vdev.c revision 277553
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/*
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *          zfs_min_auto_ashift = 9 (512 bytes)
65 *
66 * On pool creation or the addition of a new top-level vdev, ZFS will
67 * increase the ashift of the top-level vdev to 2048 as limited by
68 * zfs_max_auto_ashift.
69 *
70 * Example: one or more 512B emulation child vdevs
71 *          child->vdev_ashift = 9 (512 bytes)
72 *          child->vdev_physical_ashift = 12 (4096 bytes)
73 *          zfs_max_auto_ashift = 13 (8192 bytes)
74 *          zfs_min_auto_ashift = 9 (512 bytes)
75 *
76 * On pool creation or the addition of a new top-level vdev, ZFS will
77 * increase the ashift of the top-level vdev to 4096 to match the
78 * max vdev_physical_ashift.
79 *
80 * Example: one or more 512B emulation child vdevs
81 *          child->vdev_ashift = 9 (512 bytes)
82 *          child->vdev_physical_ashift = 9 (512 bytes)
83 *          zfs_max_auto_ashift = 13 (8192 bytes)
84 *          zfs_min_auto_ashift = 12 (4096 bytes)
85 *
86 * On pool creation or the addition of a new top-level vdev, ZFS will
87 * increase the ashift of the top-level vdev to 4096 to match the
88 * zfs_min_auto_ashift.
89 */
90static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93static int
94sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95{
96	uint64_t val;
97	int err;
98
99	val = zfs_max_auto_ashift;
100	err = sysctl_handle_64(oidp, &val, 0, req);
101	if (err != 0 || req->newptr == NULL)
102		return (err);
103
104	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105		return (EINVAL);
106
107	zfs_max_auto_ashift = val;
108
109	return (0);
110}
111SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113    sysctl_vfs_zfs_max_auto_ashift, "QU",
114    "Max ashift used when optimising for logical -> physical sectors size on "
115    "new top-level vdevs.");
116
117static int
118sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119{
120	uint64_t val;
121	int err;
122
123	val = zfs_min_auto_ashift;
124	err = sysctl_handle_64(oidp, &val, 0, req);
125	if (err != 0 || req->newptr == NULL)
126		return (err);
127
128	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129		return (EINVAL);
130
131	zfs_min_auto_ashift = val;
132
133	return (0);
134}
135SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137    sysctl_vfs_zfs_min_auto_ashift, "QU",
138    "Min ashift used when creating new top-level vdevs.");
139
140static vdev_ops_t *vdev_ops_table[] = {
141	&vdev_root_ops,
142	&vdev_raidz_ops,
143	&vdev_mirror_ops,
144	&vdev_replacing_ops,
145	&vdev_spare_ops,
146#ifdef _KERNEL
147	&vdev_geom_ops,
148#else
149	&vdev_disk_ops,
150#endif
151	&vdev_file_ops,
152	&vdev_missing_ops,
153	&vdev_hole_ops,
154	NULL
155};
156
157
158/*
159 * When a vdev is added, it will be divided into approximately (but no
160 * more than) this number of metaslabs.
161 */
162int metaslabs_per_vdev = 200;
163SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164    &metaslabs_per_vdev, 0,
165    "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167/*
168 * Given a vdev type, return the appropriate ops vector.
169 */
170static vdev_ops_t *
171vdev_getops(const char *type)
172{
173	vdev_ops_t *ops, **opspp;
174
175	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176		if (strcmp(ops->vdev_op_type, type) == 0)
177			break;
178
179	return (ops);
180}
181
182/*
183 * Default asize function: return the MAX of psize with the asize of
184 * all children.  This is what's used by anything other than RAID-Z.
185 */
186uint64_t
187vdev_default_asize(vdev_t *vd, uint64_t psize)
188{
189	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190	uint64_t csize;
191
192	for (int c = 0; c < vd->vdev_children; c++) {
193		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194		asize = MAX(asize, csize);
195	}
196
197	return (asize);
198}
199
200/*
201 * Get the minimum allocatable size. We define the allocatable size as
202 * the vdev's asize rounded to the nearest metaslab. This allows us to
203 * replace or attach devices which don't have the same physical size but
204 * can still satisfy the same number of allocations.
205 */
206uint64_t
207vdev_get_min_asize(vdev_t *vd)
208{
209	vdev_t *pvd = vd->vdev_parent;
210
211	/*
212	 * If our parent is NULL (inactive spare or cache) or is the root,
213	 * just return our own asize.
214	 */
215	if (pvd == NULL)
216		return (vd->vdev_asize);
217
218	/*
219	 * The top-level vdev just returns the allocatable size rounded
220	 * to the nearest metaslab.
221	 */
222	if (vd == vd->vdev_top)
223		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225	/*
226	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227	 * so each child must provide at least 1/Nth of its asize.
228	 */
229	if (pvd->vdev_ops == &vdev_raidz_ops)
230		return (pvd->vdev_min_asize / pvd->vdev_children);
231
232	return (pvd->vdev_min_asize);
233}
234
235void
236vdev_set_min_asize(vdev_t *vd)
237{
238	vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240	for (int c = 0; c < vd->vdev_children; c++)
241		vdev_set_min_asize(vd->vdev_child[c]);
242}
243
244vdev_t *
245vdev_lookup_top(spa_t *spa, uint64_t vdev)
246{
247	vdev_t *rvd = spa->spa_root_vdev;
248
249	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251	if (vdev < rvd->vdev_children) {
252		ASSERT(rvd->vdev_child[vdev] != NULL);
253		return (rvd->vdev_child[vdev]);
254	}
255
256	return (NULL);
257}
258
259vdev_t *
260vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261{
262	vdev_t *mvd;
263
264	if (vd->vdev_guid == guid)
265		return (vd);
266
267	for (int c = 0; c < vd->vdev_children; c++)
268		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269		    NULL)
270			return (mvd);
271
272	return (NULL);
273}
274
275void
276vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277{
278	size_t oldsize, newsize;
279	uint64_t id = cvd->vdev_id;
280	vdev_t **newchild;
281
282	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
283	ASSERT(cvd->vdev_parent == NULL);
284
285	cvd->vdev_parent = pvd;
286
287	if (pvd == NULL)
288		return;
289
290	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
291
292	oldsize = pvd->vdev_children * sizeof (vdev_t *);
293	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
294	newsize = pvd->vdev_children * sizeof (vdev_t *);
295
296	newchild = kmem_zalloc(newsize, KM_SLEEP);
297	if (pvd->vdev_child != NULL) {
298		bcopy(pvd->vdev_child, newchild, oldsize);
299		kmem_free(pvd->vdev_child, oldsize);
300	}
301
302	pvd->vdev_child = newchild;
303	pvd->vdev_child[id] = cvd;
304
305	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
306	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
307
308	/*
309	 * Walk up all ancestors to update guid sum.
310	 */
311	for (; pvd != NULL; pvd = pvd->vdev_parent)
312		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
313}
314
315void
316vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
317{
318	int c;
319	uint_t id = cvd->vdev_id;
320
321	ASSERT(cvd->vdev_parent == pvd);
322
323	if (pvd == NULL)
324		return;
325
326	ASSERT(id < pvd->vdev_children);
327	ASSERT(pvd->vdev_child[id] == cvd);
328
329	pvd->vdev_child[id] = NULL;
330	cvd->vdev_parent = NULL;
331
332	for (c = 0; c < pvd->vdev_children; c++)
333		if (pvd->vdev_child[c])
334			break;
335
336	if (c == pvd->vdev_children) {
337		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
338		pvd->vdev_child = NULL;
339		pvd->vdev_children = 0;
340	}
341
342	/*
343	 * Walk up all ancestors to update guid sum.
344	 */
345	for (; pvd != NULL; pvd = pvd->vdev_parent)
346		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
347}
348
349/*
350 * Remove any holes in the child array.
351 */
352void
353vdev_compact_children(vdev_t *pvd)
354{
355	vdev_t **newchild, *cvd;
356	int oldc = pvd->vdev_children;
357	int newc;
358
359	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361	for (int c = newc = 0; c < oldc; c++)
362		if (pvd->vdev_child[c])
363			newc++;
364
365	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
366
367	for (int c = newc = 0; c < oldc; c++) {
368		if ((cvd = pvd->vdev_child[c]) != NULL) {
369			newchild[newc] = cvd;
370			cvd->vdev_id = newc++;
371		}
372	}
373
374	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
375	pvd->vdev_child = newchild;
376	pvd->vdev_children = newc;
377}
378
379/*
380 * Allocate and minimally initialize a vdev_t.
381 */
382vdev_t *
383vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
384{
385	vdev_t *vd;
386
387	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
388
389	if (spa->spa_root_vdev == NULL) {
390		ASSERT(ops == &vdev_root_ops);
391		spa->spa_root_vdev = vd;
392		spa->spa_load_guid = spa_generate_guid(NULL);
393	}
394
395	if (guid == 0 && ops != &vdev_hole_ops) {
396		if (spa->spa_root_vdev == vd) {
397			/*
398			 * The root vdev's guid will also be the pool guid,
399			 * which must be unique among all pools.
400			 */
401			guid = spa_generate_guid(NULL);
402		} else {
403			/*
404			 * Any other vdev's guid must be unique within the pool.
405			 */
406			guid = spa_generate_guid(spa);
407		}
408		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
409	}
410
411	vd->vdev_spa = spa;
412	vd->vdev_id = id;
413	vd->vdev_guid = guid;
414	vd->vdev_guid_sum = guid;
415	vd->vdev_ops = ops;
416	vd->vdev_state = VDEV_STATE_CLOSED;
417	vd->vdev_ishole = (ops == &vdev_hole_ops);
418
419	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
420	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
421	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
422	for (int t = 0; t < DTL_TYPES; t++) {
423		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
424		    &vd->vdev_dtl_lock);
425	}
426	txg_list_create(&vd->vdev_ms_list,
427	    offsetof(struct metaslab, ms_txg_node));
428	txg_list_create(&vd->vdev_dtl_list,
429	    offsetof(struct vdev, vdev_dtl_node));
430	vd->vdev_stat.vs_timestamp = gethrtime();
431	vdev_queue_init(vd);
432	vdev_cache_init(vd);
433
434	return (vd);
435}
436
437/*
438 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
439 * creating a new vdev or loading an existing one - the behavior is slightly
440 * different for each case.
441 */
442int
443vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
444    int alloctype)
445{
446	vdev_ops_t *ops;
447	char *type;
448	uint64_t guid = 0, islog, nparity;
449	vdev_t *vd;
450
451	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
452
453	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
454		return (SET_ERROR(EINVAL));
455
456	if ((ops = vdev_getops(type)) == NULL)
457		return (SET_ERROR(EINVAL));
458
459	/*
460	 * If this is a load, get the vdev guid from the nvlist.
461	 * Otherwise, vdev_alloc_common() will generate one for us.
462	 */
463	if (alloctype == VDEV_ALLOC_LOAD) {
464		uint64_t label_id;
465
466		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
467		    label_id != id)
468			return (SET_ERROR(EINVAL));
469
470		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471			return (SET_ERROR(EINVAL));
472	} else if (alloctype == VDEV_ALLOC_SPARE) {
473		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
474			return (SET_ERROR(EINVAL));
475	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
476		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
477			return (SET_ERROR(EINVAL));
478	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
479		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
480			return (SET_ERROR(EINVAL));
481	}
482
483	/*
484	 * The first allocated vdev must be of type 'root'.
485	 */
486	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
487		return (SET_ERROR(EINVAL));
488
489	/*
490	 * Determine whether we're a log vdev.
491	 */
492	islog = 0;
493	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
494	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
495		return (SET_ERROR(ENOTSUP));
496
497	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
498		return (SET_ERROR(ENOTSUP));
499
500	/*
501	 * Set the nparity property for RAID-Z vdevs.
502	 */
503	nparity = -1ULL;
504	if (ops == &vdev_raidz_ops) {
505		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
506		    &nparity) == 0) {
507			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
508				return (SET_ERROR(EINVAL));
509			/*
510			 * Previous versions could only support 1 or 2 parity
511			 * device.
512			 */
513			if (nparity > 1 &&
514			    spa_version(spa) < SPA_VERSION_RAIDZ2)
515				return (SET_ERROR(ENOTSUP));
516			if (nparity > 2 &&
517			    spa_version(spa) < SPA_VERSION_RAIDZ3)
518				return (SET_ERROR(ENOTSUP));
519		} else {
520			/*
521			 * We require the parity to be specified for SPAs that
522			 * support multiple parity levels.
523			 */
524			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
525				return (SET_ERROR(EINVAL));
526			/*
527			 * Otherwise, we default to 1 parity device for RAID-Z.
528			 */
529			nparity = 1;
530		}
531	} else {
532		nparity = 0;
533	}
534	ASSERT(nparity != -1ULL);
535
536	vd = vdev_alloc_common(spa, id, guid, ops);
537
538	vd->vdev_islog = islog;
539	vd->vdev_nparity = nparity;
540
541	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
542		vd->vdev_path = spa_strdup(vd->vdev_path);
543	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
544		vd->vdev_devid = spa_strdup(vd->vdev_devid);
545	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
546	    &vd->vdev_physpath) == 0)
547		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
548	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
549		vd->vdev_fru = spa_strdup(vd->vdev_fru);
550
551	/*
552	 * Set the whole_disk property.  If it's not specified, leave the value
553	 * as -1.
554	 */
555	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
556	    &vd->vdev_wholedisk) != 0)
557		vd->vdev_wholedisk = -1ULL;
558
559	/*
560	 * Look for the 'not present' flag.  This will only be set if the device
561	 * was not present at the time of import.
562	 */
563	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
564	    &vd->vdev_not_present);
565
566	/*
567	 * Get the alignment requirement.
568	 */
569	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
570
571	/*
572	 * Retrieve the vdev creation time.
573	 */
574	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
575	    &vd->vdev_crtxg);
576
577	/*
578	 * If we're a top-level vdev, try to load the allocation parameters.
579	 */
580	if (parent && !parent->vdev_parent &&
581	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
582		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
583		    &vd->vdev_ms_array);
584		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
585		    &vd->vdev_ms_shift);
586		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
587		    &vd->vdev_asize);
588		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
589		    &vd->vdev_removing);
590	}
591
592	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
594		    alloctype == VDEV_ALLOC_ADD ||
595		    alloctype == VDEV_ALLOC_SPLIT ||
596		    alloctype == VDEV_ALLOC_ROOTPOOL);
597		vd->vdev_mg = metaslab_group_create(islog ?
598		    spa_log_class(spa) : spa_normal_class(spa), vd);
599	}
600
601	/*
602	 * If we're a leaf vdev, try to load the DTL object and other state.
603	 */
604	if (vd->vdev_ops->vdev_op_leaf &&
605	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
606	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
607		if (alloctype == VDEV_ALLOC_LOAD) {
608			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
609			    &vd->vdev_dtl_object);
610			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
611			    &vd->vdev_unspare);
612		}
613
614		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
615			uint64_t spare = 0;
616
617			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
618			    &spare) == 0 && spare)
619				spa_spare_add(vd);
620		}
621
622		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
623		    &vd->vdev_offline);
624
625		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
626		    &vd->vdev_resilver_txg);
627
628		/*
629		 * When importing a pool, we want to ignore the persistent fault
630		 * state, as the diagnosis made on another system may not be
631		 * valid in the current context.  Local vdevs will
632		 * remain in the faulted state.
633		 */
634		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
635			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
636			    &vd->vdev_faulted);
637			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
638			    &vd->vdev_degraded);
639			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
640			    &vd->vdev_removed);
641
642			if (vd->vdev_faulted || vd->vdev_degraded) {
643				char *aux;
644
645				vd->vdev_label_aux =
646				    VDEV_AUX_ERR_EXCEEDED;
647				if (nvlist_lookup_string(nv,
648				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
649				    strcmp(aux, "external") == 0)
650					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
651			}
652		}
653	}
654
655	/*
656	 * Add ourselves to the parent's list of children.
657	 */
658	vdev_add_child(parent, vd);
659
660	*vdp = vd;
661
662	return (0);
663}
664
665void
666vdev_free(vdev_t *vd)
667{
668	spa_t *spa = vd->vdev_spa;
669
670	/*
671	 * vdev_free() implies closing the vdev first.  This is simpler than
672	 * trying to ensure complicated semantics for all callers.
673	 */
674	vdev_close(vd);
675
676	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
677	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
678
679	/*
680	 * Free all children.
681	 */
682	for (int c = 0; c < vd->vdev_children; c++)
683		vdev_free(vd->vdev_child[c]);
684
685	ASSERT(vd->vdev_child == NULL);
686	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
687
688	/*
689	 * Discard allocation state.
690	 */
691	if (vd->vdev_mg != NULL) {
692		vdev_metaslab_fini(vd);
693		metaslab_group_destroy(vd->vdev_mg);
694	}
695
696	ASSERT0(vd->vdev_stat.vs_space);
697	ASSERT0(vd->vdev_stat.vs_dspace);
698	ASSERT0(vd->vdev_stat.vs_alloc);
699
700	/*
701	 * Remove this vdev from its parent's child list.
702	 */
703	vdev_remove_child(vd->vdev_parent, vd);
704
705	ASSERT(vd->vdev_parent == NULL);
706
707	/*
708	 * Clean up vdev structure.
709	 */
710	vdev_queue_fini(vd);
711	vdev_cache_fini(vd);
712
713	if (vd->vdev_path)
714		spa_strfree(vd->vdev_path);
715	if (vd->vdev_devid)
716		spa_strfree(vd->vdev_devid);
717	if (vd->vdev_physpath)
718		spa_strfree(vd->vdev_physpath);
719	if (vd->vdev_fru)
720		spa_strfree(vd->vdev_fru);
721
722	if (vd->vdev_isspare)
723		spa_spare_remove(vd);
724	if (vd->vdev_isl2cache)
725		spa_l2cache_remove(vd);
726
727	txg_list_destroy(&vd->vdev_ms_list);
728	txg_list_destroy(&vd->vdev_dtl_list);
729
730	mutex_enter(&vd->vdev_dtl_lock);
731	space_map_close(vd->vdev_dtl_sm);
732	for (int t = 0; t < DTL_TYPES; t++) {
733		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
734		range_tree_destroy(vd->vdev_dtl[t]);
735	}
736	mutex_exit(&vd->vdev_dtl_lock);
737
738	mutex_destroy(&vd->vdev_dtl_lock);
739	mutex_destroy(&vd->vdev_stat_lock);
740	mutex_destroy(&vd->vdev_probe_lock);
741
742	if (vd == spa->spa_root_vdev)
743		spa->spa_root_vdev = NULL;
744
745	kmem_free(vd, sizeof (vdev_t));
746}
747
748/*
749 * Transfer top-level vdev state from svd to tvd.
750 */
751static void
752vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
753{
754	spa_t *spa = svd->vdev_spa;
755	metaslab_t *msp;
756	vdev_t *vd;
757	int t;
758
759	ASSERT(tvd == tvd->vdev_top);
760
761	tvd->vdev_ms_array = svd->vdev_ms_array;
762	tvd->vdev_ms_shift = svd->vdev_ms_shift;
763	tvd->vdev_ms_count = svd->vdev_ms_count;
764
765	svd->vdev_ms_array = 0;
766	svd->vdev_ms_shift = 0;
767	svd->vdev_ms_count = 0;
768
769	if (tvd->vdev_mg)
770		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
771	tvd->vdev_mg = svd->vdev_mg;
772	tvd->vdev_ms = svd->vdev_ms;
773
774	svd->vdev_mg = NULL;
775	svd->vdev_ms = NULL;
776
777	if (tvd->vdev_mg != NULL)
778		tvd->vdev_mg->mg_vd = tvd;
779
780	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
781	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
782	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
783
784	svd->vdev_stat.vs_alloc = 0;
785	svd->vdev_stat.vs_space = 0;
786	svd->vdev_stat.vs_dspace = 0;
787
788	for (t = 0; t < TXG_SIZE; t++) {
789		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
790			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
791		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
792			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
793		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
794			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
795	}
796
797	if (list_link_active(&svd->vdev_config_dirty_node)) {
798		vdev_config_clean(svd);
799		vdev_config_dirty(tvd);
800	}
801
802	if (list_link_active(&svd->vdev_state_dirty_node)) {
803		vdev_state_clean(svd);
804		vdev_state_dirty(tvd);
805	}
806
807	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
808	svd->vdev_deflate_ratio = 0;
809
810	tvd->vdev_islog = svd->vdev_islog;
811	svd->vdev_islog = 0;
812}
813
814static void
815vdev_top_update(vdev_t *tvd, vdev_t *vd)
816{
817	if (vd == NULL)
818		return;
819
820	vd->vdev_top = tvd;
821
822	for (int c = 0; c < vd->vdev_children; c++)
823		vdev_top_update(tvd, vd->vdev_child[c]);
824}
825
826/*
827 * Add a mirror/replacing vdev above an existing vdev.
828 */
829vdev_t *
830vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
831{
832	spa_t *spa = cvd->vdev_spa;
833	vdev_t *pvd = cvd->vdev_parent;
834	vdev_t *mvd;
835
836	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
837
838	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
839
840	mvd->vdev_asize = cvd->vdev_asize;
841	mvd->vdev_min_asize = cvd->vdev_min_asize;
842	mvd->vdev_max_asize = cvd->vdev_max_asize;
843	mvd->vdev_ashift = cvd->vdev_ashift;
844	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
845	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
846	mvd->vdev_state = cvd->vdev_state;
847	mvd->vdev_crtxg = cvd->vdev_crtxg;
848
849	vdev_remove_child(pvd, cvd);
850	vdev_add_child(pvd, mvd);
851	cvd->vdev_id = mvd->vdev_children;
852	vdev_add_child(mvd, cvd);
853	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
854
855	if (mvd == mvd->vdev_top)
856		vdev_top_transfer(cvd, mvd);
857
858	return (mvd);
859}
860
861/*
862 * Remove a 1-way mirror/replacing vdev from the tree.
863 */
864void
865vdev_remove_parent(vdev_t *cvd)
866{
867	vdev_t *mvd = cvd->vdev_parent;
868	vdev_t *pvd = mvd->vdev_parent;
869
870	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
871
872	ASSERT(mvd->vdev_children == 1);
873	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
874	    mvd->vdev_ops == &vdev_replacing_ops ||
875	    mvd->vdev_ops == &vdev_spare_ops);
876	cvd->vdev_ashift = mvd->vdev_ashift;
877	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
878	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
879
880	vdev_remove_child(mvd, cvd);
881	vdev_remove_child(pvd, mvd);
882
883	/*
884	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
885	 * Otherwise, we could have detached an offline device, and when we
886	 * go to import the pool we'll think we have two top-level vdevs,
887	 * instead of a different version of the same top-level vdev.
888	 */
889	if (mvd->vdev_top == mvd) {
890		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
891		cvd->vdev_orig_guid = cvd->vdev_guid;
892		cvd->vdev_guid += guid_delta;
893		cvd->vdev_guid_sum += guid_delta;
894	}
895	cvd->vdev_id = mvd->vdev_id;
896	vdev_add_child(pvd, cvd);
897	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
898
899	if (cvd == cvd->vdev_top)
900		vdev_top_transfer(mvd, cvd);
901
902	ASSERT(mvd->vdev_children == 0);
903	vdev_free(mvd);
904}
905
906int
907vdev_metaslab_init(vdev_t *vd, uint64_t txg)
908{
909	spa_t *spa = vd->vdev_spa;
910	objset_t *mos = spa->spa_meta_objset;
911	uint64_t m;
912	uint64_t oldc = vd->vdev_ms_count;
913	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
914	metaslab_t **mspp;
915	int error;
916
917	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
918
919	/*
920	 * This vdev is not being allocated from yet or is a hole.
921	 */
922	if (vd->vdev_ms_shift == 0)
923		return (0);
924
925	ASSERT(!vd->vdev_ishole);
926
927	/*
928	 * Compute the raidz-deflation ratio.  Note, we hard-code
929	 * in 128k (1 << 17) because it is the "typical" blocksize.
930	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
931	 * otherwise it would inconsistently account for existing bp's.
932	 */
933	vd->vdev_deflate_ratio = (1 << 17) /
934	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
935
936	ASSERT(oldc <= newc);
937
938	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
939
940	if (oldc != 0) {
941		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
942		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
943	}
944
945	vd->vdev_ms = mspp;
946	vd->vdev_ms_count = newc;
947
948	for (m = oldc; m < newc; m++) {
949		uint64_t object = 0;
950
951		if (txg == 0) {
952			error = dmu_read(mos, vd->vdev_ms_array,
953			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
954			    DMU_READ_PREFETCH);
955			if (error)
956				return (error);
957		}
958
959		error = metaslab_init(vd->vdev_mg, m, object, txg,
960		    &(vd->vdev_ms[m]));
961		if (error)
962			return (error);
963	}
964
965	if (txg == 0)
966		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
967
968	/*
969	 * If the vdev is being removed we don't activate
970	 * the metaslabs since we want to ensure that no new
971	 * allocations are performed on this device.
972	 */
973	if (oldc == 0 && !vd->vdev_removing)
974		metaslab_group_activate(vd->vdev_mg);
975
976	if (txg == 0)
977		spa_config_exit(spa, SCL_ALLOC, FTAG);
978
979	return (0);
980}
981
982void
983vdev_metaslab_fini(vdev_t *vd)
984{
985	uint64_t m;
986	uint64_t count = vd->vdev_ms_count;
987
988	if (vd->vdev_ms != NULL) {
989		metaslab_group_passivate(vd->vdev_mg);
990		for (m = 0; m < count; m++) {
991			metaslab_t *msp = vd->vdev_ms[m];
992
993			if (msp != NULL)
994				metaslab_fini(msp);
995		}
996		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
997		vd->vdev_ms = NULL;
998	}
999}
1000
1001typedef struct vdev_probe_stats {
1002	boolean_t	vps_readable;
1003	boolean_t	vps_writeable;
1004	int		vps_flags;
1005} vdev_probe_stats_t;
1006
1007static void
1008vdev_probe_done(zio_t *zio)
1009{
1010	spa_t *spa = zio->io_spa;
1011	vdev_t *vd = zio->io_vd;
1012	vdev_probe_stats_t *vps = zio->io_private;
1013
1014	ASSERT(vd->vdev_probe_zio != NULL);
1015
1016	if (zio->io_type == ZIO_TYPE_READ) {
1017		if (zio->io_error == 0)
1018			vps->vps_readable = 1;
1019		if (zio->io_error == 0 && spa_writeable(spa)) {
1020			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1021			    zio->io_offset, zio->io_size, zio->io_data,
1022			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1023			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1024		} else {
1025			zio_buf_free(zio->io_data, zio->io_size);
1026		}
1027	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1028		if (zio->io_error == 0)
1029			vps->vps_writeable = 1;
1030		zio_buf_free(zio->io_data, zio->io_size);
1031	} else if (zio->io_type == ZIO_TYPE_NULL) {
1032		zio_t *pio;
1033
1034		vd->vdev_cant_read |= !vps->vps_readable;
1035		vd->vdev_cant_write |= !vps->vps_writeable;
1036
1037		if (vdev_readable(vd) &&
1038		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1039			zio->io_error = 0;
1040		} else {
1041			ASSERT(zio->io_error != 0);
1042			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1043			    spa, vd, NULL, 0, 0);
1044			zio->io_error = SET_ERROR(ENXIO);
1045		}
1046
1047		mutex_enter(&vd->vdev_probe_lock);
1048		ASSERT(vd->vdev_probe_zio == zio);
1049		vd->vdev_probe_zio = NULL;
1050		mutex_exit(&vd->vdev_probe_lock);
1051
1052		while ((pio = zio_walk_parents(zio)) != NULL)
1053			if (!vdev_accessible(vd, pio))
1054				pio->io_error = SET_ERROR(ENXIO);
1055
1056		kmem_free(vps, sizeof (*vps));
1057	}
1058}
1059
1060/*
1061 * Determine whether this device is accessible.
1062 *
1063 * Read and write to several known locations: the pad regions of each
1064 * vdev label but the first, which we leave alone in case it contains
1065 * a VTOC.
1066 */
1067zio_t *
1068vdev_probe(vdev_t *vd, zio_t *zio)
1069{
1070	spa_t *spa = vd->vdev_spa;
1071	vdev_probe_stats_t *vps = NULL;
1072	zio_t *pio;
1073
1074	ASSERT(vd->vdev_ops->vdev_op_leaf);
1075
1076	/*
1077	 * Don't probe the probe.
1078	 */
1079	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1080		return (NULL);
1081
1082	/*
1083	 * To prevent 'probe storms' when a device fails, we create
1084	 * just one probe i/o at a time.  All zios that want to probe
1085	 * this vdev will become parents of the probe io.
1086	 */
1087	mutex_enter(&vd->vdev_probe_lock);
1088
1089	if ((pio = vd->vdev_probe_zio) == NULL) {
1090		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1091
1092		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1093		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1094		    ZIO_FLAG_TRYHARD;
1095
1096		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1097			/*
1098			 * vdev_cant_read and vdev_cant_write can only
1099			 * transition from TRUE to FALSE when we have the
1100			 * SCL_ZIO lock as writer; otherwise they can only
1101			 * transition from FALSE to TRUE.  This ensures that
1102			 * any zio looking at these values can assume that
1103			 * failures persist for the life of the I/O.  That's
1104			 * important because when a device has intermittent
1105			 * connectivity problems, we want to ensure that
1106			 * they're ascribed to the device (ENXIO) and not
1107			 * the zio (EIO).
1108			 *
1109			 * Since we hold SCL_ZIO as writer here, clear both
1110			 * values so the probe can reevaluate from first
1111			 * principles.
1112			 */
1113			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1114			vd->vdev_cant_read = B_FALSE;
1115			vd->vdev_cant_write = B_FALSE;
1116		}
1117
1118		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1119		    vdev_probe_done, vps,
1120		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1121
1122		/*
1123		 * We can't change the vdev state in this context, so we
1124		 * kick off an async task to do it on our behalf.
1125		 */
1126		if (zio != NULL) {
1127			vd->vdev_probe_wanted = B_TRUE;
1128			spa_async_request(spa, SPA_ASYNC_PROBE);
1129		}
1130	}
1131
1132	if (zio != NULL)
1133		zio_add_child(zio, pio);
1134
1135	mutex_exit(&vd->vdev_probe_lock);
1136
1137	if (vps == NULL) {
1138		ASSERT(zio != NULL);
1139		return (NULL);
1140	}
1141
1142	for (int l = 1; l < VDEV_LABELS; l++) {
1143		zio_nowait(zio_read_phys(pio, vd,
1144		    vdev_label_offset(vd->vdev_psize, l,
1145		    offsetof(vdev_label_t, vl_pad2)),
1146		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1147		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1148		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1149	}
1150
1151	if (zio == NULL)
1152		return (pio);
1153
1154	zio_nowait(pio);
1155	return (NULL);
1156}
1157
1158static void
1159vdev_open_child(void *arg)
1160{
1161	vdev_t *vd = arg;
1162
1163	vd->vdev_open_thread = curthread;
1164	vd->vdev_open_error = vdev_open(vd);
1165	vd->vdev_open_thread = NULL;
1166}
1167
1168boolean_t
1169vdev_uses_zvols(vdev_t *vd)
1170{
1171	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1172	    strlen(ZVOL_DIR)) == 0)
1173		return (B_TRUE);
1174	for (int c = 0; c < vd->vdev_children; c++)
1175		if (vdev_uses_zvols(vd->vdev_child[c]))
1176			return (B_TRUE);
1177	return (B_FALSE);
1178}
1179
1180void
1181vdev_open_children(vdev_t *vd)
1182{
1183	taskq_t *tq;
1184	int children = vd->vdev_children;
1185
1186	/*
1187	 * in order to handle pools on top of zvols, do the opens
1188	 * in a single thread so that the same thread holds the
1189	 * spa_namespace_lock
1190	 */
1191	if (B_TRUE || vdev_uses_zvols(vd)) {
1192		for (int c = 0; c < children; c++)
1193			vd->vdev_child[c]->vdev_open_error =
1194			    vdev_open(vd->vdev_child[c]);
1195		return;
1196	}
1197	tq = taskq_create("vdev_open", children, minclsyspri,
1198	    children, children, TASKQ_PREPOPULATE);
1199
1200	for (int c = 0; c < children; c++)
1201		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1202		    TQ_SLEEP) != 0);
1203
1204	taskq_destroy(tq);
1205}
1206
1207/*
1208 * Prepare a virtual device for access.
1209 */
1210int
1211vdev_open(vdev_t *vd)
1212{
1213	spa_t *spa = vd->vdev_spa;
1214	int error;
1215	uint64_t osize = 0;
1216	uint64_t max_osize = 0;
1217	uint64_t asize, max_asize, psize;
1218	uint64_t logical_ashift = 0;
1219	uint64_t physical_ashift = 0;
1220
1221	ASSERT(vd->vdev_open_thread == curthread ||
1222	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1223	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1224	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1225	    vd->vdev_state == VDEV_STATE_OFFLINE);
1226
1227	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1228	vd->vdev_cant_read = B_FALSE;
1229	vd->vdev_cant_write = B_FALSE;
1230	vd->vdev_notrim = B_FALSE;
1231	vd->vdev_min_asize = vdev_get_min_asize(vd);
1232
1233	/*
1234	 * If this vdev is not removed, check its fault status.  If it's
1235	 * faulted, bail out of the open.
1236	 */
1237	if (!vd->vdev_removed && vd->vdev_faulted) {
1238		ASSERT(vd->vdev_children == 0);
1239		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1240		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1241		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1242		    vd->vdev_label_aux);
1243		return (SET_ERROR(ENXIO));
1244	} else if (vd->vdev_offline) {
1245		ASSERT(vd->vdev_children == 0);
1246		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1247		return (SET_ERROR(ENXIO));
1248	}
1249
1250	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1251	    &logical_ashift, &physical_ashift);
1252
1253	/*
1254	 * Reset the vdev_reopening flag so that we actually close
1255	 * the vdev on error.
1256	 */
1257	vd->vdev_reopening = B_FALSE;
1258	if (zio_injection_enabled && error == 0)
1259		error = zio_handle_device_injection(vd, NULL, ENXIO);
1260
1261	if (error) {
1262		if (vd->vdev_removed &&
1263		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1264			vd->vdev_removed = B_FALSE;
1265
1266		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267		    vd->vdev_stat.vs_aux);
1268		return (error);
1269	}
1270
1271	vd->vdev_removed = B_FALSE;
1272
1273	/*
1274	 * Recheck the faulted flag now that we have confirmed that
1275	 * the vdev is accessible.  If we're faulted, bail.
1276	 */
1277	if (vd->vdev_faulted) {
1278		ASSERT(vd->vdev_children == 0);
1279		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1280		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1281		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1282		    vd->vdev_label_aux);
1283		return (SET_ERROR(ENXIO));
1284	}
1285
1286	if (vd->vdev_degraded) {
1287		ASSERT(vd->vdev_children == 0);
1288		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1289		    VDEV_AUX_ERR_EXCEEDED);
1290	} else {
1291		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1292	}
1293
1294	/*
1295	 * For hole or missing vdevs we just return success.
1296	 */
1297	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1298		return (0);
1299
1300	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1301		trim_map_create(vd);
1302
1303	for (int c = 0; c < vd->vdev_children; c++) {
1304		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1305			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1306			    VDEV_AUX_NONE);
1307			break;
1308		}
1309	}
1310
1311	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1312	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1313
1314	if (vd->vdev_children == 0) {
1315		if (osize < SPA_MINDEVSIZE) {
1316			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1317			    VDEV_AUX_TOO_SMALL);
1318			return (SET_ERROR(EOVERFLOW));
1319		}
1320		psize = osize;
1321		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1322		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1323		    VDEV_LABEL_END_SIZE);
1324	} else {
1325		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1326		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1327			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1328			    VDEV_AUX_TOO_SMALL);
1329			return (SET_ERROR(EOVERFLOW));
1330		}
1331		psize = 0;
1332		asize = osize;
1333		max_asize = max_osize;
1334	}
1335
1336	vd->vdev_psize = psize;
1337
1338	/*
1339	 * Make sure the allocatable size hasn't shrunk.
1340	 */
1341	if (asize < vd->vdev_min_asize) {
1342		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343		    VDEV_AUX_BAD_LABEL);
1344		return (SET_ERROR(EINVAL));
1345	}
1346
1347	vd->vdev_physical_ashift =
1348	    MAX(physical_ashift, vd->vdev_physical_ashift);
1349	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1350	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1351
1352	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1353		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1354		    VDEV_AUX_ASHIFT_TOO_BIG);
1355		return (EINVAL);
1356	}
1357
1358	if (vd->vdev_asize == 0) {
1359		/*
1360		 * This is the first-ever open, so use the computed values.
1361		 * For testing purposes, a higher ashift can be requested.
1362		 */
1363		vd->vdev_asize = asize;
1364		vd->vdev_max_asize = max_asize;
1365	} else {
1366		/*
1367		 * Make sure the alignment requirement hasn't increased.
1368		 */
1369		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1370		    vd->vdev_ops->vdev_op_leaf) {
1371			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1372			    VDEV_AUX_BAD_LABEL);
1373			return (EINVAL);
1374		}
1375		vd->vdev_max_asize = max_asize;
1376	}
1377
1378	/*
1379	 * If all children are healthy and the asize has increased,
1380	 * then we've experienced dynamic LUN growth.  If automatic
1381	 * expansion is enabled then use the additional space.
1382	 */
1383	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1384	    (vd->vdev_expanding || spa->spa_autoexpand))
1385		vd->vdev_asize = asize;
1386
1387	vdev_set_min_asize(vd);
1388
1389	/*
1390	 * Ensure we can issue some IO before declaring the
1391	 * vdev open for business.
1392	 */
1393	if (vd->vdev_ops->vdev_op_leaf &&
1394	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1395		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1396		    VDEV_AUX_ERR_EXCEEDED);
1397		return (error);
1398	}
1399
1400	/*
1401	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1402	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1403	 * since this would just restart the scrub we are already doing.
1404	 */
1405	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1406	    vdev_resilver_needed(vd, NULL, NULL))
1407		spa_async_request(spa, SPA_ASYNC_RESILVER);
1408
1409	return (0);
1410}
1411
1412/*
1413 * Called once the vdevs are all opened, this routine validates the label
1414 * contents.  This needs to be done before vdev_load() so that we don't
1415 * inadvertently do repair I/Os to the wrong device.
1416 *
1417 * If 'strict' is false ignore the spa guid check. This is necessary because
1418 * if the machine crashed during a re-guid the new guid might have been written
1419 * to all of the vdev labels, but not the cached config. The strict check
1420 * will be performed when the pool is opened again using the mos config.
1421 *
1422 * This function will only return failure if one of the vdevs indicates that it
1423 * has since been destroyed or exported.  This is only possible if
1424 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1425 * will be updated but the function will return 0.
1426 */
1427int
1428vdev_validate(vdev_t *vd, boolean_t strict)
1429{
1430	spa_t *spa = vd->vdev_spa;
1431	nvlist_t *label;
1432	uint64_t guid = 0, top_guid;
1433	uint64_t state;
1434
1435	for (int c = 0; c < vd->vdev_children; c++)
1436		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1437			return (SET_ERROR(EBADF));
1438
1439	/*
1440	 * If the device has already failed, or was marked offline, don't do
1441	 * any further validation.  Otherwise, label I/O will fail and we will
1442	 * overwrite the previous state.
1443	 */
1444	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1445		uint64_t aux_guid = 0;
1446		nvlist_t *nvl;
1447		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1448		    spa_last_synced_txg(spa) : -1ULL;
1449
1450		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1451			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452			    VDEV_AUX_BAD_LABEL);
1453			return (0);
1454		}
1455
1456		/*
1457		 * Determine if this vdev has been split off into another
1458		 * pool.  If so, then refuse to open it.
1459		 */
1460		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1461		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1462			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1463			    VDEV_AUX_SPLIT_POOL);
1464			nvlist_free(label);
1465			return (0);
1466		}
1467
1468		if (strict && (nvlist_lookup_uint64(label,
1469		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1470		    guid != spa_guid(spa))) {
1471			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1472			    VDEV_AUX_CORRUPT_DATA);
1473			nvlist_free(label);
1474			return (0);
1475		}
1476
1477		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1478		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1479		    &aux_guid) != 0)
1480			aux_guid = 0;
1481
1482		/*
1483		 * If this vdev just became a top-level vdev because its
1484		 * sibling was detached, it will have adopted the parent's
1485		 * vdev guid -- but the label may or may not be on disk yet.
1486		 * Fortunately, either version of the label will have the
1487		 * same top guid, so if we're a top-level vdev, we can
1488		 * safely compare to that instead.
1489		 *
1490		 * If we split this vdev off instead, then we also check the
1491		 * original pool's guid.  We don't want to consider the vdev
1492		 * corrupt if it is partway through a split operation.
1493		 */
1494		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1495		    &guid) != 0 ||
1496		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1497		    &top_guid) != 0 ||
1498		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1499		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1500			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1501			    VDEV_AUX_CORRUPT_DATA);
1502			nvlist_free(label);
1503			return (0);
1504		}
1505
1506		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1507		    &state) != 0) {
1508			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1509			    VDEV_AUX_CORRUPT_DATA);
1510			nvlist_free(label);
1511			return (0);
1512		}
1513
1514		nvlist_free(label);
1515
1516		/*
1517		 * If this is a verbatim import, no need to check the
1518		 * state of the pool.
1519		 */
1520		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1521		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1522		    state != POOL_STATE_ACTIVE)
1523			return (SET_ERROR(EBADF));
1524
1525		/*
1526		 * If we were able to open and validate a vdev that was
1527		 * previously marked permanently unavailable, clear that state
1528		 * now.
1529		 */
1530		if (vd->vdev_not_present)
1531			vd->vdev_not_present = 0;
1532	}
1533
1534	return (0);
1535}
1536
1537/*
1538 * Close a virtual device.
1539 */
1540void
1541vdev_close(vdev_t *vd)
1542{
1543	spa_t *spa = vd->vdev_spa;
1544	vdev_t *pvd = vd->vdev_parent;
1545
1546	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1547
1548	/*
1549	 * If our parent is reopening, then we are as well, unless we are
1550	 * going offline.
1551	 */
1552	if (pvd != NULL && pvd->vdev_reopening)
1553		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1554
1555	vd->vdev_ops->vdev_op_close(vd);
1556
1557	vdev_cache_purge(vd);
1558
1559	if (vd->vdev_ops->vdev_op_leaf)
1560		trim_map_destroy(vd);
1561
1562	/*
1563	 * We record the previous state before we close it, so that if we are
1564	 * doing a reopen(), we don't generate FMA ereports if we notice that
1565	 * it's still faulted.
1566	 */
1567	vd->vdev_prevstate = vd->vdev_state;
1568
1569	if (vd->vdev_offline)
1570		vd->vdev_state = VDEV_STATE_OFFLINE;
1571	else
1572		vd->vdev_state = VDEV_STATE_CLOSED;
1573	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1574}
1575
1576void
1577vdev_hold(vdev_t *vd)
1578{
1579	spa_t *spa = vd->vdev_spa;
1580
1581	ASSERT(spa_is_root(spa));
1582	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1583		return;
1584
1585	for (int c = 0; c < vd->vdev_children; c++)
1586		vdev_hold(vd->vdev_child[c]);
1587
1588	if (vd->vdev_ops->vdev_op_leaf)
1589		vd->vdev_ops->vdev_op_hold(vd);
1590}
1591
1592void
1593vdev_rele(vdev_t *vd)
1594{
1595	spa_t *spa = vd->vdev_spa;
1596
1597	ASSERT(spa_is_root(spa));
1598	for (int c = 0; c < vd->vdev_children; c++)
1599		vdev_rele(vd->vdev_child[c]);
1600
1601	if (vd->vdev_ops->vdev_op_leaf)
1602		vd->vdev_ops->vdev_op_rele(vd);
1603}
1604
1605/*
1606 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1607 * reopen leaf vdevs which had previously been opened as they might deadlock
1608 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1609 * If the leaf has never been opened then open it, as usual.
1610 */
1611void
1612vdev_reopen(vdev_t *vd)
1613{
1614	spa_t *spa = vd->vdev_spa;
1615
1616	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1617
1618	/* set the reopening flag unless we're taking the vdev offline */
1619	vd->vdev_reopening = !vd->vdev_offline;
1620	vdev_close(vd);
1621	(void) vdev_open(vd);
1622
1623	/*
1624	 * Call vdev_validate() here to make sure we have the same device.
1625	 * Otherwise, a device with an invalid label could be successfully
1626	 * opened in response to vdev_reopen().
1627	 */
1628	if (vd->vdev_aux) {
1629		(void) vdev_validate_aux(vd);
1630		if (vdev_readable(vd) && vdev_writeable(vd) &&
1631		    vd->vdev_aux == &spa->spa_l2cache &&
1632		    !l2arc_vdev_present(vd))
1633			l2arc_add_vdev(spa, vd);
1634	} else {
1635		(void) vdev_validate(vd, B_TRUE);
1636	}
1637
1638	/*
1639	 * Reassess parent vdev's health.
1640	 */
1641	vdev_propagate_state(vd);
1642}
1643
1644int
1645vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1646{
1647	int error;
1648
1649	/*
1650	 * Normally, partial opens (e.g. of a mirror) are allowed.
1651	 * For a create, however, we want to fail the request if
1652	 * there are any components we can't open.
1653	 */
1654	error = vdev_open(vd);
1655
1656	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1657		vdev_close(vd);
1658		return (error ? error : ENXIO);
1659	}
1660
1661	/*
1662	 * Recursively load DTLs and initialize all labels.
1663	 */
1664	if ((error = vdev_dtl_load(vd)) != 0 ||
1665	    (error = vdev_label_init(vd, txg, isreplacing ?
1666	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1667		vdev_close(vd);
1668		return (error);
1669	}
1670
1671	return (0);
1672}
1673
1674void
1675vdev_metaslab_set_size(vdev_t *vd)
1676{
1677	/*
1678	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1679	 */
1680	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1681	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1682}
1683
1684/*
1685 * Maximize performance by inflating the configured ashift for top level
1686 * vdevs to be as close to the physical ashift as possible while maintaining
1687 * administrator defined limits and ensuring it doesn't go below the
1688 * logical ashift.
1689 */
1690void
1691vdev_ashift_optimize(vdev_t *vd)
1692{
1693	if (vd == vd->vdev_top) {
1694		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1695			vd->vdev_ashift = MIN(
1696			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1697			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1698		} else {
1699			/*
1700			 * Unusual case where logical ashift > physical ashift
1701			 * so we can't cap the calculated ashift based on max
1702			 * ashift as that would cause failures.
1703			 * We still check if we need to increase it to match
1704			 * the min ashift.
1705			 */
1706			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1707			    vd->vdev_ashift);
1708		}
1709	}
1710}
1711
1712void
1713vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1714{
1715	ASSERT(vd == vd->vdev_top);
1716	ASSERT(!vd->vdev_ishole);
1717	ASSERT(ISP2(flags));
1718	ASSERT(spa_writeable(vd->vdev_spa));
1719
1720	if (flags & VDD_METASLAB)
1721		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1722
1723	if (flags & VDD_DTL)
1724		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1725
1726	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1727}
1728
1729void
1730vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1731{
1732	for (int c = 0; c < vd->vdev_children; c++)
1733		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1734
1735	if (vd->vdev_ops->vdev_op_leaf)
1736		vdev_dirty(vd->vdev_top, flags, vd, txg);
1737}
1738
1739/*
1740 * DTLs.
1741 *
1742 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1743 * the vdev has less than perfect replication.  There are four kinds of DTL:
1744 *
1745 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1746 *
1747 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1748 *
1749 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1750 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1751 *	txgs that was scrubbed.
1752 *
1753 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1754 *	persistent errors or just some device being offline.
1755 *	Unlike the other three, the DTL_OUTAGE map is not generally
1756 *	maintained; it's only computed when needed, typically to
1757 *	determine whether a device can be detached.
1758 *
1759 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1760 * either has the data or it doesn't.
1761 *
1762 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1763 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1764 * if any child is less than fully replicated, then so is its parent.
1765 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1766 * comprising only those txgs which appear in 'maxfaults' or more children;
1767 * those are the txgs we don't have enough replication to read.  For example,
1768 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1769 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1770 * two child DTL_MISSING maps.
1771 *
1772 * It should be clear from the above that to compute the DTLs and outage maps
1773 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1774 * Therefore, that is all we keep on disk.  When loading the pool, or after
1775 * a configuration change, we generate all other DTLs from first principles.
1776 */
1777void
1778vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1779{
1780	range_tree_t *rt = vd->vdev_dtl[t];
1781
1782	ASSERT(t < DTL_TYPES);
1783	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1784	ASSERT(spa_writeable(vd->vdev_spa));
1785
1786	mutex_enter(rt->rt_lock);
1787	if (!range_tree_contains(rt, txg, size))
1788		range_tree_add(rt, txg, size);
1789	mutex_exit(rt->rt_lock);
1790}
1791
1792boolean_t
1793vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1794{
1795	range_tree_t *rt = vd->vdev_dtl[t];
1796	boolean_t dirty = B_FALSE;
1797
1798	ASSERT(t < DTL_TYPES);
1799	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1800
1801	mutex_enter(rt->rt_lock);
1802	if (range_tree_space(rt) != 0)
1803		dirty = range_tree_contains(rt, txg, size);
1804	mutex_exit(rt->rt_lock);
1805
1806	return (dirty);
1807}
1808
1809boolean_t
1810vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1811{
1812	range_tree_t *rt = vd->vdev_dtl[t];
1813	boolean_t empty;
1814
1815	mutex_enter(rt->rt_lock);
1816	empty = (range_tree_space(rt) == 0);
1817	mutex_exit(rt->rt_lock);
1818
1819	return (empty);
1820}
1821
1822/*
1823 * Returns the lowest txg in the DTL range.
1824 */
1825static uint64_t
1826vdev_dtl_min(vdev_t *vd)
1827{
1828	range_seg_t *rs;
1829
1830	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1831	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1832	ASSERT0(vd->vdev_children);
1833
1834	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1835	return (rs->rs_start - 1);
1836}
1837
1838/*
1839 * Returns the highest txg in the DTL.
1840 */
1841static uint64_t
1842vdev_dtl_max(vdev_t *vd)
1843{
1844	range_seg_t *rs;
1845
1846	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1847	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1848	ASSERT0(vd->vdev_children);
1849
1850	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1851	return (rs->rs_end);
1852}
1853
1854/*
1855 * Determine if a resilvering vdev should remove any DTL entries from
1856 * its range. If the vdev was resilvering for the entire duration of the
1857 * scan then it should excise that range from its DTLs. Otherwise, this
1858 * vdev is considered partially resilvered and should leave its DTL
1859 * entries intact. The comment in vdev_dtl_reassess() describes how we
1860 * excise the DTLs.
1861 */
1862static boolean_t
1863vdev_dtl_should_excise(vdev_t *vd)
1864{
1865	spa_t *spa = vd->vdev_spa;
1866	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1867
1868	ASSERT0(scn->scn_phys.scn_errors);
1869	ASSERT0(vd->vdev_children);
1870
1871	if (vd->vdev_resilver_txg == 0 ||
1872	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1873		return (B_TRUE);
1874
1875	/*
1876	 * When a resilver is initiated the scan will assign the scn_max_txg
1877	 * value to the highest txg value that exists in all DTLs. If this
1878	 * device's max DTL is not part of this scan (i.e. it is not in
1879	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1880	 * for excision.
1881	 */
1882	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1883		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1884		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1885		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1886		return (B_TRUE);
1887	}
1888	return (B_FALSE);
1889}
1890
1891/*
1892 * Reassess DTLs after a config change or scrub completion.
1893 */
1894void
1895vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1896{
1897	spa_t *spa = vd->vdev_spa;
1898	avl_tree_t reftree;
1899	int minref;
1900
1901	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1902
1903	for (int c = 0; c < vd->vdev_children; c++)
1904		vdev_dtl_reassess(vd->vdev_child[c], txg,
1905		    scrub_txg, scrub_done);
1906
1907	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1908		return;
1909
1910	if (vd->vdev_ops->vdev_op_leaf) {
1911		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1912
1913		mutex_enter(&vd->vdev_dtl_lock);
1914
1915		/*
1916		 * If we've completed a scan cleanly then determine
1917		 * if this vdev should remove any DTLs. We only want to
1918		 * excise regions on vdevs that were available during
1919		 * the entire duration of this scan.
1920		 */
1921		if (scrub_txg != 0 &&
1922		    (spa->spa_scrub_started ||
1923		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1924		    vdev_dtl_should_excise(vd)) {
1925			/*
1926			 * We completed a scrub up to scrub_txg.  If we
1927			 * did it without rebooting, then the scrub dtl
1928			 * will be valid, so excise the old region and
1929			 * fold in the scrub dtl.  Otherwise, leave the
1930			 * dtl as-is if there was an error.
1931			 *
1932			 * There's little trick here: to excise the beginning
1933			 * of the DTL_MISSING map, we put it into a reference
1934			 * tree and then add a segment with refcnt -1 that
1935			 * covers the range [0, scrub_txg).  This means
1936			 * that each txg in that range has refcnt -1 or 0.
1937			 * We then add DTL_SCRUB with a refcnt of 2, so that
1938			 * entries in the range [0, scrub_txg) will have a
1939			 * positive refcnt -- either 1 or 2.  We then convert
1940			 * the reference tree into the new DTL_MISSING map.
1941			 */
1942			space_reftree_create(&reftree);
1943			space_reftree_add_map(&reftree,
1944			    vd->vdev_dtl[DTL_MISSING], 1);
1945			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1946			space_reftree_add_map(&reftree,
1947			    vd->vdev_dtl[DTL_SCRUB], 2);
1948			space_reftree_generate_map(&reftree,
1949			    vd->vdev_dtl[DTL_MISSING], 1);
1950			space_reftree_destroy(&reftree);
1951		}
1952		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1953		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1954		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1955		if (scrub_done)
1956			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1957		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1958		if (!vdev_readable(vd))
1959			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1960		else
1961			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1962			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1963
1964		/*
1965		 * If the vdev was resilvering and no longer has any
1966		 * DTLs then reset its resilvering flag and dirty
1967		 * the top level so that we persist the change.
1968		 */
1969		if (vd->vdev_resilver_txg != 0 &&
1970		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1971		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1972			vd->vdev_resilver_txg = 0;
1973			vdev_config_dirty(vd->vdev_top);
1974		}
1975
1976		mutex_exit(&vd->vdev_dtl_lock);
1977
1978		if (txg != 0)
1979			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1980		return;
1981	}
1982
1983	mutex_enter(&vd->vdev_dtl_lock);
1984	for (int t = 0; t < DTL_TYPES; t++) {
1985		/* account for child's outage in parent's missing map */
1986		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1987		if (t == DTL_SCRUB)
1988			continue;			/* leaf vdevs only */
1989		if (t == DTL_PARTIAL)
1990			minref = 1;			/* i.e. non-zero */
1991		else if (vd->vdev_nparity != 0)
1992			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1993		else
1994			minref = vd->vdev_children;	/* any kind of mirror */
1995		space_reftree_create(&reftree);
1996		for (int c = 0; c < vd->vdev_children; c++) {
1997			vdev_t *cvd = vd->vdev_child[c];
1998			mutex_enter(&cvd->vdev_dtl_lock);
1999			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2000			mutex_exit(&cvd->vdev_dtl_lock);
2001		}
2002		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2003		space_reftree_destroy(&reftree);
2004	}
2005	mutex_exit(&vd->vdev_dtl_lock);
2006}
2007
2008int
2009vdev_dtl_load(vdev_t *vd)
2010{
2011	spa_t *spa = vd->vdev_spa;
2012	objset_t *mos = spa->spa_meta_objset;
2013	int error = 0;
2014
2015	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2016		ASSERT(!vd->vdev_ishole);
2017
2018		error = space_map_open(&vd->vdev_dtl_sm, mos,
2019		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2020		if (error)
2021			return (error);
2022		ASSERT(vd->vdev_dtl_sm != NULL);
2023
2024		mutex_enter(&vd->vdev_dtl_lock);
2025
2026		/*
2027		 * Now that we've opened the space_map we need to update
2028		 * the in-core DTL.
2029		 */
2030		space_map_update(vd->vdev_dtl_sm);
2031
2032		error = space_map_load(vd->vdev_dtl_sm,
2033		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2034		mutex_exit(&vd->vdev_dtl_lock);
2035
2036		return (error);
2037	}
2038
2039	for (int c = 0; c < vd->vdev_children; c++) {
2040		error = vdev_dtl_load(vd->vdev_child[c]);
2041		if (error != 0)
2042			break;
2043	}
2044
2045	return (error);
2046}
2047
2048void
2049vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2050{
2051	spa_t *spa = vd->vdev_spa;
2052	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2053	objset_t *mos = spa->spa_meta_objset;
2054	range_tree_t *rtsync;
2055	kmutex_t rtlock;
2056	dmu_tx_t *tx;
2057	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2058
2059	ASSERT(!vd->vdev_ishole);
2060	ASSERT(vd->vdev_ops->vdev_op_leaf);
2061
2062	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2063
2064	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2065		mutex_enter(&vd->vdev_dtl_lock);
2066		space_map_free(vd->vdev_dtl_sm, tx);
2067		space_map_close(vd->vdev_dtl_sm);
2068		vd->vdev_dtl_sm = NULL;
2069		mutex_exit(&vd->vdev_dtl_lock);
2070		dmu_tx_commit(tx);
2071		return;
2072	}
2073
2074	if (vd->vdev_dtl_sm == NULL) {
2075		uint64_t new_object;
2076
2077		new_object = space_map_alloc(mos, tx);
2078		VERIFY3U(new_object, !=, 0);
2079
2080		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2081		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2082		ASSERT(vd->vdev_dtl_sm != NULL);
2083	}
2084
2085	bzero(&rtlock, sizeof(rtlock));
2086	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2087
2088	rtsync = range_tree_create(NULL, NULL, &rtlock);
2089
2090	mutex_enter(&rtlock);
2091
2092	mutex_enter(&vd->vdev_dtl_lock);
2093	range_tree_walk(rt, range_tree_add, rtsync);
2094	mutex_exit(&vd->vdev_dtl_lock);
2095
2096	space_map_truncate(vd->vdev_dtl_sm, tx);
2097	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2098	range_tree_vacate(rtsync, NULL, NULL);
2099
2100	range_tree_destroy(rtsync);
2101
2102	mutex_exit(&rtlock);
2103	mutex_destroy(&rtlock);
2104
2105	/*
2106	 * If the object for the space map has changed then dirty
2107	 * the top level so that we update the config.
2108	 */
2109	if (object != space_map_object(vd->vdev_dtl_sm)) {
2110		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2111		    "new object %llu", txg, spa_name(spa), object,
2112		    space_map_object(vd->vdev_dtl_sm));
2113		vdev_config_dirty(vd->vdev_top);
2114	}
2115
2116	dmu_tx_commit(tx);
2117
2118	mutex_enter(&vd->vdev_dtl_lock);
2119	space_map_update(vd->vdev_dtl_sm);
2120	mutex_exit(&vd->vdev_dtl_lock);
2121}
2122
2123/*
2124 * Determine whether the specified vdev can be offlined/detached/removed
2125 * without losing data.
2126 */
2127boolean_t
2128vdev_dtl_required(vdev_t *vd)
2129{
2130	spa_t *spa = vd->vdev_spa;
2131	vdev_t *tvd = vd->vdev_top;
2132	uint8_t cant_read = vd->vdev_cant_read;
2133	boolean_t required;
2134
2135	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2136
2137	if (vd == spa->spa_root_vdev || vd == tvd)
2138		return (B_TRUE);
2139
2140	/*
2141	 * Temporarily mark the device as unreadable, and then determine
2142	 * whether this results in any DTL outages in the top-level vdev.
2143	 * If not, we can safely offline/detach/remove the device.
2144	 */
2145	vd->vdev_cant_read = B_TRUE;
2146	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2147	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2148	vd->vdev_cant_read = cant_read;
2149	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2150
2151	if (!required && zio_injection_enabled)
2152		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2153
2154	return (required);
2155}
2156
2157/*
2158 * Determine if resilver is needed, and if so the txg range.
2159 */
2160boolean_t
2161vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2162{
2163	boolean_t needed = B_FALSE;
2164	uint64_t thismin = UINT64_MAX;
2165	uint64_t thismax = 0;
2166
2167	if (vd->vdev_children == 0) {
2168		mutex_enter(&vd->vdev_dtl_lock);
2169		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2170		    vdev_writeable(vd)) {
2171
2172			thismin = vdev_dtl_min(vd);
2173			thismax = vdev_dtl_max(vd);
2174			needed = B_TRUE;
2175		}
2176		mutex_exit(&vd->vdev_dtl_lock);
2177	} else {
2178		for (int c = 0; c < vd->vdev_children; c++) {
2179			vdev_t *cvd = vd->vdev_child[c];
2180			uint64_t cmin, cmax;
2181
2182			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2183				thismin = MIN(thismin, cmin);
2184				thismax = MAX(thismax, cmax);
2185				needed = B_TRUE;
2186			}
2187		}
2188	}
2189
2190	if (needed && minp) {
2191		*minp = thismin;
2192		*maxp = thismax;
2193	}
2194	return (needed);
2195}
2196
2197void
2198vdev_load(vdev_t *vd)
2199{
2200	/*
2201	 * Recursively load all children.
2202	 */
2203	for (int c = 0; c < vd->vdev_children; c++)
2204		vdev_load(vd->vdev_child[c]);
2205
2206	/*
2207	 * If this is a top-level vdev, initialize its metaslabs.
2208	 */
2209	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2210	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2211	    vdev_metaslab_init(vd, 0) != 0))
2212		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2213		    VDEV_AUX_CORRUPT_DATA);
2214
2215	/*
2216	 * If this is a leaf vdev, load its DTL.
2217	 */
2218	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2219		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2220		    VDEV_AUX_CORRUPT_DATA);
2221}
2222
2223/*
2224 * The special vdev case is used for hot spares and l2cache devices.  Its
2225 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2226 * we make sure that we can open the underlying device, then try to read the
2227 * label, and make sure that the label is sane and that it hasn't been
2228 * repurposed to another pool.
2229 */
2230int
2231vdev_validate_aux(vdev_t *vd)
2232{
2233	nvlist_t *label;
2234	uint64_t guid, version;
2235	uint64_t state;
2236
2237	if (!vdev_readable(vd))
2238		return (0);
2239
2240	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2241		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2242		    VDEV_AUX_CORRUPT_DATA);
2243		return (-1);
2244	}
2245
2246	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2247	    !SPA_VERSION_IS_SUPPORTED(version) ||
2248	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2249	    guid != vd->vdev_guid ||
2250	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2251		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2252		    VDEV_AUX_CORRUPT_DATA);
2253		nvlist_free(label);
2254		return (-1);
2255	}
2256
2257	/*
2258	 * We don't actually check the pool state here.  If it's in fact in
2259	 * use by another pool, we update this fact on the fly when requested.
2260	 */
2261	nvlist_free(label);
2262	return (0);
2263}
2264
2265void
2266vdev_remove(vdev_t *vd, uint64_t txg)
2267{
2268	spa_t *spa = vd->vdev_spa;
2269	objset_t *mos = spa->spa_meta_objset;
2270	dmu_tx_t *tx;
2271
2272	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2273
2274	if (vd->vdev_ms != NULL) {
2275		metaslab_group_t *mg = vd->vdev_mg;
2276
2277		metaslab_group_histogram_verify(mg);
2278		metaslab_class_histogram_verify(mg->mg_class);
2279
2280		for (int m = 0; m < vd->vdev_ms_count; m++) {
2281			metaslab_t *msp = vd->vdev_ms[m];
2282
2283			if (msp == NULL || msp->ms_sm == NULL)
2284				continue;
2285
2286			mutex_enter(&msp->ms_lock);
2287			/*
2288			 * If the metaslab was not loaded when the vdev
2289			 * was removed then the histogram accounting may
2290			 * not be accurate. Update the histogram information
2291			 * here so that we ensure that the metaslab group
2292			 * and metaslab class are up-to-date.
2293			 */
2294			metaslab_group_histogram_remove(mg, msp);
2295
2296			VERIFY0(space_map_allocated(msp->ms_sm));
2297			space_map_free(msp->ms_sm, tx);
2298			space_map_close(msp->ms_sm);
2299			msp->ms_sm = NULL;
2300			mutex_exit(&msp->ms_lock);
2301		}
2302
2303		metaslab_group_histogram_verify(mg);
2304		metaslab_class_histogram_verify(mg->mg_class);
2305		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2306			ASSERT0(mg->mg_histogram[i]);
2307
2308	}
2309
2310	if (vd->vdev_ms_array) {
2311		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2312		vd->vdev_ms_array = 0;
2313	}
2314	dmu_tx_commit(tx);
2315}
2316
2317void
2318vdev_sync_done(vdev_t *vd, uint64_t txg)
2319{
2320	metaslab_t *msp;
2321	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2322
2323	ASSERT(!vd->vdev_ishole);
2324
2325	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2326		metaslab_sync_done(msp, txg);
2327
2328	if (reassess)
2329		metaslab_sync_reassess(vd->vdev_mg);
2330}
2331
2332void
2333vdev_sync(vdev_t *vd, uint64_t txg)
2334{
2335	spa_t *spa = vd->vdev_spa;
2336	vdev_t *lvd;
2337	metaslab_t *msp;
2338	dmu_tx_t *tx;
2339
2340	ASSERT(!vd->vdev_ishole);
2341
2342	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2343		ASSERT(vd == vd->vdev_top);
2344		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2345		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2346		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2347		ASSERT(vd->vdev_ms_array != 0);
2348		vdev_config_dirty(vd);
2349		dmu_tx_commit(tx);
2350	}
2351
2352	/*
2353	 * Remove the metadata associated with this vdev once it's empty.
2354	 */
2355	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2356		vdev_remove(vd, txg);
2357
2358	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2359		metaslab_sync(msp, txg);
2360		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2361	}
2362
2363	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2364		vdev_dtl_sync(lvd, txg);
2365
2366	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2367}
2368
2369uint64_t
2370vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2371{
2372	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2373}
2374
2375/*
2376 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2377 * not be opened, and no I/O is attempted.
2378 */
2379int
2380vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2381{
2382	vdev_t *vd, *tvd;
2383
2384	spa_vdev_state_enter(spa, SCL_NONE);
2385
2386	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2387		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2388
2389	if (!vd->vdev_ops->vdev_op_leaf)
2390		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2391
2392	tvd = vd->vdev_top;
2393
2394	/*
2395	 * We don't directly use the aux state here, but if we do a
2396	 * vdev_reopen(), we need this value to be present to remember why we
2397	 * were faulted.
2398	 */
2399	vd->vdev_label_aux = aux;
2400
2401	/*
2402	 * Faulted state takes precedence over degraded.
2403	 */
2404	vd->vdev_delayed_close = B_FALSE;
2405	vd->vdev_faulted = 1ULL;
2406	vd->vdev_degraded = 0ULL;
2407	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2408
2409	/*
2410	 * If this device has the only valid copy of the data, then
2411	 * back off and simply mark the vdev as degraded instead.
2412	 */
2413	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2414		vd->vdev_degraded = 1ULL;
2415		vd->vdev_faulted = 0ULL;
2416
2417		/*
2418		 * If we reopen the device and it's not dead, only then do we
2419		 * mark it degraded.
2420		 */
2421		vdev_reopen(tvd);
2422
2423		if (vdev_readable(vd))
2424			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2425	}
2426
2427	return (spa_vdev_state_exit(spa, vd, 0));
2428}
2429
2430/*
2431 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2432 * user that something is wrong.  The vdev continues to operate as normal as far
2433 * as I/O is concerned.
2434 */
2435int
2436vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2437{
2438	vdev_t *vd;
2439
2440	spa_vdev_state_enter(spa, SCL_NONE);
2441
2442	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2443		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2444
2445	if (!vd->vdev_ops->vdev_op_leaf)
2446		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2447
2448	/*
2449	 * If the vdev is already faulted, then don't do anything.
2450	 */
2451	if (vd->vdev_faulted || vd->vdev_degraded)
2452		return (spa_vdev_state_exit(spa, NULL, 0));
2453
2454	vd->vdev_degraded = 1ULL;
2455	if (!vdev_is_dead(vd))
2456		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2457		    aux);
2458
2459	return (spa_vdev_state_exit(spa, vd, 0));
2460}
2461
2462/*
2463 * Online the given vdev.
2464 *
2465 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2466 * spare device should be detached when the device finishes resilvering.
2467 * Second, the online should be treated like a 'test' online case, so no FMA
2468 * events are generated if the device fails to open.
2469 */
2470int
2471vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2472{
2473	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2474
2475	spa_vdev_state_enter(spa, SCL_NONE);
2476
2477	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2478		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2479
2480	if (!vd->vdev_ops->vdev_op_leaf)
2481		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2482
2483	tvd = vd->vdev_top;
2484	vd->vdev_offline = B_FALSE;
2485	vd->vdev_tmpoffline = B_FALSE;
2486	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2487	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2488
2489	/* XXX - L2ARC 1.0 does not support expansion */
2490	if (!vd->vdev_aux) {
2491		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2492			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2493	}
2494
2495	vdev_reopen(tvd);
2496	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2497
2498	if (!vd->vdev_aux) {
2499		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2500			pvd->vdev_expanding = B_FALSE;
2501	}
2502
2503	if (newstate)
2504		*newstate = vd->vdev_state;
2505	if ((flags & ZFS_ONLINE_UNSPARE) &&
2506	    !vdev_is_dead(vd) && vd->vdev_parent &&
2507	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2508	    vd->vdev_parent->vdev_child[0] == vd)
2509		vd->vdev_unspare = B_TRUE;
2510
2511	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2512
2513		/* XXX - L2ARC 1.0 does not support expansion */
2514		if (vd->vdev_aux)
2515			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2516		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2517	}
2518	return (spa_vdev_state_exit(spa, vd, 0));
2519}
2520
2521static int
2522vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2523{
2524	vdev_t *vd, *tvd;
2525	int error = 0;
2526	uint64_t generation;
2527	metaslab_group_t *mg;
2528
2529top:
2530	spa_vdev_state_enter(spa, SCL_ALLOC);
2531
2532	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2533		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2534
2535	if (!vd->vdev_ops->vdev_op_leaf)
2536		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2537
2538	tvd = vd->vdev_top;
2539	mg = tvd->vdev_mg;
2540	generation = spa->spa_config_generation + 1;
2541
2542	/*
2543	 * If the device isn't already offline, try to offline it.
2544	 */
2545	if (!vd->vdev_offline) {
2546		/*
2547		 * If this device has the only valid copy of some data,
2548		 * don't allow it to be offlined. Log devices are always
2549		 * expendable.
2550		 */
2551		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2552		    vdev_dtl_required(vd))
2553			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2554
2555		/*
2556		 * If the top-level is a slog and it has had allocations
2557		 * then proceed.  We check that the vdev's metaslab group
2558		 * is not NULL since it's possible that we may have just
2559		 * added this vdev but not yet initialized its metaslabs.
2560		 */
2561		if (tvd->vdev_islog && mg != NULL) {
2562			/*
2563			 * Prevent any future allocations.
2564			 */
2565			metaslab_group_passivate(mg);
2566			(void) spa_vdev_state_exit(spa, vd, 0);
2567
2568			error = spa_offline_log(spa);
2569
2570			spa_vdev_state_enter(spa, SCL_ALLOC);
2571
2572			/*
2573			 * Check to see if the config has changed.
2574			 */
2575			if (error || generation != spa->spa_config_generation) {
2576				metaslab_group_activate(mg);
2577				if (error)
2578					return (spa_vdev_state_exit(spa,
2579					    vd, error));
2580				(void) spa_vdev_state_exit(spa, vd, 0);
2581				goto top;
2582			}
2583			ASSERT0(tvd->vdev_stat.vs_alloc);
2584		}
2585
2586		/*
2587		 * Offline this device and reopen its top-level vdev.
2588		 * If the top-level vdev is a log device then just offline
2589		 * it. Otherwise, if this action results in the top-level
2590		 * vdev becoming unusable, undo it and fail the request.
2591		 */
2592		vd->vdev_offline = B_TRUE;
2593		vdev_reopen(tvd);
2594
2595		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2596		    vdev_is_dead(tvd)) {
2597			vd->vdev_offline = B_FALSE;
2598			vdev_reopen(tvd);
2599			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2600		}
2601
2602		/*
2603		 * Add the device back into the metaslab rotor so that
2604		 * once we online the device it's open for business.
2605		 */
2606		if (tvd->vdev_islog && mg != NULL)
2607			metaslab_group_activate(mg);
2608	}
2609
2610	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2611
2612	return (spa_vdev_state_exit(spa, vd, 0));
2613}
2614
2615int
2616vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2617{
2618	int error;
2619
2620	mutex_enter(&spa->spa_vdev_top_lock);
2621	error = vdev_offline_locked(spa, guid, flags);
2622	mutex_exit(&spa->spa_vdev_top_lock);
2623
2624	return (error);
2625}
2626
2627/*
2628 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2629 * vdev_offline(), we assume the spa config is locked.  We also clear all
2630 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2631 */
2632void
2633vdev_clear(spa_t *spa, vdev_t *vd)
2634{
2635	vdev_t *rvd = spa->spa_root_vdev;
2636
2637	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2638
2639	if (vd == NULL)
2640		vd = rvd;
2641
2642	vd->vdev_stat.vs_read_errors = 0;
2643	vd->vdev_stat.vs_write_errors = 0;
2644	vd->vdev_stat.vs_checksum_errors = 0;
2645
2646	for (int c = 0; c < vd->vdev_children; c++)
2647		vdev_clear(spa, vd->vdev_child[c]);
2648
2649	if (vd == rvd) {
2650		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2651			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2652
2653		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2654			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2655	}
2656
2657	/*
2658	 * If we're in the FAULTED state or have experienced failed I/O, then
2659	 * clear the persistent state and attempt to reopen the device.  We
2660	 * also mark the vdev config dirty, so that the new faulted state is
2661	 * written out to disk.
2662	 */
2663	if (vd->vdev_faulted || vd->vdev_degraded ||
2664	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2665
2666		/*
2667		 * When reopening in reponse to a clear event, it may be due to
2668		 * a fmadm repair request.  In this case, if the device is
2669		 * still broken, we want to still post the ereport again.
2670		 */
2671		vd->vdev_forcefault = B_TRUE;
2672
2673		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2674		vd->vdev_cant_read = B_FALSE;
2675		vd->vdev_cant_write = B_FALSE;
2676
2677		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2678
2679		vd->vdev_forcefault = B_FALSE;
2680
2681		if (vd != rvd && vdev_writeable(vd->vdev_top))
2682			vdev_state_dirty(vd->vdev_top);
2683
2684		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2685			spa_async_request(spa, SPA_ASYNC_RESILVER);
2686
2687		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2688	}
2689
2690	/*
2691	 * When clearing a FMA-diagnosed fault, we always want to
2692	 * unspare the device, as we assume that the original spare was
2693	 * done in response to the FMA fault.
2694	 */
2695	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2696	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2697	    vd->vdev_parent->vdev_child[0] == vd)
2698		vd->vdev_unspare = B_TRUE;
2699}
2700
2701boolean_t
2702vdev_is_dead(vdev_t *vd)
2703{
2704	/*
2705	 * Holes and missing devices are always considered "dead".
2706	 * This simplifies the code since we don't have to check for
2707	 * these types of devices in the various code paths.
2708	 * Instead we rely on the fact that we skip over dead devices
2709	 * before issuing I/O to them.
2710	 */
2711	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2712	    vd->vdev_ops == &vdev_missing_ops);
2713}
2714
2715boolean_t
2716vdev_readable(vdev_t *vd)
2717{
2718	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2719}
2720
2721boolean_t
2722vdev_writeable(vdev_t *vd)
2723{
2724	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2725}
2726
2727boolean_t
2728vdev_allocatable(vdev_t *vd)
2729{
2730	uint64_t state = vd->vdev_state;
2731
2732	/*
2733	 * We currently allow allocations from vdevs which may be in the
2734	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2735	 * fails to reopen then we'll catch it later when we're holding
2736	 * the proper locks.  Note that we have to get the vdev state
2737	 * in a local variable because although it changes atomically,
2738	 * we're asking two separate questions about it.
2739	 */
2740	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2741	    !vd->vdev_cant_write && !vd->vdev_ishole);
2742}
2743
2744boolean_t
2745vdev_accessible(vdev_t *vd, zio_t *zio)
2746{
2747	ASSERT(zio->io_vd == vd);
2748
2749	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2750		return (B_FALSE);
2751
2752	if (zio->io_type == ZIO_TYPE_READ)
2753		return (!vd->vdev_cant_read);
2754
2755	if (zio->io_type == ZIO_TYPE_WRITE)
2756		return (!vd->vdev_cant_write);
2757
2758	return (B_TRUE);
2759}
2760
2761/*
2762 * Get statistics for the given vdev.
2763 */
2764void
2765vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2766{
2767	spa_t *spa = vd->vdev_spa;
2768	vdev_t *rvd = spa->spa_root_vdev;
2769
2770	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2771
2772	mutex_enter(&vd->vdev_stat_lock);
2773	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2774	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2775	vs->vs_state = vd->vdev_state;
2776	vs->vs_rsize = vdev_get_min_asize(vd);
2777	if (vd->vdev_ops->vdev_op_leaf)
2778		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2779	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2780	vs->vs_configured_ashift = vd->vdev_top != NULL
2781	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2782	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2783	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2784	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2785		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2786	}
2787
2788	/*
2789	 * If we're getting stats on the root vdev, aggregate the I/O counts
2790	 * over all top-level vdevs (i.e. the direct children of the root).
2791	 */
2792	if (vd == rvd) {
2793		for (int c = 0; c < rvd->vdev_children; c++) {
2794			vdev_t *cvd = rvd->vdev_child[c];
2795			vdev_stat_t *cvs = &cvd->vdev_stat;
2796
2797			for (int t = 0; t < ZIO_TYPES; t++) {
2798				vs->vs_ops[t] += cvs->vs_ops[t];
2799				vs->vs_bytes[t] += cvs->vs_bytes[t];
2800			}
2801			cvs->vs_scan_removing = cvd->vdev_removing;
2802		}
2803	}
2804	mutex_exit(&vd->vdev_stat_lock);
2805}
2806
2807void
2808vdev_clear_stats(vdev_t *vd)
2809{
2810	mutex_enter(&vd->vdev_stat_lock);
2811	vd->vdev_stat.vs_space = 0;
2812	vd->vdev_stat.vs_dspace = 0;
2813	vd->vdev_stat.vs_alloc = 0;
2814	mutex_exit(&vd->vdev_stat_lock);
2815}
2816
2817void
2818vdev_scan_stat_init(vdev_t *vd)
2819{
2820	vdev_stat_t *vs = &vd->vdev_stat;
2821
2822	for (int c = 0; c < vd->vdev_children; c++)
2823		vdev_scan_stat_init(vd->vdev_child[c]);
2824
2825	mutex_enter(&vd->vdev_stat_lock);
2826	vs->vs_scan_processed = 0;
2827	mutex_exit(&vd->vdev_stat_lock);
2828}
2829
2830void
2831vdev_stat_update(zio_t *zio, uint64_t psize)
2832{
2833	spa_t *spa = zio->io_spa;
2834	vdev_t *rvd = spa->spa_root_vdev;
2835	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2836	vdev_t *pvd;
2837	uint64_t txg = zio->io_txg;
2838	vdev_stat_t *vs = &vd->vdev_stat;
2839	zio_type_t type = zio->io_type;
2840	int flags = zio->io_flags;
2841
2842	/*
2843	 * If this i/o is a gang leader, it didn't do any actual work.
2844	 */
2845	if (zio->io_gang_tree)
2846		return;
2847
2848	if (zio->io_error == 0) {
2849		/*
2850		 * If this is a root i/o, don't count it -- we've already
2851		 * counted the top-level vdevs, and vdev_get_stats() will
2852		 * aggregate them when asked.  This reduces contention on
2853		 * the root vdev_stat_lock and implicitly handles blocks
2854		 * that compress away to holes, for which there is no i/o.
2855		 * (Holes never create vdev children, so all the counters
2856		 * remain zero, which is what we want.)
2857		 *
2858		 * Note: this only applies to successful i/o (io_error == 0)
2859		 * because unlike i/o counts, errors are not additive.
2860		 * When reading a ditto block, for example, failure of
2861		 * one top-level vdev does not imply a root-level error.
2862		 */
2863		if (vd == rvd)
2864			return;
2865
2866		ASSERT(vd == zio->io_vd);
2867
2868		if (flags & ZIO_FLAG_IO_BYPASS)
2869			return;
2870
2871		mutex_enter(&vd->vdev_stat_lock);
2872
2873		if (flags & ZIO_FLAG_IO_REPAIR) {
2874			if (flags & ZIO_FLAG_SCAN_THREAD) {
2875				dsl_scan_phys_t *scn_phys =
2876				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2877				uint64_t *processed = &scn_phys->scn_processed;
2878
2879				/* XXX cleanup? */
2880				if (vd->vdev_ops->vdev_op_leaf)
2881					atomic_add_64(processed, psize);
2882				vs->vs_scan_processed += psize;
2883			}
2884
2885			if (flags & ZIO_FLAG_SELF_HEAL)
2886				vs->vs_self_healed += psize;
2887		}
2888
2889		vs->vs_ops[type]++;
2890		vs->vs_bytes[type] += psize;
2891
2892		mutex_exit(&vd->vdev_stat_lock);
2893		return;
2894	}
2895
2896	if (flags & ZIO_FLAG_SPECULATIVE)
2897		return;
2898
2899	/*
2900	 * If this is an I/O error that is going to be retried, then ignore the
2901	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2902	 * hard errors, when in reality they can happen for any number of
2903	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2904	 */
2905	if (zio->io_error == EIO &&
2906	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2907		return;
2908
2909	/*
2910	 * Intent logs writes won't propagate their error to the root
2911	 * I/O so don't mark these types of failures as pool-level
2912	 * errors.
2913	 */
2914	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2915		return;
2916
2917	mutex_enter(&vd->vdev_stat_lock);
2918	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2919		if (zio->io_error == ECKSUM)
2920			vs->vs_checksum_errors++;
2921		else
2922			vs->vs_read_errors++;
2923	}
2924	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2925		vs->vs_write_errors++;
2926	mutex_exit(&vd->vdev_stat_lock);
2927
2928	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2929	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2930	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2931	    spa->spa_claiming)) {
2932		/*
2933		 * This is either a normal write (not a repair), or it's
2934		 * a repair induced by the scrub thread, or it's a repair
2935		 * made by zil_claim() during spa_load() in the first txg.
2936		 * In the normal case, we commit the DTL change in the same
2937		 * txg as the block was born.  In the scrub-induced repair
2938		 * case, we know that scrubs run in first-pass syncing context,
2939		 * so we commit the DTL change in spa_syncing_txg(spa).
2940		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2941		 *
2942		 * We currently do not make DTL entries for failed spontaneous
2943		 * self-healing writes triggered by normal (non-scrubbing)
2944		 * reads, because we have no transactional context in which to
2945		 * do so -- and it's not clear that it'd be desirable anyway.
2946		 */
2947		if (vd->vdev_ops->vdev_op_leaf) {
2948			uint64_t commit_txg = txg;
2949			if (flags & ZIO_FLAG_SCAN_THREAD) {
2950				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2951				ASSERT(spa_sync_pass(spa) == 1);
2952				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2953				commit_txg = spa_syncing_txg(spa);
2954			} else if (spa->spa_claiming) {
2955				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2956				commit_txg = spa_first_txg(spa);
2957			}
2958			ASSERT(commit_txg >= spa_syncing_txg(spa));
2959			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2960				return;
2961			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2962				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2963			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2964		}
2965		if (vd != rvd)
2966			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2967	}
2968}
2969
2970/*
2971 * Update the in-core space usage stats for this vdev, its metaslab class,
2972 * and the root vdev.
2973 */
2974void
2975vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2976    int64_t space_delta)
2977{
2978	int64_t dspace_delta = space_delta;
2979	spa_t *spa = vd->vdev_spa;
2980	vdev_t *rvd = spa->spa_root_vdev;
2981	metaslab_group_t *mg = vd->vdev_mg;
2982	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2983
2984	ASSERT(vd == vd->vdev_top);
2985
2986	/*
2987	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2988	 * factor.  We must calculate this here and not at the root vdev
2989	 * because the root vdev's psize-to-asize is simply the max of its
2990	 * childrens', thus not accurate enough for us.
2991	 */
2992	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2993	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2994	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2995	    vd->vdev_deflate_ratio;
2996
2997	mutex_enter(&vd->vdev_stat_lock);
2998	vd->vdev_stat.vs_alloc += alloc_delta;
2999	vd->vdev_stat.vs_space += space_delta;
3000	vd->vdev_stat.vs_dspace += dspace_delta;
3001	mutex_exit(&vd->vdev_stat_lock);
3002
3003	if (mc == spa_normal_class(spa)) {
3004		mutex_enter(&rvd->vdev_stat_lock);
3005		rvd->vdev_stat.vs_alloc += alloc_delta;
3006		rvd->vdev_stat.vs_space += space_delta;
3007		rvd->vdev_stat.vs_dspace += dspace_delta;
3008		mutex_exit(&rvd->vdev_stat_lock);
3009	}
3010
3011	if (mc != NULL) {
3012		ASSERT(rvd == vd->vdev_parent);
3013		ASSERT(vd->vdev_ms_count != 0);
3014
3015		metaslab_class_space_update(mc,
3016		    alloc_delta, defer_delta, space_delta, dspace_delta);
3017	}
3018}
3019
3020/*
3021 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3022 * so that it will be written out next time the vdev configuration is synced.
3023 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3024 */
3025void
3026vdev_config_dirty(vdev_t *vd)
3027{
3028	spa_t *spa = vd->vdev_spa;
3029	vdev_t *rvd = spa->spa_root_vdev;
3030	int c;
3031
3032	ASSERT(spa_writeable(spa));
3033
3034	/*
3035	 * If this is an aux vdev (as with l2cache and spare devices), then we
3036	 * update the vdev config manually and set the sync flag.
3037	 */
3038	if (vd->vdev_aux != NULL) {
3039		spa_aux_vdev_t *sav = vd->vdev_aux;
3040		nvlist_t **aux;
3041		uint_t naux;
3042
3043		for (c = 0; c < sav->sav_count; c++) {
3044			if (sav->sav_vdevs[c] == vd)
3045				break;
3046		}
3047
3048		if (c == sav->sav_count) {
3049			/*
3050			 * We're being removed.  There's nothing more to do.
3051			 */
3052			ASSERT(sav->sav_sync == B_TRUE);
3053			return;
3054		}
3055
3056		sav->sav_sync = B_TRUE;
3057
3058		if (nvlist_lookup_nvlist_array(sav->sav_config,
3059		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3060			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3061			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3062		}
3063
3064		ASSERT(c < naux);
3065
3066		/*
3067		 * Setting the nvlist in the middle if the array is a little
3068		 * sketchy, but it will work.
3069		 */
3070		nvlist_free(aux[c]);
3071		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3072
3073		return;
3074	}
3075
3076	/*
3077	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3078	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3079	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3080	 * so this is sufficient to ensure mutual exclusion.
3081	 */
3082	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3083	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3084	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3085
3086	if (vd == rvd) {
3087		for (c = 0; c < rvd->vdev_children; c++)
3088			vdev_config_dirty(rvd->vdev_child[c]);
3089	} else {
3090		ASSERT(vd == vd->vdev_top);
3091
3092		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3093		    !vd->vdev_ishole)
3094			list_insert_head(&spa->spa_config_dirty_list, vd);
3095	}
3096}
3097
3098void
3099vdev_config_clean(vdev_t *vd)
3100{
3101	spa_t *spa = vd->vdev_spa;
3102
3103	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3104	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3105	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3106
3107	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3108	list_remove(&spa->spa_config_dirty_list, vd);
3109}
3110
3111/*
3112 * Mark a top-level vdev's state as dirty, so that the next pass of
3113 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3114 * the state changes from larger config changes because they require
3115 * much less locking, and are often needed for administrative actions.
3116 */
3117void
3118vdev_state_dirty(vdev_t *vd)
3119{
3120	spa_t *spa = vd->vdev_spa;
3121
3122	ASSERT(spa_writeable(spa));
3123	ASSERT(vd == vd->vdev_top);
3124
3125	/*
3126	 * The state list is protected by the SCL_STATE lock.  The caller
3127	 * must either hold SCL_STATE as writer, or must be the sync thread
3128	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3129	 * so this is sufficient to ensure mutual exclusion.
3130	 */
3131	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3132	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3133	    spa_config_held(spa, SCL_STATE, RW_READER)));
3134
3135	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3136		list_insert_head(&spa->spa_state_dirty_list, vd);
3137}
3138
3139void
3140vdev_state_clean(vdev_t *vd)
3141{
3142	spa_t *spa = vd->vdev_spa;
3143
3144	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3145	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3146	    spa_config_held(spa, SCL_STATE, RW_READER)));
3147
3148	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3149	list_remove(&spa->spa_state_dirty_list, vd);
3150}
3151
3152/*
3153 * Propagate vdev state up from children to parent.
3154 */
3155void
3156vdev_propagate_state(vdev_t *vd)
3157{
3158	spa_t *spa = vd->vdev_spa;
3159	vdev_t *rvd = spa->spa_root_vdev;
3160	int degraded = 0, faulted = 0;
3161	int corrupted = 0;
3162	vdev_t *child;
3163
3164	if (vd->vdev_children > 0) {
3165		for (int c = 0; c < vd->vdev_children; c++) {
3166			child = vd->vdev_child[c];
3167
3168			/*
3169			 * Don't factor holes into the decision.
3170			 */
3171			if (child->vdev_ishole)
3172				continue;
3173
3174			if (!vdev_readable(child) ||
3175			    (!vdev_writeable(child) && spa_writeable(spa))) {
3176				/*
3177				 * Root special: if there is a top-level log
3178				 * device, treat the root vdev as if it were
3179				 * degraded.
3180				 */
3181				if (child->vdev_islog && vd == rvd)
3182					degraded++;
3183				else
3184					faulted++;
3185			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3186				degraded++;
3187			}
3188
3189			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3190				corrupted++;
3191		}
3192
3193		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3194
3195		/*
3196		 * Root special: if there is a top-level vdev that cannot be
3197		 * opened due to corrupted metadata, then propagate the root
3198		 * vdev's aux state as 'corrupt' rather than 'insufficient
3199		 * replicas'.
3200		 */
3201		if (corrupted && vd == rvd &&
3202		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3203			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3204			    VDEV_AUX_CORRUPT_DATA);
3205	}
3206
3207	if (vd->vdev_parent)
3208		vdev_propagate_state(vd->vdev_parent);
3209}
3210
3211/*
3212 * Set a vdev's state.  If this is during an open, we don't update the parent
3213 * state, because we're in the process of opening children depth-first.
3214 * Otherwise, we propagate the change to the parent.
3215 *
3216 * If this routine places a device in a faulted state, an appropriate ereport is
3217 * generated.
3218 */
3219void
3220vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3221{
3222	uint64_t save_state;
3223	spa_t *spa = vd->vdev_spa;
3224
3225	if (state == vd->vdev_state) {
3226		vd->vdev_stat.vs_aux = aux;
3227		return;
3228	}
3229
3230	save_state = vd->vdev_state;
3231
3232	vd->vdev_state = state;
3233	vd->vdev_stat.vs_aux = aux;
3234
3235	/*
3236	 * If we are setting the vdev state to anything but an open state, then
3237	 * always close the underlying device unless the device has requested
3238	 * a delayed close (i.e. we're about to remove or fault the device).
3239	 * Otherwise, we keep accessible but invalid devices open forever.
3240	 * We don't call vdev_close() itself, because that implies some extra
3241	 * checks (offline, etc) that we don't want here.  This is limited to
3242	 * leaf devices, because otherwise closing the device will affect other
3243	 * children.
3244	 */
3245	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3246	    vd->vdev_ops->vdev_op_leaf)
3247		vd->vdev_ops->vdev_op_close(vd);
3248
3249	/*
3250	 * If we have brought this vdev back into service, we need
3251	 * to notify fmd so that it can gracefully repair any outstanding
3252	 * cases due to a missing device.  We do this in all cases, even those
3253	 * that probably don't correlate to a repaired fault.  This is sure to
3254	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3255	 * this is a transient state it's OK, as the retire agent will
3256	 * double-check the state of the vdev before repairing it.
3257	 */
3258	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3259	    vd->vdev_prevstate != state)
3260		zfs_post_state_change(spa, vd);
3261
3262	if (vd->vdev_removed &&
3263	    state == VDEV_STATE_CANT_OPEN &&
3264	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3265		/*
3266		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3267		 * device was previously marked removed and someone attempted to
3268		 * reopen it.  If this failed due to a nonexistent device, then
3269		 * keep the device in the REMOVED state.  We also let this be if
3270		 * it is one of our special test online cases, which is only
3271		 * attempting to online the device and shouldn't generate an FMA
3272		 * fault.
3273		 */
3274		vd->vdev_state = VDEV_STATE_REMOVED;
3275		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3276	} else if (state == VDEV_STATE_REMOVED) {
3277		vd->vdev_removed = B_TRUE;
3278	} else if (state == VDEV_STATE_CANT_OPEN) {
3279		/*
3280		 * If we fail to open a vdev during an import or recovery, we
3281		 * mark it as "not available", which signifies that it was
3282		 * never there to begin with.  Failure to open such a device
3283		 * is not considered an error.
3284		 */
3285		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3286		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3287		    vd->vdev_ops->vdev_op_leaf)
3288			vd->vdev_not_present = 1;
3289
3290		/*
3291		 * Post the appropriate ereport.  If the 'prevstate' field is
3292		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3293		 * that this is part of a vdev_reopen().  In this case, we don't
3294		 * want to post the ereport if the device was already in the
3295		 * CANT_OPEN state beforehand.
3296		 *
3297		 * If the 'checkremove' flag is set, then this is an attempt to
3298		 * online the device in response to an insertion event.  If we
3299		 * hit this case, then we have detected an insertion event for a
3300		 * faulted or offline device that wasn't in the removed state.
3301		 * In this scenario, we don't post an ereport because we are
3302		 * about to replace the device, or attempt an online with
3303		 * vdev_forcefault, which will generate the fault for us.
3304		 */
3305		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3306		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3307		    vd != spa->spa_root_vdev) {
3308			const char *class;
3309
3310			switch (aux) {
3311			case VDEV_AUX_OPEN_FAILED:
3312				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3313				break;
3314			case VDEV_AUX_CORRUPT_DATA:
3315				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3316				break;
3317			case VDEV_AUX_NO_REPLICAS:
3318				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3319				break;
3320			case VDEV_AUX_BAD_GUID_SUM:
3321				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3322				break;
3323			case VDEV_AUX_TOO_SMALL:
3324				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3325				break;
3326			case VDEV_AUX_BAD_LABEL:
3327				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3328				break;
3329			default:
3330				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3331			}
3332
3333			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3334		}
3335
3336		/* Erase any notion of persistent removed state */
3337		vd->vdev_removed = B_FALSE;
3338	} else {
3339		vd->vdev_removed = B_FALSE;
3340	}
3341
3342	if (!isopen && vd->vdev_parent)
3343		vdev_propagate_state(vd->vdev_parent);
3344}
3345
3346/*
3347 * Check the vdev configuration to ensure that it's capable of supporting
3348 * a root pool.
3349 *
3350 * On Solaris, we do not support RAID-Z or partial configuration.  In
3351 * addition, only a single top-level vdev is allowed and none of the
3352 * leaves can be wholedisks.
3353 *
3354 * For FreeBSD, we can boot from any configuration. There is a
3355 * limitation that the boot filesystem must be either uncompressed or
3356 * compresses with lzjb compression but I'm not sure how to enforce
3357 * that here.
3358 */
3359boolean_t
3360vdev_is_bootable(vdev_t *vd)
3361{
3362#ifdef sun
3363	if (!vd->vdev_ops->vdev_op_leaf) {
3364		char *vdev_type = vd->vdev_ops->vdev_op_type;
3365
3366		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3367		    vd->vdev_children > 1) {
3368			return (B_FALSE);
3369		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3370		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3371			return (B_FALSE);
3372		}
3373	} else if (vd->vdev_wholedisk == 1) {
3374		return (B_FALSE);
3375	}
3376
3377	for (int c = 0; c < vd->vdev_children; c++) {
3378		if (!vdev_is_bootable(vd->vdev_child[c]))
3379			return (B_FALSE);
3380	}
3381#endif	/* sun */
3382	return (B_TRUE);
3383}
3384
3385/*
3386 * Load the state from the original vdev tree (ovd) which
3387 * we've retrieved from the MOS config object. If the original
3388 * vdev was offline or faulted then we transfer that state to the
3389 * device in the current vdev tree (nvd).
3390 */
3391void
3392vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3393{
3394	spa_t *spa = nvd->vdev_spa;
3395
3396	ASSERT(nvd->vdev_top->vdev_islog);
3397	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3398	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3399
3400	for (int c = 0; c < nvd->vdev_children; c++)
3401		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3402
3403	if (nvd->vdev_ops->vdev_op_leaf) {
3404		/*
3405		 * Restore the persistent vdev state
3406		 */
3407		nvd->vdev_offline = ovd->vdev_offline;
3408		nvd->vdev_faulted = ovd->vdev_faulted;
3409		nvd->vdev_degraded = ovd->vdev_degraded;
3410		nvd->vdev_removed = ovd->vdev_removed;
3411	}
3412}
3413
3414/*
3415 * Determine if a log device has valid content.  If the vdev was
3416 * removed or faulted in the MOS config then we know that
3417 * the content on the log device has already been written to the pool.
3418 */
3419boolean_t
3420vdev_log_state_valid(vdev_t *vd)
3421{
3422	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3423	    !vd->vdev_removed)
3424		return (B_TRUE);
3425
3426	for (int c = 0; c < vd->vdev_children; c++)
3427		if (vdev_log_state_valid(vd->vdev_child[c]))
3428			return (B_TRUE);
3429
3430	return (B_FALSE);
3431}
3432
3433/*
3434 * Expand a vdev if possible.
3435 */
3436void
3437vdev_expand(vdev_t *vd, uint64_t txg)
3438{
3439	ASSERT(vd->vdev_top == vd);
3440	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3441
3442	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3443		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3444		vdev_config_dirty(vd);
3445	}
3446}
3447
3448/*
3449 * Split a vdev.
3450 */
3451void
3452vdev_split(vdev_t *vd)
3453{
3454	vdev_t *cvd, *pvd = vd->vdev_parent;
3455
3456	vdev_remove_child(pvd, vd);
3457	vdev_compact_children(pvd);
3458
3459	cvd = pvd->vdev_child[0];
3460	if (pvd->vdev_children == 1) {
3461		vdev_remove_parent(cvd);
3462		cvd->vdev_splitting = B_TRUE;
3463	}
3464	vdev_propagate_state(cvd);
3465}
3466
3467void
3468vdev_deadman(vdev_t *vd)
3469{
3470	for (int c = 0; c < vd->vdev_children; c++) {
3471		vdev_t *cvd = vd->vdev_child[c];
3472
3473		vdev_deadman(cvd);
3474	}
3475
3476	if (vd->vdev_ops->vdev_op_leaf) {
3477		vdev_queue_t *vq = &vd->vdev_queue;
3478
3479		mutex_enter(&vq->vq_lock);
3480		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3481			spa_t *spa = vd->vdev_spa;
3482			zio_t *fio;
3483			uint64_t delta;
3484
3485			/*
3486			 * Look at the head of all the pending queues,
3487			 * if any I/O has been outstanding for longer than
3488			 * the spa_deadman_synctime we panic the system.
3489			 */
3490			fio = avl_first(&vq->vq_active_tree);
3491			delta = gethrtime() - fio->io_timestamp;
3492			if (delta > spa_deadman_synctime(spa)) {
3493				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3494				    "delta %lluns, last io %lluns",
3495				    fio->io_timestamp, delta,
3496				    vq->vq_io_complete_ts);
3497				fm_panic("I/O to pool '%s' appears to be "
3498				    "hung on vdev guid %llu at '%s'.",
3499				    spa_name(spa),
3500				    (long long unsigned int) vd->vdev_guid,
3501				    vd->vdev_path);
3502			}
3503		}
3504		mutex_exit(&vq->vq_lock);
3505	}
3506}
3507