vdev_cache.c revision 307279
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/vdev_impl.h>
32#include <sys/zio.h>
33#include <sys/kstat.h>
34
35/*
36 * Virtual device read-ahead caching.
37 *
38 * This file implements a simple LRU read-ahead cache.  When the DMU reads
39 * a given block, it will often want other, nearby blocks soon thereafter.
40 * We take advantage of this by reading a larger disk region and caching
41 * the result.  In the best case, this can turn 128 back-to-back 512-byte
42 * reads into a single 64k read followed by 127 cache hits; this reduces
43 * latency dramatically.  In the worst case, it can turn an isolated 512-byte
44 * read into a 64k read, which doesn't affect latency all that much but is
45 * terribly wasteful of bandwidth.  A more intelligent version of the cache
46 * could keep track of access patterns and not do read-ahead unless it sees
47 * at least two temporally close I/Os to the same region.  Currently, only
48 * metadata I/O is inflated.  A futher enhancement could take advantage of
49 * more semantic information about the I/O.  And it could use something
50 * faster than an AVL tree; that was chosen solely for convenience.
51 *
52 * There are five cache operations: allocate, fill, read, write, evict.
53 *
54 * (1) Allocate.  This reserves a cache entry for the specified region.
55 *     We separate the allocate and fill operations so that multiple threads
56 *     don't generate I/O for the same cache miss.
57 *
58 * (2) Fill.  When the I/O for a cache miss completes, the fill routine
59 *     places the data in the previously allocated cache entry.
60 *
61 * (3) Read.  Read data from the cache.
62 *
63 * (4) Write.  Update cache contents after write completion.
64 *
65 * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
66 *     if the total cache size exceeds zfs_vdev_cache_size.
67 */
68
69/*
70 * These tunables are for performance analysis.
71 */
72/*
73 * All i/os smaller than zfs_vdev_cache_max will be turned into
74 * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
75 * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
76 * vdev's vdev_cache.
77 *
78 * TODO: Note that with the current ZFS code, it turns out that the
79 * vdev cache is not helpful, and in some cases actually harmful.  It
80 * is better if we disable this.  Once some time has passed, we should
81 * actually remove this to simplify the code.  For now we just disable
82 * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
83 * has made these same changes.
84 */
85int zfs_vdev_cache_max = 1<<14;			/* 16KB */
86int zfs_vdev_cache_size = 0;
87int zfs_vdev_cache_bshift = 16;
88
89#define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
90
91SYSCTL_DECL(_vfs_zfs_vdev);
92SYSCTL_NODE(_vfs_zfs_vdev, OID_AUTO, cache, CTLFLAG_RW, 0, "ZFS VDEV Cache");
93TUNABLE_INT("vfs.zfs.vdev.cache.max", &zfs_vdev_cache_max);
94SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, max, CTLFLAG_RDTUN,
95    &zfs_vdev_cache_max, 0, "Maximum I/O request size that increase read size");
96TUNABLE_INT("vfs.zfs.vdev.cache.size", &zfs_vdev_cache_size);
97SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, size, CTLFLAG_RDTUN,
98    &zfs_vdev_cache_size, 0, "Size of VDEV cache");
99TUNABLE_INT("vfs.zfs.vdev.cache.bshift", &zfs_vdev_cache_bshift);
100SYSCTL_INT(_vfs_zfs_vdev_cache, OID_AUTO, bshift, CTLFLAG_RDTUN,
101    &zfs_vdev_cache_bshift, 0, "Turn too small requests into 1 << this value");
102
103kstat_t	*vdc_ksp = NULL;
104
105typedef struct vdc_stats {
106	kstat_named_t vdc_stat_delegations;
107	kstat_named_t vdc_stat_hits;
108	kstat_named_t vdc_stat_misses;
109} vdc_stats_t;
110
111static vdc_stats_t vdc_stats = {
112	{ "delegations",	KSTAT_DATA_UINT64 },
113	{ "hits",		KSTAT_DATA_UINT64 },
114	{ "misses",		KSTAT_DATA_UINT64 }
115};
116
117#define	VDCSTAT_BUMP(stat)	atomic_inc_64(&vdc_stats.stat.value.ui64);
118
119static int
120vdev_cache_offset_compare(const void *a1, const void *a2)
121{
122	const vdev_cache_entry_t *ve1 = a1;
123	const vdev_cache_entry_t *ve2 = a2;
124
125	if (ve1->ve_offset < ve2->ve_offset)
126		return (-1);
127	if (ve1->ve_offset > ve2->ve_offset)
128		return (1);
129	return (0);
130}
131
132static int
133vdev_cache_lastused_compare(const void *a1, const void *a2)
134{
135	const vdev_cache_entry_t *ve1 = a1;
136	const vdev_cache_entry_t *ve2 = a2;
137
138	if (ve1->ve_lastused < ve2->ve_lastused)
139		return (-1);
140	if (ve1->ve_lastused > ve2->ve_lastused)
141		return (1);
142
143	/*
144	 * Among equally old entries, sort by offset to ensure uniqueness.
145	 */
146	return (vdev_cache_offset_compare(a1, a2));
147}
148
149/*
150 * Evict the specified entry from the cache.
151 */
152static void
153vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
154{
155	ASSERT(MUTEX_HELD(&vc->vc_lock));
156	ASSERT(ve->ve_fill_io == NULL);
157	ASSERT(ve->ve_data != NULL);
158
159	avl_remove(&vc->vc_lastused_tree, ve);
160	avl_remove(&vc->vc_offset_tree, ve);
161	zio_buf_free(ve->ve_data, VCBS);
162	kmem_free(ve, sizeof (vdev_cache_entry_t));
163}
164
165/*
166 * Allocate an entry in the cache.  At the point we don't have the data,
167 * we're just creating a placeholder so that multiple threads don't all
168 * go off and read the same blocks.
169 */
170static vdev_cache_entry_t *
171vdev_cache_allocate(zio_t *zio)
172{
173	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
174	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
175	vdev_cache_entry_t *ve;
176
177	ASSERT(MUTEX_HELD(&vc->vc_lock));
178
179	if (zfs_vdev_cache_size == 0)
180		return (NULL);
181
182	/*
183	 * If adding a new entry would exceed the cache size,
184	 * evict the oldest entry (LRU).
185	 */
186	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
187	    zfs_vdev_cache_size) {
188		ve = avl_first(&vc->vc_lastused_tree);
189		if (ve->ve_fill_io != NULL)
190			return (NULL);
191		ASSERT(ve->ve_hits != 0);
192		vdev_cache_evict(vc, ve);
193	}
194
195	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
196	ve->ve_offset = offset;
197	ve->ve_lastused = ddi_get_lbolt();
198	ve->ve_data = zio_buf_alloc(VCBS);
199
200	avl_add(&vc->vc_offset_tree, ve);
201	avl_add(&vc->vc_lastused_tree, ve);
202
203	return (ve);
204}
205
206static void
207vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
208{
209	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
210
211	ASSERT(MUTEX_HELD(&vc->vc_lock));
212	ASSERT(ve->ve_fill_io == NULL);
213
214	if (ve->ve_lastused != ddi_get_lbolt()) {
215		avl_remove(&vc->vc_lastused_tree, ve);
216		ve->ve_lastused = ddi_get_lbolt();
217		avl_add(&vc->vc_lastused_tree, ve);
218	}
219
220	ve->ve_hits++;
221	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
222}
223
224/*
225 * Fill a previously allocated cache entry with data.
226 */
227static void
228vdev_cache_fill(zio_t *fio)
229{
230	vdev_t *vd = fio->io_vd;
231	vdev_cache_t *vc = &vd->vdev_cache;
232	vdev_cache_entry_t *ve = fio->io_private;
233	zio_t *pio;
234
235	ASSERT(fio->io_size == VCBS);
236
237	/*
238	 * Add data to the cache.
239	 */
240	mutex_enter(&vc->vc_lock);
241
242	ASSERT(ve->ve_fill_io == fio);
243	ASSERT(ve->ve_offset == fio->io_offset);
244	ASSERT(ve->ve_data == fio->io_data);
245
246	ve->ve_fill_io = NULL;
247
248	/*
249	 * Even if this cache line was invalidated by a missed write update,
250	 * any reads that were queued up before the missed update are still
251	 * valid, so we can satisfy them from this line before we evict it.
252	 */
253	zio_link_t *zl = NULL;
254	while ((pio = zio_walk_parents(fio, &zl)) != NULL)
255		vdev_cache_hit(vc, ve, pio);
256
257	if (fio->io_error || ve->ve_missed_update)
258		vdev_cache_evict(vc, ve);
259
260	mutex_exit(&vc->vc_lock);
261}
262
263/*
264 * Read data from the cache.  Returns B_TRUE cache hit, B_FALSE on miss.
265 */
266boolean_t
267vdev_cache_read(zio_t *zio)
268{
269	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
270	vdev_cache_entry_t *ve, ve_search;
271	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
272	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
273	zio_t *fio;
274
275	ASSERT(zio->io_type == ZIO_TYPE_READ);
276
277	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
278		return (B_FALSE);
279
280	if (zio->io_size > zfs_vdev_cache_max)
281		return (B_FALSE);
282
283	/*
284	 * If the I/O straddles two or more cache blocks, don't cache it.
285	 */
286	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
287		return (B_FALSE);
288
289	ASSERT(cache_phase + zio->io_size <= VCBS);
290
291	mutex_enter(&vc->vc_lock);
292
293	ve_search.ve_offset = cache_offset;
294	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
295
296	if (ve != NULL) {
297		if (ve->ve_missed_update) {
298			mutex_exit(&vc->vc_lock);
299			return (B_FALSE);
300		}
301
302		if ((fio = ve->ve_fill_io) != NULL) {
303			zio_vdev_io_bypass(zio);
304			zio_add_child(zio, fio);
305			mutex_exit(&vc->vc_lock);
306			VDCSTAT_BUMP(vdc_stat_delegations);
307			return (B_TRUE);
308		}
309
310		vdev_cache_hit(vc, ve, zio);
311		zio_vdev_io_bypass(zio);
312
313		mutex_exit(&vc->vc_lock);
314		VDCSTAT_BUMP(vdc_stat_hits);
315		return (B_TRUE);
316	}
317
318	ve = vdev_cache_allocate(zio);
319
320	if (ve == NULL) {
321		mutex_exit(&vc->vc_lock);
322		return (B_FALSE);
323	}
324
325	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
326	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
327	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
328
329	ve->ve_fill_io = fio;
330	zio_vdev_io_bypass(zio);
331	zio_add_child(zio, fio);
332
333	mutex_exit(&vc->vc_lock);
334	zio_nowait(fio);
335	VDCSTAT_BUMP(vdc_stat_misses);
336
337	return (B_TRUE);
338}
339
340/*
341 * Update cache contents upon write completion.
342 */
343void
344vdev_cache_write(zio_t *zio)
345{
346	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
347	vdev_cache_entry_t *ve, ve_search;
348	uint64_t io_start = zio->io_offset;
349	uint64_t io_end = io_start + zio->io_size;
350	uint64_t min_offset = P2ALIGN(io_start, VCBS);
351	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
352	avl_index_t where;
353
354	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
355
356	mutex_enter(&vc->vc_lock);
357
358	ve_search.ve_offset = min_offset;
359	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
360
361	if (ve == NULL)
362		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
363
364	while (ve != NULL && ve->ve_offset < max_offset) {
365		uint64_t start = MAX(ve->ve_offset, io_start);
366		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
367
368		if (ve->ve_fill_io != NULL) {
369			ve->ve_missed_update = 1;
370		} else {
371			bcopy((char *)zio->io_data + start - io_start,
372			    ve->ve_data + start - ve->ve_offset, end - start);
373		}
374		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
375	}
376	mutex_exit(&vc->vc_lock);
377}
378
379void
380vdev_cache_purge(vdev_t *vd)
381{
382	vdev_cache_t *vc = &vd->vdev_cache;
383	vdev_cache_entry_t *ve;
384
385	mutex_enter(&vc->vc_lock);
386	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
387		vdev_cache_evict(vc, ve);
388	mutex_exit(&vc->vc_lock);
389}
390
391void
392vdev_cache_init(vdev_t *vd)
393{
394	vdev_cache_t *vc = &vd->vdev_cache;
395
396	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
397
398	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
399	    sizeof (vdev_cache_entry_t),
400	    offsetof(struct vdev_cache_entry, ve_offset_node));
401
402	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
403	    sizeof (vdev_cache_entry_t),
404	    offsetof(struct vdev_cache_entry, ve_lastused_node));
405}
406
407void
408vdev_cache_fini(vdev_t *vd)
409{
410	vdev_cache_t *vc = &vd->vdev_cache;
411
412	vdev_cache_purge(vd);
413
414	avl_destroy(&vc->vc_offset_tree);
415	avl_destroy(&vc->vc_lastused_tree);
416
417	mutex_destroy(&vc->vc_lock);
418}
419
420void
421vdev_cache_stat_init(void)
422{
423	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
424	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
425	    KSTAT_FLAG_VIRTUAL);
426	if (vdc_ksp != NULL) {
427		vdc_ksp->ks_data = &vdc_stats;
428		kstat_install(vdc_ksp);
429	}
430}
431
432void
433vdev_cache_stat_fini(void)
434{
435	if (vdc_ksp != NULL) {
436		kstat_delete(vdc_ksp);
437		vdc_ksp = NULL;
438	}
439}
440