break;
479			} else if (label_txg <= txg && label_txg > best_txg) {
480				best_txg = label_txg;
481				nvlist_free(config);
482				config = fnvlist_dup(label);
483			}
484		}
485
486		if (label != NULL) {
487			nvlist_free(label);
488			label = NULL;
489		}
490	}
491
492	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
493		flags |= ZIO_FLAG_TRYHARD;
494		goto retry;
495	}
496
497	zio_buf_free(vp, sizeof (vdev_phys_t));
498
499	return (config);
500}
501
502/*
503 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
504 * in with the device guid if this spare is active elsewhere on the system.
505 */
506static boolean_t
507vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
508    uint64_t *spare_guid, uint64_t *l2cache_guid)
509{
510	spa_t *spa = vd->vdev_spa;
511	uint64_t state, pool_guid, device_guid, txg, spare_pool;
512	uint64_t vdtxg = 0;
513	nvlist_t *label;
514
515	if (spare_guid)
516		*spare_guid = 0ULL;
517	if (l2cache_guid)
518		*l2cache_guid = 0ULL;
519
520	/*
521	 * Read the label, if any, and perform some basic sanity checks.
522	 */
523	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
524		return (B_FALSE);
525
526	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
527	    &vdtxg);
528
529	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
530	    &state) != 0 ||
531	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
532	    &device_guid) != 0) {
533		nvlist_free(label);
534		return (B_FALSE);
535	}
536
537	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
538	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
539	    &pool_guid) != 0 ||
540	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
541	    &txg) != 0)) {
542		nvlist_free(label);
543		return (B_FALSE);
544	}
545
546	nvlist_free(label);
547
548	/*
549	 * Check to see if this device indeed belongs to the pool it claims to
550	 * be a part of.  The only way this is allowed is if the device is a hot
551	 * spare (which we check for later on).
552	 */
553	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
554	    !spa_guid_exists(pool_guid, device_guid) &&
555	    !spa_spare_exists(device_guid, NULL, NULL) &&
556	    !spa_l2cache_exists(device_guid, NULL))
557		return (B_FALSE);
558
559	/*
560	 * If the transaction group is zero, then this an initialized (but
561	 * unused) label.  This is only an error if the create transaction
562	 * on-disk is the same as the one we're using now, in which case the
563	 * user has attempted to add the same vdev multiple times in the same
564	 * transaction.
565	 */
566	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
567	    txg == 0 && vdtxg == crtxg)
568		return (B_TRUE);
569
570	/*
571	 * Check to see if this is a spare device.  We do an explicit check for
572	 * spa_has_spare() here because it may be on our pending list of spares
573	 * to add.  We also check if it is an l2cache device.
574	 */
575	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
576	    spa_has_spare(spa, device_guid)) {
577		if (spare_guid)
578			*spare_guid = device_guid;
579
580		switch (reason) {
581		case VDEV_LABEL_CREATE:
582		case VDEV_LABEL_L2CACHE:
583			return (B_TRUE);
584
585		case VDEV_LABEL_REPLACE:
586			return (!spa_has_spare(spa, device_guid) ||
587			    spare_pool != 0ULL);
588
589		case VDEV_LABEL_SPARE:
590			return (spa_has_spare(spa, device_guid));
591		}
592	}
593
594	/*
595	 * Check to see if this is an l2cache device.
596	 */
597	if (spa_l2cache_exists(device_guid, NULL))
598		return (B_TRUE);
599
600	/*
601	 * We can't rely on a pool's state if it's been imported
602	 * read-only.  Instead we look to see if the pools is marked
603	 * read-only in the namespace and set the state to active.
604	 */
605	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
606	    spa_mode(spa) == FREAD)
607		state = POOL_STATE_ACTIVE;
608
609	/*
610	 * If the device is marked ACTIVE, then this device is in use by another
611	 * pool on the system.
612	 */
613	return (state == POOL_STATE_ACTIVE);
614}
615
616/*
617 * Initialize a vdev label.  We check to make sure each leaf device is not in
618 * use, and writable.  We put down an initial label which we will later
619 * overwrite with a complete label.  Note that it's important to do this
620 * sequentially, not in parallel, so that we catch cases of multiple use of the
621 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
622 * itself.
623 */
624int
625vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
626{
627	spa_t *spa = vd->vdev_spa;
628	nvlist_t *label;
629	vdev_phys_t *vp;
630	char *pad2;
631	uberblock_t *ub;
632	zio_t *zio;
633	char *buf;
634	size_t buflen;
635	int error;
636	uint64_t spare_guid, l2cache_guid;
637	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
638
639	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
640
641	for (int c = 0; c < vd->vdev_children; c++)
642		if ((error = vdev_label_init(vd->vdev_child[c],
643		    crtxg, reason)) != 0)
644			return (error);
645
646	/* Track the creation time for this vdev */
647	vd->vdev_crtxg = crtxg;
648
649	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
650		return (0);
651
652	/*
653	 * Dead vdevs cannot be initialized.
654	 */
655	if (vdev_is_dead(vd))
656		return (SET_ERROR(EIO));
657
658	/*
659	 * Determine if the vdev is in use.
660	 */
661	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
662	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
663		return (SET_ERROR(EBUSY));
664
665	/*
666	 * If this is a request to add or replace a spare or l2cache device
667	 * that is in use elsewhere on the system, then we must update the
668	 * guid (which was initialized to a random value) to reflect the
669	 * actual GUID (which is shared between multiple pools).
670	 */
671	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
672	    spare_guid != 0ULL) {
673		uint64_t guid_delta = spare_guid - vd->vdev_guid;
674
675		vd->vdev_guid += guid_delta;
676
677		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
678			pvd->vdev_guid_sum += guid_delta;
679
680		/*
681		 * If this is a replacement, then we want to fallthrough to the
682		 * rest of the code.  If we're adding a spare, then it's already
683		 * labeled appropriately and we can just return.
684		 */
685		if (reason == VDEV_LABEL_SPARE)
686			return (0);
687		ASSERT(reason == VDEV_LABEL_REPLACE ||
688		    reason == VDEV_LABEL_SPLIT);
689	}
690
691	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
692	    l2cache_guid != 0ULL) {
693		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
694
695		vd->vdev_guid += guid_delta;
696
697		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
698			pvd->vdev_guid_sum += guid_delta;
699
700		/*
701		 * If this is a replacement, then we want to fallthrough to the
702		 * rest of the code.  If we're adding an l2cache, then it's
703		 * already labeled appropriately and we can just return.
704		 */
705		if (reason == VDEV_LABEL_L2CACHE)
706			return (0);
707		ASSERT(reason == VDEV_LABEL_REPLACE);
708	}
709
710	/*
711	 * TRIM the whole thing so that we start with a clean slate.
712	 * It's just an optimization, so we don't care if it fails.
713	 * Don't TRIM if removing so that we don't interfere with zpool
714	 * disaster recovery.
715	 */
716	if (zfs_trim_enabled && vdev_trim_on_init && !vd->vdev_notrim &&
717	    (reason == VDEV_LABEL_CREATE || reason == VDEV_LABEL_SPARE ||
718	    reason == VDEV_LABEL_L2CACHE))
719		zio_wait(zio_trim(NULL, spa, vd, 0, vd->vdev_psize));
720
721	/*
722	 * Initialize its label.
723	 */
724	vp = zio_buf_alloc(sizeof (vdev_phys_t));
725	bzero(vp, sizeof (vdev_phys_t));
726
727	/*
728	 * Generate a label describing the pool and our top-level vdev.
729	 * We mark it as being from txg 0 to indicate that it's not
730	 * really part of an active pool just yet.  The labels will
731	 * be written again with a meaningful txg by spa_sync().
732	 */
733	if (reason == VDEV_LABEL_SPARE ||
734	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
735		/*
736		 * For inactive hot spares, we generate a special label that
737		 * identifies as a mutually shared hot spare.  We write the
738		 * label if we are adding a hot spare, or if we are removing an
739		 * active hot spare (in which case we want to revert the
740		 * labels).
741		 */
742		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
743
744		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
745		    spa_version(spa)) == 0);
746		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
747		    POOL_STATE_SPARE) == 0);
748		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
749		    vd->vdev_guid) == 0);
750	} else if (reason == VDEV_LABEL_L2CACHE ||
751	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
752		/*
753		 * For level 2 ARC devices, add a special label.
754		 */
755		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
756
757		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
758		    spa_version(spa)) == 0);
759		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
760		    POOL_STATE_L2CACHE) == 0);
761		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
762		    vd->vdev_guid) == 0);
763	} else {
764		uint64_t txg = 0ULL;
765
766		if (reason == VDEV_LABEL_SPLIT)
767			txg = spa->spa_uberblock.ub_txg;
768		label = spa_config_generate(spa, vd, txg, B_FALSE);
769
770		/*
771		 * Add our creation time.  This allows us to detect multiple
772		 * vdev uses as described above, and automatically expires if we
773		 * fail.
774		 */
775		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
776		    crtxg) == 0);
777	}
778
779	buf = vp->vp_nvlist;
780	buflen = sizeof (vp->vp_nvlist);
781
782	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
783	if (error != 0) {
784		nvlist_free(label);
785		zio_buf_free(vp, sizeof (vdev_phys_t));
786		/* EFAULT means nvlist_pack ran out of room */
787		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
788	}
789
790	/*
791	 * Initialize uberblock template.
792	 */
793	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
794	bzero(ub, VDEV_UBERBLOCK_RING);
795	*ub = spa->spa_uberblock;
796	ub->ub_txg = 0;
797
798	/* Initialize the 2nd padding area. */
799	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
800	bzero(pad2, VDEV_PAD_SIZE);
801
802	/*
803	 * Write everything in parallel.
804	 */
805retry:
806	zio = zio_root(spa, NULL, NULL, flags);
807
808	for (int l = 0; l < VDEV_LABELS; l++) {
809
810		vdev_label_write(zio, vd, l, vp,
811		    offsetof(vdev_label_t, vl_vdev_phys),
812		    sizeof (vdev_phys_t), NULL, NULL, flags);
813
814		/*
815		 * Skip the 1st padding area.
816		 * Zero out the 2nd padding area where it might have
817		 * left over data from previous filesystem format.
818		 */
819		vdev_label_write(zio, vd, l, pad2,
820		    offsetof(vdev_label_t, vl_pad2),
821		    VDEV_PAD_SIZE, NULL, NULL, flags);
822
823		vdev_label_write(zio, vd, l, ub,
824		    offsetof(vdev_label_t, vl_uberblock),
825		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
826	}
827
828	error = zio_wait(zio);
829
830	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
831		flags |= ZIO_FLAG_TRYHARD;
832		goto retry;
833	}
834
835	nvlist_free(label);
836	zio_buf_free(pad2, VDEV_PAD_SIZE);
837	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
838	zio_buf_free(vp, sizeof (vdev_phys_t));
839
840	/*
841	 * If this vdev hasn't been previously identified as a spare, then we
842	 * mark it as such only if a) we are labeling it as a spare, or b) it
843	 * exists as a spare elsewhere in the system.  Do the same for
844	 * level 2 ARC devices.
845	 */
846	if (error == 0 && !vd->vdev_isspare &&
847	    (reason == VDEV_LABEL_SPARE ||
848	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
849		spa_spare_add(vd);
850
851	if (error == 0 && !vd->vdev_isl2cache &&
852	    (reason == VDEV_LABEL_L2CACHE ||
853	    spa_l2cache_exists(vd->vdev_guid, NULL)))
854		spa_l2cache_add(vd);
855
856	return (error);
857}
858
859/*
860 * ==========================================================================
861 * uberblock load/sync
862 * ==========================================================================
863 */
864
865/*
866 * Consider the following situation: txg is safely synced to disk.  We've
867 * written the first uberblock for txg + 1, and then we lose power.  When we
868 * come back up, we fail to see the uberblock for txg + 1 because, say,
869 * it was on a mirrored device and the replica to which we wrote txg + 1
870 * is now offline.  If we then make some changes and sync txg + 1, and then
871 * the missing replica comes back, then for a few seconds we'll have two
872 * conflicting uberblocks on disk with the same txg.  The solution is simple:
873 * among uberblocks with equal txg, choose the one with the latest timestamp.
874 */
875static int
876vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
877{
878	if (ub1->ub_txg < ub2->ub_txg)
879		return (-1);
880	if (ub1->ub_txg > ub2->ub_txg)
881		return (1);
882
883	if (ub1->ub_timestamp < ub2->ub_timestamp)
884		return (-1);
885	if (ub1->ub_timestamp > ub2->ub_timestamp)
886		return (1);
887
888	return (0);
889}
890
891struct ubl_cbdata {
892	uberblock_t	*ubl_ubbest;	/* Best uberblock */
893	vdev_t		*ubl_vd;	/* vdev associated with the above */
894};
895
896static void
897vdev_uberblock_load_done(zio_t *zio)
898{
899	vdev_t *vd = zio->io_vd;
900	spa_t *spa = zio->io_spa;
901	zio_t *rio = zio->io_private;
902	uberblock_t *ub = zio->io_data;
903	struct ubl_cbdata *cbp = rio->io_private;
904
905	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
906
907	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
908		mutex_enter(&rio->io_lock);
909		if (ub->ub_txg <= spa->spa_load_max_txg &&
910		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
911			/*
912			 * Keep track of the vdev in which this uberblock
913			 * was found. We will use this information later
914			 * to obtain the config nvlist associated with
915			 * this uberblock.
916			 */
917			*cbp->ubl_ubbest = *ub;
918			cbp->ubl_vd = vd;
919		}
920		mutex_exit(&rio->io_lock);
921	}
922
923	zio_buf_free(zio->io_data, zio->io_size);
924}
925
926static void
927vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
928    struct ubl_cbdata *cbp)
929{
930	for (int c = 0; c < vd->vdev_children; c++)
931		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
932
933	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
934		for (int l = 0; l < VDEV_LABELS; l++) {
935			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
936				vdev_label_read(zio, vd, l,
937				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
938				    VDEV_UBERBLOCK_OFFSET(vd, n),
939				    VDEV_UBERBLOCK_SIZE(vd),
940				    vdev_uberblock_load_done, zio, flags);
941			}
942		}
943	}
944}
945
946/*
947 * Reads the 'best' uberblock from disk along with its associated
948 * configuration. First, we read the uberblock array of each label of each
949 * vdev, keeping track of the uberblock with the highest txg in each array.
950 * Then, we read the configuration from the same vdev as the best uberblock.
951 */
952void
953vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
954{
955	zio_t *zio;
956	spa_t *spa = rvd->vdev_spa;
957	struct ubl_cbdata cb;
958	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
959	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
960
961	ASSERT(ub);
962	ASSERT(config);
963
964	bzero(ub, sizeof (uberblock_t));
965	*config = NULL;
966
967	cb.ubl_ubbest = ub;
968	cb.ubl_vd = NULL;
969
970	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
971	zio = zio_root(spa, NULL, &cb, flags);
972	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
973	(void) zio_wait(zio);
974
975	/*
976	 * It's possible that the best uberblock was discovered on a label
977	 * that has a configuration which was written in a future txg.
978	 * Search all labels on this vdev to find the configuration that
979	 * matches the txg for our uberblock.
980	 */
981	if (cb.ubl_vd != NULL)
982		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
983	spa_config_exit(spa, SCL_ALL, FTAG);
984}
985
986/*
987 * On success, increment root zio's count of good writes.
988 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
989 */
990static void
991vdev_uberblock_sync_done(zio_t *zio)
992{
993	uint64_t *good_writes = zio->io_private;
994
995	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
996		atomic_inc_64(good_writes);
997}
998
999/*
1000 * Write the uberblock to all labels of all leaves of the specified vdev.
1001 */
1002static void
1003vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1004{
1005	uberblock_t *ubbuf;
1006	int n;
1007
1008	for (int c = 0; c < vd->vdev_children; c++)
1009		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1010
1011	if (!vd->vdev_ops->vdev_op_leaf)
1012		return;
1013
1014	if (!vdev_writeable(vd))
1015		return;
1016
1017	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1018
1019	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1020	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1021	*ubbuf = *ub;
1022
1023	for (int l = 0; l < VDEV_LABELS; l++)
1024		vdev_label_write(zio, vd, l, ubbuf,
1025		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1026		    vdev_uberblock_sync_done, zio->io_private,
1027		    flags | ZIO_FLAG_DONT_PROPAGATE);
1028
1029	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1030}
1031
1032/* Sync the uberblocks to all vdevs in svd[] */
1033int
1034vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1035{
1036	spa_t *spa = svd[0]->vdev_spa;
1037	zio_t *zio;
1038	uint64_t good_writes = 0;
1039
1040	zio = zio_root(spa, NULL, &good_writes, flags);
1041
1042	for (int v = 0; v < svdcount; v++)
1043		vdev_uberblock_sync(zio, ub, svd[v], flags);
1044
1045	(void) zio_wait(zio);
1046
1047	/*
1048	 * Flush the uberblocks to disk.  This ensures that the odd labels
1049	 * are no longer needed (because the new uberblocks and the even
1050	 * labels are safely on disk), so it is safe to overwrite them.
1051	 */
1052	zio = zio_root(spa, NULL, NULL, flags);
1053
1054	for (int v = 0; v < svdcount; v++)
1055		zio_flush(zio, svd[v]);
1056
1057	(void) zio_wait(zio);
1058
1059	return (good_writes >= 1 ? 0 : EIO);
1060}
1061
1062/*
1063 * On success, increment the count of good writes for our top-level vdev.
1064 */
1065static void
1066vdev_label_sync_done(zio_t *zio)
1067{
1068	uint64_t *good_writes = zio->io_private;
1069
1070	if (zio->io_error == 0)
1071		atomic_inc_64(good_writes);
1072}
1073
1074/*
1075 * If there weren't enough good writes, indicate failure to the parent.
1076 */
1077static void
1078vdev_label_sync_top_done(zio_t *zio)
1079{
1080	uint64_t *good_writes = zio->io_private;
1081
1082	if (*good_writes == 0)
1083		zio->io_error = SET_ERROR(EIO);
1084
1085	kmem_free(good_writes, sizeof (uint64_t));
1086}
1087
1088/*
1089 * We ignore errors for log and cache devices, simply free the private data.
1090 */
1091static void
1092vdev_label_sync_ignore_done(zio_t *zio)
1093{
1094	kmem_free(zio->io_private, sizeof (uint64_t));
1095}
1096
1097/*
1098 * Write all even or odd labels to all leaves of the specified vdev.
1099 */
1100static void
1101vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1102{
1103	nvlist_t *label;
1104	vdev_phys_t *vp;
1105	char *buf;
1106	size_t buflen;
1107
1108	for (int c = 0; c < vd->vdev_children; c++)
1109		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1110
1111	if (!vd->vdev_ops->vdev_op_leaf)
1112		return;
1113
1114	if (!vdev_writeable(vd))
1115		return;
1116
1117	/*
1118	 * Generate a label describing the top-level config to which we belong.
1119	 */
1120	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1121
1122	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1123	bzero(vp, sizeof (vdev_phys_t));
1124
1125	buf = vp->vp_nvlist;
1126	buflen = sizeof (vp->vp_nvlist);
1127
1128	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1129		for (; l < VDEV_LABELS; l += 2) {
1130			vdev_label_write(zio, vd, l, vp,
1131			    offsetof(vdev_label_t, vl_vdev_phys),
1132			    sizeof (vdev_phys_t),
1133			    vdev_label_sync_done, zio->io_private,
1134			    flags | ZIO_FLAG_DONT_PROPAGATE);
1135		}
1136	}
1137
1138	zio_buf_free(vp, sizeof (vdev_phys_t));
1139	nvlist_free(label);
1140}
1141
1142int
1143vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1144{
1145	list_t *dl = &spa->spa_config_dirty_list;
1146	vdev_t *vd;
1147	zio_t *zio;
1148	int error;
1149
1150	/*
1151	 * Write the new labels to disk.
1152	 */
1153	zio = zio_root(spa, NULL, NULL, flags);
1154
1155	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1156		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1157		    KM_SLEEP);
1158
1159		ASSERT(!vd->vdev_ishole);
1160
1161		zio_t *vio = zio_null(zio, spa, NULL,
1162		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1163		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1164		    good_writes, flags);
1165		vdev_label_sync(vio, vd, l, txg, flags);
1166		zio_nowait(vio);
1167	}
1168
1169	error = zio_wait(zio);
1170
1171	/*
1172	 * Flush the new labels to disk.
1173	 */
1174	zio = zio_root(spa, NULL, NULL, flags);
1175
1176	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1177		zio_flush(zio, vd);
1178
1179	(void) zio_wait(zio);
1180
1181	return (error);
1182}
1183
1184/*
1185 * Sync the uberblock and any changes to the vdev configuration.
1186 *
1187 * The order of operations is carefully crafted to ensure that
1188 * if the system panics or loses power at any time, the state on disk
1189 * is still transactionally consistent.  The in-line comments below
1190 * describe the failure semantics at each stage.
1191 *
1192 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1193 * at any time, you can just call it again, and it will resume its work.
1194 */
1195int
1196vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1197{
1198	spa_t *spa = svd[0]->vdev_spa;
1199	uberblock_t *ub = &spa->spa_uberblock;
1200	vdev_t *vd;
1201	zio_t *zio;
1202	int error;
1203	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1204
1205	/*
1206	 * Normally, we don't want to try too hard to write every label and
1207	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1208	 * sync process to block while we retry.  But if we can't write a
1209	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1210	 * bailing out and declaring the pool faulted.
1211	 */
1212	if (tryhard)
1213		flags |= ZIO_FLAG_TRYHARD;
1214
1215	ASSERT(ub->ub_txg <= txg);
1216
1217	/*
1218	 * If this isn't a resync due to I/O errors,
1219	 * and nothing changed in this transaction group,
1220	 * and the vdev configuration hasn't changed,
1221	 * then there's nothing to do.
1222	 */
1223	if (ub->ub_txg < txg &&
1224	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1225	    list_is_empty(&spa->spa_config_dirty_list))
1226		return (0);
1227
1228	if (txg > spa_freeze_txg(spa))
1229		return (0);
1230
1231	ASSERT(txg <= spa->spa_final_txg);
1232
1233	/*
1234	 * Flush the write cache of every disk that's been written to
1235	 * in this transaction group.  This ensures that all blocks
1236	 * written in this txg will be committed to stable storage
1237	 * before any uberblock that references them.
1238	 */
1239	zio = zio_root(spa, NULL, NULL, flags);
1240
1241	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1242	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1243		zio_flush(zio, vd);
1244
1245	(void) zio_wait(zio);
1246
1247	/*
1248	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1249	 * system dies in the middle of this process, that's OK: all of the
1250	 * even labels that made it to disk will be newer than any uberblock,
1251	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1252	 * which have not yet been touched, will still be valid.  We flush
1253	 * the new labels to disk to ensure that all even-label updates
1254	 * are committed to stable storage before the uberblock update.
1255	 */
1256	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1257		return (error);
1258
1259	/*
1260	 * Sync the uberblocks to all vdevs in svd[].
1261	 * If the system dies in the middle of this step, there are two cases
1262	 * to consider, and the on-disk state is consistent either way:
1263	 *
1264	 * (1)	If none of the new uberblocks made it to disk, then the
1265	 *	previous uberblock will be the newest, and the odd labels
1266	 *	(which had not yet been touched) will be valid with respect
1267	 *	to that uberblock.
1268	 *
1269	 * (2)	If one or more new uberblocks made it to disk, then they
1270	 *	will be the newest, and the even labels (which had all
1271	 *	been successfully committed) will be valid with respect
1272	 *	to the new uberblocks.
1273	 */
1274	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1275		return (error);
1276
1277	/*
1278	 * Sync out odd labels for every dirty vdev.  If the system dies
1279	 * in the middle of this process, the even labels and the new
1280	 * uberblocks will suffice to open the pool.  The next time
1281	 * the pool is opened, the first thing we'll do -- before any
1282	 * user data is modified -- is mark every vdev dirty so that
1283	 * all labels will be brought up to date.  We flush the new labels
1284	 * to disk to ensure that all odd-label updates are committed to
1285	 * stable storage before the next transaction group begins.
1286	 */
1287	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1288		return (error);
1289
1290	trim_thread_wakeup(spa);
1291
1292	return (0);
1293}
1294