vdev.c revision 285001
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/*
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *          zfs_min_auto_ashift = 9 (512 bytes)
65 *
66 * On pool creation or the addition of a new top-level vdev, ZFS will
67 * increase the ashift of the top-level vdev to 2048 as limited by
68 * zfs_max_auto_ashift.
69 *
70 * Example: one or more 512B emulation child vdevs
71 *          child->vdev_ashift = 9 (512 bytes)
72 *          child->vdev_physical_ashift = 12 (4096 bytes)
73 *          zfs_max_auto_ashift = 13 (8192 bytes)
74 *          zfs_min_auto_ashift = 9 (512 bytes)
75 *
76 * On pool creation or the addition of a new top-level vdev, ZFS will
77 * increase the ashift of the top-level vdev to 4096 to match the
78 * max vdev_physical_ashift.
79 *
80 * Example: one or more 512B emulation child vdevs
81 *          child->vdev_ashift = 9 (512 bytes)
82 *          child->vdev_physical_ashift = 9 (512 bytes)
83 *          zfs_max_auto_ashift = 13 (8192 bytes)
84 *          zfs_min_auto_ashift = 12 (4096 bytes)
85 *
86 * On pool creation or the addition of a new top-level vdev, ZFS will
87 * increase the ashift of the top-level vdev to 4096 to match the
88 * zfs_min_auto_ashift.
89 */
90static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93static int
94sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95{
96	uint64_t val;
97	int err;
98
99	val = zfs_max_auto_ashift;
100	err = sysctl_handle_64(oidp, &val, 0, req);
101	if (err != 0 || req->newptr == NULL)
102		return (err);
103
104	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105		return (EINVAL);
106
107	zfs_max_auto_ashift = val;
108
109	return (0);
110}
111SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113    sysctl_vfs_zfs_max_auto_ashift, "QU",
114    "Max ashift used when optimising for logical -> physical sectors size on "
115    "new top-level vdevs.");
116
117static int
118sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119{
120	uint64_t val;
121	int err;
122
123	val = zfs_min_auto_ashift;
124	err = sysctl_handle_64(oidp, &val, 0, req);
125	if (err != 0 || req->newptr == NULL)
126		return (err);
127
128	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129		return (EINVAL);
130
131	zfs_min_auto_ashift = val;
132
133	return (0);
134}
135SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137    sysctl_vfs_zfs_min_auto_ashift, "QU",
138    "Min ashift used when creating new top-level vdevs.");
139
140static vdev_ops_t *vdev_ops_table[] = {
141	&vdev_root_ops,
142	&vdev_raidz_ops,
143	&vdev_mirror_ops,
144	&vdev_replacing_ops,
145	&vdev_spare_ops,
146#ifdef _KERNEL
147	&vdev_geom_ops,
148#else
149	&vdev_disk_ops,
150#endif
151	&vdev_file_ops,
152	&vdev_missing_ops,
153	&vdev_hole_ops,
154	NULL
155};
156
157
158/*
159 * When a vdev is added, it will be divided into approximately (but no
160 * more than) this number of metaslabs.
161 */
162int metaslabs_per_vdev = 200;
163SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164    &metaslabs_per_vdev, 0,
165    "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167/*
168 * Given a vdev type, return the appropriate ops vector.
169 */
170static vdev_ops_t *
171vdev_getops(const char *type)
172{
173	vdev_ops_t *ops, **opspp;
174
175	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176		if (strcmp(ops->vdev_op_type, type) == 0)
177			break;
178
179	return (ops);
180}
181
182/*
183 * Default asize function: return the MAX of psize with the asize of
184 * all children.  This is what's used by anything other than RAID-Z.
185 */
186uint64_t
187vdev_default_asize(vdev_t *vd, uint64_t psize)
188{
189	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190	uint64_t csize;
191
192	for (int c = 0; c < vd->vdev_children; c++) {
193		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194		asize = MAX(asize, csize);
195	}
196
197	return (asize);
198}
199
200/*
201 * Get the minimum allocatable size. We define the allocatable size as
202 * the vdev's asize rounded to the nearest metaslab. This allows us to
203 * replace or attach devices which don't have the same physical size but
204 * can still satisfy the same number of allocations.
205 */
206uint64_t
207vdev_get_min_asize(vdev_t *vd)
208{
209	vdev_t *pvd = vd->vdev_parent;
210
211	/*
212	 * If our parent is NULL (inactive spare or cache) or is the root,
213	 * just return our own asize.
214	 */
215	if (pvd == NULL)
216		return (vd->vdev_asize);
217
218	/*
219	 * The top-level vdev just returns the allocatable size rounded
220	 * to the nearest metaslab.
221	 */
222	if (vd == vd->vdev_top)
223		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225	/*
226	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227	 * so each child must provide at least 1/Nth of its asize.
228	 */
229	if (pvd->vdev_ops == &vdev_raidz_ops)
230		return (pvd->vdev_min_asize / pvd->vdev_children);
231
232	return (pvd->vdev_min_asize);
233}
234
235void
236vdev_set_min_asize(vdev_t *vd)
237{
238	vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240	for (int c = 0; c < vd->vdev_children; c++)
241		vdev_set_min_asize(vd->vdev_child[c]);
242}
243
244vdev_t *
245vdev_lookup_top(spa_t *spa, uint64_t vdev)
246{
247	vdev_t *rvd = spa->spa_root_vdev;
248
249	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251	if (vdev < rvd->vdev_children) {
252		ASSERT(rvd->vdev_child[vdev] != NULL);
253		return (rvd->vdev_child[vdev]);
254	}
255
256	return (NULL);
257}
258
259vdev_t *
260vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261{
262	vdev_t *mvd;
263
264	if (vd->vdev_guid == guid)
265		return (vd);
266
267	for (int c = 0; c < vd->vdev_children; c++)
268		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269		    NULL)
270			return (mvd);
271
272	return (NULL);
273}
274
275void
276vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277{
278	size_t oldsize, newsize;
279	uint64_t id = cvd->vdev_id;
280	vdev_t **newchild;
281	spa_t *spa = cvd->vdev_spa;
282
283	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
284	ASSERT(cvd->vdev_parent == NULL);
285
286	cvd->vdev_parent = pvd;
287
288	if (pvd == NULL)
289		return;
290
291	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
292
293	oldsize = pvd->vdev_children * sizeof (vdev_t *);
294	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
295	newsize = pvd->vdev_children * sizeof (vdev_t *);
296
297	newchild = kmem_zalloc(newsize, KM_SLEEP);
298	if (pvd->vdev_child != NULL) {
299		bcopy(pvd->vdev_child, newchild, oldsize);
300		kmem_free(pvd->vdev_child, oldsize);
301	}
302
303	pvd->vdev_child = newchild;
304	pvd->vdev_child[id] = cvd;
305
306	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
307	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
308
309	/*
310	 * Walk up all ancestors to update guid sum.
311	 */
312	for (; pvd != NULL; pvd = pvd->vdev_parent)
313		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
314}
315
316void
317vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
318{
319	int c;
320	uint_t id = cvd->vdev_id;
321
322	ASSERT(cvd->vdev_parent == pvd);
323
324	if (pvd == NULL)
325		return;
326
327	ASSERT(id < pvd->vdev_children);
328	ASSERT(pvd->vdev_child[id] == cvd);
329
330	pvd->vdev_child[id] = NULL;
331	cvd->vdev_parent = NULL;
332
333	for (c = 0; c < pvd->vdev_children; c++)
334		if (pvd->vdev_child[c])
335			break;
336
337	if (c == pvd->vdev_children) {
338		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
339		pvd->vdev_child = NULL;
340		pvd->vdev_children = 0;
341	}
342
343	/*
344	 * Walk up all ancestors to update guid sum.
345	 */
346	for (; pvd != NULL; pvd = pvd->vdev_parent)
347		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
348}
349
350/*
351 * Remove any holes in the child array.
352 */
353void
354vdev_compact_children(vdev_t *pvd)
355{
356	vdev_t **newchild, *cvd;
357	int oldc = pvd->vdev_children;
358	int newc;
359
360	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
361
362	for (int c = newc = 0; c < oldc; c++)
363		if (pvd->vdev_child[c])
364			newc++;
365
366	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
367
368	for (int c = newc = 0; c < oldc; c++) {
369		if ((cvd = pvd->vdev_child[c]) != NULL) {
370			newchild[newc] = cvd;
371			cvd->vdev_id = newc++;
372		}
373	}
374
375	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
376	pvd->vdev_child = newchild;
377	pvd->vdev_children = newc;
378}
379
380/*
381 * Allocate and minimally initialize a vdev_t.
382 */
383vdev_t *
384vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
385{
386	vdev_t *vd;
387
388	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
389
390	if (spa->spa_root_vdev == NULL) {
391		ASSERT(ops == &vdev_root_ops);
392		spa->spa_root_vdev = vd;
393		spa->spa_load_guid = spa_generate_guid(NULL);
394	}
395
396	if (guid == 0 && ops != &vdev_hole_ops) {
397		if (spa->spa_root_vdev == vd) {
398			/*
399			 * The root vdev's guid will also be the pool guid,
400			 * which must be unique among all pools.
401			 */
402			guid = spa_generate_guid(NULL);
403		} else {
404			/*
405			 * Any other vdev's guid must be unique within the pool.
406			 */
407			guid = spa_generate_guid(spa);
408		}
409		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
410	}
411
412	vd->vdev_spa = spa;
413	vd->vdev_id = id;
414	vd->vdev_guid = guid;
415	vd->vdev_guid_sum = guid;
416	vd->vdev_ops = ops;
417	vd->vdev_state = VDEV_STATE_CLOSED;
418	vd->vdev_ishole = (ops == &vdev_hole_ops);
419
420	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
421	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
422	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
423	for (int t = 0; t < DTL_TYPES; t++) {
424		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
425		    &vd->vdev_dtl_lock);
426	}
427	txg_list_create(&vd->vdev_ms_list,
428	    offsetof(struct metaslab, ms_txg_node));
429	txg_list_create(&vd->vdev_dtl_list,
430	    offsetof(struct vdev, vdev_dtl_node));
431	vd->vdev_stat.vs_timestamp = gethrtime();
432	vdev_queue_init(vd);
433	vdev_cache_init(vd);
434
435	return (vd);
436}
437
438/*
439 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
440 * creating a new vdev or loading an existing one - the behavior is slightly
441 * different for each case.
442 */
443int
444vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
445    int alloctype)
446{
447	vdev_ops_t *ops;
448	char *type;
449	uint64_t guid = 0, islog, nparity;
450	vdev_t *vd;
451
452	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
453
454	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
455		return (SET_ERROR(EINVAL));
456
457	if ((ops = vdev_getops(type)) == NULL)
458		return (SET_ERROR(EINVAL));
459
460	/*
461	 * If this is a load, get the vdev guid from the nvlist.
462	 * Otherwise, vdev_alloc_common() will generate one for us.
463	 */
464	if (alloctype == VDEV_ALLOC_LOAD) {
465		uint64_t label_id;
466
467		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
468		    label_id != id)
469			return (SET_ERROR(EINVAL));
470
471		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
472			return (SET_ERROR(EINVAL));
473	} else if (alloctype == VDEV_ALLOC_SPARE) {
474		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
475			return (SET_ERROR(EINVAL));
476	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
477		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
478			return (SET_ERROR(EINVAL));
479	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
480		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
481			return (SET_ERROR(EINVAL));
482	}
483
484	/*
485	 * The first allocated vdev must be of type 'root'.
486	 */
487	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
488		return (SET_ERROR(EINVAL));
489
490	/*
491	 * Determine whether we're a log vdev.
492	 */
493	islog = 0;
494	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
495	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
496		return (SET_ERROR(ENOTSUP));
497
498	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
499		return (SET_ERROR(ENOTSUP));
500
501	/*
502	 * Set the nparity property for RAID-Z vdevs.
503	 */
504	nparity = -1ULL;
505	if (ops == &vdev_raidz_ops) {
506		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
507		    &nparity) == 0) {
508			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
509				return (SET_ERROR(EINVAL));
510			/*
511			 * Previous versions could only support 1 or 2 parity
512			 * device.
513			 */
514			if (nparity > 1 &&
515			    spa_version(spa) < SPA_VERSION_RAIDZ2)
516				return (SET_ERROR(ENOTSUP));
517			if (nparity > 2 &&
518			    spa_version(spa) < SPA_VERSION_RAIDZ3)
519				return (SET_ERROR(ENOTSUP));
520		} else {
521			/*
522			 * We require the parity to be specified for SPAs that
523			 * support multiple parity levels.
524			 */
525			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
526				return (SET_ERROR(EINVAL));
527			/*
528			 * Otherwise, we default to 1 parity device for RAID-Z.
529			 */
530			nparity = 1;
531		}
532	} else {
533		nparity = 0;
534	}
535	ASSERT(nparity != -1ULL);
536
537	vd = vdev_alloc_common(spa, id, guid, ops);
538
539	vd->vdev_islog = islog;
540	vd->vdev_nparity = nparity;
541
542	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
543		vd->vdev_path = spa_strdup(vd->vdev_path);
544	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
545		vd->vdev_devid = spa_strdup(vd->vdev_devid);
546	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
547	    &vd->vdev_physpath) == 0)
548		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
549	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
550		vd->vdev_fru = spa_strdup(vd->vdev_fru);
551
552	/*
553	 * Set the whole_disk property.  If it's not specified, leave the value
554	 * as -1.
555	 */
556	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
557	    &vd->vdev_wholedisk) != 0)
558		vd->vdev_wholedisk = -1ULL;
559
560	/*
561	 * Look for the 'not present' flag.  This will only be set if the device
562	 * was not present at the time of import.
563	 */
564	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
565	    &vd->vdev_not_present);
566
567	/*
568	 * Get the alignment requirement.
569	 */
570	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
571
572	/*
573	 * Retrieve the vdev creation time.
574	 */
575	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
576	    &vd->vdev_crtxg);
577
578	/*
579	 * If we're a top-level vdev, try to load the allocation parameters.
580	 */
581	if (parent && !parent->vdev_parent &&
582	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
583		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
584		    &vd->vdev_ms_array);
585		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
586		    &vd->vdev_ms_shift);
587		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
588		    &vd->vdev_asize);
589		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
590		    &vd->vdev_removing);
591	}
592
593	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
594		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
595		    alloctype == VDEV_ALLOC_ADD ||
596		    alloctype == VDEV_ALLOC_SPLIT ||
597		    alloctype == VDEV_ALLOC_ROOTPOOL);
598		vd->vdev_mg = metaslab_group_create(islog ?
599		    spa_log_class(spa) : spa_normal_class(spa), vd);
600	}
601
602	/*
603	 * If we're a leaf vdev, try to load the DTL object and other state.
604	 */
605	if (vd->vdev_ops->vdev_op_leaf &&
606	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
607	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
608		if (alloctype == VDEV_ALLOC_LOAD) {
609			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
610			    &vd->vdev_dtl_object);
611			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
612			    &vd->vdev_unspare);
613		}
614
615		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
616			uint64_t spare = 0;
617
618			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
619			    &spare) == 0 && spare)
620				spa_spare_add(vd);
621		}
622
623		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
624		    &vd->vdev_offline);
625
626		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
627		    &vd->vdev_resilver_txg);
628
629		/*
630		 * When importing a pool, we want to ignore the persistent fault
631		 * state, as the diagnosis made on another system may not be
632		 * valid in the current context.  Local vdevs will
633		 * remain in the faulted state.
634		 */
635		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
636			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
637			    &vd->vdev_faulted);
638			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
639			    &vd->vdev_degraded);
640			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
641			    &vd->vdev_removed);
642
643			if (vd->vdev_faulted || vd->vdev_degraded) {
644				char *aux;
645
646				vd->vdev_label_aux =
647				    VDEV_AUX_ERR_EXCEEDED;
648				if (nvlist_lookup_string(nv,
649				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
650				    strcmp(aux, "external") == 0)
651					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
652			}
653		}
654	}
655
656	/*
657	 * Add ourselves to the parent's list of children.
658	 */
659	vdev_add_child(parent, vd);
660
661	*vdp = vd;
662
663	return (0);
664}
665
666void
667vdev_free(vdev_t *vd)
668{
669	spa_t *spa = vd->vdev_spa;
670
671	/*
672	 * vdev_free() implies closing the vdev first.  This is simpler than
673	 * trying to ensure complicated semantics for all callers.
674	 */
675	vdev_close(vd);
676
677	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
678	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
679
680	/*
681	 * Free all children.
682	 */
683	for (int c = 0; c < vd->vdev_children; c++)
684		vdev_free(vd->vdev_child[c]);
685
686	ASSERT(vd->vdev_child == NULL);
687	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
688
689	/*
690	 * Discard allocation state.
691	 */
692	if (vd->vdev_mg != NULL) {
693		vdev_metaslab_fini(vd);
694		metaslab_group_destroy(vd->vdev_mg);
695	}
696
697	ASSERT0(vd->vdev_stat.vs_space);
698	ASSERT0(vd->vdev_stat.vs_dspace);
699	ASSERT0(vd->vdev_stat.vs_alloc);
700
701	/*
702	 * Remove this vdev from its parent's child list.
703	 */
704	vdev_remove_child(vd->vdev_parent, vd);
705
706	ASSERT(vd->vdev_parent == NULL);
707
708	/*
709	 * Clean up vdev structure.
710	 */
711	vdev_queue_fini(vd);
712	vdev_cache_fini(vd);
713
714	if (vd->vdev_path)
715		spa_strfree(vd->vdev_path);
716	if (vd->vdev_devid)
717		spa_strfree(vd->vdev_devid);
718	if (vd->vdev_physpath)
719		spa_strfree(vd->vdev_physpath);
720	if (vd->vdev_fru)
721		spa_strfree(vd->vdev_fru);
722
723	if (vd->vdev_isspare)
724		spa_spare_remove(vd);
725	if (vd->vdev_isl2cache)
726		spa_l2cache_remove(vd);
727
728	txg_list_destroy(&vd->vdev_ms_list);
729	txg_list_destroy(&vd->vdev_dtl_list);
730
731	mutex_enter(&vd->vdev_dtl_lock);
732	space_map_close(vd->vdev_dtl_sm);
733	for (int t = 0; t < DTL_TYPES; t++) {
734		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
735		range_tree_destroy(vd->vdev_dtl[t]);
736	}
737	mutex_exit(&vd->vdev_dtl_lock);
738
739	mutex_destroy(&vd->vdev_dtl_lock);
740	mutex_destroy(&vd->vdev_stat_lock);
741	mutex_destroy(&vd->vdev_probe_lock);
742
743	if (vd == spa->spa_root_vdev)
744		spa->spa_root_vdev = NULL;
745
746	kmem_free(vd, sizeof (vdev_t));
747}
748
749/*
750 * Transfer top-level vdev state from svd to tvd.
751 */
752static void
753vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
754{
755	spa_t *spa = svd->vdev_spa;
756	metaslab_t *msp;
757	vdev_t *vd;
758	int t;
759
760	ASSERT(tvd == tvd->vdev_top);
761
762	tvd->vdev_ms_array = svd->vdev_ms_array;
763	tvd->vdev_ms_shift = svd->vdev_ms_shift;
764	tvd->vdev_ms_count = svd->vdev_ms_count;
765
766	svd->vdev_ms_array = 0;
767	svd->vdev_ms_shift = 0;
768	svd->vdev_ms_count = 0;
769
770	if (tvd->vdev_mg)
771		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
772	tvd->vdev_mg = svd->vdev_mg;
773	tvd->vdev_ms = svd->vdev_ms;
774
775	svd->vdev_mg = NULL;
776	svd->vdev_ms = NULL;
777
778	if (tvd->vdev_mg != NULL)
779		tvd->vdev_mg->mg_vd = tvd;
780
781	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
782	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
783	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
784
785	svd->vdev_stat.vs_alloc = 0;
786	svd->vdev_stat.vs_space = 0;
787	svd->vdev_stat.vs_dspace = 0;
788
789	for (t = 0; t < TXG_SIZE; t++) {
790		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
791			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
792		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
793			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
794		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
795			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
796	}
797
798	if (list_link_active(&svd->vdev_config_dirty_node)) {
799		vdev_config_clean(svd);
800		vdev_config_dirty(tvd);
801	}
802
803	if (list_link_active(&svd->vdev_state_dirty_node)) {
804		vdev_state_clean(svd);
805		vdev_state_dirty(tvd);
806	}
807
808	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
809	svd->vdev_deflate_ratio = 0;
810
811	tvd->vdev_islog = svd->vdev_islog;
812	svd->vdev_islog = 0;
813}
814
815static void
816vdev_top_update(vdev_t *tvd, vdev_t *vd)
817{
818	if (vd == NULL)
819		return;
820
821	vd->vdev_top = tvd;
822
823	for (int c = 0; c < vd->vdev_children; c++)
824		vdev_top_update(tvd, vd->vdev_child[c]);
825}
826
827/*
828 * Add a mirror/replacing vdev above an existing vdev.
829 */
830vdev_t *
831vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
832{
833	spa_t *spa = cvd->vdev_spa;
834	vdev_t *pvd = cvd->vdev_parent;
835	vdev_t *mvd;
836
837	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
838
839	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
840
841	mvd->vdev_asize = cvd->vdev_asize;
842	mvd->vdev_min_asize = cvd->vdev_min_asize;
843	mvd->vdev_max_asize = cvd->vdev_max_asize;
844	mvd->vdev_ashift = cvd->vdev_ashift;
845	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
846	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
847	mvd->vdev_state = cvd->vdev_state;
848	mvd->vdev_crtxg = cvd->vdev_crtxg;
849
850	vdev_remove_child(pvd, cvd);
851	vdev_add_child(pvd, mvd);
852	cvd->vdev_id = mvd->vdev_children;
853	vdev_add_child(mvd, cvd);
854	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
855
856	if (mvd == mvd->vdev_top)
857		vdev_top_transfer(cvd, mvd);
858
859	return (mvd);
860}
861
862/*
863 * Remove a 1-way mirror/replacing vdev from the tree.
864 */
865void
866vdev_remove_parent(vdev_t *cvd)
867{
868	vdev_t *mvd = cvd->vdev_parent;
869	vdev_t *pvd = mvd->vdev_parent;
870
871	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
872
873	ASSERT(mvd->vdev_children == 1);
874	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
875	    mvd->vdev_ops == &vdev_replacing_ops ||
876	    mvd->vdev_ops == &vdev_spare_ops);
877	cvd->vdev_ashift = mvd->vdev_ashift;
878	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
879	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
880
881	vdev_remove_child(mvd, cvd);
882	vdev_remove_child(pvd, mvd);
883
884	/*
885	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
886	 * Otherwise, we could have detached an offline device, and when we
887	 * go to import the pool we'll think we have two top-level vdevs,
888	 * instead of a different version of the same top-level vdev.
889	 */
890	if (mvd->vdev_top == mvd) {
891		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
892		cvd->vdev_orig_guid = cvd->vdev_guid;
893		cvd->vdev_guid += guid_delta;
894		cvd->vdev_guid_sum += guid_delta;
895	}
896	cvd->vdev_id = mvd->vdev_id;
897	vdev_add_child(pvd, cvd);
898	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
899
900	if (cvd == cvd->vdev_top)
901		vdev_top_transfer(mvd, cvd);
902
903	ASSERT(mvd->vdev_children == 0);
904	vdev_free(mvd);
905}
906
907int
908vdev_metaslab_init(vdev_t *vd, uint64_t txg)
909{
910	spa_t *spa = vd->vdev_spa;
911	objset_t *mos = spa->spa_meta_objset;
912	uint64_t m;
913	uint64_t oldc = vd->vdev_ms_count;
914	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
915	metaslab_t **mspp;
916	int error;
917
918	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
919
920	/*
921	 * This vdev is not being allocated from yet or is a hole.
922	 */
923	if (vd->vdev_ms_shift == 0)
924		return (0);
925
926	ASSERT(!vd->vdev_ishole);
927
928	/*
929	 * Compute the raidz-deflation ratio.  Note, we hard-code
930	 * in 128k (1 << 17) because it is the "typical" blocksize.
931	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
932	 * otherwise it would inconsistently account for existing bp's.
933	 */
934	vd->vdev_deflate_ratio = (1 << 17) /
935	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
936
937	ASSERT(oldc <= newc);
938
939	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
940
941	if (oldc != 0) {
942		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
943		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
944	}
945
946	vd->vdev_ms = mspp;
947	vd->vdev_ms_count = newc;
948
949	for (m = oldc; m < newc; m++) {
950		uint64_t object = 0;
951
952		if (txg == 0) {
953			error = dmu_read(mos, vd->vdev_ms_array,
954			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
955			    DMU_READ_PREFETCH);
956			if (error)
957				return (error);
958		}
959
960		error = metaslab_init(vd->vdev_mg, m, object, txg,
961		    &(vd->vdev_ms[m]));
962		if (error)
963			return (error);
964	}
965
966	if (txg == 0)
967		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
968
969	/*
970	 * If the vdev is being removed we don't activate
971	 * the metaslabs since we want to ensure that no new
972	 * allocations are performed on this device.
973	 */
974	if (oldc == 0 && !vd->vdev_removing)
975		metaslab_group_activate(vd->vdev_mg);
976
977	if (txg == 0)
978		spa_config_exit(spa, SCL_ALLOC, FTAG);
979
980	return (0);
981}
982
983void
984vdev_metaslab_fini(vdev_t *vd)
985{
986	uint64_t m;
987	uint64_t count = vd->vdev_ms_count;
988
989	if (vd->vdev_ms != NULL) {
990		metaslab_group_passivate(vd->vdev_mg);
991		for (m = 0; m < count; m++) {
992			metaslab_t *msp = vd->vdev_ms[m];
993
994			if (msp != NULL)
995				metaslab_fini(msp);
996		}
997		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
998		vd->vdev_ms = NULL;
999	}
1000}
1001
1002typedef struct vdev_probe_stats {
1003	boolean_t	vps_readable;
1004	boolean_t	vps_writeable;
1005	int		vps_flags;
1006} vdev_probe_stats_t;
1007
1008static void
1009vdev_probe_done(zio_t *zio)
1010{
1011	spa_t *spa = zio->io_spa;
1012	vdev_t *vd = zio->io_vd;
1013	vdev_probe_stats_t *vps = zio->io_private;
1014
1015	ASSERT(vd->vdev_probe_zio != NULL);
1016
1017	if (zio->io_type == ZIO_TYPE_READ) {
1018		if (zio->io_error == 0)
1019			vps->vps_readable = 1;
1020		if (zio->io_error == 0 && spa_writeable(spa)) {
1021			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1022			    zio->io_offset, zio->io_size, zio->io_data,
1023			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1024			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1025		} else {
1026			zio_buf_free(zio->io_data, zio->io_size);
1027		}
1028	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1029		if (zio->io_error == 0)
1030			vps->vps_writeable = 1;
1031		zio_buf_free(zio->io_data, zio->io_size);
1032	} else if (zio->io_type == ZIO_TYPE_NULL) {
1033		zio_t *pio;
1034
1035		vd->vdev_cant_read |= !vps->vps_readable;
1036		vd->vdev_cant_write |= !vps->vps_writeable;
1037
1038		if (vdev_readable(vd) &&
1039		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1040			zio->io_error = 0;
1041		} else {
1042			ASSERT(zio->io_error != 0);
1043			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1044			    spa, vd, NULL, 0, 0);
1045			zio->io_error = SET_ERROR(ENXIO);
1046		}
1047
1048		mutex_enter(&vd->vdev_probe_lock);
1049		ASSERT(vd->vdev_probe_zio == zio);
1050		vd->vdev_probe_zio = NULL;
1051		mutex_exit(&vd->vdev_probe_lock);
1052
1053		while ((pio = zio_walk_parents(zio)) != NULL)
1054			if (!vdev_accessible(vd, pio))
1055				pio->io_error = SET_ERROR(ENXIO);
1056
1057		kmem_free(vps, sizeof (*vps));
1058	}
1059}
1060
1061/*
1062 * Determine whether this device is accessible.
1063 *
1064 * Read and write to several known locations: the pad regions of each
1065 * vdev label but the first, which we leave alone in case it contains
1066 * a VTOC.
1067 */
1068zio_t *
1069vdev_probe(vdev_t *vd, zio_t *zio)
1070{
1071	spa_t *spa = vd->vdev_spa;
1072	vdev_probe_stats_t *vps = NULL;
1073	zio_t *pio;
1074
1075	ASSERT(vd->vdev_ops->vdev_op_leaf);
1076
1077	/*
1078	 * Don't probe the probe.
1079	 */
1080	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1081		return (NULL);
1082
1083	/*
1084	 * To prevent 'probe storms' when a device fails, we create
1085	 * just one probe i/o at a time.  All zios that want to probe
1086	 * this vdev will become parents of the probe io.
1087	 */
1088	mutex_enter(&vd->vdev_probe_lock);
1089
1090	if ((pio = vd->vdev_probe_zio) == NULL) {
1091		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1092
1093		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1094		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1095		    ZIO_FLAG_TRYHARD;
1096
1097		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1098			/*
1099			 * vdev_cant_read and vdev_cant_write can only
1100			 * transition from TRUE to FALSE when we have the
1101			 * SCL_ZIO lock as writer; otherwise they can only
1102			 * transition from FALSE to TRUE.  This ensures that
1103			 * any zio looking at these values can assume that
1104			 * failures persist for the life of the I/O.  That's
1105			 * important because when a device has intermittent
1106			 * connectivity problems, we want to ensure that
1107			 * they're ascribed to the device (ENXIO) and not
1108			 * the zio (EIO).
1109			 *
1110			 * Since we hold SCL_ZIO as writer here, clear both
1111			 * values so the probe can reevaluate from first
1112			 * principles.
1113			 */
1114			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1115			vd->vdev_cant_read = B_FALSE;
1116			vd->vdev_cant_write = B_FALSE;
1117		}
1118
1119		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1120		    vdev_probe_done, vps,
1121		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1122
1123		/*
1124		 * We can't change the vdev state in this context, so we
1125		 * kick off an async task to do it on our behalf.
1126		 */
1127		if (zio != NULL) {
1128			vd->vdev_probe_wanted = B_TRUE;
1129			spa_async_request(spa, SPA_ASYNC_PROBE);
1130		}
1131	}
1132
1133	if (zio != NULL)
1134		zio_add_child(zio, pio);
1135
1136	mutex_exit(&vd->vdev_probe_lock);
1137
1138	if (vps == NULL) {
1139		ASSERT(zio != NULL);
1140		return (NULL);
1141	}
1142
1143	for (int l = 1; l < VDEV_LABELS; l++) {
1144		zio_nowait(zio_read_phys(pio, vd,
1145		    vdev_label_offset(vd->vdev_psize, l,
1146		    offsetof(vdev_label_t, vl_pad2)),
1147		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1148		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1149		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1150	}
1151
1152	if (zio == NULL)
1153		return (pio);
1154
1155	zio_nowait(pio);
1156	return (NULL);
1157}
1158
1159static void
1160vdev_open_child(void *arg)
1161{
1162	vdev_t *vd = arg;
1163
1164	vd->vdev_open_thread = curthread;
1165	vd->vdev_open_error = vdev_open(vd);
1166	vd->vdev_open_thread = NULL;
1167}
1168
1169boolean_t
1170vdev_uses_zvols(vdev_t *vd)
1171{
1172	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1173	    strlen(ZVOL_DIR)) == 0)
1174		return (B_TRUE);
1175	for (int c = 0; c < vd->vdev_children; c++)
1176		if (vdev_uses_zvols(vd->vdev_child[c]))
1177			return (B_TRUE);
1178	return (B_FALSE);
1179}
1180
1181void
1182vdev_open_children(vdev_t *vd)
1183{
1184	taskq_t *tq;
1185	int children = vd->vdev_children;
1186
1187	/*
1188	 * in order to handle pools on top of zvols, do the opens
1189	 * in a single thread so that the same thread holds the
1190	 * spa_namespace_lock
1191	 */
1192	if (B_TRUE || vdev_uses_zvols(vd)) {
1193		for (int c = 0; c < children; c++)
1194			vd->vdev_child[c]->vdev_open_error =
1195			    vdev_open(vd->vdev_child[c]);
1196		return;
1197	}
1198	tq = taskq_create("vdev_open", children, minclsyspri,
1199	    children, children, TASKQ_PREPOPULATE);
1200
1201	for (int c = 0; c < children; c++)
1202		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1203		    TQ_SLEEP) != 0);
1204
1205	taskq_destroy(tq);
1206}
1207
1208/*
1209 * Prepare a virtual device for access.
1210 */
1211int
1212vdev_open(vdev_t *vd)
1213{
1214	spa_t *spa = vd->vdev_spa;
1215	int error;
1216	uint64_t osize = 0;
1217	uint64_t max_osize = 0;
1218	uint64_t asize, max_asize, psize;
1219	uint64_t logical_ashift = 0;
1220	uint64_t physical_ashift = 0;
1221
1222	ASSERT(vd->vdev_open_thread == curthread ||
1223	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1224	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1225	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1226	    vd->vdev_state == VDEV_STATE_OFFLINE);
1227
1228	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1229	vd->vdev_cant_read = B_FALSE;
1230	vd->vdev_cant_write = B_FALSE;
1231	vd->vdev_notrim = B_FALSE;
1232	vd->vdev_min_asize = vdev_get_min_asize(vd);
1233
1234	/*
1235	 * If this vdev is not removed, check its fault status.  If it's
1236	 * faulted, bail out of the open.
1237	 */
1238	if (!vd->vdev_removed && vd->vdev_faulted) {
1239		ASSERT(vd->vdev_children == 0);
1240		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1241		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1242		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1243		    vd->vdev_label_aux);
1244		return (SET_ERROR(ENXIO));
1245	} else if (vd->vdev_offline) {
1246		ASSERT(vd->vdev_children == 0);
1247		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1248		return (SET_ERROR(ENXIO));
1249	}
1250
1251	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1252	    &logical_ashift, &physical_ashift);
1253
1254	/*
1255	 * Reset the vdev_reopening flag so that we actually close
1256	 * the vdev on error.
1257	 */
1258	vd->vdev_reopening = B_FALSE;
1259	if (zio_injection_enabled && error == 0)
1260		error = zio_handle_device_injection(vd, NULL, ENXIO);
1261
1262	if (error) {
1263		if (vd->vdev_removed &&
1264		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1265			vd->vdev_removed = B_FALSE;
1266
1267		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268		    vd->vdev_stat.vs_aux);
1269		return (error);
1270	}
1271
1272	vd->vdev_removed = B_FALSE;
1273
1274	/*
1275	 * Recheck the faulted flag now that we have confirmed that
1276	 * the vdev is accessible.  If we're faulted, bail.
1277	 */
1278	if (vd->vdev_faulted) {
1279		ASSERT(vd->vdev_children == 0);
1280		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1281		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1282		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1283		    vd->vdev_label_aux);
1284		return (SET_ERROR(ENXIO));
1285	}
1286
1287	if (vd->vdev_degraded) {
1288		ASSERT(vd->vdev_children == 0);
1289		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1290		    VDEV_AUX_ERR_EXCEEDED);
1291	} else {
1292		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1293	}
1294
1295	/*
1296	 * For hole or missing vdevs we just return success.
1297	 */
1298	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1299		return (0);
1300
1301	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1302		trim_map_create(vd);
1303
1304	for (int c = 0; c < vd->vdev_children; c++) {
1305		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1306			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1307			    VDEV_AUX_NONE);
1308			break;
1309		}
1310	}
1311
1312	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1313	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1314
1315	if (vd->vdev_children == 0) {
1316		if (osize < SPA_MINDEVSIZE) {
1317			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1318			    VDEV_AUX_TOO_SMALL);
1319			return (SET_ERROR(EOVERFLOW));
1320		}
1321		psize = osize;
1322		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1323		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1324		    VDEV_LABEL_END_SIZE);
1325	} else {
1326		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1327		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1328			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1329			    VDEV_AUX_TOO_SMALL);
1330			return (SET_ERROR(EOVERFLOW));
1331		}
1332		psize = 0;
1333		asize = osize;
1334		max_asize = max_osize;
1335	}
1336
1337	vd->vdev_psize = psize;
1338
1339	/*
1340	 * Make sure the allocatable size hasn't shrunk.
1341	 */
1342	if (asize < vd->vdev_min_asize) {
1343		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1344		    VDEV_AUX_BAD_LABEL);
1345		return (SET_ERROR(EINVAL));
1346	}
1347
1348	vd->vdev_physical_ashift =
1349	    MAX(physical_ashift, vd->vdev_physical_ashift);
1350	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1351	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1352
1353	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1354		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1355		    VDEV_AUX_ASHIFT_TOO_BIG);
1356		return (EINVAL);
1357	}
1358
1359	if (vd->vdev_asize == 0) {
1360		/*
1361		 * This is the first-ever open, so use the computed values.
1362		 * For testing purposes, a higher ashift can be requested.
1363		 */
1364		vd->vdev_asize = asize;
1365		vd->vdev_max_asize = max_asize;
1366	} else {
1367		/*
1368		 * Make sure the alignment requirement hasn't increased.
1369		 */
1370		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1371		    vd->vdev_ops->vdev_op_leaf) {
1372			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1373			    VDEV_AUX_BAD_LABEL);
1374			return (EINVAL);
1375		}
1376		vd->vdev_max_asize = max_asize;
1377	}
1378
1379	/*
1380	 * If all children are healthy and the asize has increased,
1381	 * then we've experienced dynamic LUN growth.  If automatic
1382	 * expansion is enabled then use the additional space.
1383	 */
1384	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1385	    (vd->vdev_expanding || spa->spa_autoexpand))
1386		vd->vdev_asize = asize;
1387
1388	vdev_set_min_asize(vd);
1389
1390	/*
1391	 * Ensure we can issue some IO before declaring the
1392	 * vdev open for business.
1393	 */
1394	if (vd->vdev_ops->vdev_op_leaf &&
1395	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1396		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1397		    VDEV_AUX_ERR_EXCEEDED);
1398		return (error);
1399	}
1400
1401	/*
1402	 * Track the min and max ashift values for normal data devices.
1403	 */
1404	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1405	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1406		if (vd->vdev_ashift > spa->spa_max_ashift)
1407			spa->spa_max_ashift = vd->vdev_ashift;
1408		if (vd->vdev_ashift < spa->spa_min_ashift)
1409			spa->spa_min_ashift = vd->vdev_ashift;
1410	}
1411
1412	/*
1413	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1414	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1415	 * since this would just restart the scrub we are already doing.
1416	 */
1417	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1418	    vdev_resilver_needed(vd, NULL, NULL))
1419		spa_async_request(spa, SPA_ASYNC_RESILVER);
1420
1421	return (0);
1422}
1423
1424/*
1425 * Called once the vdevs are all opened, this routine validates the label
1426 * contents.  This needs to be done before vdev_load() so that we don't
1427 * inadvertently do repair I/Os to the wrong device.
1428 *
1429 * If 'strict' is false ignore the spa guid check. This is necessary because
1430 * if the machine crashed during a re-guid the new guid might have been written
1431 * to all of the vdev labels, but not the cached config. The strict check
1432 * will be performed when the pool is opened again using the mos config.
1433 *
1434 * This function will only return failure if one of the vdevs indicates that it
1435 * has since been destroyed or exported.  This is only possible if
1436 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1437 * will be updated but the function will return 0.
1438 */
1439int
1440vdev_validate(vdev_t *vd, boolean_t strict)
1441{
1442	spa_t *spa = vd->vdev_spa;
1443	nvlist_t *label;
1444	uint64_t guid = 0, top_guid;
1445	uint64_t state;
1446
1447	for (int c = 0; c < vd->vdev_children; c++)
1448		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1449			return (SET_ERROR(EBADF));
1450
1451	/*
1452	 * If the device has already failed, or was marked offline, don't do
1453	 * any further validation.  Otherwise, label I/O will fail and we will
1454	 * overwrite the previous state.
1455	 */
1456	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1457		uint64_t aux_guid = 0;
1458		nvlist_t *nvl;
1459		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1460		    spa_last_synced_txg(spa) : -1ULL;
1461
1462		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1463			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1464			    VDEV_AUX_BAD_LABEL);
1465			return (0);
1466		}
1467
1468		/*
1469		 * Determine if this vdev has been split off into another
1470		 * pool.  If so, then refuse to open it.
1471		 */
1472		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1473		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1474			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1475			    VDEV_AUX_SPLIT_POOL);
1476			nvlist_free(label);
1477			return (0);
1478		}
1479
1480		if (strict && (nvlist_lookup_uint64(label,
1481		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1482		    guid != spa_guid(spa))) {
1483			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1484			    VDEV_AUX_CORRUPT_DATA);
1485			nvlist_free(label);
1486			return (0);
1487		}
1488
1489		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1490		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1491		    &aux_guid) != 0)
1492			aux_guid = 0;
1493
1494		/*
1495		 * If this vdev just became a top-level vdev because its
1496		 * sibling was detached, it will have adopted the parent's
1497		 * vdev guid -- but the label may or may not be on disk yet.
1498		 * Fortunately, either version of the label will have the
1499		 * same top guid, so if we're a top-level vdev, we can
1500		 * safely compare to that instead.
1501		 *
1502		 * If we split this vdev off instead, then we also check the
1503		 * original pool's guid.  We don't want to consider the vdev
1504		 * corrupt if it is partway through a split operation.
1505		 */
1506		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1507		    &guid) != 0 ||
1508		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1509		    &top_guid) != 0 ||
1510		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1511		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1512			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1513			    VDEV_AUX_CORRUPT_DATA);
1514			nvlist_free(label);
1515			return (0);
1516		}
1517
1518		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1519		    &state) != 0) {
1520			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1521			    VDEV_AUX_CORRUPT_DATA);
1522			nvlist_free(label);
1523			return (0);
1524		}
1525
1526		nvlist_free(label);
1527
1528		/*
1529		 * If this is a verbatim import, no need to check the
1530		 * state of the pool.
1531		 */
1532		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1533		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1534		    state != POOL_STATE_ACTIVE)
1535			return (SET_ERROR(EBADF));
1536
1537		/*
1538		 * If we were able to open and validate a vdev that was
1539		 * previously marked permanently unavailable, clear that state
1540		 * now.
1541		 */
1542		if (vd->vdev_not_present)
1543			vd->vdev_not_present = 0;
1544	}
1545
1546	return (0);
1547}
1548
1549/*
1550 * Close a virtual device.
1551 */
1552void
1553vdev_close(vdev_t *vd)
1554{
1555	spa_t *spa = vd->vdev_spa;
1556	vdev_t *pvd = vd->vdev_parent;
1557
1558	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1559
1560	/*
1561	 * If our parent is reopening, then we are as well, unless we are
1562	 * going offline.
1563	 */
1564	if (pvd != NULL && pvd->vdev_reopening)
1565		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1566
1567	vd->vdev_ops->vdev_op_close(vd);
1568
1569	vdev_cache_purge(vd);
1570
1571	if (vd->vdev_ops->vdev_op_leaf)
1572		trim_map_destroy(vd);
1573
1574	/*
1575	 * We record the previous state before we close it, so that if we are
1576	 * doing a reopen(), we don't generate FMA ereports if we notice that
1577	 * it's still faulted.
1578	 */
1579	vd->vdev_prevstate = vd->vdev_state;
1580
1581	if (vd->vdev_offline)
1582		vd->vdev_state = VDEV_STATE_OFFLINE;
1583	else
1584		vd->vdev_state = VDEV_STATE_CLOSED;
1585	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1586}
1587
1588void
1589vdev_hold(vdev_t *vd)
1590{
1591	spa_t *spa = vd->vdev_spa;
1592
1593	ASSERT(spa_is_root(spa));
1594	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1595		return;
1596
1597	for (int c = 0; c < vd->vdev_children; c++)
1598		vdev_hold(vd->vdev_child[c]);
1599
1600	if (vd->vdev_ops->vdev_op_leaf)
1601		vd->vdev_ops->vdev_op_hold(vd);
1602}
1603
1604void
1605vdev_rele(vdev_t *vd)
1606{
1607	spa_t *spa = vd->vdev_spa;
1608
1609	ASSERT(spa_is_root(spa));
1610	for (int c = 0; c < vd->vdev_children; c++)
1611		vdev_rele(vd->vdev_child[c]);
1612
1613	if (vd->vdev_ops->vdev_op_leaf)
1614		vd->vdev_ops->vdev_op_rele(vd);
1615}
1616
1617/*
1618 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1619 * reopen leaf vdevs which had previously been opened as they might deadlock
1620 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1621 * If the leaf has never been opened then open it, as usual.
1622 */
1623void
1624vdev_reopen(vdev_t *vd)
1625{
1626	spa_t *spa = vd->vdev_spa;
1627
1628	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1629
1630	/* set the reopening flag unless we're taking the vdev offline */
1631	vd->vdev_reopening = !vd->vdev_offline;
1632	vdev_close(vd);
1633	(void) vdev_open(vd);
1634
1635	/*
1636	 * Call vdev_validate() here to make sure we have the same device.
1637	 * Otherwise, a device with an invalid label could be successfully
1638	 * opened in response to vdev_reopen().
1639	 */
1640	if (vd->vdev_aux) {
1641		(void) vdev_validate_aux(vd);
1642		if (vdev_readable(vd) && vdev_writeable(vd) &&
1643		    vd->vdev_aux == &spa->spa_l2cache &&
1644		    !l2arc_vdev_present(vd))
1645			l2arc_add_vdev(spa, vd);
1646	} else {
1647		(void) vdev_validate(vd, B_TRUE);
1648	}
1649
1650	/*
1651	 * Reassess parent vdev's health.
1652	 */
1653	vdev_propagate_state(vd);
1654}
1655
1656int
1657vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1658{
1659	int error;
1660
1661	/*
1662	 * Normally, partial opens (e.g. of a mirror) are allowed.
1663	 * For a create, however, we want to fail the request if
1664	 * there are any components we can't open.
1665	 */
1666	error = vdev_open(vd);
1667
1668	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1669		vdev_close(vd);
1670		return (error ? error : ENXIO);
1671	}
1672
1673	/*
1674	 * Recursively load DTLs and initialize all labels.
1675	 */
1676	if ((error = vdev_dtl_load(vd)) != 0 ||
1677	    (error = vdev_label_init(vd, txg, isreplacing ?
1678	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1679		vdev_close(vd);
1680		return (error);
1681	}
1682
1683	return (0);
1684}
1685
1686void
1687vdev_metaslab_set_size(vdev_t *vd)
1688{
1689	/*
1690	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1691	 */
1692	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1693	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1694}
1695
1696/*
1697 * Maximize performance by inflating the configured ashift for top level
1698 * vdevs to be as close to the physical ashift as possible while maintaining
1699 * administrator defined limits and ensuring it doesn't go below the
1700 * logical ashift.
1701 */
1702void
1703vdev_ashift_optimize(vdev_t *vd)
1704{
1705	if (vd == vd->vdev_top) {
1706		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1707			vd->vdev_ashift = MIN(
1708			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1709			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1710		} else {
1711			/*
1712			 * Unusual case where logical ashift > physical ashift
1713			 * so we can't cap the calculated ashift based on max
1714			 * ashift as that would cause failures.
1715			 * We still check if we need to increase it to match
1716			 * the min ashift.
1717			 */
1718			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1719			    vd->vdev_ashift);
1720		}
1721	}
1722}
1723
1724void
1725vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1726{
1727	ASSERT(vd == vd->vdev_top);
1728	ASSERT(!vd->vdev_ishole);
1729	ASSERT(ISP2(flags));
1730	ASSERT(spa_writeable(vd->vdev_spa));
1731
1732	if (flags & VDD_METASLAB)
1733		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1734
1735	if (flags & VDD_DTL)
1736		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1737
1738	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1739}
1740
1741void
1742vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1743{
1744	for (int c = 0; c < vd->vdev_children; c++)
1745		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1746
1747	if (vd->vdev_ops->vdev_op_leaf)
1748		vdev_dirty(vd->vdev_top, flags, vd, txg);
1749}
1750
1751/*
1752 * DTLs.
1753 *
1754 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1755 * the vdev has less than perfect replication.  There are four kinds of DTL:
1756 *
1757 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1758 *
1759 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1760 *
1761 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1762 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1763 *	txgs that was scrubbed.
1764 *
1765 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1766 *	persistent errors or just some device being offline.
1767 *	Unlike the other three, the DTL_OUTAGE map is not generally
1768 *	maintained; it's only computed when needed, typically to
1769 *	determine whether a device can be detached.
1770 *
1771 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1772 * either has the data or it doesn't.
1773 *
1774 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1775 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1776 * if any child is less than fully replicated, then so is its parent.
1777 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1778 * comprising only those txgs which appear in 'maxfaults' or more children;
1779 * those are the txgs we don't have enough replication to read.  For example,
1780 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1781 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1782 * two child DTL_MISSING maps.
1783 *
1784 * It should be clear from the above that to compute the DTLs and outage maps
1785 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1786 * Therefore, that is all we keep on disk.  When loading the pool, or after
1787 * a configuration change, we generate all other DTLs from first principles.
1788 */
1789void
1790vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1791{
1792	range_tree_t *rt = vd->vdev_dtl[t];
1793
1794	ASSERT(t < DTL_TYPES);
1795	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1796	ASSERT(spa_writeable(vd->vdev_spa));
1797
1798	mutex_enter(rt->rt_lock);
1799	if (!range_tree_contains(rt, txg, size))
1800		range_tree_add(rt, txg, size);
1801	mutex_exit(rt->rt_lock);
1802}
1803
1804boolean_t
1805vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1806{
1807	range_tree_t *rt = vd->vdev_dtl[t];
1808	boolean_t dirty = B_FALSE;
1809
1810	ASSERT(t < DTL_TYPES);
1811	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1812
1813	mutex_enter(rt->rt_lock);
1814	if (range_tree_space(rt) != 0)
1815		dirty = range_tree_contains(rt, txg, size);
1816	mutex_exit(rt->rt_lock);
1817
1818	return (dirty);
1819}
1820
1821boolean_t
1822vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1823{
1824	range_tree_t *rt = vd->vdev_dtl[t];
1825	boolean_t empty;
1826
1827	mutex_enter(rt->rt_lock);
1828	empty = (range_tree_space(rt) == 0);
1829	mutex_exit(rt->rt_lock);
1830
1831	return (empty);
1832}
1833
1834/*
1835 * Returns the lowest txg in the DTL range.
1836 */
1837static uint64_t
1838vdev_dtl_min(vdev_t *vd)
1839{
1840	range_seg_t *rs;
1841
1842	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1843	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1844	ASSERT0(vd->vdev_children);
1845
1846	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1847	return (rs->rs_start - 1);
1848}
1849
1850/*
1851 * Returns the highest txg in the DTL.
1852 */
1853static uint64_t
1854vdev_dtl_max(vdev_t *vd)
1855{
1856	range_seg_t *rs;
1857
1858	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1859	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1860	ASSERT0(vd->vdev_children);
1861
1862	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1863	return (rs->rs_end);
1864}
1865
1866/*
1867 * Determine if a resilvering vdev should remove any DTL entries from
1868 * its range. If the vdev was resilvering for the entire duration of the
1869 * scan then it should excise that range from its DTLs. Otherwise, this
1870 * vdev is considered partially resilvered and should leave its DTL
1871 * entries intact. The comment in vdev_dtl_reassess() describes how we
1872 * excise the DTLs.
1873 */
1874static boolean_t
1875vdev_dtl_should_excise(vdev_t *vd)
1876{
1877	spa_t *spa = vd->vdev_spa;
1878	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1879
1880	ASSERT0(scn->scn_phys.scn_errors);
1881	ASSERT0(vd->vdev_children);
1882
1883	if (vd->vdev_resilver_txg == 0 ||
1884	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1885		return (B_TRUE);
1886
1887	/*
1888	 * When a resilver is initiated the scan will assign the scn_max_txg
1889	 * value to the highest txg value that exists in all DTLs. If this
1890	 * device's max DTL is not part of this scan (i.e. it is not in
1891	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1892	 * for excision.
1893	 */
1894	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1895		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1896		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1897		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1898		return (B_TRUE);
1899	}
1900	return (B_FALSE);
1901}
1902
1903/*
1904 * Reassess DTLs after a config change or scrub completion.
1905 */
1906void
1907vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1908{
1909	spa_t *spa = vd->vdev_spa;
1910	avl_tree_t reftree;
1911	int minref;
1912
1913	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1914
1915	for (int c = 0; c < vd->vdev_children; c++)
1916		vdev_dtl_reassess(vd->vdev_child[c], txg,
1917		    scrub_txg, scrub_done);
1918
1919	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1920		return;
1921
1922	if (vd->vdev_ops->vdev_op_leaf) {
1923		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1924
1925		mutex_enter(&vd->vdev_dtl_lock);
1926
1927		/*
1928		 * If we've completed a scan cleanly then determine
1929		 * if this vdev should remove any DTLs. We only want to
1930		 * excise regions on vdevs that were available during
1931		 * the entire duration of this scan.
1932		 */
1933		if (scrub_txg != 0 &&
1934		    (spa->spa_scrub_started ||
1935		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1936		    vdev_dtl_should_excise(vd)) {
1937			/*
1938			 * We completed a scrub up to scrub_txg.  If we
1939			 * did it without rebooting, then the scrub dtl
1940			 * will be valid, so excise the old region and
1941			 * fold in the scrub dtl.  Otherwise, leave the
1942			 * dtl as-is if there was an error.
1943			 *
1944			 * There's little trick here: to excise the beginning
1945			 * of the DTL_MISSING map, we put it into a reference
1946			 * tree and then add a segment with refcnt -1 that
1947			 * covers the range [0, scrub_txg).  This means
1948			 * that each txg in that range has refcnt -1 or 0.
1949			 * We then add DTL_SCRUB with a refcnt of 2, so that
1950			 * entries in the range [0, scrub_txg) will have a
1951			 * positive refcnt -- either 1 or 2.  We then convert
1952			 * the reference tree into the new DTL_MISSING map.
1953			 */
1954			space_reftree_create(&reftree);
1955			space_reftree_add_map(&reftree,
1956			    vd->vdev_dtl[DTL_MISSING], 1);
1957			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1958			space_reftree_add_map(&reftree,
1959			    vd->vdev_dtl[DTL_SCRUB], 2);
1960			space_reftree_generate_map(&reftree,
1961			    vd->vdev_dtl[DTL_MISSING], 1);
1962			space_reftree_destroy(&reftree);
1963		}
1964		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1965		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1966		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1967		if (scrub_done)
1968			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1969		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1970		if (!vdev_readable(vd))
1971			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1972		else
1973			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1974			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1975
1976		/*
1977		 * If the vdev was resilvering and no longer has any
1978		 * DTLs then reset its resilvering flag and dirty
1979		 * the top level so that we persist the change.
1980		 */
1981		if (vd->vdev_resilver_txg != 0 &&
1982		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1983		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1984			vd->vdev_resilver_txg = 0;
1985			vdev_config_dirty(vd->vdev_top);
1986		}
1987
1988		mutex_exit(&vd->vdev_dtl_lock);
1989
1990		if (txg != 0)
1991			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1992		return;
1993	}
1994
1995	mutex_enter(&vd->vdev_dtl_lock);
1996	for (int t = 0; t < DTL_TYPES; t++) {
1997		/* account for child's outage in parent's missing map */
1998		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1999		if (t == DTL_SCRUB)
2000			continue;			/* leaf vdevs only */
2001		if (t == DTL_PARTIAL)
2002			minref = 1;			/* i.e. non-zero */
2003		else if (vd->vdev_nparity != 0)
2004			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2005		else
2006			minref = vd->vdev_children;	/* any kind of mirror */
2007		space_reftree_create(&reftree);
2008		for (int c = 0; c < vd->vdev_children; c++) {
2009			vdev_t *cvd = vd->vdev_child[c];
2010			mutex_enter(&cvd->vdev_dtl_lock);
2011			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2012			mutex_exit(&cvd->vdev_dtl_lock);
2013		}
2014		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2015		space_reftree_destroy(&reftree);
2016	}
2017	mutex_exit(&vd->vdev_dtl_lock);
2018}
2019
2020int
2021vdev_dtl_load(vdev_t *vd)
2022{
2023	spa_t *spa = vd->vdev_spa;
2024	objset_t *mos = spa->spa_meta_objset;
2025	int error = 0;
2026
2027	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2028		ASSERT(!vd->vdev_ishole);
2029
2030		error = space_map_open(&vd->vdev_dtl_sm, mos,
2031		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2032		if (error)
2033			return (error);
2034		ASSERT(vd->vdev_dtl_sm != NULL);
2035
2036		mutex_enter(&vd->vdev_dtl_lock);
2037
2038		/*
2039		 * Now that we've opened the space_map we need to update
2040		 * the in-core DTL.
2041		 */
2042		space_map_update(vd->vdev_dtl_sm);
2043
2044		error = space_map_load(vd->vdev_dtl_sm,
2045		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2046		mutex_exit(&vd->vdev_dtl_lock);
2047
2048		return (error);
2049	}
2050
2051	for (int c = 0; c < vd->vdev_children; c++) {
2052		error = vdev_dtl_load(vd->vdev_child[c]);
2053		if (error != 0)
2054			break;
2055	}
2056
2057	return (error);
2058}
2059
2060void
2061vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2062{
2063	spa_t *spa = vd->vdev_spa;
2064	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2065	objset_t *mos = spa->spa_meta_objset;
2066	range_tree_t *rtsync;
2067	kmutex_t rtlock;
2068	dmu_tx_t *tx;
2069	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2070
2071	ASSERT(!vd->vdev_ishole);
2072	ASSERT(vd->vdev_ops->vdev_op_leaf);
2073
2074	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2075
2076	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2077		mutex_enter(&vd->vdev_dtl_lock);
2078		space_map_free(vd->vdev_dtl_sm, tx);
2079		space_map_close(vd->vdev_dtl_sm);
2080		vd->vdev_dtl_sm = NULL;
2081		mutex_exit(&vd->vdev_dtl_lock);
2082		dmu_tx_commit(tx);
2083		return;
2084	}
2085
2086	if (vd->vdev_dtl_sm == NULL) {
2087		uint64_t new_object;
2088
2089		new_object = space_map_alloc(mos, tx);
2090		VERIFY3U(new_object, !=, 0);
2091
2092		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2093		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2094		ASSERT(vd->vdev_dtl_sm != NULL);
2095	}
2096
2097	bzero(&rtlock, sizeof(rtlock));
2098	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2099
2100	rtsync = range_tree_create(NULL, NULL, &rtlock);
2101
2102	mutex_enter(&rtlock);
2103
2104	mutex_enter(&vd->vdev_dtl_lock);
2105	range_tree_walk(rt, range_tree_add, rtsync);
2106	mutex_exit(&vd->vdev_dtl_lock);
2107
2108	space_map_truncate(vd->vdev_dtl_sm, tx);
2109	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2110	range_tree_vacate(rtsync, NULL, NULL);
2111
2112	range_tree_destroy(rtsync);
2113
2114	mutex_exit(&rtlock);
2115	mutex_destroy(&rtlock);
2116
2117	/*
2118	 * If the object for the space map has changed then dirty
2119	 * the top level so that we update the config.
2120	 */
2121	if (object != space_map_object(vd->vdev_dtl_sm)) {
2122		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2123		    "new object %llu", txg, spa_name(spa), object,
2124		    space_map_object(vd->vdev_dtl_sm));
2125		vdev_config_dirty(vd->vdev_top);
2126	}
2127
2128	dmu_tx_commit(tx);
2129
2130	mutex_enter(&vd->vdev_dtl_lock);
2131	space_map_update(vd->vdev_dtl_sm);
2132	mutex_exit(&vd->vdev_dtl_lock);
2133}
2134
2135/*
2136 * Determine whether the specified vdev can be offlined/detached/removed
2137 * without losing data.
2138 */
2139boolean_t
2140vdev_dtl_required(vdev_t *vd)
2141{
2142	spa_t *spa = vd->vdev_spa;
2143	vdev_t *tvd = vd->vdev_top;
2144	uint8_t cant_read = vd->vdev_cant_read;
2145	boolean_t required;
2146
2147	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2148
2149	if (vd == spa->spa_root_vdev || vd == tvd)
2150		return (B_TRUE);
2151
2152	/*
2153	 * Temporarily mark the device as unreadable, and then determine
2154	 * whether this results in any DTL outages in the top-level vdev.
2155	 * If not, we can safely offline/detach/remove the device.
2156	 */
2157	vd->vdev_cant_read = B_TRUE;
2158	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2159	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2160	vd->vdev_cant_read = cant_read;
2161	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2162
2163	if (!required && zio_injection_enabled)
2164		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2165
2166	return (required);
2167}
2168
2169/*
2170 * Determine if resilver is needed, and if so the txg range.
2171 */
2172boolean_t
2173vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2174{
2175	boolean_t needed = B_FALSE;
2176	uint64_t thismin = UINT64_MAX;
2177	uint64_t thismax = 0;
2178
2179	if (vd->vdev_children == 0) {
2180		mutex_enter(&vd->vdev_dtl_lock);
2181		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2182		    vdev_writeable(vd)) {
2183
2184			thismin = vdev_dtl_min(vd);
2185			thismax = vdev_dtl_max(vd);
2186			needed = B_TRUE;
2187		}
2188		mutex_exit(&vd->vdev_dtl_lock);
2189	} else {
2190		for (int c = 0; c < vd->vdev_children; c++) {
2191			vdev_t *cvd = vd->vdev_child[c];
2192			uint64_t cmin, cmax;
2193
2194			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2195				thismin = MIN(thismin, cmin);
2196				thismax = MAX(thismax, cmax);
2197				needed = B_TRUE;
2198			}
2199		}
2200	}
2201
2202	if (needed && minp) {
2203		*minp = thismin;
2204		*maxp = thismax;
2205	}
2206	return (needed);
2207}
2208
2209void
2210vdev_load(vdev_t *vd)
2211{
2212	/*
2213	 * Recursively load all children.
2214	 */
2215	for (int c = 0; c < vd->vdev_children; c++)
2216		vdev_load(vd->vdev_child[c]);
2217
2218	/*
2219	 * If this is a top-level vdev, initialize its metaslabs.
2220	 */
2221	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2222	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2223	    vdev_metaslab_init(vd, 0) != 0))
2224		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2225		    VDEV_AUX_CORRUPT_DATA);
2226
2227	/*
2228	 * If this is a leaf vdev, load its DTL.
2229	 */
2230	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2231		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2232		    VDEV_AUX_CORRUPT_DATA);
2233}
2234
2235/*
2236 * The special vdev case is used for hot spares and l2cache devices.  Its
2237 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2238 * we make sure that we can open the underlying device, then try to read the
2239 * label, and make sure that the label is sane and that it hasn't been
2240 * repurposed to another pool.
2241 */
2242int
2243vdev_validate_aux(vdev_t *vd)
2244{
2245	nvlist_t *label;
2246	uint64_t guid, version;
2247	uint64_t state;
2248
2249	if (!vdev_readable(vd))
2250		return (0);
2251
2252	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2253		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2254		    VDEV_AUX_CORRUPT_DATA);
2255		return (-1);
2256	}
2257
2258	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2259	    !SPA_VERSION_IS_SUPPORTED(version) ||
2260	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2261	    guid != vd->vdev_guid ||
2262	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2263		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2264		    VDEV_AUX_CORRUPT_DATA);
2265		nvlist_free(label);
2266		return (-1);
2267	}
2268
2269	/*
2270	 * We don't actually check the pool state here.  If it's in fact in
2271	 * use by another pool, we update this fact on the fly when requested.
2272	 */
2273	nvlist_free(label);
2274	return (0);
2275}
2276
2277void
2278vdev_remove(vdev_t *vd, uint64_t txg)
2279{
2280	spa_t *spa = vd->vdev_spa;
2281	objset_t *mos = spa->spa_meta_objset;
2282	dmu_tx_t *tx;
2283
2284	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2285
2286	if (vd->vdev_ms != NULL) {
2287		metaslab_group_t *mg = vd->vdev_mg;
2288
2289		metaslab_group_histogram_verify(mg);
2290		metaslab_class_histogram_verify(mg->mg_class);
2291
2292		for (int m = 0; m < vd->vdev_ms_count; m++) {
2293			metaslab_t *msp = vd->vdev_ms[m];
2294
2295			if (msp == NULL || msp->ms_sm == NULL)
2296				continue;
2297
2298			mutex_enter(&msp->ms_lock);
2299			/*
2300			 * If the metaslab was not loaded when the vdev
2301			 * was removed then the histogram accounting may
2302			 * not be accurate. Update the histogram information
2303			 * here so that we ensure that the metaslab group
2304			 * and metaslab class are up-to-date.
2305			 */
2306			metaslab_group_histogram_remove(mg, msp);
2307
2308			VERIFY0(space_map_allocated(msp->ms_sm));
2309			space_map_free(msp->ms_sm, tx);
2310			space_map_close(msp->ms_sm);
2311			msp->ms_sm = NULL;
2312			mutex_exit(&msp->ms_lock);
2313		}
2314
2315		metaslab_group_histogram_verify(mg);
2316		metaslab_class_histogram_verify(mg->mg_class);
2317		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2318			ASSERT0(mg->mg_histogram[i]);
2319
2320	}
2321
2322	if (vd->vdev_ms_array) {
2323		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2324		vd->vdev_ms_array = 0;
2325	}
2326	dmu_tx_commit(tx);
2327}
2328
2329void
2330vdev_sync_done(vdev_t *vd, uint64_t txg)
2331{
2332	metaslab_t *msp;
2333	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2334
2335	ASSERT(!vd->vdev_ishole);
2336
2337	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2338		metaslab_sync_done(msp, txg);
2339
2340	if (reassess)
2341		metaslab_sync_reassess(vd->vdev_mg);
2342}
2343
2344void
2345vdev_sync(vdev_t *vd, uint64_t txg)
2346{
2347	spa_t *spa = vd->vdev_spa;
2348	vdev_t *lvd;
2349	metaslab_t *msp;
2350	dmu_tx_t *tx;
2351
2352	ASSERT(!vd->vdev_ishole);
2353
2354	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2355		ASSERT(vd == vd->vdev_top);
2356		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2357		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2358		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2359		ASSERT(vd->vdev_ms_array != 0);
2360		vdev_config_dirty(vd);
2361		dmu_tx_commit(tx);
2362	}
2363
2364	/*
2365	 * Remove the metadata associated with this vdev once it's empty.
2366	 */
2367	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2368		vdev_remove(vd, txg);
2369
2370	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2371		metaslab_sync(msp, txg);
2372		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2373	}
2374
2375	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2376		vdev_dtl_sync(lvd, txg);
2377
2378	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2379}
2380
2381uint64_t
2382vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2383{
2384	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2385}
2386
2387/*
2388 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2389 * not be opened, and no I/O is attempted.
2390 */
2391int
2392vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2393{
2394	vdev_t *vd, *tvd;
2395
2396	spa_vdev_state_enter(spa, SCL_NONE);
2397
2398	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2399		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2400
2401	if (!vd->vdev_ops->vdev_op_leaf)
2402		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2403
2404	tvd = vd->vdev_top;
2405
2406	/*
2407	 * We don't directly use the aux state here, but if we do a
2408	 * vdev_reopen(), we need this value to be present to remember why we
2409	 * were faulted.
2410	 */
2411	vd->vdev_label_aux = aux;
2412
2413	/*
2414	 * Faulted state takes precedence over degraded.
2415	 */
2416	vd->vdev_delayed_close = B_FALSE;
2417	vd->vdev_faulted = 1ULL;
2418	vd->vdev_degraded = 0ULL;
2419	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2420
2421	/*
2422	 * If this device has the only valid copy of the data, then
2423	 * back off and simply mark the vdev as degraded instead.
2424	 */
2425	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2426		vd->vdev_degraded = 1ULL;
2427		vd->vdev_faulted = 0ULL;
2428
2429		/*
2430		 * If we reopen the device and it's not dead, only then do we
2431		 * mark it degraded.
2432		 */
2433		vdev_reopen(tvd);
2434
2435		if (vdev_readable(vd))
2436			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2437	}
2438
2439	return (spa_vdev_state_exit(spa, vd, 0));
2440}
2441
2442/*
2443 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2444 * user that something is wrong.  The vdev continues to operate as normal as far
2445 * as I/O is concerned.
2446 */
2447int
2448vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2449{
2450	vdev_t *vd;
2451
2452	spa_vdev_state_enter(spa, SCL_NONE);
2453
2454	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2455		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2456
2457	if (!vd->vdev_ops->vdev_op_leaf)
2458		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2459
2460	/*
2461	 * If the vdev is already faulted, then don't do anything.
2462	 */
2463	if (vd->vdev_faulted || vd->vdev_degraded)
2464		return (spa_vdev_state_exit(spa, NULL, 0));
2465
2466	vd->vdev_degraded = 1ULL;
2467	if (!vdev_is_dead(vd))
2468		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2469		    aux);
2470
2471	return (spa_vdev_state_exit(spa, vd, 0));
2472}
2473
2474/*
2475 * Online the given vdev.
2476 *
2477 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2478 * spare device should be detached when the device finishes resilvering.
2479 * Second, the online should be treated like a 'test' online case, so no FMA
2480 * events are generated if the device fails to open.
2481 */
2482int
2483vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2484{
2485	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2486
2487	spa_vdev_state_enter(spa, SCL_NONE);
2488
2489	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2490		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2491
2492	if (!vd->vdev_ops->vdev_op_leaf)
2493		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2494
2495	tvd = vd->vdev_top;
2496	vd->vdev_offline = B_FALSE;
2497	vd->vdev_tmpoffline = B_FALSE;
2498	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2499	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2500
2501	/* XXX - L2ARC 1.0 does not support expansion */
2502	if (!vd->vdev_aux) {
2503		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2504			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2505	}
2506
2507	vdev_reopen(tvd);
2508	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2509
2510	if (!vd->vdev_aux) {
2511		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2512			pvd->vdev_expanding = B_FALSE;
2513	}
2514
2515	if (newstate)
2516		*newstate = vd->vdev_state;
2517	if ((flags & ZFS_ONLINE_UNSPARE) &&
2518	    !vdev_is_dead(vd) && vd->vdev_parent &&
2519	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2520	    vd->vdev_parent->vdev_child[0] == vd)
2521		vd->vdev_unspare = B_TRUE;
2522
2523	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2524
2525		/* XXX - L2ARC 1.0 does not support expansion */
2526		if (vd->vdev_aux)
2527			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2528		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2529	}
2530	return (spa_vdev_state_exit(spa, vd, 0));
2531}
2532
2533static int
2534vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2535{
2536	vdev_t *vd, *tvd;
2537	int error = 0;
2538	uint64_t generation;
2539	metaslab_group_t *mg;
2540
2541top:
2542	spa_vdev_state_enter(spa, SCL_ALLOC);
2543
2544	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2545		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2546
2547	if (!vd->vdev_ops->vdev_op_leaf)
2548		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2549
2550	tvd = vd->vdev_top;
2551	mg = tvd->vdev_mg;
2552	generation = spa->spa_config_generation + 1;
2553
2554	/*
2555	 * If the device isn't already offline, try to offline it.
2556	 */
2557	if (!vd->vdev_offline) {
2558		/*
2559		 * If this device has the only valid copy of some data,
2560		 * don't allow it to be offlined. Log devices are always
2561		 * expendable.
2562		 */
2563		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2564		    vdev_dtl_required(vd))
2565			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2566
2567		/*
2568		 * If the top-level is a slog and it has had allocations
2569		 * then proceed.  We check that the vdev's metaslab group
2570		 * is not NULL since it's possible that we may have just
2571		 * added this vdev but not yet initialized its metaslabs.
2572		 */
2573		if (tvd->vdev_islog && mg != NULL) {
2574			/*
2575			 * Prevent any future allocations.
2576			 */
2577			metaslab_group_passivate(mg);
2578			(void) spa_vdev_state_exit(spa, vd, 0);
2579
2580			error = spa_offline_log(spa);
2581
2582			spa_vdev_state_enter(spa, SCL_ALLOC);
2583
2584			/*
2585			 * Check to see if the config has changed.
2586			 */
2587			if (error || generation != spa->spa_config_generation) {
2588				metaslab_group_activate(mg);
2589				if (error)
2590					return (spa_vdev_state_exit(spa,
2591					    vd, error));
2592				(void) spa_vdev_state_exit(spa, vd, 0);
2593				goto top;
2594			}
2595			ASSERT0(tvd->vdev_stat.vs_alloc);
2596		}
2597
2598		/*
2599		 * Offline this device and reopen its top-level vdev.
2600		 * If the top-level vdev is a log device then just offline
2601		 * it. Otherwise, if this action results in the top-level
2602		 * vdev becoming unusable, undo it and fail the request.
2603		 */
2604		vd->vdev_offline = B_TRUE;
2605		vdev_reopen(tvd);
2606
2607		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2608		    vdev_is_dead(tvd)) {
2609			vd->vdev_offline = B_FALSE;
2610			vdev_reopen(tvd);
2611			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2612		}
2613
2614		/*
2615		 * Add the device back into the metaslab rotor so that
2616		 * once we online the device it's open for business.
2617		 */
2618		if (tvd->vdev_islog && mg != NULL)
2619			metaslab_group_activate(mg);
2620	}
2621
2622	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2623
2624	return (spa_vdev_state_exit(spa, vd, 0));
2625}
2626
2627int
2628vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2629{
2630	int error;
2631
2632	mutex_enter(&spa->spa_vdev_top_lock);
2633	error = vdev_offline_locked(spa, guid, flags);
2634	mutex_exit(&spa->spa_vdev_top_lock);
2635
2636	return (error);
2637}
2638
2639/*
2640 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2641 * vdev_offline(), we assume the spa config is locked.  We also clear all
2642 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2643 */
2644void
2645vdev_clear(spa_t *spa, vdev_t *vd)
2646{
2647	vdev_t *rvd = spa->spa_root_vdev;
2648
2649	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2650
2651	if (vd == NULL)
2652		vd = rvd;
2653
2654	vd->vdev_stat.vs_read_errors = 0;
2655	vd->vdev_stat.vs_write_errors = 0;
2656	vd->vdev_stat.vs_checksum_errors = 0;
2657
2658	for (int c = 0; c < vd->vdev_children; c++)
2659		vdev_clear(spa, vd->vdev_child[c]);
2660
2661	if (vd == rvd) {
2662		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2663			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2664
2665		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2666			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2667	}
2668
2669	/*
2670	 * If we're in the FAULTED state or have experienced failed I/O, then
2671	 * clear the persistent state and attempt to reopen the device.  We
2672	 * also mark the vdev config dirty, so that the new faulted state is
2673	 * written out to disk.
2674	 */
2675	if (vd->vdev_faulted || vd->vdev_degraded ||
2676	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2677
2678		/*
2679		 * When reopening in reponse to a clear event, it may be due to
2680		 * a fmadm repair request.  In this case, if the device is
2681		 * still broken, we want to still post the ereport again.
2682		 */
2683		vd->vdev_forcefault = B_TRUE;
2684
2685		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2686		vd->vdev_cant_read = B_FALSE;
2687		vd->vdev_cant_write = B_FALSE;
2688
2689		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2690
2691		vd->vdev_forcefault = B_FALSE;
2692
2693		if (vd != rvd && vdev_writeable(vd->vdev_top))
2694			vdev_state_dirty(vd->vdev_top);
2695
2696		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2697			spa_async_request(spa, SPA_ASYNC_RESILVER);
2698
2699		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2700	}
2701
2702	/*
2703	 * When clearing a FMA-diagnosed fault, we always want to
2704	 * unspare the device, as we assume that the original spare was
2705	 * done in response to the FMA fault.
2706	 */
2707	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2708	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2709	    vd->vdev_parent->vdev_child[0] == vd)
2710		vd->vdev_unspare = B_TRUE;
2711}
2712
2713boolean_t
2714vdev_is_dead(vdev_t *vd)
2715{
2716	/*
2717	 * Holes and missing devices are always considered "dead".
2718	 * This simplifies the code since we don't have to check for
2719	 * these types of devices in the various code paths.
2720	 * Instead we rely on the fact that we skip over dead devices
2721	 * before issuing I/O to them.
2722	 */
2723	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2724	    vd->vdev_ops == &vdev_missing_ops);
2725}
2726
2727boolean_t
2728vdev_readable(vdev_t *vd)
2729{
2730	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2731}
2732
2733boolean_t
2734vdev_writeable(vdev_t *vd)
2735{
2736	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2737}
2738
2739boolean_t
2740vdev_allocatable(vdev_t *vd)
2741{
2742	uint64_t state = vd->vdev_state;
2743
2744	/*
2745	 * We currently allow allocations from vdevs which may be in the
2746	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2747	 * fails to reopen then we'll catch it later when we're holding
2748	 * the proper locks.  Note that we have to get the vdev state
2749	 * in a local variable because although it changes atomically,
2750	 * we're asking two separate questions about it.
2751	 */
2752	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2753	    !vd->vdev_cant_write && !vd->vdev_ishole);
2754}
2755
2756boolean_t
2757vdev_accessible(vdev_t *vd, zio_t *zio)
2758{
2759	ASSERT(zio->io_vd == vd);
2760
2761	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2762		return (B_FALSE);
2763
2764	if (zio->io_type == ZIO_TYPE_READ)
2765		return (!vd->vdev_cant_read);
2766
2767	if (zio->io_type == ZIO_TYPE_WRITE)
2768		return (!vd->vdev_cant_write);
2769
2770	return (B_TRUE);
2771}
2772
2773/*
2774 * Get statistics for the given vdev.
2775 */
2776void
2777vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2778{
2779	spa_t *spa = vd->vdev_spa;
2780	vdev_t *rvd = spa->spa_root_vdev;
2781
2782	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2783
2784	mutex_enter(&vd->vdev_stat_lock);
2785	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2786	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2787	vs->vs_state = vd->vdev_state;
2788	vs->vs_rsize = vdev_get_min_asize(vd);
2789	if (vd->vdev_ops->vdev_op_leaf)
2790		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2791	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2792	vs->vs_configured_ashift = vd->vdev_top != NULL
2793	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2794	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2795	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2796	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2797		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2798	}
2799
2800	/*
2801	 * If we're getting stats on the root vdev, aggregate the I/O counts
2802	 * over all top-level vdevs (i.e. the direct children of the root).
2803	 */
2804	if (vd == rvd) {
2805		for (int c = 0; c < rvd->vdev_children; c++) {
2806			vdev_t *cvd = rvd->vdev_child[c];
2807			vdev_stat_t *cvs = &cvd->vdev_stat;
2808
2809			for (int t = 0; t < ZIO_TYPES; t++) {
2810				vs->vs_ops[t] += cvs->vs_ops[t];
2811				vs->vs_bytes[t] += cvs->vs_bytes[t];
2812			}
2813			cvs->vs_scan_removing = cvd->vdev_removing;
2814		}
2815	}
2816	mutex_exit(&vd->vdev_stat_lock);
2817}
2818
2819void
2820vdev_clear_stats(vdev_t *vd)
2821{
2822	mutex_enter(&vd->vdev_stat_lock);
2823	vd->vdev_stat.vs_space = 0;
2824	vd->vdev_stat.vs_dspace = 0;
2825	vd->vdev_stat.vs_alloc = 0;
2826	mutex_exit(&vd->vdev_stat_lock);
2827}
2828
2829void
2830vdev_scan_stat_init(vdev_t *vd)
2831{
2832	vdev_stat_t *vs = &vd->vdev_stat;
2833
2834	for (int c = 0; c < vd->vdev_children; c++)
2835		vdev_scan_stat_init(vd->vdev_child[c]);
2836
2837	mutex_enter(&vd->vdev_stat_lock);
2838	vs->vs_scan_processed = 0;
2839	mutex_exit(&vd->vdev_stat_lock);
2840}
2841
2842void
2843vdev_stat_update(zio_t *zio, uint64_t psize)
2844{
2845	spa_t *spa = zio->io_spa;
2846	vdev_t *rvd = spa->spa_root_vdev;
2847	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2848	vdev_t *pvd;
2849	uint64_t txg = zio->io_txg;
2850	vdev_stat_t *vs = &vd->vdev_stat;
2851	zio_type_t type = zio->io_type;
2852	int flags = zio->io_flags;
2853
2854	/*
2855	 * If this i/o is a gang leader, it didn't do any actual work.
2856	 */
2857	if (zio->io_gang_tree)
2858		return;
2859
2860	if (zio->io_error == 0) {
2861		/*
2862		 * If this is a root i/o, don't count it -- we've already
2863		 * counted the top-level vdevs, and vdev_get_stats() will
2864		 * aggregate them when asked.  This reduces contention on
2865		 * the root vdev_stat_lock and implicitly handles blocks
2866		 * that compress away to holes, for which there is no i/o.
2867		 * (Holes never create vdev children, so all the counters
2868		 * remain zero, which is what we want.)
2869		 *
2870		 * Note: this only applies to successful i/o (io_error == 0)
2871		 * because unlike i/o counts, errors are not additive.
2872		 * When reading a ditto block, for example, failure of
2873		 * one top-level vdev does not imply a root-level error.
2874		 */
2875		if (vd == rvd)
2876			return;
2877
2878		ASSERT(vd == zio->io_vd);
2879
2880		if (flags & ZIO_FLAG_IO_BYPASS)
2881			return;
2882
2883		mutex_enter(&vd->vdev_stat_lock);
2884
2885		if (flags & ZIO_FLAG_IO_REPAIR) {
2886			if (flags & ZIO_FLAG_SCAN_THREAD) {
2887				dsl_scan_phys_t *scn_phys =
2888				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2889				uint64_t *processed = &scn_phys->scn_processed;
2890
2891				/* XXX cleanup? */
2892				if (vd->vdev_ops->vdev_op_leaf)
2893					atomic_add_64(processed, psize);
2894				vs->vs_scan_processed += psize;
2895			}
2896
2897			if (flags & ZIO_FLAG_SELF_HEAL)
2898				vs->vs_self_healed += psize;
2899		}
2900
2901		vs->vs_ops[type]++;
2902		vs->vs_bytes[type] += psize;
2903
2904		mutex_exit(&vd->vdev_stat_lock);
2905		return;
2906	}
2907
2908	if (flags & ZIO_FLAG_SPECULATIVE)
2909		return;
2910
2911	/*
2912	 * If this is an I/O error that is going to be retried, then ignore the
2913	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2914	 * hard errors, when in reality they can happen for any number of
2915	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2916	 */
2917	if (zio->io_error == EIO &&
2918	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2919		return;
2920
2921	/*
2922	 * Intent logs writes won't propagate their error to the root
2923	 * I/O so don't mark these types of failures as pool-level
2924	 * errors.
2925	 */
2926	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2927		return;
2928
2929	mutex_enter(&vd->vdev_stat_lock);
2930	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2931		if (zio->io_error == ECKSUM)
2932			vs->vs_checksum_errors++;
2933		else
2934			vs->vs_read_errors++;
2935	}
2936	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2937		vs->vs_write_errors++;
2938	mutex_exit(&vd->vdev_stat_lock);
2939
2940	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2941	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2942	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2943	    spa->spa_claiming)) {
2944		/*
2945		 * This is either a normal write (not a repair), or it's
2946		 * a repair induced by the scrub thread, or it's a repair
2947		 * made by zil_claim() during spa_load() in the first txg.
2948		 * In the normal case, we commit the DTL change in the same
2949		 * txg as the block was born.  In the scrub-induced repair
2950		 * case, we know that scrubs run in first-pass syncing context,
2951		 * so we commit the DTL change in spa_syncing_txg(spa).
2952		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2953		 *
2954		 * We currently do not make DTL entries for failed spontaneous
2955		 * self-healing writes triggered by normal (non-scrubbing)
2956		 * reads, because we have no transactional context in which to
2957		 * do so -- and it's not clear that it'd be desirable anyway.
2958		 */
2959		if (vd->vdev_ops->vdev_op_leaf) {
2960			uint64_t commit_txg = txg;
2961			if (flags & ZIO_FLAG_SCAN_THREAD) {
2962				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2963				ASSERT(spa_sync_pass(spa) == 1);
2964				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2965				commit_txg = spa_syncing_txg(spa);
2966			} else if (spa->spa_claiming) {
2967				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2968				commit_txg = spa_first_txg(spa);
2969			}
2970			ASSERT(commit_txg >= spa_syncing_txg(spa));
2971			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2972				return;
2973			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2974				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2975			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2976		}
2977		if (vd != rvd)
2978			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2979	}
2980}
2981
2982/*
2983 * Update the in-core space usage stats for this vdev, its metaslab class,
2984 * and the root vdev.
2985 */
2986void
2987vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2988    int64_t space_delta)
2989{
2990	int64_t dspace_delta = space_delta;
2991	spa_t *spa = vd->vdev_spa;
2992	vdev_t *rvd = spa->spa_root_vdev;
2993	metaslab_group_t *mg = vd->vdev_mg;
2994	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2995
2996	ASSERT(vd == vd->vdev_top);
2997
2998	/*
2999	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3000	 * factor.  We must calculate this here and not at the root vdev
3001	 * because the root vdev's psize-to-asize is simply the max of its
3002	 * childrens', thus not accurate enough for us.
3003	 */
3004	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3005	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3006	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3007	    vd->vdev_deflate_ratio;
3008
3009	mutex_enter(&vd->vdev_stat_lock);
3010	vd->vdev_stat.vs_alloc += alloc_delta;
3011	vd->vdev_stat.vs_space += space_delta;
3012	vd->vdev_stat.vs_dspace += dspace_delta;
3013	mutex_exit(&vd->vdev_stat_lock);
3014
3015	if (mc == spa_normal_class(spa)) {
3016		mutex_enter(&rvd->vdev_stat_lock);
3017		rvd->vdev_stat.vs_alloc += alloc_delta;
3018		rvd->vdev_stat.vs_space += space_delta;
3019		rvd->vdev_stat.vs_dspace += dspace_delta;
3020		mutex_exit(&rvd->vdev_stat_lock);
3021	}
3022
3023	if (mc != NULL) {
3024		ASSERT(rvd == vd->vdev_parent);
3025		ASSERT(vd->vdev_ms_count != 0);
3026
3027		metaslab_class_space_update(mc,
3028		    alloc_delta, defer_delta, space_delta, dspace_delta);
3029	}
3030}
3031
3032/*
3033 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3034 * so that it will be written out next time the vdev configuration is synced.
3035 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3036 */
3037void
3038vdev_config_dirty(vdev_t *vd)
3039{
3040	spa_t *spa = vd->vdev_spa;
3041	vdev_t *rvd = spa->spa_root_vdev;
3042	int c;
3043
3044	ASSERT(spa_writeable(spa));
3045
3046	/*
3047	 * If this is an aux vdev (as with l2cache and spare devices), then we
3048	 * update the vdev config manually and set the sync flag.
3049	 */
3050	if (vd->vdev_aux != NULL) {
3051		spa_aux_vdev_t *sav = vd->vdev_aux;
3052		nvlist_t **aux;
3053		uint_t naux;
3054
3055		for (c = 0; c < sav->sav_count; c++) {
3056			if (sav->sav_vdevs[c] == vd)
3057				break;
3058		}
3059
3060		if (c == sav->sav_count) {
3061			/*
3062			 * We're being removed.  There's nothing more to do.
3063			 */
3064			ASSERT(sav->sav_sync == B_TRUE);
3065			return;
3066		}
3067
3068		sav->sav_sync = B_TRUE;
3069
3070		if (nvlist_lookup_nvlist_array(sav->sav_config,
3071		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3072			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3073			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3074		}
3075
3076		ASSERT(c < naux);
3077
3078		/*
3079		 * Setting the nvlist in the middle if the array is a little
3080		 * sketchy, but it will work.
3081		 */
3082		nvlist_free(aux[c]);
3083		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3084
3085		return;
3086	}
3087
3088	/*
3089	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3090	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3091	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3092	 * so this is sufficient to ensure mutual exclusion.
3093	 */
3094	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3095	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3096	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3097
3098	if (vd == rvd) {
3099		for (c = 0; c < rvd->vdev_children; c++)
3100			vdev_config_dirty(rvd->vdev_child[c]);
3101	} else {
3102		ASSERT(vd == vd->vdev_top);
3103
3104		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3105		    !vd->vdev_ishole)
3106			list_insert_head(&spa->spa_config_dirty_list, vd);
3107	}
3108}
3109
3110void
3111vdev_config_clean(vdev_t *vd)
3112{
3113	spa_t *spa = vd->vdev_spa;
3114
3115	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3116	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3117	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3118
3119	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3120	list_remove(&spa->spa_config_dirty_list, vd);
3121}
3122
3123/*
3124 * Mark a top-level vdev's state as dirty, so that the next pass of
3125 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3126 * the state changes from larger config changes because they require
3127 * much less locking, and are often needed for administrative actions.
3128 */
3129void
3130vdev_state_dirty(vdev_t *vd)
3131{
3132	spa_t *spa = vd->vdev_spa;
3133
3134	ASSERT(spa_writeable(spa));
3135	ASSERT(vd == vd->vdev_top);
3136
3137	/*
3138	 * The state list is protected by the SCL_STATE lock.  The caller
3139	 * must either hold SCL_STATE as writer, or must be the sync thread
3140	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3141	 * so this is sufficient to ensure mutual exclusion.
3142	 */
3143	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3144	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3145	    spa_config_held(spa, SCL_STATE, RW_READER)));
3146
3147	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3148		list_insert_head(&spa->spa_state_dirty_list, vd);
3149}
3150
3151void
3152vdev_state_clean(vdev_t *vd)
3153{
3154	spa_t *spa = vd->vdev_spa;
3155
3156	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3157	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3158	    spa_config_held(spa, SCL_STATE, RW_READER)));
3159
3160	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3161	list_remove(&spa->spa_state_dirty_list, vd);
3162}
3163
3164/*
3165 * Propagate vdev state up from children to parent.
3166 */
3167void
3168vdev_propagate_state(vdev_t *vd)
3169{
3170	spa_t *spa = vd->vdev_spa;
3171	vdev_t *rvd = spa->spa_root_vdev;
3172	int degraded = 0, faulted = 0;
3173	int corrupted = 0;
3174	vdev_t *child;
3175
3176	if (vd->vdev_children > 0) {
3177		for (int c = 0; c < vd->vdev_children; c++) {
3178			child = vd->vdev_child[c];
3179
3180			/*
3181			 * Don't factor holes into the decision.
3182			 */
3183			if (child->vdev_ishole)
3184				continue;
3185
3186			if (!vdev_readable(child) ||
3187			    (!vdev_writeable(child) && spa_writeable(spa))) {
3188				/*
3189				 * Root special: if there is a top-level log
3190				 * device, treat the root vdev as if it were
3191				 * degraded.
3192				 */
3193				if (child->vdev_islog && vd == rvd)
3194					degraded++;
3195				else
3196					faulted++;
3197			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3198				degraded++;
3199			}
3200
3201			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3202				corrupted++;
3203		}
3204
3205		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3206
3207		/*
3208		 * Root special: if there is a top-level vdev that cannot be
3209		 * opened due to corrupted metadata, then propagate the root
3210		 * vdev's aux state as 'corrupt' rather than 'insufficient
3211		 * replicas'.
3212		 */
3213		if (corrupted && vd == rvd &&
3214		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3215			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3216			    VDEV_AUX_CORRUPT_DATA);
3217	}
3218
3219	if (vd->vdev_parent)
3220		vdev_propagate_state(vd->vdev_parent);
3221}
3222
3223/*
3224 * Set a vdev's state.  If this is during an open, we don't update the parent
3225 * state, because we're in the process of opening children depth-first.
3226 * Otherwise, we propagate the change to the parent.
3227 *
3228 * If this routine places a device in a faulted state, an appropriate ereport is
3229 * generated.
3230 */
3231void
3232vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3233{
3234	uint64_t save_state;
3235	spa_t *spa = vd->vdev_spa;
3236
3237	if (state == vd->vdev_state) {
3238		vd->vdev_stat.vs_aux = aux;
3239		return;
3240	}
3241
3242	save_state = vd->vdev_state;
3243
3244	vd->vdev_state = state;
3245	vd->vdev_stat.vs_aux = aux;
3246
3247	/*
3248	 * If we are setting the vdev state to anything but an open state, then
3249	 * always close the underlying device unless the device has requested
3250	 * a delayed close (i.e. we're about to remove or fault the device).
3251	 * Otherwise, we keep accessible but invalid devices open forever.
3252	 * We don't call vdev_close() itself, because that implies some extra
3253	 * checks (offline, etc) that we don't want here.  This is limited to
3254	 * leaf devices, because otherwise closing the device will affect other
3255	 * children.
3256	 */
3257	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3258	    vd->vdev_ops->vdev_op_leaf)
3259		vd->vdev_ops->vdev_op_close(vd);
3260
3261	/*
3262	 * If we have brought this vdev back into service, we need
3263	 * to notify fmd so that it can gracefully repair any outstanding
3264	 * cases due to a missing device.  We do this in all cases, even those
3265	 * that probably don't correlate to a repaired fault.  This is sure to
3266	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3267	 * this is a transient state it's OK, as the retire agent will
3268	 * double-check the state of the vdev before repairing it.
3269	 */
3270	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3271	    vd->vdev_prevstate != state)
3272		zfs_post_state_change(spa, vd);
3273
3274	if (vd->vdev_removed &&
3275	    state == VDEV_STATE_CANT_OPEN &&
3276	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3277		/*
3278		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3279		 * device was previously marked removed and someone attempted to
3280		 * reopen it.  If this failed due to a nonexistent device, then
3281		 * keep the device in the REMOVED state.  We also let this be if
3282		 * it is one of our special test online cases, which is only
3283		 * attempting to online the device and shouldn't generate an FMA
3284		 * fault.
3285		 */
3286		vd->vdev_state = VDEV_STATE_REMOVED;
3287		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3288	} else if (state == VDEV_STATE_REMOVED) {
3289		vd->vdev_removed = B_TRUE;
3290	} else if (state == VDEV_STATE_CANT_OPEN) {
3291		/*
3292		 * If we fail to open a vdev during an import or recovery, we
3293		 * mark it as "not available", which signifies that it was
3294		 * never there to begin with.  Failure to open such a device
3295		 * is not considered an error.
3296		 */
3297		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3298		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3299		    vd->vdev_ops->vdev_op_leaf)
3300			vd->vdev_not_present = 1;
3301
3302		/*
3303		 * Post the appropriate ereport.  If the 'prevstate' field is
3304		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3305		 * that this is part of a vdev_reopen().  In this case, we don't
3306		 * want to post the ereport if the device was already in the
3307		 * CANT_OPEN state beforehand.
3308		 *
3309		 * If the 'checkremove' flag is set, then this is an attempt to
3310		 * online the device in response to an insertion event.  If we
3311		 * hit this case, then we have detected an insertion event for a
3312		 * faulted or offline device that wasn't in the removed state.
3313		 * In this scenario, we don't post an ereport because we are
3314		 * about to replace the device, or attempt an online with
3315		 * vdev_forcefault, which will generate the fault for us.
3316		 */
3317		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3318		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3319		    vd != spa->spa_root_vdev) {
3320			const char *class;
3321
3322			switch (aux) {
3323			case VDEV_AUX_OPEN_FAILED:
3324				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3325				break;
3326			case VDEV_AUX_CORRUPT_DATA:
3327				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3328				break;
3329			case VDEV_AUX_NO_REPLICAS:
3330				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3331				break;
3332			case VDEV_AUX_BAD_GUID_SUM:
3333				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3334				break;
3335			case VDEV_AUX_TOO_SMALL:
3336				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3337				break;
3338			case VDEV_AUX_BAD_LABEL:
3339				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3340				break;
3341			default:
3342				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3343			}
3344
3345			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3346		}
3347
3348		/* Erase any notion of persistent removed state */
3349		vd->vdev_removed = B_FALSE;
3350	} else {
3351		vd->vdev_removed = B_FALSE;
3352	}
3353
3354	if (!isopen && vd->vdev_parent)
3355		vdev_propagate_state(vd->vdev_parent);
3356}
3357
3358/*
3359 * Check the vdev configuration to ensure that it's capable of supporting
3360 * a root pool.
3361 *
3362 * On Solaris, we do not support RAID-Z or partial configuration.  In
3363 * addition, only a single top-level vdev is allowed and none of the
3364 * leaves can be wholedisks.
3365 *
3366 * For FreeBSD, we can boot from any configuration. There is a
3367 * limitation that the boot filesystem must be either uncompressed or
3368 * compresses with lzjb compression but I'm not sure how to enforce
3369 * that here.
3370 */
3371boolean_t
3372vdev_is_bootable(vdev_t *vd)
3373{
3374#ifdef sun
3375	if (!vd->vdev_ops->vdev_op_leaf) {
3376		char *vdev_type = vd->vdev_ops->vdev_op_type;
3377
3378		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3379		    vd->vdev_children > 1) {
3380			return (B_FALSE);
3381		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3382		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3383			return (B_FALSE);
3384		}
3385	} else if (vd->vdev_wholedisk == 1) {
3386		return (B_FALSE);
3387	}
3388
3389	for (int c = 0; c < vd->vdev_children; c++) {
3390		if (!vdev_is_bootable(vd->vdev_child[c]))
3391			return (B_FALSE);
3392	}
3393#endif	/* sun */
3394	return (B_TRUE);
3395}
3396
3397/*
3398 * Load the state from the original vdev tree (ovd) which
3399 * we've retrieved from the MOS config object. If the original
3400 * vdev was offline or faulted then we transfer that state to the
3401 * device in the current vdev tree (nvd).
3402 */
3403void
3404vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3405{
3406	spa_t *spa = nvd->vdev_spa;
3407
3408	ASSERT(nvd->vdev_top->vdev_islog);
3409	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3410	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3411
3412	for (int c = 0; c < nvd->vdev_children; c++)
3413		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3414
3415	if (nvd->vdev_ops->vdev_op_leaf) {
3416		/*
3417		 * Restore the persistent vdev state
3418		 */
3419		nvd->vdev_offline = ovd->vdev_offline;
3420		nvd->vdev_faulted = ovd->vdev_faulted;
3421		nvd->vdev_degraded = ovd->vdev_degraded;
3422		nvd->vdev_removed = ovd->vdev_removed;
3423	}
3424}
3425
3426/*
3427 * Determine if a log device has valid content.  If the vdev was
3428 * removed or faulted in the MOS config then we know that
3429 * the content on the log device has already been written to the pool.
3430 */
3431boolean_t
3432vdev_log_state_valid(vdev_t *vd)
3433{
3434	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3435	    !vd->vdev_removed)
3436		return (B_TRUE);
3437
3438	for (int c = 0; c < vd->vdev_children; c++)
3439		if (vdev_log_state_valid(vd->vdev_child[c]))
3440			return (B_TRUE);
3441
3442	return (B_FALSE);
3443}
3444
3445/*
3446 * Expand a vdev if possible.
3447 */
3448void
3449vdev_expand(vdev_t *vd, uint64_t txg)
3450{
3451	ASSERT(vd->vdev_top == vd);
3452	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3453
3454	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3455		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3456		vdev_config_dirty(vd);
3457	}
3458}
3459
3460/*
3461 * Split a vdev.
3462 */
3463void
3464vdev_split(vdev_t *vd)
3465{
3466	vdev_t *cvd, *pvd = vd->vdev_parent;
3467
3468	vdev_remove_child(pvd, vd);
3469	vdev_compact_children(pvd);
3470
3471	cvd = pvd->vdev_child[0];
3472	if (pvd->vdev_children == 1) {
3473		vdev_remove_parent(cvd);
3474		cvd->vdev_splitting = B_TRUE;
3475	}
3476	vdev_propagate_state(cvd);
3477}
3478
3479void
3480vdev_deadman(vdev_t *vd)
3481{
3482	for (int c = 0; c < vd->vdev_children; c++) {
3483		vdev_t *cvd = vd->vdev_child[c];
3484
3485		vdev_deadman(cvd);
3486	}
3487
3488	if (vd->vdev_ops->vdev_op_leaf) {
3489		vdev_queue_t *vq = &vd->vdev_queue;
3490
3491		mutex_enter(&vq->vq_lock);
3492		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3493			spa_t *spa = vd->vdev_spa;
3494			zio_t *fio;
3495			uint64_t delta;
3496
3497			/*
3498			 * Look at the head of all the pending queues,
3499			 * if any I/O has been outstanding for longer than
3500			 * the spa_deadman_synctime we panic the system.
3501			 */
3502			fio = avl_first(&vq->vq_active_tree);
3503			delta = gethrtime() - fio->io_timestamp;
3504			if (delta > spa_deadman_synctime(spa)) {
3505				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3506				    "delta %lluns, last io %lluns",
3507				    fio->io_timestamp, delta,
3508				    vq->vq_io_complete_ts);
3509				fm_panic("I/O to pool '%s' appears to be "
3510				    "hung on vdev guid %llu at '%s'.",
3511				    spa_name(spa),
3512				    (long long unsigned int) vd->vdev_guid,
3513				    vd->vdev_path);
3514			}
3515		}
3516		mutex_exit(&vq->vq_lock);
3517	}
3518}
3519