vdev.c revision 319625
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/fm/fs/zfs.h>
32#include <sys/spa.h>
33#include <sys/spa_impl.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/vdev_impl.h>
37#include <sys/uberblock_impl.h>
38#include <sys/metaslab.h>
39#include <sys/metaslab_impl.h>
40#include <sys/space_map.h>
41#include <sys/space_reftree.h>
42#include <sys/zio.h>
43#include <sys/zap.h>
44#include <sys/fs/zfs.h>
45#include <sys/arc.h>
46#include <sys/zil.h>
47#include <sys/dsl_scan.h>
48#include <sys/trim_map.h>
49
50SYSCTL_DECL(_vfs_zfs);
51SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
52
53/*
54 * Virtual device management.
55 */
56
57/*
58 * The limit for ZFS to automatically increase a top-level vdev's ashift
59 * from logical ashift to physical ashift.
60 *
61 * Example: one or more 512B emulation child vdevs
62 *          child->vdev_ashift = 9 (512 bytes)
63 *          child->vdev_physical_ashift = 12 (4096 bytes)
64 *          zfs_max_auto_ashift = 11 (2048 bytes)
65 *          zfs_min_auto_ashift = 9 (512 bytes)
66 *
67 * On pool creation or the addition of a new top-level vdev, ZFS will
68 * increase the ashift of the top-level vdev to 2048 as limited by
69 * zfs_max_auto_ashift.
70 *
71 * Example: one or more 512B emulation child vdevs
72 *          child->vdev_ashift = 9 (512 bytes)
73 *          child->vdev_physical_ashift = 12 (4096 bytes)
74 *          zfs_max_auto_ashift = 13 (8192 bytes)
75 *          zfs_min_auto_ashift = 9 (512 bytes)
76 *
77 * On pool creation or the addition of a new top-level vdev, ZFS will
78 * increase the ashift of the top-level vdev to 4096 to match the
79 * max vdev_physical_ashift.
80 *
81 * Example: one or more 512B emulation child vdevs
82 *          child->vdev_ashift = 9 (512 bytes)
83 *          child->vdev_physical_ashift = 9 (512 bytes)
84 *          zfs_max_auto_ashift = 13 (8192 bytes)
85 *          zfs_min_auto_ashift = 12 (4096 bytes)
86 *
87 * On pool creation or the addition of a new top-level vdev, ZFS will
88 * increase the ashift of the top-level vdev to 4096 to match the
89 * zfs_min_auto_ashift.
90 */
91static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
92static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
93
94static int
95sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
96{
97	uint64_t val;
98	int err;
99
100	val = zfs_max_auto_ashift;
101	err = sysctl_handle_64(oidp, &val, 0, req);
102	if (err != 0 || req->newptr == NULL)
103		return (err);
104
105	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
106		return (EINVAL);
107
108	zfs_max_auto_ashift = val;
109
110	return (0);
111}
112SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
113    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
114    sysctl_vfs_zfs_max_auto_ashift, "QU",
115    "Max ashift used when optimising for logical -> physical sectors size on "
116    "new top-level vdevs.");
117
118static int
119sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
120{
121	uint64_t val;
122	int err;
123
124	val = zfs_min_auto_ashift;
125	err = sysctl_handle_64(oidp, &val, 0, req);
126	if (err != 0 || req->newptr == NULL)
127		return (err);
128
129	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
130		return (EINVAL);
131
132	zfs_min_auto_ashift = val;
133
134	return (0);
135}
136SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
137    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
138    sysctl_vfs_zfs_min_auto_ashift, "QU",
139    "Min ashift used when creating new top-level vdevs.");
140
141static vdev_ops_t *vdev_ops_table[] = {
142	&vdev_root_ops,
143	&vdev_raidz_ops,
144	&vdev_mirror_ops,
145	&vdev_replacing_ops,
146	&vdev_spare_ops,
147#ifdef _KERNEL
148	&vdev_geom_ops,
149#else
150	&vdev_disk_ops,
151#endif
152	&vdev_file_ops,
153	&vdev_missing_ops,
154	&vdev_hole_ops,
155	NULL
156};
157
158
159/*
160 * When a vdev is added, it will be divided into approximately (but no
161 * more than) this number of metaslabs.
162 */
163int metaslabs_per_vdev = 200;
164SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
165    &metaslabs_per_vdev, 0,
166    "When a vdev is added, how many metaslabs the vdev should be divided into");
167
168/*
169 * Given a vdev type, return the appropriate ops vector.
170 */
171static vdev_ops_t *
172vdev_getops(const char *type)
173{
174	vdev_ops_t *ops, **opspp;
175
176	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
177		if (strcmp(ops->vdev_op_type, type) == 0)
178			break;
179
180	return (ops);
181}
182
183/*
184 * Default asize function: return the MAX of psize with the asize of
185 * all children.  This is what's used by anything other than RAID-Z.
186 */
187uint64_t
188vdev_default_asize(vdev_t *vd, uint64_t psize)
189{
190	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
191	uint64_t csize;
192
193	for (int c = 0; c < vd->vdev_children; c++) {
194		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
195		asize = MAX(asize, csize);
196	}
197
198	return (asize);
199}
200
201/*
202 * Get the minimum allocatable size. We define the allocatable size as
203 * the vdev's asize rounded to the nearest metaslab. This allows us to
204 * replace or attach devices which don't have the same physical size but
205 * can still satisfy the same number of allocations.
206 */
207uint64_t
208vdev_get_min_asize(vdev_t *vd)
209{
210	vdev_t *pvd = vd->vdev_parent;
211
212	/*
213	 * If our parent is NULL (inactive spare or cache) or is the root,
214	 * just return our own asize.
215	 */
216	if (pvd == NULL)
217		return (vd->vdev_asize);
218
219	/*
220	 * The top-level vdev just returns the allocatable size rounded
221	 * to the nearest metaslab.
222	 */
223	if (vd == vd->vdev_top)
224		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
225
226	/*
227	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
228	 * so each child must provide at least 1/Nth of its asize.
229	 */
230	if (pvd->vdev_ops == &vdev_raidz_ops)
231		return (pvd->vdev_min_asize / pvd->vdev_children);
232
233	return (pvd->vdev_min_asize);
234}
235
236void
237vdev_set_min_asize(vdev_t *vd)
238{
239	vd->vdev_min_asize = vdev_get_min_asize(vd);
240
241	for (int c = 0; c < vd->vdev_children; c++)
242		vdev_set_min_asize(vd->vdev_child[c]);
243}
244
245vdev_t *
246vdev_lookup_top(spa_t *spa, uint64_t vdev)
247{
248	vdev_t *rvd = spa->spa_root_vdev;
249
250	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
251
252	if (vdev < rvd->vdev_children) {
253		ASSERT(rvd->vdev_child[vdev] != NULL);
254		return (rvd->vdev_child[vdev]);
255	}
256
257	return (NULL);
258}
259
260vdev_t *
261vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
262{
263	vdev_t *mvd;
264
265	if (vd->vdev_guid == guid)
266		return (vd);
267
268	for (int c = 0; c < vd->vdev_children; c++)
269		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
270		    NULL)
271			return (mvd);
272
273	return (NULL);
274}
275
276static int
277vdev_count_leaves_impl(vdev_t *vd)
278{
279	int n = 0;
280
281	if (vd->vdev_ops->vdev_op_leaf)
282		return (1);
283
284	for (int c = 0; c < vd->vdev_children; c++)
285		n += vdev_count_leaves_impl(vd->vdev_child[c]);
286
287	return (n);
288}
289
290int
291vdev_count_leaves(spa_t *spa)
292{
293	return (vdev_count_leaves_impl(spa->spa_root_vdev));
294}
295
296void
297vdev_add_child(vdev_t *pvd, vdev_t *cvd)
298{
299	size_t oldsize, newsize;
300	uint64_t id = cvd->vdev_id;
301	vdev_t **newchild;
302	spa_t *spa = cvd->vdev_spa;
303
304	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
305	ASSERT(cvd->vdev_parent == NULL);
306
307	cvd->vdev_parent = pvd;
308
309	if (pvd == NULL)
310		return;
311
312	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
313
314	oldsize = pvd->vdev_children * sizeof (vdev_t *);
315	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
316	newsize = pvd->vdev_children * sizeof (vdev_t *);
317
318	newchild = kmem_zalloc(newsize, KM_SLEEP);
319	if (pvd->vdev_child != NULL) {
320		bcopy(pvd->vdev_child, newchild, oldsize);
321		kmem_free(pvd->vdev_child, oldsize);
322	}
323
324	pvd->vdev_child = newchild;
325	pvd->vdev_child[id] = cvd;
326
327	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
328	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
329
330	/*
331	 * Walk up all ancestors to update guid sum.
332	 */
333	for (; pvd != NULL; pvd = pvd->vdev_parent)
334		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
335}
336
337void
338vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
339{
340	int c;
341	uint_t id = cvd->vdev_id;
342
343	ASSERT(cvd->vdev_parent == pvd);
344
345	if (pvd == NULL)
346		return;
347
348	ASSERT(id < pvd->vdev_children);
349	ASSERT(pvd->vdev_child[id] == cvd);
350
351	pvd->vdev_child[id] = NULL;
352	cvd->vdev_parent = NULL;
353
354	for (c = 0; c < pvd->vdev_children; c++)
355		if (pvd->vdev_child[c])
356			break;
357
358	if (c == pvd->vdev_children) {
359		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
360		pvd->vdev_child = NULL;
361		pvd->vdev_children = 0;
362	}
363
364	/*
365	 * Walk up all ancestors to update guid sum.
366	 */
367	for (; pvd != NULL; pvd = pvd->vdev_parent)
368		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
369}
370
371/*
372 * Remove any holes in the child array.
373 */
374void
375vdev_compact_children(vdev_t *pvd)
376{
377	vdev_t **newchild, *cvd;
378	int oldc = pvd->vdev_children;
379	int newc;
380
381	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
382
383	for (int c = newc = 0; c < oldc; c++)
384		if (pvd->vdev_child[c])
385			newc++;
386
387	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
388
389	for (int c = newc = 0; c < oldc; c++) {
390		if ((cvd = pvd->vdev_child[c]) != NULL) {
391			newchild[newc] = cvd;
392			cvd->vdev_id = newc++;
393		}
394	}
395
396	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
397	pvd->vdev_child = newchild;
398	pvd->vdev_children = newc;
399}
400
401/*
402 * Allocate and minimally initialize a vdev_t.
403 */
404vdev_t *
405vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
406{
407	vdev_t *vd;
408
409	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
410
411	if (spa->spa_root_vdev == NULL) {
412		ASSERT(ops == &vdev_root_ops);
413		spa->spa_root_vdev = vd;
414		spa->spa_load_guid = spa_generate_guid(NULL);
415	}
416
417	if (guid == 0 && ops != &vdev_hole_ops) {
418		if (spa->spa_root_vdev == vd) {
419			/*
420			 * The root vdev's guid will also be the pool guid,
421			 * which must be unique among all pools.
422			 */
423			guid = spa_generate_guid(NULL);
424		} else {
425			/*
426			 * Any other vdev's guid must be unique within the pool.
427			 */
428			guid = spa_generate_guid(spa);
429		}
430		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
431	}
432
433	vd->vdev_spa = spa;
434	vd->vdev_id = id;
435	vd->vdev_guid = guid;
436	vd->vdev_guid_sum = guid;
437	vd->vdev_ops = ops;
438	vd->vdev_state = VDEV_STATE_CLOSED;
439	vd->vdev_ishole = (ops == &vdev_hole_ops);
440
441	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
442	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
443	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
444	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
445	for (int t = 0; t < DTL_TYPES; t++) {
446		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
447		    &vd->vdev_dtl_lock);
448	}
449	txg_list_create(&vd->vdev_ms_list,
450	    offsetof(struct metaslab, ms_txg_node));
451	txg_list_create(&vd->vdev_dtl_list,
452	    offsetof(struct vdev, vdev_dtl_node));
453	vd->vdev_stat.vs_timestamp = gethrtime();
454	vdev_queue_init(vd);
455	vdev_cache_init(vd);
456
457	return (vd);
458}
459
460/*
461 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
462 * creating a new vdev or loading an existing one - the behavior is slightly
463 * different for each case.
464 */
465int
466vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
467    int alloctype)
468{
469	vdev_ops_t *ops;
470	char *type;
471	uint64_t guid = 0, islog, nparity;
472	vdev_t *vd;
473
474	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
475
476	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
477		return (SET_ERROR(EINVAL));
478
479	if ((ops = vdev_getops(type)) == NULL)
480		return (SET_ERROR(EINVAL));
481
482	/*
483	 * If this is a load, get the vdev guid from the nvlist.
484	 * Otherwise, vdev_alloc_common() will generate one for us.
485	 */
486	if (alloctype == VDEV_ALLOC_LOAD) {
487		uint64_t label_id;
488
489		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
490		    label_id != id)
491			return (SET_ERROR(EINVAL));
492
493		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
494			return (SET_ERROR(EINVAL));
495	} else if (alloctype == VDEV_ALLOC_SPARE) {
496		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
497			return (SET_ERROR(EINVAL));
498	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
499		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
500			return (SET_ERROR(EINVAL));
501	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
502		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
503			return (SET_ERROR(EINVAL));
504	}
505
506	/*
507	 * The first allocated vdev must be of type 'root'.
508	 */
509	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
510		return (SET_ERROR(EINVAL));
511
512	/*
513	 * Determine whether we're a log vdev.
514	 */
515	islog = 0;
516	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
517	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
518		return (SET_ERROR(ENOTSUP));
519
520	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
521		return (SET_ERROR(ENOTSUP));
522
523	/*
524	 * Set the nparity property for RAID-Z vdevs.
525	 */
526	nparity = -1ULL;
527	if (ops == &vdev_raidz_ops) {
528		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
529		    &nparity) == 0) {
530			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
531				return (SET_ERROR(EINVAL));
532			/*
533			 * Previous versions could only support 1 or 2 parity
534			 * device.
535			 */
536			if (nparity > 1 &&
537			    spa_version(spa) < SPA_VERSION_RAIDZ2)
538				return (SET_ERROR(ENOTSUP));
539			if (nparity > 2 &&
540			    spa_version(spa) < SPA_VERSION_RAIDZ3)
541				return (SET_ERROR(ENOTSUP));
542		} else {
543			/*
544			 * We require the parity to be specified for SPAs that
545			 * support multiple parity levels.
546			 */
547			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
548				return (SET_ERROR(EINVAL));
549			/*
550			 * Otherwise, we default to 1 parity device for RAID-Z.
551			 */
552			nparity = 1;
553		}
554	} else {
555		nparity = 0;
556	}
557	ASSERT(nparity != -1ULL);
558
559	vd = vdev_alloc_common(spa, id, guid, ops);
560
561	vd->vdev_islog = islog;
562	vd->vdev_nparity = nparity;
563
564	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
565		vd->vdev_path = spa_strdup(vd->vdev_path);
566	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
567		vd->vdev_devid = spa_strdup(vd->vdev_devid);
568	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
569	    &vd->vdev_physpath) == 0)
570		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
571	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
572		vd->vdev_fru = spa_strdup(vd->vdev_fru);
573
574	/*
575	 * Set the whole_disk property.  If it's not specified, leave the value
576	 * as -1.
577	 */
578	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
579	    &vd->vdev_wholedisk) != 0)
580		vd->vdev_wholedisk = -1ULL;
581
582	/*
583	 * Look for the 'not present' flag.  This will only be set if the device
584	 * was not present at the time of import.
585	 */
586	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
587	    &vd->vdev_not_present);
588
589	/*
590	 * Get the alignment requirement.
591	 */
592	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
593
594	/*
595	 * Retrieve the vdev creation time.
596	 */
597	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
598	    &vd->vdev_crtxg);
599
600	/*
601	 * If we're a top-level vdev, try to load the allocation parameters.
602	 */
603	if (parent && !parent->vdev_parent &&
604	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
605		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
606		    &vd->vdev_ms_array);
607		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
608		    &vd->vdev_ms_shift);
609		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
610		    &vd->vdev_asize);
611		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
612		    &vd->vdev_removing);
613	}
614
615	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
616		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
617		    alloctype == VDEV_ALLOC_ADD ||
618		    alloctype == VDEV_ALLOC_SPLIT ||
619		    alloctype == VDEV_ALLOC_ROOTPOOL);
620		vd->vdev_mg = metaslab_group_create(islog ?
621		    spa_log_class(spa) : spa_normal_class(spa), vd);
622	}
623
624	/*
625	 * If we're a leaf vdev, try to load the DTL object and other state.
626	 */
627	if (vd->vdev_ops->vdev_op_leaf &&
628	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
629	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
630		if (alloctype == VDEV_ALLOC_LOAD) {
631			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
632			    &vd->vdev_dtl_object);
633			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
634			    &vd->vdev_unspare);
635		}
636
637		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
638			uint64_t spare = 0;
639
640			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
641			    &spare) == 0 && spare)
642				spa_spare_add(vd);
643		}
644
645		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
646		    &vd->vdev_offline);
647
648		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
649		    &vd->vdev_resilver_txg);
650
651		/*
652		 * When importing a pool, we want to ignore the persistent fault
653		 * state, as the diagnosis made on another system may not be
654		 * valid in the current context.  Local vdevs will
655		 * remain in the faulted state.
656		 */
657		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
658			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
659			    &vd->vdev_faulted);
660			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
661			    &vd->vdev_degraded);
662			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
663			    &vd->vdev_removed);
664
665			if (vd->vdev_faulted || vd->vdev_degraded) {
666				char *aux;
667
668				vd->vdev_label_aux =
669				    VDEV_AUX_ERR_EXCEEDED;
670				if (nvlist_lookup_string(nv,
671				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
672				    strcmp(aux, "external") == 0)
673					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
674			}
675		}
676	}
677
678	/*
679	 * Add ourselves to the parent's list of children.
680	 */
681	vdev_add_child(parent, vd);
682
683	*vdp = vd;
684
685	return (0);
686}
687
688void
689vdev_free(vdev_t *vd)
690{
691	spa_t *spa = vd->vdev_spa;
692
693	/*
694	 * vdev_free() implies closing the vdev first.  This is simpler than
695	 * trying to ensure complicated semantics for all callers.
696	 */
697	vdev_close(vd);
698
699	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
700	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
701
702	/*
703	 * Free all children.
704	 */
705	for (int c = 0; c < vd->vdev_children; c++)
706		vdev_free(vd->vdev_child[c]);
707
708	ASSERT(vd->vdev_child == NULL);
709	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
710
711	/*
712	 * Discard allocation state.
713	 */
714	if (vd->vdev_mg != NULL) {
715		vdev_metaslab_fini(vd);
716		metaslab_group_destroy(vd->vdev_mg);
717	}
718
719	ASSERT0(vd->vdev_stat.vs_space);
720	ASSERT0(vd->vdev_stat.vs_dspace);
721	ASSERT0(vd->vdev_stat.vs_alloc);
722
723	/*
724	 * Remove this vdev from its parent's child list.
725	 */
726	vdev_remove_child(vd->vdev_parent, vd);
727
728	ASSERT(vd->vdev_parent == NULL);
729
730	/*
731	 * Clean up vdev structure.
732	 */
733	vdev_queue_fini(vd);
734	vdev_cache_fini(vd);
735
736	if (vd->vdev_path)
737		spa_strfree(vd->vdev_path);
738	if (vd->vdev_devid)
739		spa_strfree(vd->vdev_devid);
740	if (vd->vdev_physpath)
741		spa_strfree(vd->vdev_physpath);
742	if (vd->vdev_fru)
743		spa_strfree(vd->vdev_fru);
744
745	if (vd->vdev_isspare)
746		spa_spare_remove(vd);
747	if (vd->vdev_isl2cache)
748		spa_l2cache_remove(vd);
749
750	txg_list_destroy(&vd->vdev_ms_list);
751	txg_list_destroy(&vd->vdev_dtl_list);
752
753	mutex_enter(&vd->vdev_dtl_lock);
754	space_map_close(vd->vdev_dtl_sm);
755	for (int t = 0; t < DTL_TYPES; t++) {
756		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
757		range_tree_destroy(vd->vdev_dtl[t]);
758	}
759	mutex_exit(&vd->vdev_dtl_lock);
760
761	mutex_destroy(&vd->vdev_queue_lock);
762	mutex_destroy(&vd->vdev_dtl_lock);
763	mutex_destroy(&vd->vdev_stat_lock);
764	mutex_destroy(&vd->vdev_probe_lock);
765
766	if (vd == spa->spa_root_vdev)
767		spa->spa_root_vdev = NULL;
768
769	kmem_free(vd, sizeof (vdev_t));
770}
771
772/*
773 * Transfer top-level vdev state from svd to tvd.
774 */
775static void
776vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
777{
778	spa_t *spa = svd->vdev_spa;
779	metaslab_t *msp;
780	vdev_t *vd;
781	int t;
782
783	ASSERT(tvd == tvd->vdev_top);
784
785	tvd->vdev_ms_array = svd->vdev_ms_array;
786	tvd->vdev_ms_shift = svd->vdev_ms_shift;
787	tvd->vdev_ms_count = svd->vdev_ms_count;
788
789	svd->vdev_ms_array = 0;
790	svd->vdev_ms_shift = 0;
791	svd->vdev_ms_count = 0;
792
793	if (tvd->vdev_mg)
794		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
795	tvd->vdev_mg = svd->vdev_mg;
796	tvd->vdev_ms = svd->vdev_ms;
797
798	svd->vdev_mg = NULL;
799	svd->vdev_ms = NULL;
800
801	if (tvd->vdev_mg != NULL)
802		tvd->vdev_mg->mg_vd = tvd;
803
804	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
805	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
806	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
807
808	svd->vdev_stat.vs_alloc = 0;
809	svd->vdev_stat.vs_space = 0;
810	svd->vdev_stat.vs_dspace = 0;
811
812	for (t = 0; t < TXG_SIZE; t++) {
813		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
814			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
815		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
816			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
817		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
818			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
819	}
820
821	if (list_link_active(&svd->vdev_config_dirty_node)) {
822		vdev_config_clean(svd);
823		vdev_config_dirty(tvd);
824	}
825
826	if (list_link_active(&svd->vdev_state_dirty_node)) {
827		vdev_state_clean(svd);
828		vdev_state_dirty(tvd);
829	}
830
831	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
832	svd->vdev_deflate_ratio = 0;
833
834	tvd->vdev_islog = svd->vdev_islog;
835	svd->vdev_islog = 0;
836}
837
838static void
839vdev_top_update(vdev_t *tvd, vdev_t *vd)
840{
841	if (vd == NULL)
842		return;
843
844	vd->vdev_top = tvd;
845
846	for (int c = 0; c < vd->vdev_children; c++)
847		vdev_top_update(tvd, vd->vdev_child[c]);
848}
849
850/*
851 * Add a mirror/replacing vdev above an existing vdev.
852 */
853vdev_t *
854vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
855{
856	spa_t *spa = cvd->vdev_spa;
857	vdev_t *pvd = cvd->vdev_parent;
858	vdev_t *mvd;
859
860	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
861
862	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
863
864	mvd->vdev_asize = cvd->vdev_asize;
865	mvd->vdev_min_asize = cvd->vdev_min_asize;
866	mvd->vdev_max_asize = cvd->vdev_max_asize;
867	mvd->vdev_ashift = cvd->vdev_ashift;
868	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
869	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
870	mvd->vdev_state = cvd->vdev_state;
871	mvd->vdev_crtxg = cvd->vdev_crtxg;
872
873	vdev_remove_child(pvd, cvd);
874	vdev_add_child(pvd, mvd);
875	cvd->vdev_id = mvd->vdev_children;
876	vdev_add_child(mvd, cvd);
877	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
878
879	if (mvd == mvd->vdev_top)
880		vdev_top_transfer(cvd, mvd);
881
882	return (mvd);
883}
884
885/*
886 * Remove a 1-way mirror/replacing vdev from the tree.
887 */
888void
889vdev_remove_parent(vdev_t *cvd)
890{
891	vdev_t *mvd = cvd->vdev_parent;
892	vdev_t *pvd = mvd->vdev_parent;
893
894	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
895
896	ASSERT(mvd->vdev_children == 1);
897	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
898	    mvd->vdev_ops == &vdev_replacing_ops ||
899	    mvd->vdev_ops == &vdev_spare_ops);
900	cvd->vdev_ashift = mvd->vdev_ashift;
901	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
902	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
903
904	vdev_remove_child(mvd, cvd);
905	vdev_remove_child(pvd, mvd);
906
907	/*
908	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
909	 * Otherwise, we could have detached an offline device, and when we
910	 * go to import the pool we'll think we have two top-level vdevs,
911	 * instead of a different version of the same top-level vdev.
912	 */
913	if (mvd->vdev_top == mvd) {
914		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
915		cvd->vdev_orig_guid = cvd->vdev_guid;
916		cvd->vdev_guid += guid_delta;
917		cvd->vdev_guid_sum += guid_delta;
918	}
919	cvd->vdev_id = mvd->vdev_id;
920	vdev_add_child(pvd, cvd);
921	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
922
923	if (cvd == cvd->vdev_top)
924		vdev_top_transfer(mvd, cvd);
925
926	ASSERT(mvd->vdev_children == 0);
927	vdev_free(mvd);
928}
929
930int
931vdev_metaslab_init(vdev_t *vd, uint64_t txg)
932{
933	spa_t *spa = vd->vdev_spa;
934	objset_t *mos = spa->spa_meta_objset;
935	uint64_t m;
936	uint64_t oldc = vd->vdev_ms_count;
937	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
938	metaslab_t **mspp;
939	int error;
940
941	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
942
943	/*
944	 * This vdev is not being allocated from yet or is a hole.
945	 */
946	if (vd->vdev_ms_shift == 0)
947		return (0);
948
949	ASSERT(!vd->vdev_ishole);
950
951	/*
952	 * Compute the raidz-deflation ratio.  Note, we hard-code
953	 * in 128k (1 << 17) because it is the "typical" blocksize.
954	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
955	 * otherwise it would inconsistently account for existing bp's.
956	 */
957	vd->vdev_deflate_ratio = (1 << 17) /
958	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
959
960	ASSERT(oldc <= newc);
961
962	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
963
964	if (oldc != 0) {
965		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
966		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
967	}
968
969	vd->vdev_ms = mspp;
970	vd->vdev_ms_count = newc;
971
972	for (m = oldc; m < newc; m++) {
973		uint64_t object = 0;
974
975		if (txg == 0) {
976			error = dmu_read(mos, vd->vdev_ms_array,
977			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
978			    DMU_READ_PREFETCH);
979			if (error)
980				return (error);
981		}
982
983		error = metaslab_init(vd->vdev_mg, m, object, txg,
984		    &(vd->vdev_ms[m]));
985		if (error)
986			return (error);
987	}
988
989	if (txg == 0)
990		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
991
992	/*
993	 * If the vdev is being removed we don't activate
994	 * the metaslabs since we want to ensure that no new
995	 * allocations are performed on this device.
996	 */
997	if (oldc == 0 && !vd->vdev_removing)
998		metaslab_group_activate(vd->vdev_mg);
999
1000	if (txg == 0)
1001		spa_config_exit(spa, SCL_ALLOC, FTAG);
1002
1003	return (0);
1004}
1005
1006void
1007vdev_metaslab_fini(vdev_t *vd)
1008{
1009	uint64_t m;
1010	uint64_t count = vd->vdev_ms_count;
1011
1012	if (vd->vdev_ms != NULL) {
1013		metaslab_group_passivate(vd->vdev_mg);
1014		for (m = 0; m < count; m++) {
1015			metaslab_t *msp = vd->vdev_ms[m];
1016
1017			if (msp != NULL)
1018				metaslab_fini(msp);
1019		}
1020		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1021		vd->vdev_ms = NULL;
1022	}
1023}
1024
1025typedef struct vdev_probe_stats {
1026	boolean_t	vps_readable;
1027	boolean_t	vps_writeable;
1028	int		vps_flags;
1029} vdev_probe_stats_t;
1030
1031static void
1032vdev_probe_done(zio_t *zio)
1033{
1034	spa_t *spa = zio->io_spa;
1035	vdev_t *vd = zio->io_vd;
1036	vdev_probe_stats_t *vps = zio->io_private;
1037
1038	ASSERT(vd->vdev_probe_zio != NULL);
1039
1040	if (zio->io_type == ZIO_TYPE_READ) {
1041		if (zio->io_error == 0)
1042			vps->vps_readable = 1;
1043		if (zio->io_error == 0 && spa_writeable(spa)) {
1044			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1045			    zio->io_offset, zio->io_size, zio->io_data,
1046			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1047			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1048		} else {
1049			zio_buf_free(zio->io_data, zio->io_size);
1050		}
1051	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1052		if (zio->io_error == 0)
1053			vps->vps_writeable = 1;
1054		zio_buf_free(zio->io_data, zio->io_size);
1055	} else if (zio->io_type == ZIO_TYPE_NULL) {
1056		zio_t *pio;
1057
1058		vd->vdev_cant_read |= !vps->vps_readable;
1059		vd->vdev_cant_write |= !vps->vps_writeable;
1060
1061		if (vdev_readable(vd) &&
1062		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1063			zio->io_error = 0;
1064		} else {
1065			ASSERT(zio->io_error != 0);
1066			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1067			    spa, vd, NULL, 0, 0);
1068			zio->io_error = SET_ERROR(ENXIO);
1069		}
1070
1071		mutex_enter(&vd->vdev_probe_lock);
1072		ASSERT(vd->vdev_probe_zio == zio);
1073		vd->vdev_probe_zio = NULL;
1074		mutex_exit(&vd->vdev_probe_lock);
1075
1076		zio_link_t *zl = NULL;
1077		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1078			if (!vdev_accessible(vd, pio))
1079				pio->io_error = SET_ERROR(ENXIO);
1080
1081		kmem_free(vps, sizeof (*vps));
1082	}
1083}
1084
1085/*
1086 * Determine whether this device is accessible.
1087 *
1088 * Read and write to several known locations: the pad regions of each
1089 * vdev label but the first, which we leave alone in case it contains
1090 * a VTOC.
1091 */
1092zio_t *
1093vdev_probe(vdev_t *vd, zio_t *zio)
1094{
1095	spa_t *spa = vd->vdev_spa;
1096	vdev_probe_stats_t *vps = NULL;
1097	zio_t *pio;
1098
1099	ASSERT(vd->vdev_ops->vdev_op_leaf);
1100
1101	/*
1102	 * Don't probe the probe.
1103	 */
1104	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1105		return (NULL);
1106
1107	/*
1108	 * To prevent 'probe storms' when a device fails, we create
1109	 * just one probe i/o at a time.  All zios that want to probe
1110	 * this vdev will become parents of the probe io.
1111	 */
1112	mutex_enter(&vd->vdev_probe_lock);
1113
1114	if ((pio = vd->vdev_probe_zio) == NULL) {
1115		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1116
1117		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1118		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1119		    ZIO_FLAG_TRYHARD;
1120
1121		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1122			/*
1123			 * vdev_cant_read and vdev_cant_write can only
1124			 * transition from TRUE to FALSE when we have the
1125			 * SCL_ZIO lock as writer; otherwise they can only
1126			 * transition from FALSE to TRUE.  This ensures that
1127			 * any zio looking at these values can assume that
1128			 * failures persist for the life of the I/O.  That's
1129			 * important because when a device has intermittent
1130			 * connectivity problems, we want to ensure that
1131			 * they're ascribed to the device (ENXIO) and not
1132			 * the zio (EIO).
1133			 *
1134			 * Since we hold SCL_ZIO as writer here, clear both
1135			 * values so the probe can reevaluate from first
1136			 * principles.
1137			 */
1138			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1139			vd->vdev_cant_read = B_FALSE;
1140			vd->vdev_cant_write = B_FALSE;
1141		}
1142
1143		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1144		    vdev_probe_done, vps,
1145		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1146
1147		/*
1148		 * We can't change the vdev state in this context, so we
1149		 * kick off an async task to do it on our behalf.
1150		 */
1151		if (zio != NULL) {
1152			vd->vdev_probe_wanted = B_TRUE;
1153			spa_async_request(spa, SPA_ASYNC_PROBE);
1154		}
1155	}
1156
1157	if (zio != NULL)
1158		zio_add_child(zio, pio);
1159
1160	mutex_exit(&vd->vdev_probe_lock);
1161
1162	if (vps == NULL) {
1163		ASSERT(zio != NULL);
1164		return (NULL);
1165	}
1166
1167	for (int l = 1; l < VDEV_LABELS; l++) {
1168		zio_nowait(zio_read_phys(pio, vd,
1169		    vdev_label_offset(vd->vdev_psize, l,
1170		    offsetof(vdev_label_t, vl_pad2)),
1171		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1172		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1173		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1174	}
1175
1176	if (zio == NULL)
1177		return (pio);
1178
1179	zio_nowait(pio);
1180	return (NULL);
1181}
1182
1183static void
1184vdev_open_child(void *arg)
1185{
1186	vdev_t *vd = arg;
1187
1188	vd->vdev_open_thread = curthread;
1189	vd->vdev_open_error = vdev_open(vd);
1190	vd->vdev_open_thread = NULL;
1191}
1192
1193boolean_t
1194vdev_uses_zvols(vdev_t *vd)
1195{
1196	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1197	    strlen(ZVOL_DIR)) == 0)
1198		return (B_TRUE);
1199	for (int c = 0; c < vd->vdev_children; c++)
1200		if (vdev_uses_zvols(vd->vdev_child[c]))
1201			return (B_TRUE);
1202	return (B_FALSE);
1203}
1204
1205void
1206vdev_open_children(vdev_t *vd)
1207{
1208	taskq_t *tq;
1209	int children = vd->vdev_children;
1210
1211	/*
1212	 * in order to handle pools on top of zvols, do the opens
1213	 * in a single thread so that the same thread holds the
1214	 * spa_namespace_lock
1215	 */
1216	if (B_TRUE || vdev_uses_zvols(vd)) {
1217		for (int c = 0; c < children; c++)
1218			vd->vdev_child[c]->vdev_open_error =
1219			    vdev_open(vd->vdev_child[c]);
1220		return;
1221	}
1222	tq = taskq_create("vdev_open", children, minclsyspri,
1223	    children, children, TASKQ_PREPOPULATE);
1224
1225	for (int c = 0; c < children; c++)
1226		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1227		    TQ_SLEEP) != 0);
1228
1229	taskq_destroy(tq);
1230}
1231
1232/*
1233 * Prepare a virtual device for access.
1234 */
1235int
1236vdev_open(vdev_t *vd)
1237{
1238	spa_t *spa = vd->vdev_spa;
1239	int error;
1240	uint64_t osize = 0;
1241	uint64_t max_osize = 0;
1242	uint64_t asize, max_asize, psize;
1243	uint64_t logical_ashift = 0;
1244	uint64_t physical_ashift = 0;
1245
1246	ASSERT(vd->vdev_open_thread == curthread ||
1247	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1248	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1249	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1250	    vd->vdev_state == VDEV_STATE_OFFLINE);
1251
1252	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1253	vd->vdev_cant_read = B_FALSE;
1254	vd->vdev_cant_write = B_FALSE;
1255	vd->vdev_notrim = B_FALSE;
1256	vd->vdev_min_asize = vdev_get_min_asize(vd);
1257
1258	/*
1259	 * If this vdev is not removed, check its fault status.  If it's
1260	 * faulted, bail out of the open.
1261	 */
1262	if (!vd->vdev_removed && vd->vdev_faulted) {
1263		ASSERT(vd->vdev_children == 0);
1264		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1265		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1266		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1267		    vd->vdev_label_aux);
1268		return (SET_ERROR(ENXIO));
1269	} else if (vd->vdev_offline) {
1270		ASSERT(vd->vdev_children == 0);
1271		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1272		return (SET_ERROR(ENXIO));
1273	}
1274
1275	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1276	    &logical_ashift, &physical_ashift);
1277
1278	/*
1279	 * Reset the vdev_reopening flag so that we actually close
1280	 * the vdev on error.
1281	 */
1282	vd->vdev_reopening = B_FALSE;
1283	if (zio_injection_enabled && error == 0)
1284		error = zio_handle_device_injection(vd, NULL, ENXIO);
1285
1286	if (error) {
1287		if (vd->vdev_removed &&
1288		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1289			vd->vdev_removed = B_FALSE;
1290
1291		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292		    vd->vdev_stat.vs_aux);
1293		return (error);
1294	}
1295
1296	vd->vdev_removed = B_FALSE;
1297
1298	/*
1299	 * Recheck the faulted flag now that we have confirmed that
1300	 * the vdev is accessible.  If we're faulted, bail.
1301	 */
1302	if (vd->vdev_faulted) {
1303		ASSERT(vd->vdev_children == 0);
1304		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1305		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1306		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1307		    vd->vdev_label_aux);
1308		return (SET_ERROR(ENXIO));
1309	}
1310
1311	if (vd->vdev_degraded) {
1312		ASSERT(vd->vdev_children == 0);
1313		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1314		    VDEV_AUX_ERR_EXCEEDED);
1315	} else {
1316		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1317	}
1318
1319	/*
1320	 * For hole or missing vdevs we just return success.
1321	 */
1322	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1323		return (0);
1324
1325	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1326		trim_map_create(vd);
1327
1328	for (int c = 0; c < vd->vdev_children; c++) {
1329		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1330			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1331			    VDEV_AUX_NONE);
1332			break;
1333		}
1334	}
1335
1336	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1337	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1338
1339	if (vd->vdev_children == 0) {
1340		if (osize < SPA_MINDEVSIZE) {
1341			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342			    VDEV_AUX_TOO_SMALL);
1343			return (SET_ERROR(EOVERFLOW));
1344		}
1345		psize = osize;
1346		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1347		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1348		    VDEV_LABEL_END_SIZE);
1349	} else {
1350		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1351		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1352			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1353			    VDEV_AUX_TOO_SMALL);
1354			return (SET_ERROR(EOVERFLOW));
1355		}
1356		psize = 0;
1357		asize = osize;
1358		max_asize = max_osize;
1359	}
1360
1361	vd->vdev_psize = psize;
1362
1363	/*
1364	 * Make sure the allocatable size hasn't shrunk.
1365	 */
1366	if (asize < vd->vdev_min_asize) {
1367		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368		    VDEV_AUX_BAD_LABEL);
1369		return (SET_ERROR(EINVAL));
1370	}
1371
1372	vd->vdev_physical_ashift =
1373	    MAX(physical_ashift, vd->vdev_physical_ashift);
1374	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1375	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1376
1377	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1378		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1379		    VDEV_AUX_ASHIFT_TOO_BIG);
1380		return (EINVAL);
1381	}
1382
1383	if (vd->vdev_asize == 0) {
1384		/*
1385		 * This is the first-ever open, so use the computed values.
1386		 * For testing purposes, a higher ashift can be requested.
1387		 */
1388		vd->vdev_asize = asize;
1389		vd->vdev_max_asize = max_asize;
1390	} else {
1391		/*
1392		 * Make sure the alignment requirement hasn't increased.
1393		 */
1394		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1395		    vd->vdev_ops->vdev_op_leaf) {
1396			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1397			    VDEV_AUX_BAD_LABEL);
1398			return (EINVAL);
1399		}
1400		vd->vdev_max_asize = max_asize;
1401	}
1402
1403	/*
1404	 * If all children are healthy and the asize has increased,
1405	 * then we've experienced dynamic LUN growth.  If automatic
1406	 * expansion is enabled then use the additional space.
1407	 */
1408	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1409	    (vd->vdev_expanding || spa->spa_autoexpand))
1410		vd->vdev_asize = asize;
1411
1412	vdev_set_min_asize(vd);
1413
1414	/*
1415	 * Ensure we can issue some IO before declaring the
1416	 * vdev open for business.
1417	 */
1418	if (vd->vdev_ops->vdev_op_leaf &&
1419	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1420		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1421		    VDEV_AUX_ERR_EXCEEDED);
1422		return (error);
1423	}
1424
1425	/*
1426	 * Track the min and max ashift values for normal data devices.
1427	 */
1428	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1429	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1430		if (vd->vdev_ashift > spa->spa_max_ashift)
1431			spa->spa_max_ashift = vd->vdev_ashift;
1432		if (vd->vdev_ashift < spa->spa_min_ashift)
1433			spa->spa_min_ashift = vd->vdev_ashift;
1434	}
1435
1436	/*
1437	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1438	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1439	 * since this would just restart the scrub we are already doing.
1440	 */
1441	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1442	    vdev_resilver_needed(vd, NULL, NULL))
1443		spa_async_request(spa, SPA_ASYNC_RESILVER);
1444
1445	return (0);
1446}
1447
1448/*
1449 * Called once the vdevs are all opened, this routine validates the label
1450 * contents.  This needs to be done before vdev_load() so that we don't
1451 * inadvertently do repair I/Os to the wrong device.
1452 *
1453 * If 'strict' is false ignore the spa guid check. This is necessary because
1454 * if the machine crashed during a re-guid the new guid might have been written
1455 * to all of the vdev labels, but not the cached config. The strict check
1456 * will be performed when the pool is opened again using the mos config.
1457 *
1458 * This function will only return failure if one of the vdevs indicates that it
1459 * has since been destroyed or exported.  This is only possible if
1460 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1461 * will be updated but the function will return 0.
1462 */
1463int
1464vdev_validate(vdev_t *vd, boolean_t strict)
1465{
1466	spa_t *spa = vd->vdev_spa;
1467	nvlist_t *label;
1468	uint64_t guid = 0, top_guid;
1469	uint64_t state;
1470
1471	for (int c = 0; c < vd->vdev_children; c++)
1472		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1473			return (SET_ERROR(EBADF));
1474
1475	/*
1476	 * If the device has already failed, or was marked offline, don't do
1477	 * any further validation.  Otherwise, label I/O will fail and we will
1478	 * overwrite the previous state.
1479	 */
1480	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1481		uint64_t aux_guid = 0;
1482		nvlist_t *nvl;
1483		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1484		    spa_last_synced_txg(spa) : -1ULL;
1485
1486		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1487			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1488			    VDEV_AUX_BAD_LABEL);
1489			return (0);
1490		}
1491
1492		/*
1493		 * Determine if this vdev has been split off into another
1494		 * pool.  If so, then refuse to open it.
1495		 */
1496		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1497		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1498			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1499			    VDEV_AUX_SPLIT_POOL);
1500			nvlist_free(label);
1501			return (0);
1502		}
1503
1504		if (strict && (nvlist_lookup_uint64(label,
1505		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1506		    guid != spa_guid(spa))) {
1507			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1508			    VDEV_AUX_CORRUPT_DATA);
1509			nvlist_free(label);
1510			return (0);
1511		}
1512
1513		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1514		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1515		    &aux_guid) != 0)
1516			aux_guid = 0;
1517
1518		/*
1519		 * If this vdev just became a top-level vdev because its
1520		 * sibling was detached, it will have adopted the parent's
1521		 * vdev guid -- but the label may or may not be on disk yet.
1522		 * Fortunately, either version of the label will have the
1523		 * same top guid, so if we're a top-level vdev, we can
1524		 * safely compare to that instead.
1525		 *
1526		 * If we split this vdev off instead, then we also check the
1527		 * original pool's guid.  We don't want to consider the vdev
1528		 * corrupt if it is partway through a split operation.
1529		 */
1530		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1531		    &guid) != 0 ||
1532		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1533		    &top_guid) != 0 ||
1534		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1535		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1536			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1537			    VDEV_AUX_CORRUPT_DATA);
1538			nvlist_free(label);
1539			return (0);
1540		}
1541
1542		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1543		    &state) != 0) {
1544			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1545			    VDEV_AUX_CORRUPT_DATA);
1546			nvlist_free(label);
1547			return (0);
1548		}
1549
1550		nvlist_free(label);
1551
1552		/*
1553		 * If this is a verbatim import, no need to check the
1554		 * state of the pool.
1555		 */
1556		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1557		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1558		    state != POOL_STATE_ACTIVE)
1559			return (SET_ERROR(EBADF));
1560
1561		/*
1562		 * If we were able to open and validate a vdev that was
1563		 * previously marked permanently unavailable, clear that state
1564		 * now.
1565		 */
1566		if (vd->vdev_not_present)
1567			vd->vdev_not_present = 0;
1568	}
1569
1570	return (0);
1571}
1572
1573/*
1574 * Close a virtual device.
1575 */
1576void
1577vdev_close(vdev_t *vd)
1578{
1579	spa_t *spa = vd->vdev_spa;
1580	vdev_t *pvd = vd->vdev_parent;
1581
1582	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1583
1584	/*
1585	 * If our parent is reopening, then we are as well, unless we are
1586	 * going offline.
1587	 */
1588	if (pvd != NULL && pvd->vdev_reopening)
1589		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1590
1591	vd->vdev_ops->vdev_op_close(vd);
1592
1593	vdev_cache_purge(vd);
1594
1595	if (vd->vdev_ops->vdev_op_leaf)
1596		trim_map_destroy(vd);
1597
1598	/*
1599	 * We record the previous state before we close it, so that if we are
1600	 * doing a reopen(), we don't generate FMA ereports if we notice that
1601	 * it's still faulted.
1602	 */
1603	vd->vdev_prevstate = vd->vdev_state;
1604
1605	if (vd->vdev_offline)
1606		vd->vdev_state = VDEV_STATE_OFFLINE;
1607	else
1608		vd->vdev_state = VDEV_STATE_CLOSED;
1609	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1610}
1611
1612void
1613vdev_hold(vdev_t *vd)
1614{
1615	spa_t *spa = vd->vdev_spa;
1616
1617	ASSERT(spa_is_root(spa));
1618	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1619		return;
1620
1621	for (int c = 0; c < vd->vdev_children; c++)
1622		vdev_hold(vd->vdev_child[c]);
1623
1624	if (vd->vdev_ops->vdev_op_leaf)
1625		vd->vdev_ops->vdev_op_hold(vd);
1626}
1627
1628void
1629vdev_rele(vdev_t *vd)
1630{
1631	spa_t *spa = vd->vdev_spa;
1632
1633	ASSERT(spa_is_root(spa));
1634	for (int c = 0; c < vd->vdev_children; c++)
1635		vdev_rele(vd->vdev_child[c]);
1636
1637	if (vd->vdev_ops->vdev_op_leaf)
1638		vd->vdev_ops->vdev_op_rele(vd);
1639}
1640
1641/*
1642 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1643 * reopen leaf vdevs which had previously been opened as they might deadlock
1644 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1645 * If the leaf has never been opened then open it, as usual.
1646 */
1647void
1648vdev_reopen(vdev_t *vd)
1649{
1650	spa_t *spa = vd->vdev_spa;
1651
1652	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1653
1654	/* set the reopening flag unless we're taking the vdev offline */
1655	vd->vdev_reopening = !vd->vdev_offline;
1656	vdev_close(vd);
1657	(void) vdev_open(vd);
1658
1659	/*
1660	 * Call vdev_validate() here to make sure we have the same device.
1661	 * Otherwise, a device with an invalid label could be successfully
1662	 * opened in response to vdev_reopen().
1663	 */
1664	if (vd->vdev_aux) {
1665		(void) vdev_validate_aux(vd);
1666		if (vdev_readable(vd) && vdev_writeable(vd) &&
1667		    vd->vdev_aux == &spa->spa_l2cache &&
1668		    !l2arc_vdev_present(vd))
1669			l2arc_add_vdev(spa, vd);
1670	} else {
1671		(void) vdev_validate(vd, B_TRUE);
1672	}
1673
1674	/*
1675	 * Reassess parent vdev's health.
1676	 */
1677	vdev_propagate_state(vd);
1678}
1679
1680int
1681vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1682{
1683	int error;
1684
1685	/*
1686	 * Normally, partial opens (e.g. of a mirror) are allowed.
1687	 * For a create, however, we want to fail the request if
1688	 * there are any components we can't open.
1689	 */
1690	error = vdev_open(vd);
1691
1692	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1693		vdev_close(vd);
1694		return (error ? error : ENXIO);
1695	}
1696
1697	/*
1698	 * Recursively load DTLs and initialize all labels.
1699	 */
1700	if ((error = vdev_dtl_load(vd)) != 0 ||
1701	    (error = vdev_label_init(vd, txg, isreplacing ?
1702	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1703		vdev_close(vd);
1704		return (error);
1705	}
1706
1707	return (0);
1708}
1709
1710void
1711vdev_metaslab_set_size(vdev_t *vd)
1712{
1713	/*
1714	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1715	 */
1716	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1717	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1718}
1719
1720/*
1721 * Maximize performance by inflating the configured ashift for top level
1722 * vdevs to be as close to the physical ashift as possible while maintaining
1723 * administrator defined limits and ensuring it doesn't go below the
1724 * logical ashift.
1725 */
1726void
1727vdev_ashift_optimize(vdev_t *vd)
1728{
1729	if (vd == vd->vdev_top) {
1730		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1731			vd->vdev_ashift = MIN(
1732			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1733			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1734		} else {
1735			/*
1736			 * Unusual case where logical ashift > physical ashift
1737			 * so we can't cap the calculated ashift based on max
1738			 * ashift as that would cause failures.
1739			 * We still check if we need to increase it to match
1740			 * the min ashift.
1741			 */
1742			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1743			    vd->vdev_ashift);
1744		}
1745	}
1746}
1747
1748void
1749vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1750{
1751	ASSERT(vd == vd->vdev_top);
1752	ASSERT(!vd->vdev_ishole);
1753	ASSERT(ISP2(flags));
1754	ASSERT(spa_writeable(vd->vdev_spa));
1755
1756	if (flags & VDD_METASLAB)
1757		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1758
1759	if (flags & VDD_DTL)
1760		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1761
1762	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1763}
1764
1765void
1766vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1767{
1768	for (int c = 0; c < vd->vdev_children; c++)
1769		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1770
1771	if (vd->vdev_ops->vdev_op_leaf)
1772		vdev_dirty(vd->vdev_top, flags, vd, txg);
1773}
1774
1775/*
1776 * DTLs.
1777 *
1778 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1779 * the vdev has less than perfect replication.  There are four kinds of DTL:
1780 *
1781 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1782 *
1783 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1784 *
1785 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1786 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1787 *	txgs that was scrubbed.
1788 *
1789 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1790 *	persistent errors or just some device being offline.
1791 *	Unlike the other three, the DTL_OUTAGE map is not generally
1792 *	maintained; it's only computed when needed, typically to
1793 *	determine whether a device can be detached.
1794 *
1795 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1796 * either has the data or it doesn't.
1797 *
1798 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1799 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1800 * if any child is less than fully replicated, then so is its parent.
1801 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1802 * comprising only those txgs which appear in 'maxfaults' or more children;
1803 * those are the txgs we don't have enough replication to read.  For example,
1804 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1805 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1806 * two child DTL_MISSING maps.
1807 *
1808 * It should be clear from the above that to compute the DTLs and outage maps
1809 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1810 * Therefore, that is all we keep on disk.  When loading the pool, or after
1811 * a configuration change, we generate all other DTLs from first principles.
1812 */
1813void
1814vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1815{
1816	range_tree_t *rt = vd->vdev_dtl[t];
1817
1818	ASSERT(t < DTL_TYPES);
1819	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1820	ASSERT(spa_writeable(vd->vdev_spa));
1821
1822	mutex_enter(rt->rt_lock);
1823	if (!range_tree_contains(rt, txg, size))
1824		range_tree_add(rt, txg, size);
1825	mutex_exit(rt->rt_lock);
1826}
1827
1828boolean_t
1829vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1830{
1831	range_tree_t *rt = vd->vdev_dtl[t];
1832	boolean_t dirty = B_FALSE;
1833
1834	ASSERT(t < DTL_TYPES);
1835	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1836
1837	mutex_enter(rt->rt_lock);
1838	if (range_tree_space(rt) != 0)
1839		dirty = range_tree_contains(rt, txg, size);
1840	mutex_exit(rt->rt_lock);
1841
1842	return (dirty);
1843}
1844
1845boolean_t
1846vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1847{
1848	range_tree_t *rt = vd->vdev_dtl[t];
1849	boolean_t empty;
1850
1851	mutex_enter(rt->rt_lock);
1852	empty = (range_tree_space(rt) == 0);
1853	mutex_exit(rt->rt_lock);
1854
1855	return (empty);
1856}
1857
1858/*
1859 * Returns the lowest txg in the DTL range.
1860 */
1861static uint64_t
1862vdev_dtl_min(vdev_t *vd)
1863{
1864	range_seg_t *rs;
1865
1866	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1867	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1868	ASSERT0(vd->vdev_children);
1869
1870	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1871	return (rs->rs_start - 1);
1872}
1873
1874/*
1875 * Returns the highest txg in the DTL.
1876 */
1877static uint64_t
1878vdev_dtl_max(vdev_t *vd)
1879{
1880	range_seg_t *rs;
1881
1882	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1883	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1884	ASSERT0(vd->vdev_children);
1885
1886	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1887	return (rs->rs_end);
1888}
1889
1890/*
1891 * Determine if a resilvering vdev should remove any DTL entries from
1892 * its range. If the vdev was resilvering for the entire duration of the
1893 * scan then it should excise that range from its DTLs. Otherwise, this
1894 * vdev is considered partially resilvered and should leave its DTL
1895 * entries intact. The comment in vdev_dtl_reassess() describes how we
1896 * excise the DTLs.
1897 */
1898static boolean_t
1899vdev_dtl_should_excise(vdev_t *vd)
1900{
1901	spa_t *spa = vd->vdev_spa;
1902	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1903
1904	ASSERT0(scn->scn_phys.scn_errors);
1905	ASSERT0(vd->vdev_children);
1906
1907	if (vd->vdev_state < VDEV_STATE_DEGRADED)
1908		return (B_FALSE);
1909
1910	if (vd->vdev_resilver_txg == 0 ||
1911	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1912		return (B_TRUE);
1913
1914	/*
1915	 * When a resilver is initiated the scan will assign the scn_max_txg
1916	 * value to the highest txg value that exists in all DTLs. If this
1917	 * device's max DTL is not part of this scan (i.e. it is not in
1918	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1919	 * for excision.
1920	 */
1921	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1922		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1923		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1924		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1925		return (B_TRUE);
1926	}
1927	return (B_FALSE);
1928}
1929
1930/*
1931 * Reassess DTLs after a config change or scrub completion.
1932 */
1933void
1934vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1935{
1936	spa_t *spa = vd->vdev_spa;
1937	avl_tree_t reftree;
1938	int minref;
1939
1940	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1941
1942	for (int c = 0; c < vd->vdev_children; c++)
1943		vdev_dtl_reassess(vd->vdev_child[c], txg,
1944		    scrub_txg, scrub_done);
1945
1946	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1947		return;
1948
1949	if (vd->vdev_ops->vdev_op_leaf) {
1950		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1951
1952		mutex_enter(&vd->vdev_dtl_lock);
1953
1954		/*
1955		 * If we've completed a scan cleanly then determine
1956		 * if this vdev should remove any DTLs. We only want to
1957		 * excise regions on vdevs that were available during
1958		 * the entire duration of this scan.
1959		 */
1960		if (scrub_txg != 0 &&
1961		    (spa->spa_scrub_started ||
1962		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1963		    vdev_dtl_should_excise(vd)) {
1964			/*
1965			 * We completed a scrub up to scrub_txg.  If we
1966			 * did it without rebooting, then the scrub dtl
1967			 * will be valid, so excise the old region and
1968			 * fold in the scrub dtl.  Otherwise, leave the
1969			 * dtl as-is if there was an error.
1970			 *
1971			 * There's little trick here: to excise the beginning
1972			 * of the DTL_MISSING map, we put it into a reference
1973			 * tree and then add a segment with refcnt -1 that
1974			 * covers the range [0, scrub_txg).  This means
1975			 * that each txg in that range has refcnt -1 or 0.
1976			 * We then add DTL_SCRUB with a refcnt of 2, so that
1977			 * entries in the range [0, scrub_txg) will have a
1978			 * positive refcnt -- either 1 or 2.  We then convert
1979			 * the reference tree into the new DTL_MISSING map.
1980			 */
1981			space_reftree_create(&reftree);
1982			space_reftree_add_map(&reftree,
1983			    vd->vdev_dtl[DTL_MISSING], 1);
1984			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1985			space_reftree_add_map(&reftree,
1986			    vd->vdev_dtl[DTL_SCRUB], 2);
1987			space_reftree_generate_map(&reftree,
1988			    vd->vdev_dtl[DTL_MISSING], 1);
1989			space_reftree_destroy(&reftree);
1990		}
1991		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1992		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1993		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1994		if (scrub_done)
1995			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1996		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1997		if (!vdev_readable(vd))
1998			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1999		else
2000			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2001			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2002
2003		/*
2004		 * If the vdev was resilvering and no longer has any
2005		 * DTLs then reset its resilvering flag and dirty
2006		 * the top level so that we persist the change.
2007		 */
2008		if (vd->vdev_resilver_txg != 0 &&
2009		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2010		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2011			vd->vdev_resilver_txg = 0;
2012			vdev_config_dirty(vd->vdev_top);
2013		}
2014
2015		mutex_exit(&vd->vdev_dtl_lock);
2016
2017		if (txg != 0)
2018			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2019		return;
2020	}
2021
2022	mutex_enter(&vd->vdev_dtl_lock);
2023	for (int t = 0; t < DTL_TYPES; t++) {
2024		/* account for child's outage in parent's missing map */
2025		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2026		if (t == DTL_SCRUB)
2027			continue;			/* leaf vdevs only */
2028		if (t == DTL_PARTIAL)
2029			minref = 1;			/* i.e. non-zero */
2030		else if (vd->vdev_nparity != 0)
2031			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2032		else
2033			minref = vd->vdev_children;	/* any kind of mirror */
2034		space_reftree_create(&reftree);
2035		for (int c = 0; c < vd->vdev_children; c++) {
2036			vdev_t *cvd = vd->vdev_child[c];
2037			mutex_enter(&cvd->vdev_dtl_lock);
2038			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2039			mutex_exit(&cvd->vdev_dtl_lock);
2040		}
2041		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2042		space_reftree_destroy(&reftree);
2043	}
2044	mutex_exit(&vd->vdev_dtl_lock);
2045}
2046
2047int
2048vdev_dtl_load(vdev_t *vd)
2049{
2050	spa_t *spa = vd->vdev_spa;
2051	objset_t *mos = spa->spa_meta_objset;
2052	int error = 0;
2053
2054	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2055		ASSERT(!vd->vdev_ishole);
2056
2057		error = space_map_open(&vd->vdev_dtl_sm, mos,
2058		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2059		if (error)
2060			return (error);
2061		ASSERT(vd->vdev_dtl_sm != NULL);
2062
2063		mutex_enter(&vd->vdev_dtl_lock);
2064
2065		/*
2066		 * Now that we've opened the space_map we need to update
2067		 * the in-core DTL.
2068		 */
2069		space_map_update(vd->vdev_dtl_sm);
2070
2071		error = space_map_load(vd->vdev_dtl_sm,
2072		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2073		mutex_exit(&vd->vdev_dtl_lock);
2074
2075		return (error);
2076	}
2077
2078	for (int c = 0; c < vd->vdev_children; c++) {
2079		error = vdev_dtl_load(vd->vdev_child[c]);
2080		if (error != 0)
2081			break;
2082	}
2083
2084	return (error);
2085}
2086
2087void
2088vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2089{
2090	spa_t *spa = vd->vdev_spa;
2091	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2092	objset_t *mos = spa->spa_meta_objset;
2093	range_tree_t *rtsync;
2094	kmutex_t rtlock;
2095	dmu_tx_t *tx;
2096	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2097
2098	ASSERT(!vd->vdev_ishole);
2099	ASSERT(vd->vdev_ops->vdev_op_leaf);
2100
2101	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2102
2103	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2104		mutex_enter(&vd->vdev_dtl_lock);
2105		space_map_free(vd->vdev_dtl_sm, tx);
2106		space_map_close(vd->vdev_dtl_sm);
2107		vd->vdev_dtl_sm = NULL;
2108		mutex_exit(&vd->vdev_dtl_lock);
2109		dmu_tx_commit(tx);
2110		return;
2111	}
2112
2113	if (vd->vdev_dtl_sm == NULL) {
2114		uint64_t new_object;
2115
2116		new_object = space_map_alloc(mos, tx);
2117		VERIFY3U(new_object, !=, 0);
2118
2119		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2120		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2121		ASSERT(vd->vdev_dtl_sm != NULL);
2122	}
2123
2124	bzero(&rtlock, sizeof(rtlock));
2125	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2126
2127	rtsync = range_tree_create(NULL, NULL, &rtlock);
2128
2129	mutex_enter(&rtlock);
2130
2131	mutex_enter(&vd->vdev_dtl_lock);
2132	range_tree_walk(rt, range_tree_add, rtsync);
2133	mutex_exit(&vd->vdev_dtl_lock);
2134
2135	space_map_truncate(vd->vdev_dtl_sm, tx);
2136	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2137	range_tree_vacate(rtsync, NULL, NULL);
2138
2139	range_tree_destroy(rtsync);
2140
2141	mutex_exit(&rtlock);
2142	mutex_destroy(&rtlock);
2143
2144	/*
2145	 * If the object for the space map has changed then dirty
2146	 * the top level so that we update the config.
2147	 */
2148	if (object != space_map_object(vd->vdev_dtl_sm)) {
2149		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2150		    "new object %llu", txg, spa_name(spa), object,
2151		    space_map_object(vd->vdev_dtl_sm));
2152		vdev_config_dirty(vd->vdev_top);
2153	}
2154
2155	dmu_tx_commit(tx);
2156
2157	mutex_enter(&vd->vdev_dtl_lock);
2158	space_map_update(vd->vdev_dtl_sm);
2159	mutex_exit(&vd->vdev_dtl_lock);
2160}
2161
2162/*
2163 * Determine whether the specified vdev can be offlined/detached/removed
2164 * without losing data.
2165 */
2166boolean_t
2167vdev_dtl_required(vdev_t *vd)
2168{
2169	spa_t *spa = vd->vdev_spa;
2170	vdev_t *tvd = vd->vdev_top;
2171	uint8_t cant_read = vd->vdev_cant_read;
2172	boolean_t required;
2173
2174	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2175
2176	if (vd == spa->spa_root_vdev || vd == tvd)
2177		return (B_TRUE);
2178
2179	/*
2180	 * Temporarily mark the device as unreadable, and then determine
2181	 * whether this results in any DTL outages in the top-level vdev.
2182	 * If not, we can safely offline/detach/remove the device.
2183	 */
2184	vd->vdev_cant_read = B_TRUE;
2185	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2186	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2187	vd->vdev_cant_read = cant_read;
2188	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2189
2190	if (!required && zio_injection_enabled)
2191		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2192
2193	return (required);
2194}
2195
2196/*
2197 * Determine if resilver is needed, and if so the txg range.
2198 */
2199boolean_t
2200vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2201{
2202	boolean_t needed = B_FALSE;
2203	uint64_t thismin = UINT64_MAX;
2204	uint64_t thismax = 0;
2205
2206	if (vd->vdev_children == 0) {
2207		mutex_enter(&vd->vdev_dtl_lock);
2208		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2209		    vdev_writeable(vd)) {
2210
2211			thismin = vdev_dtl_min(vd);
2212			thismax = vdev_dtl_max(vd);
2213			needed = B_TRUE;
2214		}
2215		mutex_exit(&vd->vdev_dtl_lock);
2216	} else {
2217		for (int c = 0; c < vd->vdev_children; c++) {
2218			vdev_t *cvd = vd->vdev_child[c];
2219			uint64_t cmin, cmax;
2220
2221			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2222				thismin = MIN(thismin, cmin);
2223				thismax = MAX(thismax, cmax);
2224				needed = B_TRUE;
2225			}
2226		}
2227	}
2228
2229	if (needed && minp) {
2230		*minp = thismin;
2231		*maxp = thismax;
2232	}
2233	return (needed);
2234}
2235
2236void
2237vdev_load(vdev_t *vd)
2238{
2239	/*
2240	 * Recursively load all children.
2241	 */
2242	for (int c = 0; c < vd->vdev_children; c++)
2243		vdev_load(vd->vdev_child[c]);
2244
2245	/*
2246	 * If this is a top-level vdev, initialize its metaslabs.
2247	 */
2248	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2249	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2250	    vdev_metaslab_init(vd, 0) != 0))
2251		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252		    VDEV_AUX_CORRUPT_DATA);
2253
2254	/*
2255	 * If this is a leaf vdev, load its DTL.
2256	 */
2257	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2258		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2259		    VDEV_AUX_CORRUPT_DATA);
2260}
2261
2262/*
2263 * The special vdev case is used for hot spares and l2cache devices.  Its
2264 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2265 * we make sure that we can open the underlying device, then try to read the
2266 * label, and make sure that the label is sane and that it hasn't been
2267 * repurposed to another pool.
2268 */
2269int
2270vdev_validate_aux(vdev_t *vd)
2271{
2272	nvlist_t *label;
2273	uint64_t guid, version;
2274	uint64_t state;
2275
2276	if (!vdev_readable(vd))
2277		return (0);
2278
2279	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2280		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2281		    VDEV_AUX_CORRUPT_DATA);
2282		return (-1);
2283	}
2284
2285	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2286	    !SPA_VERSION_IS_SUPPORTED(version) ||
2287	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2288	    guid != vd->vdev_guid ||
2289	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2290		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2291		    VDEV_AUX_CORRUPT_DATA);
2292		nvlist_free(label);
2293		return (-1);
2294	}
2295
2296	/*
2297	 * We don't actually check the pool state here.  If it's in fact in
2298	 * use by another pool, we update this fact on the fly when requested.
2299	 */
2300	nvlist_free(label);
2301	return (0);
2302}
2303
2304void
2305vdev_remove(vdev_t *vd, uint64_t txg)
2306{
2307	spa_t *spa = vd->vdev_spa;
2308	objset_t *mos = spa->spa_meta_objset;
2309	dmu_tx_t *tx;
2310
2311	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2312
2313	if (vd->vdev_ms != NULL) {
2314		metaslab_group_t *mg = vd->vdev_mg;
2315
2316		metaslab_group_histogram_verify(mg);
2317		metaslab_class_histogram_verify(mg->mg_class);
2318
2319		for (int m = 0; m < vd->vdev_ms_count; m++) {
2320			metaslab_t *msp = vd->vdev_ms[m];
2321
2322			if (msp == NULL || msp->ms_sm == NULL)
2323				continue;
2324
2325			mutex_enter(&msp->ms_lock);
2326			/*
2327			 * If the metaslab was not loaded when the vdev
2328			 * was removed then the histogram accounting may
2329			 * not be accurate. Update the histogram information
2330			 * here so that we ensure that the metaslab group
2331			 * and metaslab class are up-to-date.
2332			 */
2333			metaslab_group_histogram_remove(mg, msp);
2334
2335			VERIFY0(space_map_allocated(msp->ms_sm));
2336			space_map_free(msp->ms_sm, tx);
2337			space_map_close(msp->ms_sm);
2338			msp->ms_sm = NULL;
2339			mutex_exit(&msp->ms_lock);
2340		}
2341
2342		metaslab_group_histogram_verify(mg);
2343		metaslab_class_histogram_verify(mg->mg_class);
2344		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2345			ASSERT0(mg->mg_histogram[i]);
2346
2347	}
2348
2349	if (vd->vdev_ms_array) {
2350		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2351		vd->vdev_ms_array = 0;
2352	}
2353	dmu_tx_commit(tx);
2354}
2355
2356void
2357vdev_sync_done(vdev_t *vd, uint64_t txg)
2358{
2359	metaslab_t *msp;
2360	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2361
2362	ASSERT(!vd->vdev_ishole);
2363
2364	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2365		metaslab_sync_done(msp, txg);
2366
2367	if (reassess)
2368		metaslab_sync_reassess(vd->vdev_mg);
2369}
2370
2371void
2372vdev_sync(vdev_t *vd, uint64_t txg)
2373{
2374	spa_t *spa = vd->vdev_spa;
2375	vdev_t *lvd;
2376	metaslab_t *msp;
2377	dmu_tx_t *tx;
2378
2379	ASSERT(!vd->vdev_ishole);
2380
2381	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2382		ASSERT(vd == vd->vdev_top);
2383		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2384		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2385		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2386		ASSERT(vd->vdev_ms_array != 0);
2387		vdev_config_dirty(vd);
2388		dmu_tx_commit(tx);
2389	}
2390
2391	/*
2392	 * Remove the metadata associated with this vdev once it's empty.
2393	 */
2394	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2395		vdev_remove(vd, txg);
2396
2397	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2398		metaslab_sync(msp, txg);
2399		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2400	}
2401
2402	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2403		vdev_dtl_sync(lvd, txg);
2404
2405	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2406}
2407
2408uint64_t
2409vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2410{
2411	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2412}
2413
2414/*
2415 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2416 * not be opened, and no I/O is attempted.
2417 */
2418int
2419vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2420{
2421	vdev_t *vd, *tvd;
2422
2423	spa_vdev_state_enter(spa, SCL_NONE);
2424
2425	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2426		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2427
2428	if (!vd->vdev_ops->vdev_op_leaf)
2429		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2430
2431	tvd = vd->vdev_top;
2432
2433	/*
2434	 * We don't directly use the aux state here, but if we do a
2435	 * vdev_reopen(), we need this value to be present to remember why we
2436	 * were faulted.
2437	 */
2438	vd->vdev_label_aux = aux;
2439
2440	/*
2441	 * Faulted state takes precedence over degraded.
2442	 */
2443	vd->vdev_delayed_close = B_FALSE;
2444	vd->vdev_faulted = 1ULL;
2445	vd->vdev_degraded = 0ULL;
2446	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2447
2448	/*
2449	 * If this device has the only valid copy of the data, then
2450	 * back off and simply mark the vdev as degraded instead.
2451	 */
2452	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2453		vd->vdev_degraded = 1ULL;
2454		vd->vdev_faulted = 0ULL;
2455
2456		/*
2457		 * If we reopen the device and it's not dead, only then do we
2458		 * mark it degraded.
2459		 */
2460		vdev_reopen(tvd);
2461
2462		if (vdev_readable(vd))
2463			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2464	}
2465
2466	return (spa_vdev_state_exit(spa, vd, 0));
2467}
2468
2469/*
2470 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2471 * user that something is wrong.  The vdev continues to operate as normal as far
2472 * as I/O is concerned.
2473 */
2474int
2475vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2476{
2477	vdev_t *vd;
2478
2479	spa_vdev_state_enter(spa, SCL_NONE);
2480
2481	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2482		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2483
2484	if (!vd->vdev_ops->vdev_op_leaf)
2485		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2486
2487	/*
2488	 * If the vdev is already faulted, then don't do anything.
2489	 */
2490	if (vd->vdev_faulted || vd->vdev_degraded)
2491		return (spa_vdev_state_exit(spa, NULL, 0));
2492
2493	vd->vdev_degraded = 1ULL;
2494	if (!vdev_is_dead(vd))
2495		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2496		    aux);
2497
2498	return (spa_vdev_state_exit(spa, vd, 0));
2499}
2500
2501/*
2502 * Online the given vdev.
2503 *
2504 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2505 * spare device should be detached when the device finishes resilvering.
2506 * Second, the online should be treated like a 'test' online case, so no FMA
2507 * events are generated if the device fails to open.
2508 */
2509int
2510vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2511{
2512	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2513	boolean_t postevent = B_FALSE;
2514
2515	spa_vdev_state_enter(spa, SCL_NONE);
2516
2517	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2518		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2519
2520	if (!vd->vdev_ops->vdev_op_leaf)
2521		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2522
2523	postevent =
2524	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2525	    B_TRUE : B_FALSE;
2526
2527	tvd = vd->vdev_top;
2528	vd->vdev_offline = B_FALSE;
2529	vd->vdev_tmpoffline = B_FALSE;
2530	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2531	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2532
2533	/* XXX - L2ARC 1.0 does not support expansion */
2534	if (!vd->vdev_aux) {
2535		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2536			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2537	}
2538
2539	vdev_reopen(tvd);
2540	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2541
2542	if (!vd->vdev_aux) {
2543		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2544			pvd->vdev_expanding = B_FALSE;
2545	}
2546
2547	if (newstate)
2548		*newstate = vd->vdev_state;
2549	if ((flags & ZFS_ONLINE_UNSPARE) &&
2550	    !vdev_is_dead(vd) && vd->vdev_parent &&
2551	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2552	    vd->vdev_parent->vdev_child[0] == vd)
2553		vd->vdev_unspare = B_TRUE;
2554
2555	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2556
2557		/* XXX - L2ARC 1.0 does not support expansion */
2558		if (vd->vdev_aux)
2559			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2560		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2561	}
2562
2563	if (postevent)
2564		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2565
2566	return (spa_vdev_state_exit(spa, vd, 0));
2567}
2568
2569static int
2570vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2571{
2572	vdev_t *vd, *tvd;
2573	int error = 0;
2574	uint64_t generation;
2575	metaslab_group_t *mg;
2576
2577top:
2578	spa_vdev_state_enter(spa, SCL_ALLOC);
2579
2580	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2581		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2582
2583	if (!vd->vdev_ops->vdev_op_leaf)
2584		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2585
2586	tvd = vd->vdev_top;
2587	mg = tvd->vdev_mg;
2588	generation = spa->spa_config_generation + 1;
2589
2590	/*
2591	 * If the device isn't already offline, try to offline it.
2592	 */
2593	if (!vd->vdev_offline) {
2594		/*
2595		 * If this device has the only valid copy of some data,
2596		 * don't allow it to be offlined. Log devices are always
2597		 * expendable.
2598		 */
2599		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2600		    vdev_dtl_required(vd))
2601			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2602
2603		/*
2604		 * If the top-level is a slog and it has had allocations
2605		 * then proceed.  We check that the vdev's metaslab group
2606		 * is not NULL since it's possible that we may have just
2607		 * added this vdev but not yet initialized its metaslabs.
2608		 */
2609		if (tvd->vdev_islog && mg != NULL) {
2610			/*
2611			 * Prevent any future allocations.
2612			 */
2613			metaslab_group_passivate(mg);
2614			(void) spa_vdev_state_exit(spa, vd, 0);
2615
2616			error = spa_offline_log(spa);
2617
2618			spa_vdev_state_enter(spa, SCL_ALLOC);
2619
2620			/*
2621			 * Check to see if the config has changed.
2622			 */
2623			if (error || generation != spa->spa_config_generation) {
2624				metaslab_group_activate(mg);
2625				if (error)
2626					return (spa_vdev_state_exit(spa,
2627					    vd, error));
2628				(void) spa_vdev_state_exit(spa, vd, 0);
2629				goto top;
2630			}
2631			ASSERT0(tvd->vdev_stat.vs_alloc);
2632		}
2633
2634		/*
2635		 * Offline this device and reopen its top-level vdev.
2636		 * If the top-level vdev is a log device then just offline
2637		 * it. Otherwise, if this action results in the top-level
2638		 * vdev becoming unusable, undo it and fail the request.
2639		 */
2640		vd->vdev_offline = B_TRUE;
2641		vdev_reopen(tvd);
2642
2643		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2644		    vdev_is_dead(tvd)) {
2645			vd->vdev_offline = B_FALSE;
2646			vdev_reopen(tvd);
2647			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2648		}
2649
2650		/*
2651		 * Add the device back into the metaslab rotor so that
2652		 * once we online the device it's open for business.
2653		 */
2654		if (tvd->vdev_islog && mg != NULL)
2655			metaslab_group_activate(mg);
2656	}
2657
2658	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2659
2660	return (spa_vdev_state_exit(spa, vd, 0));
2661}
2662
2663int
2664vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2665{
2666	int error;
2667
2668	mutex_enter(&spa->spa_vdev_top_lock);
2669	error = vdev_offline_locked(spa, guid, flags);
2670	mutex_exit(&spa->spa_vdev_top_lock);
2671
2672	return (error);
2673}
2674
2675/*
2676 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2677 * vdev_offline(), we assume the spa config is locked.  We also clear all
2678 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2679 */
2680void
2681vdev_clear(spa_t *spa, vdev_t *vd)
2682{
2683	vdev_t *rvd = spa->spa_root_vdev;
2684
2685	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2686
2687	if (vd == NULL)
2688		vd = rvd;
2689
2690	vd->vdev_stat.vs_read_errors = 0;
2691	vd->vdev_stat.vs_write_errors = 0;
2692	vd->vdev_stat.vs_checksum_errors = 0;
2693
2694	for (int c = 0; c < vd->vdev_children; c++)
2695		vdev_clear(spa, vd->vdev_child[c]);
2696
2697	if (vd == rvd) {
2698		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2699			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2700
2701		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2702			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2703	}
2704
2705	/*
2706	 * If we're in the FAULTED state or have experienced failed I/O, then
2707	 * clear the persistent state and attempt to reopen the device.  We
2708	 * also mark the vdev config dirty, so that the new faulted state is
2709	 * written out to disk.
2710	 */
2711	if (vd->vdev_faulted || vd->vdev_degraded ||
2712	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2713
2714		/*
2715		 * When reopening in reponse to a clear event, it may be due to
2716		 * a fmadm repair request.  In this case, if the device is
2717		 * still broken, we want to still post the ereport again.
2718		 */
2719		vd->vdev_forcefault = B_TRUE;
2720
2721		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2722		vd->vdev_cant_read = B_FALSE;
2723		vd->vdev_cant_write = B_FALSE;
2724
2725		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2726
2727		vd->vdev_forcefault = B_FALSE;
2728
2729		if (vd != rvd && vdev_writeable(vd->vdev_top))
2730			vdev_state_dirty(vd->vdev_top);
2731
2732		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2733			spa_async_request(spa, SPA_ASYNC_RESILVER);
2734
2735		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2736	}
2737
2738	/*
2739	 * When clearing a FMA-diagnosed fault, we always want to
2740	 * unspare the device, as we assume that the original spare was
2741	 * done in response to the FMA fault.
2742	 */
2743	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2744	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2745	    vd->vdev_parent->vdev_child[0] == vd)
2746		vd->vdev_unspare = B_TRUE;
2747}
2748
2749boolean_t
2750vdev_is_dead(vdev_t *vd)
2751{
2752	/*
2753	 * Holes and missing devices are always considered "dead".
2754	 * This simplifies the code since we don't have to check for
2755	 * these types of devices in the various code paths.
2756	 * Instead we rely on the fact that we skip over dead devices
2757	 * before issuing I/O to them.
2758	 */
2759	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2760	    vd->vdev_ops == &vdev_missing_ops);
2761}
2762
2763boolean_t
2764vdev_readable(vdev_t *vd)
2765{
2766	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2767}
2768
2769boolean_t
2770vdev_writeable(vdev_t *vd)
2771{
2772	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2773}
2774
2775boolean_t
2776vdev_allocatable(vdev_t *vd)
2777{
2778	uint64_t state = vd->vdev_state;
2779
2780	/*
2781	 * We currently allow allocations from vdevs which may be in the
2782	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2783	 * fails to reopen then we'll catch it later when we're holding
2784	 * the proper locks.  Note that we have to get the vdev state
2785	 * in a local variable because although it changes atomically,
2786	 * we're asking two separate questions about it.
2787	 */
2788	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2789	    !vd->vdev_cant_write && !vd->vdev_ishole &&
2790	    vd->vdev_mg->mg_initialized);
2791}
2792
2793boolean_t
2794vdev_accessible(vdev_t *vd, zio_t *zio)
2795{
2796	ASSERT(zio->io_vd == vd);
2797
2798	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2799		return (B_FALSE);
2800
2801	if (zio->io_type == ZIO_TYPE_READ)
2802		return (!vd->vdev_cant_read);
2803
2804	if (zio->io_type == ZIO_TYPE_WRITE)
2805		return (!vd->vdev_cant_write);
2806
2807	return (B_TRUE);
2808}
2809
2810/*
2811 * Get statistics for the given vdev.
2812 */
2813void
2814vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2815{
2816	spa_t *spa = vd->vdev_spa;
2817	vdev_t *rvd = spa->spa_root_vdev;
2818	vdev_t *tvd = vd->vdev_top;
2819
2820	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2821
2822	mutex_enter(&vd->vdev_stat_lock);
2823	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2824	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2825	vs->vs_state = vd->vdev_state;
2826	vs->vs_rsize = vdev_get_min_asize(vd);
2827	if (vd->vdev_ops->vdev_op_leaf)
2828		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2829	/*
2830	 * Report expandable space on top-level, non-auxillary devices only.
2831	 * The expandable space is reported in terms of metaslab sized units
2832	 * since that determines how much space the pool can expand.
2833	 */
2834	if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
2835		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2836		    1ULL << tvd->vdev_ms_shift);
2837	}
2838	vs->vs_configured_ashift = vd->vdev_top != NULL
2839	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2840	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2841	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2842	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2843		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2844	}
2845
2846	/*
2847	 * If we're getting stats on the root vdev, aggregate the I/O counts
2848	 * over all top-level vdevs (i.e. the direct children of the root).
2849	 */
2850	if (vd == rvd) {
2851		for (int c = 0; c < rvd->vdev_children; c++) {
2852			vdev_t *cvd = rvd->vdev_child[c];
2853			vdev_stat_t *cvs = &cvd->vdev_stat;
2854
2855			for (int t = 0; t < ZIO_TYPES; t++) {
2856				vs->vs_ops[t] += cvs->vs_ops[t];
2857				vs->vs_bytes[t] += cvs->vs_bytes[t];
2858			}
2859			cvs->vs_scan_removing = cvd->vdev_removing;
2860		}
2861	}
2862	mutex_exit(&vd->vdev_stat_lock);
2863}
2864
2865void
2866vdev_clear_stats(vdev_t *vd)
2867{
2868	mutex_enter(&vd->vdev_stat_lock);
2869	vd->vdev_stat.vs_space = 0;
2870	vd->vdev_stat.vs_dspace = 0;
2871	vd->vdev_stat.vs_alloc = 0;
2872	mutex_exit(&vd->vdev_stat_lock);
2873}
2874
2875void
2876vdev_scan_stat_init(vdev_t *vd)
2877{
2878	vdev_stat_t *vs = &vd->vdev_stat;
2879
2880	for (int c = 0; c < vd->vdev_children; c++)
2881		vdev_scan_stat_init(vd->vdev_child[c]);
2882
2883	mutex_enter(&vd->vdev_stat_lock);
2884	vs->vs_scan_processed = 0;
2885	mutex_exit(&vd->vdev_stat_lock);
2886}
2887
2888void
2889vdev_stat_update(zio_t *zio, uint64_t psize)
2890{
2891	spa_t *spa = zio->io_spa;
2892	vdev_t *rvd = spa->spa_root_vdev;
2893	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2894	vdev_t *pvd;
2895	uint64_t txg = zio->io_txg;
2896	vdev_stat_t *vs = &vd->vdev_stat;
2897	zio_type_t type = zio->io_type;
2898	int flags = zio->io_flags;
2899
2900	/*
2901	 * If this i/o is a gang leader, it didn't do any actual work.
2902	 */
2903	if (zio->io_gang_tree)
2904		return;
2905
2906	if (zio->io_error == 0) {
2907		/*
2908		 * If this is a root i/o, don't count it -- we've already
2909		 * counted the top-level vdevs, and vdev_get_stats() will
2910		 * aggregate them when asked.  This reduces contention on
2911		 * the root vdev_stat_lock and implicitly handles blocks
2912		 * that compress away to holes, for which there is no i/o.
2913		 * (Holes never create vdev children, so all the counters
2914		 * remain zero, which is what we want.)
2915		 *
2916		 * Note: this only applies to successful i/o (io_error == 0)
2917		 * because unlike i/o counts, errors are not additive.
2918		 * When reading a ditto block, for example, failure of
2919		 * one top-level vdev does not imply a root-level error.
2920		 */
2921		if (vd == rvd)
2922			return;
2923
2924		ASSERT(vd == zio->io_vd);
2925
2926		if (flags & ZIO_FLAG_IO_BYPASS)
2927			return;
2928
2929		mutex_enter(&vd->vdev_stat_lock);
2930
2931		if (flags & ZIO_FLAG_IO_REPAIR) {
2932			if (flags & ZIO_FLAG_SCAN_THREAD) {
2933				dsl_scan_phys_t *scn_phys =
2934				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2935				uint64_t *processed = &scn_phys->scn_processed;
2936
2937				/* XXX cleanup? */
2938				if (vd->vdev_ops->vdev_op_leaf)
2939					atomic_add_64(processed, psize);
2940				vs->vs_scan_processed += psize;
2941			}
2942
2943			if (flags & ZIO_FLAG_SELF_HEAL)
2944				vs->vs_self_healed += psize;
2945		}
2946
2947		vs->vs_ops[type]++;
2948		vs->vs_bytes[type] += psize;
2949
2950		mutex_exit(&vd->vdev_stat_lock);
2951		return;
2952	}
2953
2954	if (flags & ZIO_FLAG_SPECULATIVE)
2955		return;
2956
2957	/*
2958	 * If this is an I/O error that is going to be retried, then ignore the
2959	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2960	 * hard errors, when in reality they can happen for any number of
2961	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2962	 */
2963	if (zio->io_error == EIO &&
2964	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2965		return;
2966
2967	/*
2968	 * Intent logs writes won't propagate their error to the root
2969	 * I/O so don't mark these types of failures as pool-level
2970	 * errors.
2971	 */
2972	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2973		return;
2974
2975	mutex_enter(&vd->vdev_stat_lock);
2976	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2977		if (zio->io_error == ECKSUM)
2978			vs->vs_checksum_errors++;
2979		else
2980			vs->vs_read_errors++;
2981	}
2982	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2983		vs->vs_write_errors++;
2984	mutex_exit(&vd->vdev_stat_lock);
2985
2986	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2987	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2988	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2989	    spa->spa_claiming)) {
2990		/*
2991		 * This is either a normal write (not a repair), or it's
2992		 * a repair induced by the scrub thread, or it's a repair
2993		 * made by zil_claim() during spa_load() in the first txg.
2994		 * In the normal case, we commit the DTL change in the same
2995		 * txg as the block was born.  In the scrub-induced repair
2996		 * case, we know that scrubs run in first-pass syncing context,
2997		 * so we commit the DTL change in spa_syncing_txg(spa).
2998		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2999		 *
3000		 * We currently do not make DTL entries for failed spontaneous
3001		 * self-healing writes triggered by normal (non-scrubbing)
3002		 * reads, because we have no transactional context in which to
3003		 * do so -- and it's not clear that it'd be desirable anyway.
3004		 */
3005		if (vd->vdev_ops->vdev_op_leaf) {
3006			uint64_t commit_txg = txg;
3007			if (flags & ZIO_FLAG_SCAN_THREAD) {
3008				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3009				ASSERT(spa_sync_pass(spa) == 1);
3010				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3011				commit_txg = spa_syncing_txg(spa);
3012			} else if (spa->spa_claiming) {
3013				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3014				commit_txg = spa_first_txg(spa);
3015			}
3016			ASSERT(commit_txg >= spa_syncing_txg(spa));
3017			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3018				return;
3019			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3020				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3021			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3022		}
3023		if (vd != rvd)
3024			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3025	}
3026}
3027
3028/*
3029 * Update the in-core space usage stats for this vdev, its metaslab class,
3030 * and the root vdev.
3031 */
3032void
3033vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3034    int64_t space_delta)
3035{
3036	int64_t dspace_delta = space_delta;
3037	spa_t *spa = vd->vdev_spa;
3038	vdev_t *rvd = spa->spa_root_vdev;
3039	metaslab_group_t *mg = vd->vdev_mg;
3040	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3041
3042	ASSERT(vd == vd->vdev_top);
3043
3044	/*
3045	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3046	 * factor.  We must calculate this here and not at the root vdev
3047	 * because the root vdev's psize-to-asize is simply the max of its
3048	 * childrens', thus not accurate enough for us.
3049	 */
3050	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3051	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3052	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3053	    vd->vdev_deflate_ratio;
3054
3055	mutex_enter(&vd->vdev_stat_lock);
3056	vd->vdev_stat.vs_alloc += alloc_delta;
3057	vd->vdev_stat.vs_space += space_delta;
3058	vd->vdev_stat.vs_dspace += dspace_delta;
3059	mutex_exit(&vd->vdev_stat_lock);
3060
3061	if (mc == spa_normal_class(spa)) {
3062		mutex_enter(&rvd->vdev_stat_lock);
3063		rvd->vdev_stat.vs_alloc += alloc_delta;
3064		rvd->vdev_stat.vs_space += space_delta;
3065		rvd->vdev_stat.vs_dspace += dspace_delta;
3066		mutex_exit(&rvd->vdev_stat_lock);
3067	}
3068
3069	if (mc != NULL) {
3070		ASSERT(rvd == vd->vdev_parent);
3071		ASSERT(vd->vdev_ms_count != 0);
3072
3073		metaslab_class_space_update(mc,
3074		    alloc_delta, defer_delta, space_delta, dspace_delta);
3075	}
3076}
3077
3078/*
3079 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3080 * so that it will be written out next time the vdev configuration is synced.
3081 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3082 */
3083void
3084vdev_config_dirty(vdev_t *vd)
3085{
3086	spa_t *spa = vd->vdev_spa;
3087	vdev_t *rvd = spa->spa_root_vdev;
3088	int c;
3089
3090	ASSERT(spa_writeable(spa));
3091
3092	/*
3093	 * If this is an aux vdev (as with l2cache and spare devices), then we
3094	 * update the vdev config manually and set the sync flag.
3095	 */
3096	if (vd->vdev_aux != NULL) {
3097		spa_aux_vdev_t *sav = vd->vdev_aux;
3098		nvlist_t **aux;
3099		uint_t naux;
3100
3101		for (c = 0; c < sav->sav_count; c++) {
3102			if (sav->sav_vdevs[c] == vd)
3103				break;
3104		}
3105
3106		if (c == sav->sav_count) {
3107			/*
3108			 * We're being removed.  There's nothing more to do.
3109			 */
3110			ASSERT(sav->sav_sync == B_TRUE);
3111			return;
3112		}
3113
3114		sav->sav_sync = B_TRUE;
3115
3116		if (nvlist_lookup_nvlist_array(sav->sav_config,
3117		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3118			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3119			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3120		}
3121
3122		ASSERT(c < naux);
3123
3124		/*
3125		 * Setting the nvlist in the middle if the array is a little
3126		 * sketchy, but it will work.
3127		 */
3128		nvlist_free(aux[c]);
3129		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3130
3131		return;
3132	}
3133
3134	/*
3135	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3136	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3137	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3138	 * so this is sufficient to ensure mutual exclusion.
3139	 */
3140	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3141	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3142	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3143
3144	if (vd == rvd) {
3145		for (c = 0; c < rvd->vdev_children; c++)
3146			vdev_config_dirty(rvd->vdev_child[c]);
3147	} else {
3148		ASSERT(vd == vd->vdev_top);
3149
3150		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3151		    !vd->vdev_ishole)
3152			list_insert_head(&spa->spa_config_dirty_list, vd);
3153	}
3154}
3155
3156void
3157vdev_config_clean(vdev_t *vd)
3158{
3159	spa_t *spa = vd->vdev_spa;
3160
3161	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3162	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3163	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3164
3165	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3166	list_remove(&spa->spa_config_dirty_list, vd);
3167}
3168
3169/*
3170 * Mark a top-level vdev's state as dirty, so that the next pass of
3171 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3172 * the state changes from larger config changes because they require
3173 * much less locking, and are often needed for administrative actions.
3174 */
3175void
3176vdev_state_dirty(vdev_t *vd)
3177{
3178	spa_t *spa = vd->vdev_spa;
3179
3180	ASSERT(spa_writeable(spa));
3181	ASSERT(vd == vd->vdev_top);
3182
3183	/*
3184	 * The state list is protected by the SCL_STATE lock.  The caller
3185	 * must either hold SCL_STATE as writer, or must be the sync thread
3186	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3187	 * so this is sufficient to ensure mutual exclusion.
3188	 */
3189	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3190	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3191	    spa_config_held(spa, SCL_STATE, RW_READER)));
3192
3193	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3194		list_insert_head(&spa->spa_state_dirty_list, vd);
3195}
3196
3197void
3198vdev_state_clean(vdev_t *vd)
3199{
3200	spa_t *spa = vd->vdev_spa;
3201
3202	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3203	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3204	    spa_config_held(spa, SCL_STATE, RW_READER)));
3205
3206	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3207	list_remove(&spa->spa_state_dirty_list, vd);
3208}
3209
3210/*
3211 * Propagate vdev state up from children to parent.
3212 */
3213void
3214vdev_propagate_state(vdev_t *vd)
3215{
3216	spa_t *spa = vd->vdev_spa;
3217	vdev_t *rvd = spa->spa_root_vdev;
3218	int degraded = 0, faulted = 0;
3219	int corrupted = 0;
3220	vdev_t *child;
3221
3222	if (vd->vdev_children > 0) {
3223		for (int c = 0; c < vd->vdev_children; c++) {
3224			child = vd->vdev_child[c];
3225
3226			/*
3227			 * Don't factor holes into the decision.
3228			 */
3229			if (child->vdev_ishole)
3230				continue;
3231
3232			if (!vdev_readable(child) ||
3233			    (!vdev_writeable(child) && spa_writeable(spa))) {
3234				/*
3235				 * Root special: if there is a top-level log
3236				 * device, treat the root vdev as if it were
3237				 * degraded.
3238				 */
3239				if (child->vdev_islog && vd == rvd)
3240					degraded++;
3241				else
3242					faulted++;
3243			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3244				degraded++;
3245			}
3246
3247			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3248				corrupted++;
3249		}
3250
3251		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3252
3253		/*
3254		 * Root special: if there is a top-level vdev that cannot be
3255		 * opened due to corrupted metadata, then propagate the root
3256		 * vdev's aux state as 'corrupt' rather than 'insufficient
3257		 * replicas'.
3258		 */
3259		if (corrupted && vd == rvd &&
3260		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3261			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3262			    VDEV_AUX_CORRUPT_DATA);
3263	}
3264
3265	if (vd->vdev_parent)
3266		vdev_propagate_state(vd->vdev_parent);
3267}
3268
3269/*
3270 * Set a vdev's state.  If this is during an open, we don't update the parent
3271 * state, because we're in the process of opening children depth-first.
3272 * Otherwise, we propagate the change to the parent.
3273 *
3274 * If this routine places a device in a faulted state, an appropriate ereport is
3275 * generated.
3276 */
3277void
3278vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3279{
3280	uint64_t save_state;
3281	spa_t *spa = vd->vdev_spa;
3282
3283	if (state == vd->vdev_state) {
3284		vd->vdev_stat.vs_aux = aux;
3285		return;
3286	}
3287
3288	save_state = vd->vdev_state;
3289
3290	vd->vdev_state = state;
3291	vd->vdev_stat.vs_aux = aux;
3292
3293	/*
3294	 * If we are setting the vdev state to anything but an open state, then
3295	 * always close the underlying device unless the device has requested
3296	 * a delayed close (i.e. we're about to remove or fault the device).
3297	 * Otherwise, we keep accessible but invalid devices open forever.
3298	 * We don't call vdev_close() itself, because that implies some extra
3299	 * checks (offline, etc) that we don't want here.  This is limited to
3300	 * leaf devices, because otherwise closing the device will affect other
3301	 * children.
3302	 */
3303	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3304	    vd->vdev_ops->vdev_op_leaf)
3305		vd->vdev_ops->vdev_op_close(vd);
3306
3307	/*
3308	 * If we have brought this vdev back into service, we need
3309	 * to notify fmd so that it can gracefully repair any outstanding
3310	 * cases due to a missing device.  We do this in all cases, even those
3311	 * that probably don't correlate to a repaired fault.  This is sure to
3312	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3313	 * this is a transient state it's OK, as the retire agent will
3314	 * double-check the state of the vdev before repairing it.
3315	 */
3316	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3317	    vd->vdev_prevstate != state)
3318		zfs_post_state_change(spa, vd);
3319
3320	if (vd->vdev_removed &&
3321	    state == VDEV_STATE_CANT_OPEN &&
3322	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3323		/*
3324		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3325		 * device was previously marked removed and someone attempted to
3326		 * reopen it.  If this failed due to a nonexistent device, then
3327		 * keep the device in the REMOVED state.  We also let this be if
3328		 * it is one of our special test online cases, which is only
3329		 * attempting to online the device and shouldn't generate an FMA
3330		 * fault.
3331		 */
3332		vd->vdev_state = VDEV_STATE_REMOVED;
3333		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3334	} else if (state == VDEV_STATE_REMOVED) {
3335		vd->vdev_removed = B_TRUE;
3336	} else if (state == VDEV_STATE_CANT_OPEN) {
3337		/*
3338		 * If we fail to open a vdev during an import or recovery, we
3339		 * mark it as "not available", which signifies that it was
3340		 * never there to begin with.  Failure to open such a device
3341		 * is not considered an error.
3342		 */
3343		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3344		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3345		    vd->vdev_ops->vdev_op_leaf)
3346			vd->vdev_not_present = 1;
3347
3348		/*
3349		 * Post the appropriate ereport.  If the 'prevstate' field is
3350		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3351		 * that this is part of a vdev_reopen().  In this case, we don't
3352		 * want to post the ereport if the device was already in the
3353		 * CANT_OPEN state beforehand.
3354		 *
3355		 * If the 'checkremove' flag is set, then this is an attempt to
3356		 * online the device in response to an insertion event.  If we
3357		 * hit this case, then we have detected an insertion event for a
3358		 * faulted or offline device that wasn't in the removed state.
3359		 * In this scenario, we don't post an ereport because we are
3360		 * about to replace the device, or attempt an online with
3361		 * vdev_forcefault, which will generate the fault for us.
3362		 */
3363		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3364		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3365		    vd != spa->spa_root_vdev) {
3366			const char *class;
3367
3368			switch (aux) {
3369			case VDEV_AUX_OPEN_FAILED:
3370				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3371				break;
3372			case VDEV_AUX_CORRUPT_DATA:
3373				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3374				break;
3375			case VDEV_AUX_NO_REPLICAS:
3376				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3377				break;
3378			case VDEV_AUX_BAD_GUID_SUM:
3379				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3380				break;
3381			case VDEV_AUX_TOO_SMALL:
3382				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3383				break;
3384			case VDEV_AUX_BAD_LABEL:
3385				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3386				break;
3387			default:
3388				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3389			}
3390
3391			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3392		}
3393
3394		/* Erase any notion of persistent removed state */
3395		vd->vdev_removed = B_FALSE;
3396	} else {
3397		vd->vdev_removed = B_FALSE;
3398	}
3399
3400	if (!isopen && vd->vdev_parent)
3401		vdev_propagate_state(vd->vdev_parent);
3402}
3403
3404/*
3405 * Check the vdev configuration to ensure that it's capable of supporting
3406 * a root pool.
3407 *
3408 * On Solaris, we do not support RAID-Z or partial configuration.  In
3409 * addition, only a single top-level vdev is allowed and none of the
3410 * leaves can be wholedisks.
3411 *
3412 * For FreeBSD, we can boot from any configuration. There is a
3413 * limitation that the boot filesystem must be either uncompressed or
3414 * compresses with lzjb compression but I'm not sure how to enforce
3415 * that here.
3416 */
3417boolean_t
3418vdev_is_bootable(vdev_t *vd)
3419{
3420#ifdef illumos
3421	if (!vd->vdev_ops->vdev_op_leaf) {
3422		char *vdev_type = vd->vdev_ops->vdev_op_type;
3423
3424		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3425		    vd->vdev_children > 1) {
3426			return (B_FALSE);
3427		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3428		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3429			return (B_FALSE);
3430		}
3431	}
3432
3433	for (int c = 0; c < vd->vdev_children; c++) {
3434		if (!vdev_is_bootable(vd->vdev_child[c]))
3435			return (B_FALSE);
3436	}
3437#endif	/* illumos */
3438	return (B_TRUE);
3439}
3440
3441/*
3442 * Load the state from the original vdev tree (ovd) which
3443 * we've retrieved from the MOS config object. If the original
3444 * vdev was offline or faulted then we transfer that state to the
3445 * device in the current vdev tree (nvd).
3446 */
3447void
3448vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3449{
3450	spa_t *spa = nvd->vdev_spa;
3451
3452	ASSERT(nvd->vdev_top->vdev_islog);
3453	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3454	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3455
3456	for (int c = 0; c < nvd->vdev_children; c++)
3457		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3458
3459	if (nvd->vdev_ops->vdev_op_leaf) {
3460		/*
3461		 * Restore the persistent vdev state
3462		 */
3463		nvd->vdev_offline = ovd->vdev_offline;
3464		nvd->vdev_faulted = ovd->vdev_faulted;
3465		nvd->vdev_degraded = ovd->vdev_degraded;
3466		nvd->vdev_removed = ovd->vdev_removed;
3467	}
3468}
3469
3470/*
3471 * Determine if a log device has valid content.  If the vdev was
3472 * removed or faulted in the MOS config then we know that
3473 * the content on the log device has already been written to the pool.
3474 */
3475boolean_t
3476vdev_log_state_valid(vdev_t *vd)
3477{
3478	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3479	    !vd->vdev_removed)
3480		return (B_TRUE);
3481
3482	for (int c = 0; c < vd->vdev_children; c++)
3483		if (vdev_log_state_valid(vd->vdev_child[c]))
3484			return (B_TRUE);
3485
3486	return (B_FALSE);
3487}
3488
3489/*
3490 * Expand a vdev if possible.
3491 */
3492void
3493vdev_expand(vdev_t *vd, uint64_t txg)
3494{
3495	ASSERT(vd->vdev_top == vd);
3496	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3497
3498	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3499		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3500		vdev_config_dirty(vd);
3501	}
3502}
3503
3504/*
3505 * Split a vdev.
3506 */
3507void
3508vdev_split(vdev_t *vd)
3509{
3510	vdev_t *cvd, *pvd = vd->vdev_parent;
3511
3512	vdev_remove_child(pvd, vd);
3513	vdev_compact_children(pvd);
3514
3515	cvd = pvd->vdev_child[0];
3516	if (pvd->vdev_children == 1) {
3517		vdev_remove_parent(cvd);
3518		cvd->vdev_splitting = B_TRUE;
3519	}
3520	vdev_propagate_state(cvd);
3521}
3522
3523void
3524vdev_deadman(vdev_t *vd)
3525{
3526	for (int c = 0; c < vd->vdev_children; c++) {
3527		vdev_t *cvd = vd->vdev_child[c];
3528
3529		vdev_deadman(cvd);
3530	}
3531
3532	if (vd->vdev_ops->vdev_op_leaf) {
3533		vdev_queue_t *vq = &vd->vdev_queue;
3534
3535		mutex_enter(&vq->vq_lock);
3536		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3537			spa_t *spa = vd->vdev_spa;
3538			zio_t *fio;
3539			uint64_t delta;
3540
3541			/*
3542			 * Look at the head of all the pending queues,
3543			 * if any I/O has been outstanding for longer than
3544			 * the spa_deadman_synctime we panic the system.
3545			 */
3546			fio = avl_first(&vq->vq_active_tree);
3547			delta = gethrtime() - fio->io_timestamp;
3548			if (delta > spa_deadman_synctime(spa)) {
3549				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3550				    "delta %lluns, last io %lluns",
3551				    fio->io_timestamp, delta,
3552				    vq->vq_io_complete_ts);
3553				fm_panic("I/O to pool '%s' appears to be "
3554				    "hung on vdev guid %llu at '%s'.",
3555				    spa_name(spa),
3556				    (long long unsigned int) vd->vdev_guid,
3557				    vd->vdev_path);
3558			}
3559		}
3560		mutex_exit(&vq->vq_lock);
3561	}
3562}
3563