vdev.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/fm/fs/zfs.h>
32#include <sys/spa.h>
33#include <sys/spa_impl.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/vdev_impl.h>
37#include <sys/uberblock_impl.h>
38#include <sys/metaslab.h>
39#include <sys/metaslab_impl.h>
40#include <sys/space_map.h>
41#include <sys/space_reftree.h>
42#include <sys/zio.h>
43#include <sys/zap.h>
44#include <sys/fs/zfs.h>
45#include <sys/arc.h>
46#include <sys/zil.h>
47#include <sys/dsl_scan.h>
48#include <sys/trim_map.h>
49
50SYSCTL_DECL(_vfs_zfs);
51SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
52
53/*
54 * Virtual device management.
55 */
56
57/*
58 * The limit for ZFS to automatically increase a top-level vdev's ashift
59 * from logical ashift to physical ashift.
60 *
61 * Example: one or more 512B emulation child vdevs
62 *          child->vdev_ashift = 9 (512 bytes)
63 *          child->vdev_physical_ashift = 12 (4096 bytes)
64 *          zfs_max_auto_ashift = 11 (2048 bytes)
65 *          zfs_min_auto_ashift = 9 (512 bytes)
66 *
67 * On pool creation or the addition of a new top-level vdev, ZFS will
68 * increase the ashift of the top-level vdev to 2048 as limited by
69 * zfs_max_auto_ashift.
70 *
71 * Example: one or more 512B emulation child vdevs
72 *          child->vdev_ashift = 9 (512 bytes)
73 *          child->vdev_physical_ashift = 12 (4096 bytes)
74 *          zfs_max_auto_ashift = 13 (8192 bytes)
75 *          zfs_min_auto_ashift = 9 (512 bytes)
76 *
77 * On pool creation or the addition of a new top-level vdev, ZFS will
78 * increase the ashift of the top-level vdev to 4096 to match the
79 * max vdev_physical_ashift.
80 *
81 * Example: one or more 512B emulation child vdevs
82 *          child->vdev_ashift = 9 (512 bytes)
83 *          child->vdev_physical_ashift = 9 (512 bytes)
84 *          zfs_max_auto_ashift = 13 (8192 bytes)
85 *          zfs_min_auto_ashift = 12 (4096 bytes)
86 *
87 * On pool creation or the addition of a new top-level vdev, ZFS will
88 * increase the ashift of the top-level vdev to 4096 to match the
89 * zfs_min_auto_ashift.
90 */
91static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
92static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
93
94static int
95sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
96{
97	uint64_t val;
98	int err;
99
100	val = zfs_max_auto_ashift;
101	err = sysctl_handle_64(oidp, &val, 0, req);
102	if (err != 0 || req->newptr == NULL)
103		return (err);
104
105	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
106		return (EINVAL);
107
108	zfs_max_auto_ashift = val;
109
110	return (0);
111}
112SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
113    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
114    sysctl_vfs_zfs_max_auto_ashift, "QU",
115    "Max ashift used when optimising for logical -> physical sectors size on "
116    "new top-level vdevs.");
117
118static int
119sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
120{
121	uint64_t val;
122	int err;
123
124	val = zfs_min_auto_ashift;
125	err = sysctl_handle_64(oidp, &val, 0, req);
126	if (err != 0 || req->newptr == NULL)
127		return (err);
128
129	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
130		return (EINVAL);
131
132	zfs_min_auto_ashift = val;
133
134	return (0);
135}
136SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
137    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
138    sysctl_vfs_zfs_min_auto_ashift, "QU",
139    "Min ashift used when creating new top-level vdevs.");
140
141static vdev_ops_t *vdev_ops_table[] = {
142	&vdev_root_ops,
143	&vdev_raidz_ops,
144	&vdev_mirror_ops,
145	&vdev_replacing_ops,
146	&vdev_spare_ops,
147#ifdef _KERNEL
148	&vdev_geom_ops,
149#else
150	&vdev_disk_ops,
151#endif
152	&vdev_file_ops,
153	&vdev_missing_ops,
154	&vdev_hole_ops,
155	NULL
156};
157
158
159/*
160 * When a vdev is added, it will be divided into approximately (but no
161 * more than) this number of metaslabs.
162 */
163int metaslabs_per_vdev = 200;
164SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
165    &metaslabs_per_vdev, 0,
166    "When a vdev is added, how many metaslabs the vdev should be divided into");
167
168/*
169 * Given a vdev type, return the appropriate ops vector.
170 */
171static vdev_ops_t *
172vdev_getops(const char *type)
173{
174	vdev_ops_t *ops, **opspp;
175
176	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
177		if (strcmp(ops->vdev_op_type, type) == 0)
178			break;
179
180	return (ops);
181}
182
183/*
184 * Default asize function: return the MAX of psize with the asize of
185 * all children.  This is what's used by anything other than RAID-Z.
186 */
187uint64_t
188vdev_default_asize(vdev_t *vd, uint64_t psize)
189{
190	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
191	uint64_t csize;
192
193	for (int c = 0; c < vd->vdev_children; c++) {
194		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
195		asize = MAX(asize, csize);
196	}
197
198	return (asize);
199}
200
201/*
202 * Get the minimum allocatable size. We define the allocatable size as
203 * the vdev's asize rounded to the nearest metaslab. This allows us to
204 * replace or attach devices which don't have the same physical size but
205 * can still satisfy the same number of allocations.
206 */
207uint64_t
208vdev_get_min_asize(vdev_t *vd)
209{
210	vdev_t *pvd = vd->vdev_parent;
211
212	/*
213	 * If our parent is NULL (inactive spare or cache) or is the root,
214	 * just return our own asize.
215	 */
216	if (pvd == NULL)
217		return (vd->vdev_asize);
218
219	/*
220	 * The top-level vdev just returns the allocatable size rounded
221	 * to the nearest metaslab.
222	 */
223	if (vd == vd->vdev_top)
224		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
225
226	/*
227	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
228	 * so each child must provide at least 1/Nth of its asize.
229	 */
230	if (pvd->vdev_ops == &vdev_raidz_ops)
231		return (pvd->vdev_min_asize / pvd->vdev_children);
232
233	return (pvd->vdev_min_asize);
234}
235
236void
237vdev_set_min_asize(vdev_t *vd)
238{
239	vd->vdev_min_asize = vdev_get_min_asize(vd);
240
241	for (int c = 0; c < vd->vdev_children; c++)
242		vdev_set_min_asize(vd->vdev_child[c]);
243}
244
245vdev_t *
246vdev_lookup_top(spa_t *spa, uint64_t vdev)
247{
248	vdev_t *rvd = spa->spa_root_vdev;
249
250	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
251
252	if (vdev < rvd->vdev_children) {
253		ASSERT(rvd->vdev_child[vdev] != NULL);
254		return (rvd->vdev_child[vdev]);
255	}
256
257	return (NULL);
258}
259
260vdev_t *
261vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
262{
263	vdev_t *mvd;
264
265	if (vd->vdev_guid == guid)
266		return (vd);
267
268	for (int c = 0; c < vd->vdev_children; c++)
269		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
270		    NULL)
271			return (mvd);
272
273	return (NULL);
274}
275
276static int
277vdev_count_leaves_impl(vdev_t *vd)
278{
279	int n = 0;
280
281	if (vd->vdev_ops->vdev_op_leaf)
282		return (1);
283
284	for (int c = 0; c < vd->vdev_children; c++)
285		n += vdev_count_leaves_impl(vd->vdev_child[c]);
286
287	return (n);
288}
289
290int
291vdev_count_leaves(spa_t *spa)
292{
293	return (vdev_count_leaves_impl(spa->spa_root_vdev));
294}
295
296void
297vdev_add_child(vdev_t *pvd, vdev_t *cvd)
298{
299	size_t oldsize, newsize;
300	uint64_t id = cvd->vdev_id;
301	vdev_t **newchild;
302	spa_t *spa = cvd->vdev_spa;
303
304	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
305	ASSERT(cvd->vdev_parent == NULL);
306
307	cvd->vdev_parent = pvd;
308
309	if (pvd == NULL)
310		return;
311
312	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
313
314	oldsize = pvd->vdev_children * sizeof (vdev_t *);
315	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
316	newsize = pvd->vdev_children * sizeof (vdev_t *);
317
318	newchild = kmem_zalloc(newsize, KM_SLEEP);
319	if (pvd->vdev_child != NULL) {
320		bcopy(pvd->vdev_child, newchild, oldsize);
321		kmem_free(pvd->vdev_child, oldsize);
322	}
323
324	pvd->vdev_child = newchild;
325	pvd->vdev_child[id] = cvd;
326
327	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
328	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
329
330	/*
331	 * Walk up all ancestors to update guid sum.
332	 */
333	for (; pvd != NULL; pvd = pvd->vdev_parent)
334		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
335}
336
337void
338vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
339{
340	int c;
341	uint_t id = cvd->vdev_id;
342
343	ASSERT(cvd->vdev_parent == pvd);
344
345	if (pvd == NULL)
346		return;
347
348	ASSERT(id < pvd->vdev_children);
349	ASSERT(pvd->vdev_child[id] == cvd);
350
351	pvd->vdev_child[id] = NULL;
352	cvd->vdev_parent = NULL;
353
354	for (c = 0; c < pvd->vdev_children; c++)
355		if (pvd->vdev_child[c])
356			break;
357
358	if (c == pvd->vdev_children) {
359		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
360		pvd->vdev_child = NULL;
361		pvd->vdev_children = 0;
362	}
363
364	/*
365	 * Walk up all ancestors to update guid sum.
366	 */
367	for (; pvd != NULL; pvd = pvd->vdev_parent)
368		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
369}
370
371/*
372 * Remove any holes in the child array.
373 */
374void
375vdev_compact_children(vdev_t *pvd)
376{
377	vdev_t **newchild, *cvd;
378	int oldc = pvd->vdev_children;
379	int newc;
380
381	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
382
383	for (int c = newc = 0; c < oldc; c++)
384		if (pvd->vdev_child[c])
385			newc++;
386
387	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
388
389	for (int c = newc = 0; c < oldc; c++) {
390		if ((cvd = pvd->vdev_child[c]) != NULL) {
391			newchild[newc] = cvd;
392			cvd->vdev_id = newc++;
393		}
394	}
395
396	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
397	pvd->vdev_child = newchild;
398	pvd->vdev_children = newc;
399}
400
401/*
402 * Allocate and minimally initialize a vdev_t.
403 */
404vdev_t *
405vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
406{
407	vdev_t *vd;
408
409	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
410
411	if (spa->spa_root_vdev == NULL) {
412		ASSERT(ops == &vdev_root_ops);
413		spa->spa_root_vdev = vd;
414		spa->spa_load_guid = spa_generate_guid(NULL);
415	}
416
417	if (guid == 0 && ops != &vdev_hole_ops) {
418		if (spa->spa_root_vdev == vd) {
419			/*
420			 * The root vdev's guid will also be the pool guid,
421			 * which must be unique among all pools.
422			 */
423			guid = spa_generate_guid(NULL);
424		} else {
425			/*
426			 * Any other vdev's guid must be unique within the pool.
427			 */
428			guid = spa_generate_guid(spa);
429		}
430		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
431	}
432
433	vd->vdev_spa = spa;
434	vd->vdev_id = id;
435	vd->vdev_guid = guid;
436	vd->vdev_guid_sum = guid;
437	vd->vdev_ops = ops;
438	vd->vdev_state = VDEV_STATE_CLOSED;
439	vd->vdev_ishole = (ops == &vdev_hole_ops);
440
441	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
442	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
443	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
444	for (int t = 0; t < DTL_TYPES; t++) {
445		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
446		    &vd->vdev_dtl_lock);
447	}
448	txg_list_create(&vd->vdev_ms_list,
449	    offsetof(struct metaslab, ms_txg_node));
450	txg_list_create(&vd->vdev_dtl_list,
451	    offsetof(struct vdev, vdev_dtl_node));
452	vd->vdev_stat.vs_timestamp = gethrtime();
453	vdev_queue_init(vd);
454	vdev_cache_init(vd);
455
456	return (vd);
457}
458
459/*
460 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
461 * creating a new vdev or loading an existing one - the behavior is slightly
462 * different for each case.
463 */
464int
465vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
466    int alloctype)
467{
468	vdev_ops_t *ops;
469	char *type;
470	uint64_t guid = 0, islog, nparity;
471	vdev_t *vd;
472
473	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
474
475	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
476		return (SET_ERROR(EINVAL));
477
478	if ((ops = vdev_getops(type)) == NULL)
479		return (SET_ERROR(EINVAL));
480
481	/*
482	 * If this is a load, get the vdev guid from the nvlist.
483	 * Otherwise, vdev_alloc_common() will generate one for us.
484	 */
485	if (alloctype == VDEV_ALLOC_LOAD) {
486		uint64_t label_id;
487
488		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
489		    label_id != id)
490			return (SET_ERROR(EINVAL));
491
492		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
493			return (SET_ERROR(EINVAL));
494	} else if (alloctype == VDEV_ALLOC_SPARE) {
495		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
496			return (SET_ERROR(EINVAL));
497	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
498		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
499			return (SET_ERROR(EINVAL));
500	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
501		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
502			return (SET_ERROR(EINVAL));
503	}
504
505	/*
506	 * The first allocated vdev must be of type 'root'.
507	 */
508	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
509		return (SET_ERROR(EINVAL));
510
511	/*
512	 * Determine whether we're a log vdev.
513	 */
514	islog = 0;
515	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
516	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
517		return (SET_ERROR(ENOTSUP));
518
519	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
520		return (SET_ERROR(ENOTSUP));
521
522	/*
523	 * Set the nparity property for RAID-Z vdevs.
524	 */
525	nparity = -1ULL;
526	if (ops == &vdev_raidz_ops) {
527		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
528		    &nparity) == 0) {
529			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
530				return (SET_ERROR(EINVAL));
531			/*
532			 * Previous versions could only support 1 or 2 parity
533			 * device.
534			 */
535			if (nparity > 1 &&
536			    spa_version(spa) < SPA_VERSION_RAIDZ2)
537				return (SET_ERROR(ENOTSUP));
538			if (nparity > 2 &&
539			    spa_version(spa) < SPA_VERSION_RAIDZ3)
540				return (SET_ERROR(ENOTSUP));
541		} else {
542			/*
543			 * We require the parity to be specified for SPAs that
544			 * support multiple parity levels.
545			 */
546			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
547				return (SET_ERROR(EINVAL));
548			/*
549			 * Otherwise, we default to 1 parity device for RAID-Z.
550			 */
551			nparity = 1;
552		}
553	} else {
554		nparity = 0;
555	}
556	ASSERT(nparity != -1ULL);
557
558	vd = vdev_alloc_common(spa, id, guid, ops);
559
560	vd->vdev_islog = islog;
561	vd->vdev_nparity = nparity;
562
563	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
564		vd->vdev_path = spa_strdup(vd->vdev_path);
565	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
566		vd->vdev_devid = spa_strdup(vd->vdev_devid);
567	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
568	    &vd->vdev_physpath) == 0)
569		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
570	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
571		vd->vdev_fru = spa_strdup(vd->vdev_fru);
572
573	/*
574	 * Set the whole_disk property.  If it's not specified, leave the value
575	 * as -1.
576	 */
577	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
578	    &vd->vdev_wholedisk) != 0)
579		vd->vdev_wholedisk = -1ULL;
580
581	/*
582	 * Look for the 'not present' flag.  This will only be set if the device
583	 * was not present at the time of import.
584	 */
585	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
586	    &vd->vdev_not_present);
587
588	/*
589	 * Get the alignment requirement.
590	 */
591	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
592
593	/*
594	 * Retrieve the vdev creation time.
595	 */
596	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
597	    &vd->vdev_crtxg);
598
599	/*
600	 * If we're a top-level vdev, try to load the allocation parameters.
601	 */
602	if (parent && !parent->vdev_parent &&
603	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
604		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
605		    &vd->vdev_ms_array);
606		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
607		    &vd->vdev_ms_shift);
608		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
609		    &vd->vdev_asize);
610		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
611		    &vd->vdev_removing);
612	}
613
614	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
615		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
616		    alloctype == VDEV_ALLOC_ADD ||
617		    alloctype == VDEV_ALLOC_SPLIT ||
618		    alloctype == VDEV_ALLOC_ROOTPOOL);
619		vd->vdev_mg = metaslab_group_create(islog ?
620		    spa_log_class(spa) : spa_normal_class(spa), vd);
621	}
622
623	/*
624	 * If we're a leaf vdev, try to load the DTL object and other state.
625	 */
626	if (vd->vdev_ops->vdev_op_leaf &&
627	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
628	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
629		if (alloctype == VDEV_ALLOC_LOAD) {
630			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
631			    &vd->vdev_dtl_object);
632			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
633			    &vd->vdev_unspare);
634		}
635
636		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
637			uint64_t spare = 0;
638
639			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
640			    &spare) == 0 && spare)
641				spa_spare_add(vd);
642		}
643
644		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
645		    &vd->vdev_offline);
646
647		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
648		    &vd->vdev_resilver_txg);
649
650		/*
651		 * When importing a pool, we want to ignore the persistent fault
652		 * state, as the diagnosis made on another system may not be
653		 * valid in the current context.  Local vdevs will
654		 * remain in the faulted state.
655		 */
656		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
657			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
658			    &vd->vdev_faulted);
659			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
660			    &vd->vdev_degraded);
661			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
662			    &vd->vdev_removed);
663
664			if (vd->vdev_faulted || vd->vdev_degraded) {
665				char *aux;
666
667				vd->vdev_label_aux =
668				    VDEV_AUX_ERR_EXCEEDED;
669				if (nvlist_lookup_string(nv,
670				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
671				    strcmp(aux, "external") == 0)
672					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
673			}
674		}
675	}
676
677	/*
678	 * Add ourselves to the parent's list of children.
679	 */
680	vdev_add_child(parent, vd);
681
682	*vdp = vd;
683
684	return (0);
685}
686
687void
688vdev_free(vdev_t *vd)
689{
690	spa_t *spa = vd->vdev_spa;
691
692	/*
693	 * vdev_free() implies closing the vdev first.  This is simpler than
694	 * trying to ensure complicated semantics for all callers.
695	 */
696	vdev_close(vd);
697
698	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
699	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
700
701	/*
702	 * Free all children.
703	 */
704	for (int c = 0; c < vd->vdev_children; c++)
705		vdev_free(vd->vdev_child[c]);
706
707	ASSERT(vd->vdev_child == NULL);
708	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
709
710	/*
711	 * Discard allocation state.
712	 */
713	if (vd->vdev_mg != NULL) {
714		vdev_metaslab_fini(vd);
715		metaslab_group_destroy(vd->vdev_mg);
716	}
717
718	ASSERT0(vd->vdev_stat.vs_space);
719	ASSERT0(vd->vdev_stat.vs_dspace);
720	ASSERT0(vd->vdev_stat.vs_alloc);
721
722	/*
723	 * Remove this vdev from its parent's child list.
724	 */
725	vdev_remove_child(vd->vdev_parent, vd);
726
727	ASSERT(vd->vdev_parent == NULL);
728
729	/*
730	 * Clean up vdev structure.
731	 */
732	vdev_queue_fini(vd);
733	vdev_cache_fini(vd);
734
735	if (vd->vdev_path)
736		spa_strfree(vd->vdev_path);
737	if (vd->vdev_devid)
738		spa_strfree(vd->vdev_devid);
739	if (vd->vdev_physpath)
740		spa_strfree(vd->vdev_physpath);
741	if (vd->vdev_fru)
742		spa_strfree(vd->vdev_fru);
743
744	if (vd->vdev_isspare)
745		spa_spare_remove(vd);
746	if (vd->vdev_isl2cache)
747		spa_l2cache_remove(vd);
748
749	txg_list_destroy(&vd->vdev_ms_list);
750	txg_list_destroy(&vd->vdev_dtl_list);
751
752	mutex_enter(&vd->vdev_dtl_lock);
753	space_map_close(vd->vdev_dtl_sm);
754	for (int t = 0; t < DTL_TYPES; t++) {
755		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
756		range_tree_destroy(vd->vdev_dtl[t]);
757	}
758	mutex_exit(&vd->vdev_dtl_lock);
759
760	mutex_destroy(&vd->vdev_dtl_lock);
761	mutex_destroy(&vd->vdev_stat_lock);
762	mutex_destroy(&vd->vdev_probe_lock);
763
764	if (vd == spa->spa_root_vdev)
765		spa->spa_root_vdev = NULL;
766
767	kmem_free(vd, sizeof (vdev_t));
768}
769
770/*
771 * Transfer top-level vdev state from svd to tvd.
772 */
773static void
774vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
775{
776	spa_t *spa = svd->vdev_spa;
777	metaslab_t *msp;
778	vdev_t *vd;
779	int t;
780
781	ASSERT(tvd == tvd->vdev_top);
782
783	tvd->vdev_ms_array = svd->vdev_ms_array;
784	tvd->vdev_ms_shift = svd->vdev_ms_shift;
785	tvd->vdev_ms_count = svd->vdev_ms_count;
786
787	svd->vdev_ms_array = 0;
788	svd->vdev_ms_shift = 0;
789	svd->vdev_ms_count = 0;
790
791	if (tvd->vdev_mg)
792		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
793	tvd->vdev_mg = svd->vdev_mg;
794	tvd->vdev_ms = svd->vdev_ms;
795
796	svd->vdev_mg = NULL;
797	svd->vdev_ms = NULL;
798
799	if (tvd->vdev_mg != NULL)
800		tvd->vdev_mg->mg_vd = tvd;
801
802	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
803	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
804	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
805
806	svd->vdev_stat.vs_alloc = 0;
807	svd->vdev_stat.vs_space = 0;
808	svd->vdev_stat.vs_dspace = 0;
809
810	for (t = 0; t < TXG_SIZE; t++) {
811		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
812			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
813		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
814			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
815		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
816			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
817	}
818
819	if (list_link_active(&svd->vdev_config_dirty_node)) {
820		vdev_config_clean(svd);
821		vdev_config_dirty(tvd);
822	}
823
824	if (list_link_active(&svd->vdev_state_dirty_node)) {
825		vdev_state_clean(svd);
826		vdev_state_dirty(tvd);
827	}
828
829	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
830	svd->vdev_deflate_ratio = 0;
831
832	tvd->vdev_islog = svd->vdev_islog;
833	svd->vdev_islog = 0;
834}
835
836static void
837vdev_top_update(vdev_t *tvd, vdev_t *vd)
838{
839	if (vd == NULL)
840		return;
841
842	vd->vdev_top = tvd;
843
844	for (int c = 0; c < vd->vdev_children; c++)
845		vdev_top_update(tvd, vd->vdev_child[c]);
846}
847
848/*
849 * Add a mirror/replacing vdev above an existing vdev.
850 */
851vdev_t *
852vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
853{
854	spa_t *spa = cvd->vdev_spa;
855	vdev_t *pvd = cvd->vdev_parent;
856	vdev_t *mvd;
857
858	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
859
860	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
861
862	mvd->vdev_asize = cvd->vdev_asize;
863	mvd->vdev_min_asize = cvd->vdev_min_asize;
864	mvd->vdev_max_asize = cvd->vdev_max_asize;
865	mvd->vdev_ashift = cvd->vdev_ashift;
866	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
867	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
868	mvd->vdev_state = cvd->vdev_state;
869	mvd->vdev_crtxg = cvd->vdev_crtxg;
870
871	vdev_remove_child(pvd, cvd);
872	vdev_add_child(pvd, mvd);
873	cvd->vdev_id = mvd->vdev_children;
874	vdev_add_child(mvd, cvd);
875	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
876
877	if (mvd == mvd->vdev_top)
878		vdev_top_transfer(cvd, mvd);
879
880	return (mvd);
881}
882
883/*
884 * Remove a 1-way mirror/replacing vdev from the tree.
885 */
886void
887vdev_remove_parent(vdev_t *cvd)
888{
889	vdev_t *mvd = cvd->vdev_parent;
890	vdev_t *pvd = mvd->vdev_parent;
891
892	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
893
894	ASSERT(mvd->vdev_children == 1);
895	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
896	    mvd->vdev_ops == &vdev_replacing_ops ||
897	    mvd->vdev_ops == &vdev_spare_ops);
898	cvd->vdev_ashift = mvd->vdev_ashift;
899	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
900	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
901
902	vdev_remove_child(mvd, cvd);
903	vdev_remove_child(pvd, mvd);
904
905	/*
906	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
907	 * Otherwise, we could have detached an offline device, and when we
908	 * go to import the pool we'll think we have two top-level vdevs,
909	 * instead of a different version of the same top-level vdev.
910	 */
911	if (mvd->vdev_top == mvd) {
912		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
913		cvd->vdev_orig_guid = cvd->vdev_guid;
914		cvd->vdev_guid += guid_delta;
915		cvd->vdev_guid_sum += guid_delta;
916	}
917	cvd->vdev_id = mvd->vdev_id;
918	vdev_add_child(pvd, cvd);
919	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
920
921	if (cvd == cvd->vdev_top)
922		vdev_top_transfer(mvd, cvd);
923
924	ASSERT(mvd->vdev_children == 0);
925	vdev_free(mvd);
926}
927
928int
929vdev_metaslab_init(vdev_t *vd, uint64_t txg)
930{
931	spa_t *spa = vd->vdev_spa;
932	objset_t *mos = spa->spa_meta_objset;
933	uint64_t m;
934	uint64_t oldc = vd->vdev_ms_count;
935	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
936	metaslab_t **mspp;
937	int error;
938
939	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
940
941	/*
942	 * This vdev is not being allocated from yet or is a hole.
943	 */
944	if (vd->vdev_ms_shift == 0)
945		return (0);
946
947	ASSERT(!vd->vdev_ishole);
948
949	/*
950	 * Compute the raidz-deflation ratio.  Note, we hard-code
951	 * in 128k (1 << 17) because it is the "typical" blocksize.
952	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
953	 * otherwise it would inconsistently account for existing bp's.
954	 */
955	vd->vdev_deflate_ratio = (1 << 17) /
956	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
957
958	ASSERT(oldc <= newc);
959
960	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
961
962	if (oldc != 0) {
963		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
964		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
965	}
966
967	vd->vdev_ms = mspp;
968	vd->vdev_ms_count = newc;
969
970	for (m = oldc; m < newc; m++) {
971		uint64_t object = 0;
972
973		if (txg == 0) {
974			error = dmu_read(mos, vd->vdev_ms_array,
975			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
976			    DMU_READ_PREFETCH);
977			if (error)
978				return (error);
979		}
980
981		error = metaslab_init(vd->vdev_mg, m, object, txg,
982		    &(vd->vdev_ms[m]));
983		if (error)
984			return (error);
985	}
986
987	if (txg == 0)
988		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
989
990	/*
991	 * If the vdev is being removed we don't activate
992	 * the metaslabs since we want to ensure that no new
993	 * allocations are performed on this device.
994	 */
995	if (oldc == 0 && !vd->vdev_removing)
996		metaslab_group_activate(vd->vdev_mg);
997
998	if (txg == 0)
999		spa_config_exit(spa, SCL_ALLOC, FTAG);
1000
1001	return (0);
1002}
1003
1004void
1005vdev_metaslab_fini(vdev_t *vd)
1006{
1007	uint64_t m;
1008	uint64_t count = vd->vdev_ms_count;
1009
1010	if (vd->vdev_ms != NULL) {
1011		metaslab_group_passivate(vd->vdev_mg);
1012		for (m = 0; m < count; m++) {
1013			metaslab_t *msp = vd->vdev_ms[m];
1014
1015			if (msp != NULL)
1016				metaslab_fini(msp);
1017		}
1018		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1019		vd->vdev_ms = NULL;
1020	}
1021}
1022
1023typedef struct vdev_probe_stats {
1024	boolean_t	vps_readable;
1025	boolean_t	vps_writeable;
1026	int		vps_flags;
1027} vdev_probe_stats_t;
1028
1029static void
1030vdev_probe_done(zio_t *zio)
1031{
1032	spa_t *spa = zio->io_spa;
1033	vdev_t *vd = zio->io_vd;
1034	vdev_probe_stats_t *vps = zio->io_private;
1035
1036	ASSERT(vd->vdev_probe_zio != NULL);
1037
1038	if (zio->io_type == ZIO_TYPE_READ) {
1039		if (zio->io_error == 0)
1040			vps->vps_readable = 1;
1041		if (zio->io_error == 0 && spa_writeable(spa)) {
1042			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1043			    zio->io_offset, zio->io_size, zio->io_data,
1044			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1045			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1046		} else {
1047			zio_buf_free(zio->io_data, zio->io_size);
1048		}
1049	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1050		if (zio->io_error == 0)
1051			vps->vps_writeable = 1;
1052		zio_buf_free(zio->io_data, zio->io_size);
1053	} else if (zio->io_type == ZIO_TYPE_NULL) {
1054		zio_t *pio;
1055
1056		vd->vdev_cant_read |= !vps->vps_readable;
1057		vd->vdev_cant_write |= !vps->vps_writeable;
1058
1059		if (vdev_readable(vd) &&
1060		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1061			zio->io_error = 0;
1062		} else {
1063			ASSERT(zio->io_error != 0);
1064			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1065			    spa, vd, NULL, 0, 0);
1066			zio->io_error = SET_ERROR(ENXIO);
1067		}
1068
1069		mutex_enter(&vd->vdev_probe_lock);
1070		ASSERT(vd->vdev_probe_zio == zio);
1071		vd->vdev_probe_zio = NULL;
1072		mutex_exit(&vd->vdev_probe_lock);
1073
1074		while ((pio = zio_walk_parents(zio)) != NULL)
1075			if (!vdev_accessible(vd, pio))
1076				pio->io_error = SET_ERROR(ENXIO);
1077
1078		kmem_free(vps, sizeof (*vps));
1079	}
1080}
1081
1082/*
1083 * Determine whether this device is accessible.
1084 *
1085 * Read and write to several known locations: the pad regions of each
1086 * vdev label but the first, which we leave alone in case it contains
1087 * a VTOC.
1088 */
1089zio_t *
1090vdev_probe(vdev_t *vd, zio_t *zio)
1091{
1092	spa_t *spa = vd->vdev_spa;
1093	vdev_probe_stats_t *vps = NULL;
1094	zio_t *pio;
1095
1096	ASSERT(vd->vdev_ops->vdev_op_leaf);
1097
1098	/*
1099	 * Don't probe the probe.
1100	 */
1101	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1102		return (NULL);
1103
1104	/*
1105	 * To prevent 'probe storms' when a device fails, we create
1106	 * just one probe i/o at a time.  All zios that want to probe
1107	 * this vdev will become parents of the probe io.
1108	 */
1109	mutex_enter(&vd->vdev_probe_lock);
1110
1111	if ((pio = vd->vdev_probe_zio) == NULL) {
1112		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1113
1114		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1115		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1116		    ZIO_FLAG_TRYHARD;
1117
1118		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1119			/*
1120			 * vdev_cant_read and vdev_cant_write can only
1121			 * transition from TRUE to FALSE when we have the
1122			 * SCL_ZIO lock as writer; otherwise they can only
1123			 * transition from FALSE to TRUE.  This ensures that
1124			 * any zio looking at these values can assume that
1125			 * failures persist for the life of the I/O.  That's
1126			 * important because when a device has intermittent
1127			 * connectivity problems, we want to ensure that
1128			 * they're ascribed to the device (ENXIO) and not
1129			 * the zio (EIO).
1130			 *
1131			 * Since we hold SCL_ZIO as writer here, clear both
1132			 * values so the probe can reevaluate from first
1133			 * principles.
1134			 */
1135			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1136			vd->vdev_cant_read = B_FALSE;
1137			vd->vdev_cant_write = B_FALSE;
1138		}
1139
1140		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1141		    vdev_probe_done, vps,
1142		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1143
1144		/*
1145		 * We can't change the vdev state in this context, so we
1146		 * kick off an async task to do it on our behalf.
1147		 */
1148		if (zio != NULL) {
1149			vd->vdev_probe_wanted = B_TRUE;
1150			spa_async_request(spa, SPA_ASYNC_PROBE);
1151		}
1152	}
1153
1154	if (zio != NULL)
1155		zio_add_child(zio, pio);
1156
1157	mutex_exit(&vd->vdev_probe_lock);
1158
1159	if (vps == NULL) {
1160		ASSERT(zio != NULL);
1161		return (NULL);
1162	}
1163
1164	for (int l = 1; l < VDEV_LABELS; l++) {
1165		zio_nowait(zio_read_phys(pio, vd,
1166		    vdev_label_offset(vd->vdev_psize, l,
1167		    offsetof(vdev_label_t, vl_pad2)),
1168		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1169		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1170		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1171	}
1172
1173	if (zio == NULL)
1174		return (pio);
1175
1176	zio_nowait(pio);
1177	return (NULL);
1178}
1179
1180static void
1181vdev_open_child(void *arg)
1182{
1183	vdev_t *vd = arg;
1184
1185	vd->vdev_open_thread = curthread;
1186	vd->vdev_open_error = vdev_open(vd);
1187	vd->vdev_open_thread = NULL;
1188}
1189
1190boolean_t
1191vdev_uses_zvols(vdev_t *vd)
1192{
1193	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1194	    strlen(ZVOL_DIR)) == 0)
1195		return (B_TRUE);
1196	for (int c = 0; c < vd->vdev_children; c++)
1197		if (vdev_uses_zvols(vd->vdev_child[c]))
1198			return (B_TRUE);
1199	return (B_FALSE);
1200}
1201
1202void
1203vdev_open_children(vdev_t *vd)
1204{
1205	taskq_t *tq;
1206	int children = vd->vdev_children;
1207
1208	/*
1209	 * in order to handle pools on top of zvols, do the opens
1210	 * in a single thread so that the same thread holds the
1211	 * spa_namespace_lock
1212	 */
1213	if (B_TRUE || vdev_uses_zvols(vd)) {
1214		for (int c = 0; c < children; c++)
1215			vd->vdev_child[c]->vdev_open_error =
1216			    vdev_open(vd->vdev_child[c]);
1217		return;
1218	}
1219	tq = taskq_create("vdev_open", children, minclsyspri,
1220	    children, children, TASKQ_PREPOPULATE);
1221
1222	for (int c = 0; c < children; c++)
1223		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1224		    TQ_SLEEP) != 0);
1225
1226	taskq_destroy(tq);
1227}
1228
1229/*
1230 * Prepare a virtual device for access.
1231 */
1232int
1233vdev_open(vdev_t *vd)
1234{
1235	spa_t *spa = vd->vdev_spa;
1236	int error;
1237	uint64_t osize = 0;
1238	uint64_t max_osize = 0;
1239	uint64_t asize, max_asize, psize;
1240	uint64_t logical_ashift = 0;
1241	uint64_t physical_ashift = 0;
1242
1243	ASSERT(vd->vdev_open_thread == curthread ||
1244	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1245	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1246	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1247	    vd->vdev_state == VDEV_STATE_OFFLINE);
1248
1249	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1250	vd->vdev_cant_read = B_FALSE;
1251	vd->vdev_cant_write = B_FALSE;
1252	vd->vdev_notrim = B_FALSE;
1253	vd->vdev_min_asize = vdev_get_min_asize(vd);
1254
1255	/*
1256	 * If this vdev is not removed, check its fault status.  If it's
1257	 * faulted, bail out of the open.
1258	 */
1259	if (!vd->vdev_removed && vd->vdev_faulted) {
1260		ASSERT(vd->vdev_children == 0);
1261		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1262		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1263		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1264		    vd->vdev_label_aux);
1265		return (SET_ERROR(ENXIO));
1266	} else if (vd->vdev_offline) {
1267		ASSERT(vd->vdev_children == 0);
1268		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1269		return (SET_ERROR(ENXIO));
1270	}
1271
1272	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1273	    &logical_ashift, &physical_ashift);
1274
1275	/*
1276	 * Reset the vdev_reopening flag so that we actually close
1277	 * the vdev on error.
1278	 */
1279	vd->vdev_reopening = B_FALSE;
1280	if (zio_injection_enabled && error == 0)
1281		error = zio_handle_device_injection(vd, NULL, ENXIO);
1282
1283	if (error) {
1284		if (vd->vdev_removed &&
1285		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1286			vd->vdev_removed = B_FALSE;
1287
1288		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1289		    vd->vdev_stat.vs_aux);
1290		return (error);
1291	}
1292
1293	vd->vdev_removed = B_FALSE;
1294
1295	/*
1296	 * Recheck the faulted flag now that we have confirmed that
1297	 * the vdev is accessible.  If we're faulted, bail.
1298	 */
1299	if (vd->vdev_faulted) {
1300		ASSERT(vd->vdev_children == 0);
1301		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1302		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1303		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1304		    vd->vdev_label_aux);
1305		return (SET_ERROR(ENXIO));
1306	}
1307
1308	if (vd->vdev_degraded) {
1309		ASSERT(vd->vdev_children == 0);
1310		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1311		    VDEV_AUX_ERR_EXCEEDED);
1312	} else {
1313		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1314	}
1315
1316	/*
1317	 * For hole or missing vdevs we just return success.
1318	 */
1319	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1320		return (0);
1321
1322	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1323		trim_map_create(vd);
1324
1325	for (int c = 0; c < vd->vdev_children; c++) {
1326		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1327			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1328			    VDEV_AUX_NONE);
1329			break;
1330		}
1331	}
1332
1333	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1334	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1335
1336	if (vd->vdev_children == 0) {
1337		if (osize < SPA_MINDEVSIZE) {
1338			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339			    VDEV_AUX_TOO_SMALL);
1340			return (SET_ERROR(EOVERFLOW));
1341		}
1342		psize = osize;
1343		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1344		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1345		    VDEV_LABEL_END_SIZE);
1346	} else {
1347		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1348		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1349			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350			    VDEV_AUX_TOO_SMALL);
1351			return (SET_ERROR(EOVERFLOW));
1352		}
1353		psize = 0;
1354		asize = osize;
1355		max_asize = max_osize;
1356	}
1357
1358	vd->vdev_psize = psize;
1359
1360	/*
1361	 * Make sure the allocatable size hasn't shrunk.
1362	 */
1363	if (asize < vd->vdev_min_asize) {
1364		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1365		    VDEV_AUX_BAD_LABEL);
1366		return (SET_ERROR(EINVAL));
1367	}
1368
1369	vd->vdev_physical_ashift =
1370	    MAX(physical_ashift, vd->vdev_physical_ashift);
1371	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1372	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1373
1374	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1375		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1376		    VDEV_AUX_ASHIFT_TOO_BIG);
1377		return (EINVAL);
1378	}
1379
1380	if (vd->vdev_asize == 0) {
1381		/*
1382		 * This is the first-ever open, so use the computed values.
1383		 * For testing purposes, a higher ashift can be requested.
1384		 */
1385		vd->vdev_asize = asize;
1386		vd->vdev_max_asize = max_asize;
1387	} else {
1388		/*
1389		 * Make sure the alignment requirement hasn't increased.
1390		 */
1391		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1392		    vd->vdev_ops->vdev_op_leaf) {
1393			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1394			    VDEV_AUX_BAD_LABEL);
1395			return (EINVAL);
1396		}
1397		vd->vdev_max_asize = max_asize;
1398	}
1399
1400	/*
1401	 * If all children are healthy and the asize has increased,
1402	 * then we've experienced dynamic LUN growth.  If automatic
1403	 * expansion is enabled then use the additional space.
1404	 */
1405	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1406	    (vd->vdev_expanding || spa->spa_autoexpand))
1407		vd->vdev_asize = asize;
1408
1409	vdev_set_min_asize(vd);
1410
1411	/*
1412	 * Ensure we can issue some IO before declaring the
1413	 * vdev open for business.
1414	 */
1415	if (vd->vdev_ops->vdev_op_leaf &&
1416	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1417		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1418		    VDEV_AUX_ERR_EXCEEDED);
1419		return (error);
1420	}
1421
1422	/*
1423	 * Track the min and max ashift values for normal data devices.
1424	 */
1425	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1426	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1427		if (vd->vdev_ashift > spa->spa_max_ashift)
1428			spa->spa_max_ashift = vd->vdev_ashift;
1429		if (vd->vdev_ashift < spa->spa_min_ashift)
1430			spa->spa_min_ashift = vd->vdev_ashift;
1431	}
1432
1433	/*
1434	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1435	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1436	 * since this would just restart the scrub we are already doing.
1437	 */
1438	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1439	    vdev_resilver_needed(vd, NULL, NULL))
1440		spa_async_request(spa, SPA_ASYNC_RESILVER);
1441
1442	return (0);
1443}
1444
1445/*
1446 * Called once the vdevs are all opened, this routine validates the label
1447 * contents.  This needs to be done before vdev_load() so that we don't
1448 * inadvertently do repair I/Os to the wrong device.
1449 *
1450 * If 'strict' is false ignore the spa guid check. This is necessary because
1451 * if the machine crashed during a re-guid the new guid might have been written
1452 * to all of the vdev labels, but not the cached config. The strict check
1453 * will be performed when the pool is opened again using the mos config.
1454 *
1455 * This function will only return failure if one of the vdevs indicates that it
1456 * has since been destroyed or exported.  This is only possible if
1457 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1458 * will be updated but the function will return 0.
1459 */
1460int
1461vdev_validate(vdev_t *vd, boolean_t strict)
1462{
1463	spa_t *spa = vd->vdev_spa;
1464	nvlist_t *label;
1465	uint64_t guid = 0, top_guid;
1466	uint64_t state;
1467
1468	for (int c = 0; c < vd->vdev_children; c++)
1469		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1470			return (SET_ERROR(EBADF));
1471
1472	/*
1473	 * If the device has already failed, or was marked offline, don't do
1474	 * any further validation.  Otherwise, label I/O will fail and we will
1475	 * overwrite the previous state.
1476	 */
1477	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1478		uint64_t aux_guid = 0;
1479		nvlist_t *nvl;
1480		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1481		    spa_last_synced_txg(spa) : -1ULL;
1482
1483		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1484			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1485			    VDEV_AUX_BAD_LABEL);
1486			return (0);
1487		}
1488
1489		/*
1490		 * Determine if this vdev has been split off into another
1491		 * pool.  If so, then refuse to open it.
1492		 */
1493		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1494		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1495			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1496			    VDEV_AUX_SPLIT_POOL);
1497			nvlist_free(label);
1498			return (0);
1499		}
1500
1501		if (strict && (nvlist_lookup_uint64(label,
1502		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1503		    guid != spa_guid(spa))) {
1504			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1505			    VDEV_AUX_CORRUPT_DATA);
1506			nvlist_free(label);
1507			return (0);
1508		}
1509
1510		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1511		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1512		    &aux_guid) != 0)
1513			aux_guid = 0;
1514
1515		/*
1516		 * If this vdev just became a top-level vdev because its
1517		 * sibling was detached, it will have adopted the parent's
1518		 * vdev guid -- but the label may or may not be on disk yet.
1519		 * Fortunately, either version of the label will have the
1520		 * same top guid, so if we're a top-level vdev, we can
1521		 * safely compare to that instead.
1522		 *
1523		 * If we split this vdev off instead, then we also check the
1524		 * original pool's guid.  We don't want to consider the vdev
1525		 * corrupt if it is partway through a split operation.
1526		 */
1527		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1528		    &guid) != 0 ||
1529		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1530		    &top_guid) != 0 ||
1531		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1532		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1533			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1534			    VDEV_AUX_CORRUPT_DATA);
1535			nvlist_free(label);
1536			return (0);
1537		}
1538
1539		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1540		    &state) != 0) {
1541			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1542			    VDEV_AUX_CORRUPT_DATA);
1543			nvlist_free(label);
1544			return (0);
1545		}
1546
1547		nvlist_free(label);
1548
1549		/*
1550		 * If this is a verbatim import, no need to check the
1551		 * state of the pool.
1552		 */
1553		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1554		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1555		    state != POOL_STATE_ACTIVE)
1556			return (SET_ERROR(EBADF));
1557
1558		/*
1559		 * If we were able to open and validate a vdev that was
1560		 * previously marked permanently unavailable, clear that state
1561		 * now.
1562		 */
1563		if (vd->vdev_not_present)
1564			vd->vdev_not_present = 0;
1565	}
1566
1567	return (0);
1568}
1569
1570/*
1571 * Close a virtual device.
1572 */
1573void
1574vdev_close(vdev_t *vd)
1575{
1576	spa_t *spa = vd->vdev_spa;
1577	vdev_t *pvd = vd->vdev_parent;
1578
1579	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1580
1581	/*
1582	 * If our parent is reopening, then we are as well, unless we are
1583	 * going offline.
1584	 */
1585	if (pvd != NULL && pvd->vdev_reopening)
1586		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1587
1588	vd->vdev_ops->vdev_op_close(vd);
1589
1590	vdev_cache_purge(vd);
1591
1592	if (vd->vdev_ops->vdev_op_leaf)
1593		trim_map_destroy(vd);
1594
1595	/*
1596	 * We record the previous state before we close it, so that if we are
1597	 * doing a reopen(), we don't generate FMA ereports if we notice that
1598	 * it's still faulted.
1599	 */
1600	vd->vdev_prevstate = vd->vdev_state;
1601
1602	if (vd->vdev_offline)
1603		vd->vdev_state = VDEV_STATE_OFFLINE;
1604	else
1605		vd->vdev_state = VDEV_STATE_CLOSED;
1606	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1607}
1608
1609void
1610vdev_hold(vdev_t *vd)
1611{
1612	spa_t *spa = vd->vdev_spa;
1613
1614	ASSERT(spa_is_root(spa));
1615	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1616		return;
1617
1618	for (int c = 0; c < vd->vdev_children; c++)
1619		vdev_hold(vd->vdev_child[c]);
1620
1621	if (vd->vdev_ops->vdev_op_leaf)
1622		vd->vdev_ops->vdev_op_hold(vd);
1623}
1624
1625void
1626vdev_rele(vdev_t *vd)
1627{
1628	spa_t *spa = vd->vdev_spa;
1629
1630	ASSERT(spa_is_root(spa));
1631	for (int c = 0; c < vd->vdev_children; c++)
1632		vdev_rele(vd->vdev_child[c]);
1633
1634	if (vd->vdev_ops->vdev_op_leaf)
1635		vd->vdev_ops->vdev_op_rele(vd);
1636}
1637
1638/*
1639 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1640 * reopen leaf vdevs which had previously been opened as they might deadlock
1641 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1642 * If the leaf has never been opened then open it, as usual.
1643 */
1644void
1645vdev_reopen(vdev_t *vd)
1646{
1647	spa_t *spa = vd->vdev_spa;
1648
1649	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1650
1651	/* set the reopening flag unless we're taking the vdev offline */
1652	vd->vdev_reopening = !vd->vdev_offline;
1653	vdev_close(vd);
1654	(void) vdev_open(vd);
1655
1656	/*
1657	 * Call vdev_validate() here to make sure we have the same device.
1658	 * Otherwise, a device with an invalid label could be successfully
1659	 * opened in response to vdev_reopen().
1660	 */
1661	if (vd->vdev_aux) {
1662		(void) vdev_validate_aux(vd);
1663		if (vdev_readable(vd) && vdev_writeable(vd) &&
1664		    vd->vdev_aux == &spa->spa_l2cache &&
1665		    !l2arc_vdev_present(vd))
1666			l2arc_add_vdev(spa, vd);
1667	} else {
1668		(void) vdev_validate(vd, B_TRUE);
1669	}
1670
1671	/*
1672	 * Reassess parent vdev's health.
1673	 */
1674	vdev_propagate_state(vd);
1675}
1676
1677int
1678vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1679{
1680	int error;
1681
1682	/*
1683	 * Normally, partial opens (e.g. of a mirror) are allowed.
1684	 * For a create, however, we want to fail the request if
1685	 * there are any components we can't open.
1686	 */
1687	error = vdev_open(vd);
1688
1689	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1690		vdev_close(vd);
1691		return (error ? error : ENXIO);
1692	}
1693
1694	/*
1695	 * Recursively load DTLs and initialize all labels.
1696	 */
1697	if ((error = vdev_dtl_load(vd)) != 0 ||
1698	    (error = vdev_label_init(vd, txg, isreplacing ?
1699	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1700		vdev_close(vd);
1701		return (error);
1702	}
1703
1704	return (0);
1705}
1706
1707void
1708vdev_metaslab_set_size(vdev_t *vd)
1709{
1710	/*
1711	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1712	 */
1713	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1714	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1715}
1716
1717/*
1718 * Maximize performance by inflating the configured ashift for top level
1719 * vdevs to be as close to the physical ashift as possible while maintaining
1720 * administrator defined limits and ensuring it doesn't go below the
1721 * logical ashift.
1722 */
1723void
1724vdev_ashift_optimize(vdev_t *vd)
1725{
1726	if (vd == vd->vdev_top) {
1727		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1728			vd->vdev_ashift = MIN(
1729			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1730			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1731		} else {
1732			/*
1733			 * Unusual case where logical ashift > physical ashift
1734			 * so we can't cap the calculated ashift based on max
1735			 * ashift as that would cause failures.
1736			 * We still check if we need to increase it to match
1737			 * the min ashift.
1738			 */
1739			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1740			    vd->vdev_ashift);
1741		}
1742	}
1743}
1744
1745void
1746vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1747{
1748	ASSERT(vd == vd->vdev_top);
1749	ASSERT(!vd->vdev_ishole);
1750	ASSERT(ISP2(flags));
1751	ASSERT(spa_writeable(vd->vdev_spa));
1752
1753	if (flags & VDD_METASLAB)
1754		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1755
1756	if (flags & VDD_DTL)
1757		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1758
1759	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1760}
1761
1762void
1763vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1764{
1765	for (int c = 0; c < vd->vdev_children; c++)
1766		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1767
1768	if (vd->vdev_ops->vdev_op_leaf)
1769		vdev_dirty(vd->vdev_top, flags, vd, txg);
1770}
1771
1772/*
1773 * DTLs.
1774 *
1775 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1776 * the vdev has less than perfect replication.  There are four kinds of DTL:
1777 *
1778 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1779 *
1780 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1781 *
1782 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1783 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1784 *	txgs that was scrubbed.
1785 *
1786 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1787 *	persistent errors or just some device being offline.
1788 *	Unlike the other three, the DTL_OUTAGE map is not generally
1789 *	maintained; it's only computed when needed, typically to
1790 *	determine whether a device can be detached.
1791 *
1792 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1793 * either has the data or it doesn't.
1794 *
1795 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1796 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1797 * if any child is less than fully replicated, then so is its parent.
1798 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1799 * comprising only those txgs which appear in 'maxfaults' or more children;
1800 * those are the txgs we don't have enough replication to read.  For example,
1801 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1802 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1803 * two child DTL_MISSING maps.
1804 *
1805 * It should be clear from the above that to compute the DTLs and outage maps
1806 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1807 * Therefore, that is all we keep on disk.  When loading the pool, or after
1808 * a configuration change, we generate all other DTLs from first principles.
1809 */
1810void
1811vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1812{
1813	range_tree_t *rt = vd->vdev_dtl[t];
1814
1815	ASSERT(t < DTL_TYPES);
1816	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1817	ASSERT(spa_writeable(vd->vdev_spa));
1818
1819	mutex_enter(rt->rt_lock);
1820	if (!range_tree_contains(rt, txg, size))
1821		range_tree_add(rt, txg, size);
1822	mutex_exit(rt->rt_lock);
1823}
1824
1825boolean_t
1826vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1827{
1828	range_tree_t *rt = vd->vdev_dtl[t];
1829	boolean_t dirty = B_FALSE;
1830
1831	ASSERT(t < DTL_TYPES);
1832	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1833
1834	mutex_enter(rt->rt_lock);
1835	if (range_tree_space(rt) != 0)
1836		dirty = range_tree_contains(rt, txg, size);
1837	mutex_exit(rt->rt_lock);
1838
1839	return (dirty);
1840}
1841
1842boolean_t
1843vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1844{
1845	range_tree_t *rt = vd->vdev_dtl[t];
1846	boolean_t empty;
1847
1848	mutex_enter(rt->rt_lock);
1849	empty = (range_tree_space(rt) == 0);
1850	mutex_exit(rt->rt_lock);
1851
1852	return (empty);
1853}
1854
1855/*
1856 * Returns the lowest txg in the DTL range.
1857 */
1858static uint64_t
1859vdev_dtl_min(vdev_t *vd)
1860{
1861	range_seg_t *rs;
1862
1863	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1864	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1865	ASSERT0(vd->vdev_children);
1866
1867	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1868	return (rs->rs_start - 1);
1869}
1870
1871/*
1872 * Returns the highest txg in the DTL.
1873 */
1874static uint64_t
1875vdev_dtl_max(vdev_t *vd)
1876{
1877	range_seg_t *rs;
1878
1879	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1880	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1881	ASSERT0(vd->vdev_children);
1882
1883	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1884	return (rs->rs_end);
1885}
1886
1887/*
1888 * Determine if a resilvering vdev should remove any DTL entries from
1889 * its range. If the vdev was resilvering for the entire duration of the
1890 * scan then it should excise that range from its DTLs. Otherwise, this
1891 * vdev is considered partially resilvered and should leave its DTL
1892 * entries intact. The comment in vdev_dtl_reassess() describes how we
1893 * excise the DTLs.
1894 */
1895static boolean_t
1896vdev_dtl_should_excise(vdev_t *vd)
1897{
1898	spa_t *spa = vd->vdev_spa;
1899	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900
1901	ASSERT0(scn->scn_phys.scn_errors);
1902	ASSERT0(vd->vdev_children);
1903
1904	if (vd->vdev_resilver_txg == 0 ||
1905	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1906		return (B_TRUE);
1907
1908	/*
1909	 * When a resilver is initiated the scan will assign the scn_max_txg
1910	 * value to the highest txg value that exists in all DTLs. If this
1911	 * device's max DTL is not part of this scan (i.e. it is not in
1912	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1913	 * for excision.
1914	 */
1915	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1916		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1917		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1918		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1919		return (B_TRUE);
1920	}
1921	return (B_FALSE);
1922}
1923
1924/*
1925 * Reassess DTLs after a config change or scrub completion.
1926 */
1927void
1928vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1929{
1930	spa_t *spa = vd->vdev_spa;
1931	avl_tree_t reftree;
1932	int minref;
1933
1934	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1935
1936	for (int c = 0; c < vd->vdev_children; c++)
1937		vdev_dtl_reassess(vd->vdev_child[c], txg,
1938		    scrub_txg, scrub_done);
1939
1940	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1941		return;
1942
1943	if (vd->vdev_ops->vdev_op_leaf) {
1944		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1945
1946		mutex_enter(&vd->vdev_dtl_lock);
1947
1948		/*
1949		 * If we've completed a scan cleanly then determine
1950		 * if this vdev should remove any DTLs. We only want to
1951		 * excise regions on vdevs that were available during
1952		 * the entire duration of this scan.
1953		 */
1954		if (scrub_txg != 0 &&
1955		    (spa->spa_scrub_started ||
1956		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1957		    vdev_dtl_should_excise(vd)) {
1958			/*
1959			 * We completed a scrub up to scrub_txg.  If we
1960			 * did it without rebooting, then the scrub dtl
1961			 * will be valid, so excise the old region and
1962			 * fold in the scrub dtl.  Otherwise, leave the
1963			 * dtl as-is if there was an error.
1964			 *
1965			 * There's little trick here: to excise the beginning
1966			 * of the DTL_MISSING map, we put it into a reference
1967			 * tree and then add a segment with refcnt -1 that
1968			 * covers the range [0, scrub_txg).  This means
1969			 * that each txg in that range has refcnt -1 or 0.
1970			 * We then add DTL_SCRUB with a refcnt of 2, so that
1971			 * entries in the range [0, scrub_txg) will have a
1972			 * positive refcnt -- either 1 or 2.  We then convert
1973			 * the reference tree into the new DTL_MISSING map.
1974			 */
1975			space_reftree_create(&reftree);
1976			space_reftree_add_map(&reftree,
1977			    vd->vdev_dtl[DTL_MISSING], 1);
1978			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1979			space_reftree_add_map(&reftree,
1980			    vd->vdev_dtl[DTL_SCRUB], 2);
1981			space_reftree_generate_map(&reftree,
1982			    vd->vdev_dtl[DTL_MISSING], 1);
1983			space_reftree_destroy(&reftree);
1984		}
1985		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1986		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1987		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1988		if (scrub_done)
1989			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1990		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1991		if (!vdev_readable(vd))
1992			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1993		else
1994			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1995			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1996
1997		/*
1998		 * If the vdev was resilvering and no longer has any
1999		 * DTLs then reset its resilvering flag and dirty
2000		 * the top level so that we persist the change.
2001		 */
2002		if (vd->vdev_resilver_txg != 0 &&
2003		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2004		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2005			vd->vdev_resilver_txg = 0;
2006			vdev_config_dirty(vd->vdev_top);
2007		}
2008
2009		mutex_exit(&vd->vdev_dtl_lock);
2010
2011		if (txg != 0)
2012			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2013		return;
2014	}
2015
2016	mutex_enter(&vd->vdev_dtl_lock);
2017	for (int t = 0; t < DTL_TYPES; t++) {
2018		/* account for child's outage in parent's missing map */
2019		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2020		if (t == DTL_SCRUB)
2021			continue;			/* leaf vdevs only */
2022		if (t == DTL_PARTIAL)
2023			minref = 1;			/* i.e. non-zero */
2024		else if (vd->vdev_nparity != 0)
2025			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2026		else
2027			minref = vd->vdev_children;	/* any kind of mirror */
2028		space_reftree_create(&reftree);
2029		for (int c = 0; c < vd->vdev_children; c++) {
2030			vdev_t *cvd = vd->vdev_child[c];
2031			mutex_enter(&cvd->vdev_dtl_lock);
2032			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2033			mutex_exit(&cvd->vdev_dtl_lock);
2034		}
2035		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2036		space_reftree_destroy(&reftree);
2037	}
2038	mutex_exit(&vd->vdev_dtl_lock);
2039}
2040
2041int
2042vdev_dtl_load(vdev_t *vd)
2043{
2044	spa_t *spa = vd->vdev_spa;
2045	objset_t *mos = spa->spa_meta_objset;
2046	int error = 0;
2047
2048	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2049		ASSERT(!vd->vdev_ishole);
2050
2051		error = space_map_open(&vd->vdev_dtl_sm, mos,
2052		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2053		if (error)
2054			return (error);
2055		ASSERT(vd->vdev_dtl_sm != NULL);
2056
2057		mutex_enter(&vd->vdev_dtl_lock);
2058
2059		/*
2060		 * Now that we've opened the space_map we need to update
2061		 * the in-core DTL.
2062		 */
2063		space_map_update(vd->vdev_dtl_sm);
2064
2065		error = space_map_load(vd->vdev_dtl_sm,
2066		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2067		mutex_exit(&vd->vdev_dtl_lock);
2068
2069		return (error);
2070	}
2071
2072	for (int c = 0; c < vd->vdev_children; c++) {
2073		error = vdev_dtl_load(vd->vdev_child[c]);
2074		if (error != 0)
2075			break;
2076	}
2077
2078	return (error);
2079}
2080
2081void
2082vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2083{
2084	spa_t *spa = vd->vdev_spa;
2085	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2086	objset_t *mos = spa->spa_meta_objset;
2087	range_tree_t *rtsync;
2088	kmutex_t rtlock;
2089	dmu_tx_t *tx;
2090	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2091
2092	ASSERT(!vd->vdev_ishole);
2093	ASSERT(vd->vdev_ops->vdev_op_leaf);
2094
2095	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2096
2097	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2098		mutex_enter(&vd->vdev_dtl_lock);
2099		space_map_free(vd->vdev_dtl_sm, tx);
2100		space_map_close(vd->vdev_dtl_sm);
2101		vd->vdev_dtl_sm = NULL;
2102		mutex_exit(&vd->vdev_dtl_lock);
2103		dmu_tx_commit(tx);
2104		return;
2105	}
2106
2107	if (vd->vdev_dtl_sm == NULL) {
2108		uint64_t new_object;
2109
2110		new_object = space_map_alloc(mos, tx);
2111		VERIFY3U(new_object, !=, 0);
2112
2113		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2114		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2115		ASSERT(vd->vdev_dtl_sm != NULL);
2116	}
2117
2118	bzero(&rtlock, sizeof(rtlock));
2119	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2120
2121	rtsync = range_tree_create(NULL, NULL, &rtlock);
2122
2123	mutex_enter(&rtlock);
2124
2125	mutex_enter(&vd->vdev_dtl_lock);
2126	range_tree_walk(rt, range_tree_add, rtsync);
2127	mutex_exit(&vd->vdev_dtl_lock);
2128
2129	space_map_truncate(vd->vdev_dtl_sm, tx);
2130	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2131	range_tree_vacate(rtsync, NULL, NULL);
2132
2133	range_tree_destroy(rtsync);
2134
2135	mutex_exit(&rtlock);
2136	mutex_destroy(&rtlock);
2137
2138	/*
2139	 * If the object for the space map has changed then dirty
2140	 * the top level so that we update the config.
2141	 */
2142	if (object != space_map_object(vd->vdev_dtl_sm)) {
2143		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2144		    "new object %llu", txg, spa_name(spa), object,
2145		    space_map_object(vd->vdev_dtl_sm));
2146		vdev_config_dirty(vd->vdev_top);
2147	}
2148
2149	dmu_tx_commit(tx);
2150
2151	mutex_enter(&vd->vdev_dtl_lock);
2152	space_map_update(vd->vdev_dtl_sm);
2153	mutex_exit(&vd->vdev_dtl_lock);
2154}
2155
2156/*
2157 * Determine whether the specified vdev can be offlined/detached/removed
2158 * without losing data.
2159 */
2160boolean_t
2161vdev_dtl_required(vdev_t *vd)
2162{
2163	spa_t *spa = vd->vdev_spa;
2164	vdev_t *tvd = vd->vdev_top;
2165	uint8_t cant_read = vd->vdev_cant_read;
2166	boolean_t required;
2167
2168	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2169
2170	if (vd == spa->spa_root_vdev || vd == tvd)
2171		return (B_TRUE);
2172
2173	/*
2174	 * Temporarily mark the device as unreadable, and then determine
2175	 * whether this results in any DTL outages in the top-level vdev.
2176	 * If not, we can safely offline/detach/remove the device.
2177	 */
2178	vd->vdev_cant_read = B_TRUE;
2179	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2180	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2181	vd->vdev_cant_read = cant_read;
2182	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2183
2184	if (!required && zio_injection_enabled)
2185		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2186
2187	return (required);
2188}
2189
2190/*
2191 * Determine if resilver is needed, and if so the txg range.
2192 */
2193boolean_t
2194vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2195{
2196	boolean_t needed = B_FALSE;
2197	uint64_t thismin = UINT64_MAX;
2198	uint64_t thismax = 0;
2199
2200	if (vd->vdev_children == 0) {
2201		mutex_enter(&vd->vdev_dtl_lock);
2202		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2203		    vdev_writeable(vd)) {
2204
2205			thismin = vdev_dtl_min(vd);
2206			thismax = vdev_dtl_max(vd);
2207			needed = B_TRUE;
2208		}
2209		mutex_exit(&vd->vdev_dtl_lock);
2210	} else {
2211		for (int c = 0; c < vd->vdev_children; c++) {
2212			vdev_t *cvd = vd->vdev_child[c];
2213			uint64_t cmin, cmax;
2214
2215			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2216				thismin = MIN(thismin, cmin);
2217				thismax = MAX(thismax, cmax);
2218				needed = B_TRUE;
2219			}
2220		}
2221	}
2222
2223	if (needed && minp) {
2224		*minp = thismin;
2225		*maxp = thismax;
2226	}
2227	return (needed);
2228}
2229
2230void
2231vdev_load(vdev_t *vd)
2232{
2233	/*
2234	 * Recursively load all children.
2235	 */
2236	for (int c = 0; c < vd->vdev_children; c++)
2237		vdev_load(vd->vdev_child[c]);
2238
2239	/*
2240	 * If this is a top-level vdev, initialize its metaslabs.
2241	 */
2242	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2243	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2244	    vdev_metaslab_init(vd, 0) != 0))
2245		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2246		    VDEV_AUX_CORRUPT_DATA);
2247
2248	/*
2249	 * If this is a leaf vdev, load its DTL.
2250	 */
2251	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2252		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2253		    VDEV_AUX_CORRUPT_DATA);
2254}
2255
2256/*
2257 * The special vdev case is used for hot spares and l2cache devices.  Its
2258 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2259 * we make sure that we can open the underlying device, then try to read the
2260 * label, and make sure that the label is sane and that it hasn't been
2261 * repurposed to another pool.
2262 */
2263int
2264vdev_validate_aux(vdev_t *vd)
2265{
2266	nvlist_t *label;
2267	uint64_t guid, version;
2268	uint64_t state;
2269
2270	if (!vdev_readable(vd))
2271		return (0);
2272
2273	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2274		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2275		    VDEV_AUX_CORRUPT_DATA);
2276		return (-1);
2277	}
2278
2279	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2280	    !SPA_VERSION_IS_SUPPORTED(version) ||
2281	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2282	    guid != vd->vdev_guid ||
2283	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2284		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2285		    VDEV_AUX_CORRUPT_DATA);
2286		nvlist_free(label);
2287		return (-1);
2288	}
2289
2290	/*
2291	 * We don't actually check the pool state here.  If it's in fact in
2292	 * use by another pool, we update this fact on the fly when requested.
2293	 */
2294	nvlist_free(label);
2295	return (0);
2296}
2297
2298void
2299vdev_remove(vdev_t *vd, uint64_t txg)
2300{
2301	spa_t *spa = vd->vdev_spa;
2302	objset_t *mos = spa->spa_meta_objset;
2303	dmu_tx_t *tx;
2304
2305	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2306
2307	if (vd->vdev_ms != NULL) {
2308		metaslab_group_t *mg = vd->vdev_mg;
2309
2310		metaslab_group_histogram_verify(mg);
2311		metaslab_class_histogram_verify(mg->mg_class);
2312
2313		for (int m = 0; m < vd->vdev_ms_count; m++) {
2314			metaslab_t *msp = vd->vdev_ms[m];
2315
2316			if (msp == NULL || msp->ms_sm == NULL)
2317				continue;
2318
2319			mutex_enter(&msp->ms_lock);
2320			/*
2321			 * If the metaslab was not loaded when the vdev
2322			 * was removed then the histogram accounting may
2323			 * not be accurate. Update the histogram information
2324			 * here so that we ensure that the metaslab group
2325			 * and metaslab class are up-to-date.
2326			 */
2327			metaslab_group_histogram_remove(mg, msp);
2328
2329			VERIFY0(space_map_allocated(msp->ms_sm));
2330			space_map_free(msp->ms_sm, tx);
2331			space_map_close(msp->ms_sm);
2332			msp->ms_sm = NULL;
2333			mutex_exit(&msp->ms_lock);
2334		}
2335
2336		metaslab_group_histogram_verify(mg);
2337		metaslab_class_histogram_verify(mg->mg_class);
2338		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2339			ASSERT0(mg->mg_histogram[i]);
2340
2341	}
2342
2343	if (vd->vdev_ms_array) {
2344		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2345		vd->vdev_ms_array = 0;
2346	}
2347	dmu_tx_commit(tx);
2348}
2349
2350void
2351vdev_sync_done(vdev_t *vd, uint64_t txg)
2352{
2353	metaslab_t *msp;
2354	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2355
2356	ASSERT(!vd->vdev_ishole);
2357
2358	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2359		metaslab_sync_done(msp, txg);
2360
2361	if (reassess)
2362		metaslab_sync_reassess(vd->vdev_mg);
2363}
2364
2365void
2366vdev_sync(vdev_t *vd, uint64_t txg)
2367{
2368	spa_t *spa = vd->vdev_spa;
2369	vdev_t *lvd;
2370	metaslab_t *msp;
2371	dmu_tx_t *tx;
2372
2373	ASSERT(!vd->vdev_ishole);
2374
2375	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2376		ASSERT(vd == vd->vdev_top);
2377		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2378		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2379		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2380		ASSERT(vd->vdev_ms_array != 0);
2381		vdev_config_dirty(vd);
2382		dmu_tx_commit(tx);
2383	}
2384
2385	/*
2386	 * Remove the metadata associated with this vdev once it's empty.
2387	 */
2388	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2389		vdev_remove(vd, txg);
2390
2391	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2392		metaslab_sync(msp, txg);
2393		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2394	}
2395
2396	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2397		vdev_dtl_sync(lvd, txg);
2398
2399	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2400}
2401
2402uint64_t
2403vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2404{
2405	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2406}
2407
2408/*
2409 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2410 * not be opened, and no I/O is attempted.
2411 */
2412int
2413vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2414{
2415	vdev_t *vd, *tvd;
2416
2417	spa_vdev_state_enter(spa, SCL_NONE);
2418
2419	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2420		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2421
2422	if (!vd->vdev_ops->vdev_op_leaf)
2423		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2424
2425	tvd = vd->vdev_top;
2426
2427	/*
2428	 * We don't directly use the aux state here, but if we do a
2429	 * vdev_reopen(), we need this value to be present to remember why we
2430	 * were faulted.
2431	 */
2432	vd->vdev_label_aux = aux;
2433
2434	/*
2435	 * Faulted state takes precedence over degraded.
2436	 */
2437	vd->vdev_delayed_close = B_FALSE;
2438	vd->vdev_faulted = 1ULL;
2439	vd->vdev_degraded = 0ULL;
2440	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2441
2442	/*
2443	 * If this device has the only valid copy of the data, then
2444	 * back off and simply mark the vdev as degraded instead.
2445	 */
2446	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2447		vd->vdev_degraded = 1ULL;
2448		vd->vdev_faulted = 0ULL;
2449
2450		/*
2451		 * If we reopen the device and it's not dead, only then do we
2452		 * mark it degraded.
2453		 */
2454		vdev_reopen(tvd);
2455
2456		if (vdev_readable(vd))
2457			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2458	}
2459
2460	return (spa_vdev_state_exit(spa, vd, 0));
2461}
2462
2463/*
2464 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2465 * user that something is wrong.  The vdev continues to operate as normal as far
2466 * as I/O is concerned.
2467 */
2468int
2469vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2470{
2471	vdev_t *vd;
2472
2473	spa_vdev_state_enter(spa, SCL_NONE);
2474
2475	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2476		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2477
2478	if (!vd->vdev_ops->vdev_op_leaf)
2479		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2480
2481	/*
2482	 * If the vdev is already faulted, then don't do anything.
2483	 */
2484	if (vd->vdev_faulted || vd->vdev_degraded)
2485		return (spa_vdev_state_exit(spa, NULL, 0));
2486
2487	vd->vdev_degraded = 1ULL;
2488	if (!vdev_is_dead(vd))
2489		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2490		    aux);
2491
2492	return (spa_vdev_state_exit(spa, vd, 0));
2493}
2494
2495/*
2496 * Online the given vdev.
2497 *
2498 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2499 * spare device should be detached when the device finishes resilvering.
2500 * Second, the online should be treated like a 'test' online case, so no FMA
2501 * events are generated if the device fails to open.
2502 */
2503int
2504vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2505{
2506	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2507	boolean_t postevent = B_FALSE;
2508
2509	spa_vdev_state_enter(spa, SCL_NONE);
2510
2511	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2512		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2513
2514	if (!vd->vdev_ops->vdev_op_leaf)
2515		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2516
2517	postevent =
2518	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2519	    B_TRUE : B_FALSE;
2520
2521	tvd = vd->vdev_top;
2522	vd->vdev_offline = B_FALSE;
2523	vd->vdev_tmpoffline = B_FALSE;
2524	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2525	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2526
2527	/* XXX - L2ARC 1.0 does not support expansion */
2528	if (!vd->vdev_aux) {
2529		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2530			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2531	}
2532
2533	vdev_reopen(tvd);
2534	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2535
2536	if (!vd->vdev_aux) {
2537		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2538			pvd->vdev_expanding = B_FALSE;
2539	}
2540
2541	if (newstate)
2542		*newstate = vd->vdev_state;
2543	if ((flags & ZFS_ONLINE_UNSPARE) &&
2544	    !vdev_is_dead(vd) && vd->vdev_parent &&
2545	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2546	    vd->vdev_parent->vdev_child[0] == vd)
2547		vd->vdev_unspare = B_TRUE;
2548
2549	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2550
2551		/* XXX - L2ARC 1.0 does not support expansion */
2552		if (vd->vdev_aux)
2553			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2554		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2555	}
2556
2557	if (postevent)
2558		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2559
2560	return (spa_vdev_state_exit(spa, vd, 0));
2561}
2562
2563static int
2564vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2565{
2566	vdev_t *vd, *tvd;
2567	int error = 0;
2568	uint64_t generation;
2569	metaslab_group_t *mg;
2570
2571top:
2572	spa_vdev_state_enter(spa, SCL_ALLOC);
2573
2574	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2575		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2576
2577	if (!vd->vdev_ops->vdev_op_leaf)
2578		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2579
2580	tvd = vd->vdev_top;
2581	mg = tvd->vdev_mg;
2582	generation = spa->spa_config_generation + 1;
2583
2584	/*
2585	 * If the device isn't already offline, try to offline it.
2586	 */
2587	if (!vd->vdev_offline) {
2588		/*
2589		 * If this device has the only valid copy of some data,
2590		 * don't allow it to be offlined. Log devices are always
2591		 * expendable.
2592		 */
2593		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2594		    vdev_dtl_required(vd))
2595			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2596
2597		/*
2598		 * If the top-level is a slog and it has had allocations
2599		 * then proceed.  We check that the vdev's metaslab group
2600		 * is not NULL since it's possible that we may have just
2601		 * added this vdev but not yet initialized its metaslabs.
2602		 */
2603		if (tvd->vdev_islog && mg != NULL) {
2604			/*
2605			 * Prevent any future allocations.
2606			 */
2607			metaslab_group_passivate(mg);
2608			(void) spa_vdev_state_exit(spa, vd, 0);
2609
2610			error = spa_offline_log(spa);
2611
2612			spa_vdev_state_enter(spa, SCL_ALLOC);
2613
2614			/*
2615			 * Check to see if the config has changed.
2616			 */
2617			if (error || generation != spa->spa_config_generation) {
2618				metaslab_group_activate(mg);
2619				if (error)
2620					return (spa_vdev_state_exit(spa,
2621					    vd, error));
2622				(void) spa_vdev_state_exit(spa, vd, 0);
2623				goto top;
2624			}
2625			ASSERT0(tvd->vdev_stat.vs_alloc);
2626		}
2627
2628		/*
2629		 * Offline this device and reopen its top-level vdev.
2630		 * If the top-level vdev is a log device then just offline
2631		 * it. Otherwise, if this action results in the top-level
2632		 * vdev becoming unusable, undo it and fail the request.
2633		 */
2634		vd->vdev_offline = B_TRUE;
2635		vdev_reopen(tvd);
2636
2637		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2638		    vdev_is_dead(tvd)) {
2639			vd->vdev_offline = B_FALSE;
2640			vdev_reopen(tvd);
2641			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2642		}
2643
2644		/*
2645		 * Add the device back into the metaslab rotor so that
2646		 * once we online the device it's open for business.
2647		 */
2648		if (tvd->vdev_islog && mg != NULL)
2649			metaslab_group_activate(mg);
2650	}
2651
2652	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2653
2654	return (spa_vdev_state_exit(spa, vd, 0));
2655}
2656
2657int
2658vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2659{
2660	int error;
2661
2662	mutex_enter(&spa->spa_vdev_top_lock);
2663	error = vdev_offline_locked(spa, guid, flags);
2664	mutex_exit(&spa->spa_vdev_top_lock);
2665
2666	return (error);
2667}
2668
2669/*
2670 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2671 * vdev_offline(), we assume the spa config is locked.  We also clear all
2672 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2673 */
2674void
2675vdev_clear(spa_t *spa, vdev_t *vd)
2676{
2677	vdev_t *rvd = spa->spa_root_vdev;
2678
2679	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2680
2681	if (vd == NULL)
2682		vd = rvd;
2683
2684	vd->vdev_stat.vs_read_errors = 0;
2685	vd->vdev_stat.vs_write_errors = 0;
2686	vd->vdev_stat.vs_checksum_errors = 0;
2687
2688	for (int c = 0; c < vd->vdev_children; c++)
2689		vdev_clear(spa, vd->vdev_child[c]);
2690
2691	if (vd == rvd) {
2692		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2693			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2694
2695		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2696			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2697	}
2698
2699	/*
2700	 * If we're in the FAULTED state or have experienced failed I/O, then
2701	 * clear the persistent state and attempt to reopen the device.  We
2702	 * also mark the vdev config dirty, so that the new faulted state is
2703	 * written out to disk.
2704	 */
2705	if (vd->vdev_faulted || vd->vdev_degraded ||
2706	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2707
2708		/*
2709		 * When reopening in reponse to a clear event, it may be due to
2710		 * a fmadm repair request.  In this case, if the device is
2711		 * still broken, we want to still post the ereport again.
2712		 */
2713		vd->vdev_forcefault = B_TRUE;
2714
2715		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2716		vd->vdev_cant_read = B_FALSE;
2717		vd->vdev_cant_write = B_FALSE;
2718
2719		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2720
2721		vd->vdev_forcefault = B_FALSE;
2722
2723		if (vd != rvd && vdev_writeable(vd->vdev_top))
2724			vdev_state_dirty(vd->vdev_top);
2725
2726		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2727			spa_async_request(spa, SPA_ASYNC_RESILVER);
2728
2729		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2730	}
2731
2732	/*
2733	 * When clearing a FMA-diagnosed fault, we always want to
2734	 * unspare the device, as we assume that the original spare was
2735	 * done in response to the FMA fault.
2736	 */
2737	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2738	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2739	    vd->vdev_parent->vdev_child[0] == vd)
2740		vd->vdev_unspare = B_TRUE;
2741}
2742
2743boolean_t
2744vdev_is_dead(vdev_t *vd)
2745{
2746	/*
2747	 * Holes and missing devices are always considered "dead".
2748	 * This simplifies the code since we don't have to check for
2749	 * these types of devices in the various code paths.
2750	 * Instead we rely on the fact that we skip over dead devices
2751	 * before issuing I/O to them.
2752	 */
2753	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2754	    vd->vdev_ops == &vdev_missing_ops);
2755}
2756
2757boolean_t
2758vdev_readable(vdev_t *vd)
2759{
2760	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2761}
2762
2763boolean_t
2764vdev_writeable(vdev_t *vd)
2765{
2766	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2767}
2768
2769boolean_t
2770vdev_allocatable(vdev_t *vd)
2771{
2772	uint64_t state = vd->vdev_state;
2773
2774	/*
2775	 * We currently allow allocations from vdevs which may be in the
2776	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2777	 * fails to reopen then we'll catch it later when we're holding
2778	 * the proper locks.  Note that we have to get the vdev state
2779	 * in a local variable because although it changes atomically,
2780	 * we're asking two separate questions about it.
2781	 */
2782	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2783	    !vd->vdev_cant_write && !vd->vdev_ishole);
2784}
2785
2786boolean_t
2787vdev_accessible(vdev_t *vd, zio_t *zio)
2788{
2789	ASSERT(zio->io_vd == vd);
2790
2791	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2792		return (B_FALSE);
2793
2794	if (zio->io_type == ZIO_TYPE_READ)
2795		return (!vd->vdev_cant_read);
2796
2797	if (zio->io_type == ZIO_TYPE_WRITE)
2798		return (!vd->vdev_cant_write);
2799
2800	return (B_TRUE);
2801}
2802
2803/*
2804 * Get statistics for the given vdev.
2805 */
2806void
2807vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2808{
2809	spa_t *spa = vd->vdev_spa;
2810	vdev_t *rvd = spa->spa_root_vdev;
2811
2812	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2813
2814	mutex_enter(&vd->vdev_stat_lock);
2815	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2816	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2817	vs->vs_state = vd->vdev_state;
2818	vs->vs_rsize = vdev_get_min_asize(vd);
2819	if (vd->vdev_ops->vdev_op_leaf)
2820		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2821	if (vd->vdev_max_asize != 0)
2822		vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2823	vs->vs_configured_ashift = vd->vdev_top != NULL
2824	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2825	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2826	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2827	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2828		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2829	}
2830
2831	/*
2832	 * If we're getting stats on the root vdev, aggregate the I/O counts
2833	 * over all top-level vdevs (i.e. the direct children of the root).
2834	 */
2835	if (vd == rvd) {
2836		for (int c = 0; c < rvd->vdev_children; c++) {
2837			vdev_t *cvd = rvd->vdev_child[c];
2838			vdev_stat_t *cvs = &cvd->vdev_stat;
2839
2840			for (int t = 0; t < ZIO_TYPES; t++) {
2841				vs->vs_ops[t] += cvs->vs_ops[t];
2842				vs->vs_bytes[t] += cvs->vs_bytes[t];
2843			}
2844			cvs->vs_scan_removing = cvd->vdev_removing;
2845		}
2846	}
2847	mutex_exit(&vd->vdev_stat_lock);
2848}
2849
2850void
2851vdev_clear_stats(vdev_t *vd)
2852{
2853	mutex_enter(&vd->vdev_stat_lock);
2854	vd->vdev_stat.vs_space = 0;
2855	vd->vdev_stat.vs_dspace = 0;
2856	vd->vdev_stat.vs_alloc = 0;
2857	mutex_exit(&vd->vdev_stat_lock);
2858}
2859
2860void
2861vdev_scan_stat_init(vdev_t *vd)
2862{
2863	vdev_stat_t *vs = &vd->vdev_stat;
2864
2865	for (int c = 0; c < vd->vdev_children; c++)
2866		vdev_scan_stat_init(vd->vdev_child[c]);
2867
2868	mutex_enter(&vd->vdev_stat_lock);
2869	vs->vs_scan_processed = 0;
2870	mutex_exit(&vd->vdev_stat_lock);
2871}
2872
2873void
2874vdev_stat_update(zio_t *zio, uint64_t psize)
2875{
2876	spa_t *spa = zio->io_spa;
2877	vdev_t *rvd = spa->spa_root_vdev;
2878	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2879	vdev_t *pvd;
2880	uint64_t txg = zio->io_txg;
2881	vdev_stat_t *vs = &vd->vdev_stat;
2882	zio_type_t type = zio->io_type;
2883	int flags = zio->io_flags;
2884
2885	/*
2886	 * If this i/o is a gang leader, it didn't do any actual work.
2887	 */
2888	if (zio->io_gang_tree)
2889		return;
2890
2891	if (zio->io_error == 0) {
2892		/*
2893		 * If this is a root i/o, don't count it -- we've already
2894		 * counted the top-level vdevs, and vdev_get_stats() will
2895		 * aggregate them when asked.  This reduces contention on
2896		 * the root vdev_stat_lock and implicitly handles blocks
2897		 * that compress away to holes, for which there is no i/o.
2898		 * (Holes never create vdev children, so all the counters
2899		 * remain zero, which is what we want.)
2900		 *
2901		 * Note: this only applies to successful i/o (io_error == 0)
2902		 * because unlike i/o counts, errors are not additive.
2903		 * When reading a ditto block, for example, failure of
2904		 * one top-level vdev does not imply a root-level error.
2905		 */
2906		if (vd == rvd)
2907			return;
2908
2909		ASSERT(vd == zio->io_vd);
2910
2911		if (flags & ZIO_FLAG_IO_BYPASS)
2912			return;
2913
2914		mutex_enter(&vd->vdev_stat_lock);
2915
2916		if (flags & ZIO_FLAG_IO_REPAIR) {
2917			if (flags & ZIO_FLAG_SCAN_THREAD) {
2918				dsl_scan_phys_t *scn_phys =
2919				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2920				uint64_t *processed = &scn_phys->scn_processed;
2921
2922				/* XXX cleanup? */
2923				if (vd->vdev_ops->vdev_op_leaf)
2924					atomic_add_64(processed, psize);
2925				vs->vs_scan_processed += psize;
2926			}
2927
2928			if (flags & ZIO_FLAG_SELF_HEAL)
2929				vs->vs_self_healed += psize;
2930		}
2931
2932		vs->vs_ops[type]++;
2933		vs->vs_bytes[type] += psize;
2934
2935		mutex_exit(&vd->vdev_stat_lock);
2936		return;
2937	}
2938
2939	if (flags & ZIO_FLAG_SPECULATIVE)
2940		return;
2941
2942	/*
2943	 * If this is an I/O error that is going to be retried, then ignore the
2944	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2945	 * hard errors, when in reality they can happen for any number of
2946	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2947	 */
2948	if (zio->io_error == EIO &&
2949	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2950		return;
2951
2952	/*
2953	 * Intent logs writes won't propagate their error to the root
2954	 * I/O so don't mark these types of failures as pool-level
2955	 * errors.
2956	 */
2957	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2958		return;
2959
2960	mutex_enter(&vd->vdev_stat_lock);
2961	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2962		if (zio->io_error == ECKSUM)
2963			vs->vs_checksum_errors++;
2964		else
2965			vs->vs_read_errors++;
2966	}
2967	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2968		vs->vs_write_errors++;
2969	mutex_exit(&vd->vdev_stat_lock);
2970
2971	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2972	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2973	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2974	    spa->spa_claiming)) {
2975		/*
2976		 * This is either a normal write (not a repair), or it's
2977		 * a repair induced by the scrub thread, or it's a repair
2978		 * made by zil_claim() during spa_load() in the first txg.
2979		 * In the normal case, we commit the DTL change in the same
2980		 * txg as the block was born.  In the scrub-induced repair
2981		 * case, we know that scrubs run in first-pass syncing context,
2982		 * so we commit the DTL change in spa_syncing_txg(spa).
2983		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2984		 *
2985		 * We currently do not make DTL entries for failed spontaneous
2986		 * self-healing writes triggered by normal (non-scrubbing)
2987		 * reads, because we have no transactional context in which to
2988		 * do so -- and it's not clear that it'd be desirable anyway.
2989		 */
2990		if (vd->vdev_ops->vdev_op_leaf) {
2991			uint64_t commit_txg = txg;
2992			if (flags & ZIO_FLAG_SCAN_THREAD) {
2993				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2994				ASSERT(spa_sync_pass(spa) == 1);
2995				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2996				commit_txg = spa_syncing_txg(spa);
2997			} else if (spa->spa_claiming) {
2998				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2999				commit_txg = spa_first_txg(spa);
3000			}
3001			ASSERT(commit_txg >= spa_syncing_txg(spa));
3002			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3003				return;
3004			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3005				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3006			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3007		}
3008		if (vd != rvd)
3009			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3010	}
3011}
3012
3013/*
3014 * Update the in-core space usage stats for this vdev, its metaslab class,
3015 * and the root vdev.
3016 */
3017void
3018vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3019    int64_t space_delta)
3020{
3021	int64_t dspace_delta = space_delta;
3022	spa_t *spa = vd->vdev_spa;
3023	vdev_t *rvd = spa->spa_root_vdev;
3024	metaslab_group_t *mg = vd->vdev_mg;
3025	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3026
3027	ASSERT(vd == vd->vdev_top);
3028
3029	/*
3030	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3031	 * factor.  We must calculate this here and not at the root vdev
3032	 * because the root vdev's psize-to-asize is simply the max of its
3033	 * childrens', thus not accurate enough for us.
3034	 */
3035	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3036	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3037	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3038	    vd->vdev_deflate_ratio;
3039
3040	mutex_enter(&vd->vdev_stat_lock);
3041	vd->vdev_stat.vs_alloc += alloc_delta;
3042	vd->vdev_stat.vs_space += space_delta;
3043	vd->vdev_stat.vs_dspace += dspace_delta;
3044	mutex_exit(&vd->vdev_stat_lock);
3045
3046	if (mc == spa_normal_class(spa)) {
3047		mutex_enter(&rvd->vdev_stat_lock);
3048		rvd->vdev_stat.vs_alloc += alloc_delta;
3049		rvd->vdev_stat.vs_space += space_delta;
3050		rvd->vdev_stat.vs_dspace += dspace_delta;
3051		mutex_exit(&rvd->vdev_stat_lock);
3052	}
3053
3054	if (mc != NULL) {
3055		ASSERT(rvd == vd->vdev_parent);
3056		ASSERT(vd->vdev_ms_count != 0);
3057
3058		metaslab_class_space_update(mc,
3059		    alloc_delta, defer_delta, space_delta, dspace_delta);
3060	}
3061}
3062
3063/*
3064 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3065 * so that it will be written out next time the vdev configuration is synced.
3066 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3067 */
3068void
3069vdev_config_dirty(vdev_t *vd)
3070{
3071	spa_t *spa = vd->vdev_spa;
3072	vdev_t *rvd = spa->spa_root_vdev;
3073	int c;
3074
3075	ASSERT(spa_writeable(spa));
3076
3077	/*
3078	 * If this is an aux vdev (as with l2cache and spare devices), then we
3079	 * update the vdev config manually and set the sync flag.
3080	 */
3081	if (vd->vdev_aux != NULL) {
3082		spa_aux_vdev_t *sav = vd->vdev_aux;
3083		nvlist_t **aux;
3084		uint_t naux;
3085
3086		for (c = 0; c < sav->sav_count; c++) {
3087			if (sav->sav_vdevs[c] == vd)
3088				break;
3089		}
3090
3091		if (c == sav->sav_count) {
3092			/*
3093			 * We're being removed.  There's nothing more to do.
3094			 */
3095			ASSERT(sav->sav_sync == B_TRUE);
3096			return;
3097		}
3098
3099		sav->sav_sync = B_TRUE;
3100
3101		if (nvlist_lookup_nvlist_array(sav->sav_config,
3102		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3103			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3104			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3105		}
3106
3107		ASSERT(c < naux);
3108
3109		/*
3110		 * Setting the nvlist in the middle if the array is a little
3111		 * sketchy, but it will work.
3112		 */
3113		nvlist_free(aux[c]);
3114		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3115
3116		return;
3117	}
3118
3119	/*
3120	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3121	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3122	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3123	 * so this is sufficient to ensure mutual exclusion.
3124	 */
3125	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3126	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3127	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3128
3129	if (vd == rvd) {
3130		for (c = 0; c < rvd->vdev_children; c++)
3131			vdev_config_dirty(rvd->vdev_child[c]);
3132	} else {
3133		ASSERT(vd == vd->vdev_top);
3134
3135		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3136		    !vd->vdev_ishole)
3137			list_insert_head(&spa->spa_config_dirty_list, vd);
3138	}
3139}
3140
3141void
3142vdev_config_clean(vdev_t *vd)
3143{
3144	spa_t *spa = vd->vdev_spa;
3145
3146	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3147	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3148	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3149
3150	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3151	list_remove(&spa->spa_config_dirty_list, vd);
3152}
3153
3154/*
3155 * Mark a top-level vdev's state as dirty, so that the next pass of
3156 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3157 * the state changes from larger config changes because they require
3158 * much less locking, and are often needed for administrative actions.
3159 */
3160void
3161vdev_state_dirty(vdev_t *vd)
3162{
3163	spa_t *spa = vd->vdev_spa;
3164
3165	ASSERT(spa_writeable(spa));
3166	ASSERT(vd == vd->vdev_top);
3167
3168	/*
3169	 * The state list is protected by the SCL_STATE lock.  The caller
3170	 * must either hold SCL_STATE as writer, or must be the sync thread
3171	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3172	 * so this is sufficient to ensure mutual exclusion.
3173	 */
3174	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3175	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3176	    spa_config_held(spa, SCL_STATE, RW_READER)));
3177
3178	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3179		list_insert_head(&spa->spa_state_dirty_list, vd);
3180}
3181
3182void
3183vdev_state_clean(vdev_t *vd)
3184{
3185	spa_t *spa = vd->vdev_spa;
3186
3187	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3188	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3189	    spa_config_held(spa, SCL_STATE, RW_READER)));
3190
3191	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3192	list_remove(&spa->spa_state_dirty_list, vd);
3193}
3194
3195/*
3196 * Propagate vdev state up from children to parent.
3197 */
3198void
3199vdev_propagate_state(vdev_t *vd)
3200{
3201	spa_t *spa = vd->vdev_spa;
3202	vdev_t *rvd = spa->spa_root_vdev;
3203	int degraded = 0, faulted = 0;
3204	int corrupted = 0;
3205	vdev_t *child;
3206
3207	if (vd->vdev_children > 0) {
3208		for (int c = 0; c < vd->vdev_children; c++) {
3209			child = vd->vdev_child[c];
3210
3211			/*
3212			 * Don't factor holes into the decision.
3213			 */
3214			if (child->vdev_ishole)
3215				continue;
3216
3217			if (!vdev_readable(child) ||
3218			    (!vdev_writeable(child) && spa_writeable(spa))) {
3219				/*
3220				 * Root special: if there is a top-level log
3221				 * device, treat the root vdev as if it were
3222				 * degraded.
3223				 */
3224				if (child->vdev_islog && vd == rvd)
3225					degraded++;
3226				else
3227					faulted++;
3228			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3229				degraded++;
3230			}
3231
3232			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3233				corrupted++;
3234		}
3235
3236		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3237
3238		/*
3239		 * Root special: if there is a top-level vdev that cannot be
3240		 * opened due to corrupted metadata, then propagate the root
3241		 * vdev's aux state as 'corrupt' rather than 'insufficient
3242		 * replicas'.
3243		 */
3244		if (corrupted && vd == rvd &&
3245		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3246			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3247			    VDEV_AUX_CORRUPT_DATA);
3248	}
3249
3250	if (vd->vdev_parent)
3251		vdev_propagate_state(vd->vdev_parent);
3252}
3253
3254/*
3255 * Set a vdev's state.  If this is during an open, we don't update the parent
3256 * state, because we're in the process of opening children depth-first.
3257 * Otherwise, we propagate the change to the parent.
3258 *
3259 * If this routine places a device in a faulted state, an appropriate ereport is
3260 * generated.
3261 */
3262void
3263vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3264{
3265	uint64_t save_state;
3266	spa_t *spa = vd->vdev_spa;
3267
3268	if (state == vd->vdev_state) {
3269		vd->vdev_stat.vs_aux = aux;
3270		return;
3271	}
3272
3273	save_state = vd->vdev_state;
3274
3275	vd->vdev_state = state;
3276	vd->vdev_stat.vs_aux = aux;
3277
3278	/*
3279	 * If we are setting the vdev state to anything but an open state, then
3280	 * always close the underlying device unless the device has requested
3281	 * a delayed close (i.e. we're about to remove or fault the device).
3282	 * Otherwise, we keep accessible but invalid devices open forever.
3283	 * We don't call vdev_close() itself, because that implies some extra
3284	 * checks (offline, etc) that we don't want here.  This is limited to
3285	 * leaf devices, because otherwise closing the device will affect other
3286	 * children.
3287	 */
3288	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3289	    vd->vdev_ops->vdev_op_leaf)
3290		vd->vdev_ops->vdev_op_close(vd);
3291
3292	/*
3293	 * If we have brought this vdev back into service, we need
3294	 * to notify fmd so that it can gracefully repair any outstanding
3295	 * cases due to a missing device.  We do this in all cases, even those
3296	 * that probably don't correlate to a repaired fault.  This is sure to
3297	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3298	 * this is a transient state it's OK, as the retire agent will
3299	 * double-check the state of the vdev before repairing it.
3300	 */
3301	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3302	    vd->vdev_prevstate != state)
3303		zfs_post_state_change(spa, vd);
3304
3305	if (vd->vdev_removed &&
3306	    state == VDEV_STATE_CANT_OPEN &&
3307	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3308		/*
3309		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3310		 * device was previously marked removed and someone attempted to
3311		 * reopen it.  If this failed due to a nonexistent device, then
3312		 * keep the device in the REMOVED state.  We also let this be if
3313		 * it is one of our special test online cases, which is only
3314		 * attempting to online the device and shouldn't generate an FMA
3315		 * fault.
3316		 */
3317		vd->vdev_state = VDEV_STATE_REMOVED;
3318		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3319	} else if (state == VDEV_STATE_REMOVED) {
3320		vd->vdev_removed = B_TRUE;
3321	} else if (state == VDEV_STATE_CANT_OPEN) {
3322		/*
3323		 * If we fail to open a vdev during an import or recovery, we
3324		 * mark it as "not available", which signifies that it was
3325		 * never there to begin with.  Failure to open such a device
3326		 * is not considered an error.
3327		 */
3328		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3329		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3330		    vd->vdev_ops->vdev_op_leaf)
3331			vd->vdev_not_present = 1;
3332
3333		/*
3334		 * Post the appropriate ereport.  If the 'prevstate' field is
3335		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3336		 * that this is part of a vdev_reopen().  In this case, we don't
3337		 * want to post the ereport if the device was already in the
3338		 * CANT_OPEN state beforehand.
3339		 *
3340		 * If the 'checkremove' flag is set, then this is an attempt to
3341		 * online the device in response to an insertion event.  If we
3342		 * hit this case, then we have detected an insertion event for a
3343		 * faulted or offline device that wasn't in the removed state.
3344		 * In this scenario, we don't post an ereport because we are
3345		 * about to replace the device, or attempt an online with
3346		 * vdev_forcefault, which will generate the fault for us.
3347		 */
3348		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3349		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3350		    vd != spa->spa_root_vdev) {
3351			const char *class;
3352
3353			switch (aux) {
3354			case VDEV_AUX_OPEN_FAILED:
3355				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3356				break;
3357			case VDEV_AUX_CORRUPT_DATA:
3358				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3359				break;
3360			case VDEV_AUX_NO_REPLICAS:
3361				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3362				break;
3363			case VDEV_AUX_BAD_GUID_SUM:
3364				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3365				break;
3366			case VDEV_AUX_TOO_SMALL:
3367				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3368				break;
3369			case VDEV_AUX_BAD_LABEL:
3370				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3371				break;
3372			default:
3373				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3374			}
3375
3376			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3377		}
3378
3379		/* Erase any notion of persistent removed state */
3380		vd->vdev_removed = B_FALSE;
3381	} else {
3382		vd->vdev_removed = B_FALSE;
3383	}
3384
3385	if (!isopen && vd->vdev_parent)
3386		vdev_propagate_state(vd->vdev_parent);
3387}
3388
3389/*
3390 * Check the vdev configuration to ensure that it's capable of supporting
3391 * a root pool.
3392 *
3393 * On Solaris, we do not support RAID-Z or partial configuration.  In
3394 * addition, only a single top-level vdev is allowed and none of the
3395 * leaves can be wholedisks.
3396 *
3397 * For FreeBSD, we can boot from any configuration. There is a
3398 * limitation that the boot filesystem must be either uncompressed or
3399 * compresses with lzjb compression but I'm not sure how to enforce
3400 * that here.
3401 */
3402boolean_t
3403vdev_is_bootable(vdev_t *vd)
3404{
3405#ifdef illumos
3406	if (!vd->vdev_ops->vdev_op_leaf) {
3407		char *vdev_type = vd->vdev_ops->vdev_op_type;
3408
3409		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3410		    vd->vdev_children > 1) {
3411			return (B_FALSE);
3412		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3413		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3414			return (B_FALSE);
3415		}
3416	}
3417
3418	for (int c = 0; c < vd->vdev_children; c++) {
3419		if (!vdev_is_bootable(vd->vdev_child[c]))
3420			return (B_FALSE);
3421	}
3422#endif	/* illumos */
3423	return (B_TRUE);
3424}
3425
3426/*
3427 * Load the state from the original vdev tree (ovd) which
3428 * we've retrieved from the MOS config object. If the original
3429 * vdev was offline or faulted then we transfer that state to the
3430 * device in the current vdev tree (nvd).
3431 */
3432void
3433vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3434{
3435	spa_t *spa = nvd->vdev_spa;
3436
3437	ASSERT(nvd->vdev_top->vdev_islog);
3438	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3439	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3440
3441	for (int c = 0; c < nvd->vdev_children; c++)
3442		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3443
3444	if (nvd->vdev_ops->vdev_op_leaf) {
3445		/*
3446		 * Restore the persistent vdev state
3447		 */
3448		nvd->vdev_offline = ovd->vdev_offline;
3449		nvd->vdev_faulted = ovd->vdev_faulted;
3450		nvd->vdev_degraded = ovd->vdev_degraded;
3451		nvd->vdev_removed = ovd->vdev_removed;
3452	}
3453}
3454
3455/*
3456 * Determine if a log device has valid content.  If the vdev was
3457 * removed or faulted in the MOS config then we know that
3458 * the content on the log device has already been written to the pool.
3459 */
3460boolean_t
3461vdev_log_state_valid(vdev_t *vd)
3462{
3463	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3464	    !vd->vdev_removed)
3465		return (B_TRUE);
3466
3467	for (int c = 0; c < vd->vdev_children; c++)
3468		if (vdev_log_state_valid(vd->vdev_child[c]))
3469			return (B_TRUE);
3470
3471	return (B_FALSE);
3472}
3473
3474/*
3475 * Expand a vdev if possible.
3476 */
3477void
3478vdev_expand(vdev_t *vd, uint64_t txg)
3479{
3480	ASSERT(vd->vdev_top == vd);
3481	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3482
3483	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3484		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3485		vdev_config_dirty(vd);
3486	}
3487}
3488
3489/*
3490 * Split a vdev.
3491 */
3492void
3493vdev_split(vdev_t *vd)
3494{
3495	vdev_t *cvd, *pvd = vd->vdev_parent;
3496
3497	vdev_remove_child(pvd, vd);
3498	vdev_compact_children(pvd);
3499
3500	cvd = pvd->vdev_child[0];
3501	if (pvd->vdev_children == 1) {
3502		vdev_remove_parent(cvd);
3503		cvd->vdev_splitting = B_TRUE;
3504	}
3505	vdev_propagate_state(cvd);
3506}
3507
3508void
3509vdev_deadman(vdev_t *vd)
3510{
3511	for (int c = 0; c < vd->vdev_children; c++) {
3512		vdev_t *cvd = vd->vdev_child[c];
3513
3514		vdev_deadman(cvd);
3515	}
3516
3517	if (vd->vdev_ops->vdev_op_leaf) {
3518		vdev_queue_t *vq = &vd->vdev_queue;
3519
3520		mutex_enter(&vq->vq_lock);
3521		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3522			spa_t *spa = vd->vdev_spa;
3523			zio_t *fio;
3524			uint64_t delta;
3525
3526			/*
3527			 * Look at the head of all the pending queues,
3528			 * if any I/O has been outstanding for longer than
3529			 * the spa_deadman_synctime we panic the system.
3530			 */
3531			fio = avl_first(&vq->vq_active_tree);
3532			delta = gethrtime() - fio->io_timestamp;
3533			if (delta > spa_deadman_synctime(spa)) {
3534				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3535				    "delta %lluns, last io %lluns",
3536				    fio->io_timestamp, delta,
3537				    vq->vq_io_complete_ts);
3538				fm_panic("I/O to pool '%s' appears to be "
3539				    "hung on vdev guid %llu at '%s'.",
3540				    spa_name(spa),
3541				    (long long unsigned int) vd->vdev_guid,
3542				    vd->vdev_path);
3543			}
3544		}
3545		mutex_exit(&vq->vq_lock);
3546	}
3547}
3548