vdev.c revision 276081
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/*
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *          zfs_min_auto_ashift = 9 (512 bytes)
65 *
66 * On pool creation or the addition of a new top-level vdev, ZFS will
67 * increase the ashift of the top-level vdev to 2048 as limited by
68 * zfs_max_auto_ashift.
69 *
70 * Example: one or more 512B emulation child vdevs
71 *          child->vdev_ashift = 9 (512 bytes)
72 *          child->vdev_physical_ashift = 12 (4096 bytes)
73 *          zfs_max_auto_ashift = 13 (8192 bytes)
74 *          zfs_min_auto_ashift = 9 (512 bytes)
75 *
76 * On pool creation or the addition of a new top-level vdev, ZFS will
77 * increase the ashift of the top-level vdev to 4096 to match the
78 * max vdev_physical_ashift.
79 *
80 * Example: one or more 512B emulation child vdevs
81 *          child->vdev_ashift = 9 (512 bytes)
82 *          child->vdev_physical_ashift = 9 (512 bytes)
83 *          zfs_max_auto_ashift = 13 (8192 bytes)
84 *          zfs_min_auto_ashift = 12 (4096 bytes)
85 *
86 * On pool creation or the addition of a new top-level vdev, ZFS will
87 * increase the ashift of the top-level vdev to 4096 to match the
88 * zfs_min_auto_ashift.
89 */
90static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93static int
94sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95{
96	uint64_t val;
97	int err;
98
99	val = zfs_max_auto_ashift;
100	err = sysctl_handle_64(oidp, &val, 0, req);
101	if (err != 0 || req->newptr == NULL)
102		return (err);
103
104	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105		return (EINVAL);
106
107	zfs_max_auto_ashift = val;
108
109	return (0);
110}
111SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113    sysctl_vfs_zfs_max_auto_ashift, "QU",
114    "Max ashift used when optimising for logical -> physical sectors size on "
115    "new top-level vdevs.");
116
117static int
118sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119{
120	uint64_t val;
121	int err;
122
123	val = zfs_min_auto_ashift;
124	err = sysctl_handle_64(oidp, &val, 0, req);
125	if (err != 0 || req->newptr == NULL)
126		return (err);
127
128	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129		return (EINVAL);
130
131	zfs_min_auto_ashift = val;
132
133	return (0);
134}
135SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137    sysctl_vfs_zfs_min_auto_ashift, "QU",
138    "Min ashift used when creating new top-level vdevs.");
139
140static vdev_ops_t *vdev_ops_table[] = {
141	&vdev_root_ops,
142	&vdev_raidz_ops,
143	&vdev_mirror_ops,
144	&vdev_replacing_ops,
145	&vdev_spare_ops,
146#ifdef _KERNEL
147	&vdev_geom_ops,
148#else
149	&vdev_disk_ops,
150#endif
151	&vdev_file_ops,
152	&vdev_missing_ops,
153	&vdev_hole_ops,
154	NULL
155};
156
157
158/*
159 * When a vdev is added, it will be divided into approximately (but no
160 * more than) this number of metaslabs.
161 */
162int metaslabs_per_vdev = 200;
163SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, metaslabs_per_vdev, CTLFLAG_RDTUN,
164    &metaslabs_per_vdev, 0,
165    "When a vdev is added, how many metaslabs the vdev should be divided into");
166
167/*
168 * Given a vdev type, return the appropriate ops vector.
169 */
170static vdev_ops_t *
171vdev_getops(const char *type)
172{
173	vdev_ops_t *ops, **opspp;
174
175	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
176		if (strcmp(ops->vdev_op_type, type) == 0)
177			break;
178
179	return (ops);
180}
181
182/*
183 * Default asize function: return the MAX of psize with the asize of
184 * all children.  This is what's used by anything other than RAID-Z.
185 */
186uint64_t
187vdev_default_asize(vdev_t *vd, uint64_t psize)
188{
189	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
190	uint64_t csize;
191
192	for (int c = 0; c < vd->vdev_children; c++) {
193		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
194		asize = MAX(asize, csize);
195	}
196
197	return (asize);
198}
199
200/*
201 * Get the minimum allocatable size. We define the allocatable size as
202 * the vdev's asize rounded to the nearest metaslab. This allows us to
203 * replace or attach devices which don't have the same physical size but
204 * can still satisfy the same number of allocations.
205 */
206uint64_t
207vdev_get_min_asize(vdev_t *vd)
208{
209	vdev_t *pvd = vd->vdev_parent;
210
211	/*
212	 * If our parent is NULL (inactive spare or cache) or is the root,
213	 * just return our own asize.
214	 */
215	if (pvd == NULL)
216		return (vd->vdev_asize);
217
218	/*
219	 * The top-level vdev just returns the allocatable size rounded
220	 * to the nearest metaslab.
221	 */
222	if (vd == vd->vdev_top)
223		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
224
225	/*
226	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
227	 * so each child must provide at least 1/Nth of its asize.
228	 */
229	if (pvd->vdev_ops == &vdev_raidz_ops)
230		return (pvd->vdev_min_asize / pvd->vdev_children);
231
232	return (pvd->vdev_min_asize);
233}
234
235void
236vdev_set_min_asize(vdev_t *vd)
237{
238	vd->vdev_min_asize = vdev_get_min_asize(vd);
239
240	for (int c = 0; c < vd->vdev_children; c++)
241		vdev_set_min_asize(vd->vdev_child[c]);
242}
243
244vdev_t *
245vdev_lookup_top(spa_t *spa, uint64_t vdev)
246{
247	vdev_t *rvd = spa->spa_root_vdev;
248
249	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
250
251	if (vdev < rvd->vdev_children) {
252		ASSERT(rvd->vdev_child[vdev] != NULL);
253		return (rvd->vdev_child[vdev]);
254	}
255
256	return (NULL);
257}
258
259vdev_t *
260vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
261{
262	vdev_t *mvd;
263
264	if (vd->vdev_guid == guid)
265		return (vd);
266
267	for (int c = 0; c < vd->vdev_children; c++)
268		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
269		    NULL)
270			return (mvd);
271
272	return (NULL);
273}
274
275void
276vdev_add_child(vdev_t *pvd, vdev_t *cvd)
277{
278	size_t oldsize, newsize;
279	uint64_t id = cvd->vdev_id;
280	vdev_t **newchild;
281
282	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
283	ASSERT(cvd->vdev_parent == NULL);
284
285	cvd->vdev_parent = pvd;
286
287	if (pvd == NULL)
288		return;
289
290	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
291
292	oldsize = pvd->vdev_children * sizeof (vdev_t *);
293	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
294	newsize = pvd->vdev_children * sizeof (vdev_t *);
295
296	newchild = kmem_zalloc(newsize, KM_SLEEP);
297	if (pvd->vdev_child != NULL) {
298		bcopy(pvd->vdev_child, newchild, oldsize);
299		kmem_free(pvd->vdev_child, oldsize);
300	}
301
302	pvd->vdev_child = newchild;
303	pvd->vdev_child[id] = cvd;
304
305	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
306	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
307
308	/*
309	 * Walk up all ancestors to update guid sum.
310	 */
311	for (; pvd != NULL; pvd = pvd->vdev_parent)
312		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
313}
314
315void
316vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
317{
318	int c;
319	uint_t id = cvd->vdev_id;
320
321	ASSERT(cvd->vdev_parent == pvd);
322
323	if (pvd == NULL)
324		return;
325
326	ASSERT(id < pvd->vdev_children);
327	ASSERT(pvd->vdev_child[id] == cvd);
328
329	pvd->vdev_child[id] = NULL;
330	cvd->vdev_parent = NULL;
331
332	for (c = 0; c < pvd->vdev_children; c++)
333		if (pvd->vdev_child[c])
334			break;
335
336	if (c == pvd->vdev_children) {
337		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
338		pvd->vdev_child = NULL;
339		pvd->vdev_children = 0;
340	}
341
342	/*
343	 * Walk up all ancestors to update guid sum.
344	 */
345	for (; pvd != NULL; pvd = pvd->vdev_parent)
346		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
347}
348
349/*
350 * Remove any holes in the child array.
351 */
352void
353vdev_compact_children(vdev_t *pvd)
354{
355	vdev_t **newchild, *cvd;
356	int oldc = pvd->vdev_children;
357	int newc;
358
359	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
360
361	for (int c = newc = 0; c < oldc; c++)
362		if (pvd->vdev_child[c])
363			newc++;
364
365	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
366
367	for (int c = newc = 0; c < oldc; c++) {
368		if ((cvd = pvd->vdev_child[c]) != NULL) {
369			newchild[newc] = cvd;
370			cvd->vdev_id = newc++;
371		}
372	}
373
374	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
375	pvd->vdev_child = newchild;
376	pvd->vdev_children = newc;
377}
378
379/*
380 * Allocate and minimally initialize a vdev_t.
381 */
382vdev_t *
383vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
384{
385	vdev_t *vd;
386
387	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
388
389	if (spa->spa_root_vdev == NULL) {
390		ASSERT(ops == &vdev_root_ops);
391		spa->spa_root_vdev = vd;
392		spa->spa_load_guid = spa_generate_guid(NULL);
393	}
394
395	if (guid == 0 && ops != &vdev_hole_ops) {
396		if (spa->spa_root_vdev == vd) {
397			/*
398			 * The root vdev's guid will also be the pool guid,
399			 * which must be unique among all pools.
400			 */
401			guid = spa_generate_guid(NULL);
402		} else {
403			/*
404			 * Any other vdev's guid must be unique within the pool.
405			 */
406			guid = spa_generate_guid(spa);
407		}
408		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
409	}
410
411	vd->vdev_spa = spa;
412	vd->vdev_id = id;
413	vd->vdev_guid = guid;
414	vd->vdev_guid_sum = guid;
415	vd->vdev_ops = ops;
416	vd->vdev_state = VDEV_STATE_CLOSED;
417	vd->vdev_ishole = (ops == &vdev_hole_ops);
418
419	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
420	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
421	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
422	for (int t = 0; t < DTL_TYPES; t++) {
423		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
424		    &vd->vdev_dtl_lock);
425	}
426	txg_list_create(&vd->vdev_ms_list,
427	    offsetof(struct metaslab, ms_txg_node));
428	txg_list_create(&vd->vdev_dtl_list,
429	    offsetof(struct vdev, vdev_dtl_node));
430	vd->vdev_stat.vs_timestamp = gethrtime();
431	vdev_queue_init(vd);
432	vdev_cache_init(vd);
433
434	return (vd);
435}
436
437/*
438 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
439 * creating a new vdev or loading an existing one - the behavior is slightly
440 * different for each case.
441 */
442int
443vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
444    int alloctype)
445{
446	vdev_ops_t *ops;
447	char *type;
448	uint64_t guid = 0, islog, nparity;
449	vdev_t *vd;
450
451	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
452
453	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
454		return (SET_ERROR(EINVAL));
455
456	if ((ops = vdev_getops(type)) == NULL)
457		return (SET_ERROR(EINVAL));
458
459	/*
460	 * If this is a load, get the vdev guid from the nvlist.
461	 * Otherwise, vdev_alloc_common() will generate one for us.
462	 */
463	if (alloctype == VDEV_ALLOC_LOAD) {
464		uint64_t label_id;
465
466		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
467		    label_id != id)
468			return (SET_ERROR(EINVAL));
469
470		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471			return (SET_ERROR(EINVAL));
472	} else if (alloctype == VDEV_ALLOC_SPARE) {
473		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
474			return (SET_ERROR(EINVAL));
475	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
476		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
477			return (SET_ERROR(EINVAL));
478	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
479		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
480			return (SET_ERROR(EINVAL));
481	}
482
483	/*
484	 * The first allocated vdev must be of type 'root'.
485	 */
486	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
487		return (SET_ERROR(EINVAL));
488
489	/*
490	 * Determine whether we're a log vdev.
491	 */
492	islog = 0;
493	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
494	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
495		return (SET_ERROR(ENOTSUP));
496
497	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
498		return (SET_ERROR(ENOTSUP));
499
500	/*
501	 * Set the nparity property for RAID-Z vdevs.
502	 */
503	nparity = -1ULL;
504	if (ops == &vdev_raidz_ops) {
505		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
506		    &nparity) == 0) {
507			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
508				return (SET_ERROR(EINVAL));
509			/*
510			 * Previous versions could only support 1 or 2 parity
511			 * device.
512			 */
513			if (nparity > 1 &&
514			    spa_version(spa) < SPA_VERSION_RAIDZ2)
515				return (SET_ERROR(ENOTSUP));
516			if (nparity > 2 &&
517			    spa_version(spa) < SPA_VERSION_RAIDZ3)
518				return (SET_ERROR(ENOTSUP));
519		} else {
520			/*
521			 * We require the parity to be specified for SPAs that
522			 * support multiple parity levels.
523			 */
524			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
525				return (SET_ERROR(EINVAL));
526			/*
527			 * Otherwise, we default to 1 parity device for RAID-Z.
528			 */
529			nparity = 1;
530		}
531	} else {
532		nparity = 0;
533	}
534	ASSERT(nparity != -1ULL);
535
536	vd = vdev_alloc_common(spa, id, guid, ops);
537
538	vd->vdev_islog = islog;
539	vd->vdev_nparity = nparity;
540
541	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
542		vd->vdev_path = spa_strdup(vd->vdev_path);
543	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
544		vd->vdev_devid = spa_strdup(vd->vdev_devid);
545	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
546	    &vd->vdev_physpath) == 0)
547		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
548	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
549		vd->vdev_fru = spa_strdup(vd->vdev_fru);
550
551	/*
552	 * Set the whole_disk property.  If it's not specified, leave the value
553	 * as -1.
554	 */
555	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
556	    &vd->vdev_wholedisk) != 0)
557		vd->vdev_wholedisk = -1ULL;
558
559	/*
560	 * Look for the 'not present' flag.  This will only be set if the device
561	 * was not present at the time of import.
562	 */
563	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
564	    &vd->vdev_not_present);
565
566	/*
567	 * Get the alignment requirement.
568	 */
569	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
570
571	/*
572	 * Retrieve the vdev creation time.
573	 */
574	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
575	    &vd->vdev_crtxg);
576
577	/*
578	 * If we're a top-level vdev, try to load the allocation parameters.
579	 */
580	if (parent && !parent->vdev_parent &&
581	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
582		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
583		    &vd->vdev_ms_array);
584		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
585		    &vd->vdev_ms_shift);
586		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
587		    &vd->vdev_asize);
588		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
589		    &vd->vdev_removing);
590	}
591
592	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
593		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
594		    alloctype == VDEV_ALLOC_ADD ||
595		    alloctype == VDEV_ALLOC_SPLIT ||
596		    alloctype == VDEV_ALLOC_ROOTPOOL);
597		vd->vdev_mg = metaslab_group_create(islog ?
598		    spa_log_class(spa) : spa_normal_class(spa), vd);
599	}
600
601	/*
602	 * If we're a leaf vdev, try to load the DTL object and other state.
603	 */
604	if (vd->vdev_ops->vdev_op_leaf &&
605	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
606	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
607		if (alloctype == VDEV_ALLOC_LOAD) {
608			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
609			    &vd->vdev_dtl_object);
610			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
611			    &vd->vdev_unspare);
612		}
613
614		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
615			uint64_t spare = 0;
616
617			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
618			    &spare) == 0 && spare)
619				spa_spare_add(vd);
620		}
621
622		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
623		    &vd->vdev_offline);
624
625		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
626		    &vd->vdev_resilver_txg);
627
628		/*
629		 * When importing a pool, we want to ignore the persistent fault
630		 * state, as the diagnosis made on another system may not be
631		 * valid in the current context.  Local vdevs will
632		 * remain in the faulted state.
633		 */
634		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
635			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
636			    &vd->vdev_faulted);
637			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
638			    &vd->vdev_degraded);
639			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
640			    &vd->vdev_removed);
641
642			if (vd->vdev_faulted || vd->vdev_degraded) {
643				char *aux;
644
645				vd->vdev_label_aux =
646				    VDEV_AUX_ERR_EXCEEDED;
647				if (nvlist_lookup_string(nv,
648				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
649				    strcmp(aux, "external") == 0)
650					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
651			}
652		}
653	}
654
655	/*
656	 * Add ourselves to the parent's list of children.
657	 */
658	vdev_add_child(parent, vd);
659
660	*vdp = vd;
661
662	return (0);
663}
664
665void
666vdev_free(vdev_t *vd)
667{
668	spa_t *spa = vd->vdev_spa;
669
670	/*
671	 * vdev_free() implies closing the vdev first.  This is simpler than
672	 * trying to ensure complicated semantics for all callers.
673	 */
674	vdev_close(vd);
675
676	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
677	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
678
679	/*
680	 * Free all children.
681	 */
682	for (int c = 0; c < vd->vdev_children; c++)
683		vdev_free(vd->vdev_child[c]);
684
685	ASSERT(vd->vdev_child == NULL);
686	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
687
688	/*
689	 * Discard allocation state.
690	 */
691	if (vd->vdev_mg != NULL) {
692		vdev_metaslab_fini(vd);
693		metaslab_group_destroy(vd->vdev_mg);
694	}
695
696	ASSERT0(vd->vdev_stat.vs_space);
697	ASSERT0(vd->vdev_stat.vs_dspace);
698	ASSERT0(vd->vdev_stat.vs_alloc);
699
700	/*
701	 * Remove this vdev from its parent's child list.
702	 */
703	vdev_remove_child(vd->vdev_parent, vd);
704
705	ASSERT(vd->vdev_parent == NULL);
706
707	/*
708	 * Clean up vdev structure.
709	 */
710	vdev_queue_fini(vd);
711	vdev_cache_fini(vd);
712
713	if (vd->vdev_path)
714		spa_strfree(vd->vdev_path);
715	if (vd->vdev_devid)
716		spa_strfree(vd->vdev_devid);
717	if (vd->vdev_physpath)
718		spa_strfree(vd->vdev_physpath);
719	if (vd->vdev_fru)
720		spa_strfree(vd->vdev_fru);
721
722	if (vd->vdev_isspare)
723		spa_spare_remove(vd);
724	if (vd->vdev_isl2cache)
725		spa_l2cache_remove(vd);
726
727	txg_list_destroy(&vd->vdev_ms_list);
728	txg_list_destroy(&vd->vdev_dtl_list);
729
730	mutex_enter(&vd->vdev_dtl_lock);
731	space_map_close(vd->vdev_dtl_sm);
732	for (int t = 0; t < DTL_TYPES; t++) {
733		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
734		range_tree_destroy(vd->vdev_dtl[t]);
735	}
736	mutex_exit(&vd->vdev_dtl_lock);
737
738	mutex_destroy(&vd->vdev_dtl_lock);
739	mutex_destroy(&vd->vdev_stat_lock);
740	mutex_destroy(&vd->vdev_probe_lock);
741
742	if (vd == spa->spa_root_vdev)
743		spa->spa_root_vdev = NULL;
744
745	kmem_free(vd, sizeof (vdev_t));
746}
747
748/*
749 * Transfer top-level vdev state from svd to tvd.
750 */
751static void
752vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
753{
754	spa_t *spa = svd->vdev_spa;
755	metaslab_t *msp;
756	vdev_t *vd;
757	int t;
758
759	ASSERT(tvd == tvd->vdev_top);
760
761	tvd->vdev_ms_array = svd->vdev_ms_array;
762	tvd->vdev_ms_shift = svd->vdev_ms_shift;
763	tvd->vdev_ms_count = svd->vdev_ms_count;
764
765	svd->vdev_ms_array = 0;
766	svd->vdev_ms_shift = 0;
767	svd->vdev_ms_count = 0;
768
769	if (tvd->vdev_mg)
770		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
771	tvd->vdev_mg = svd->vdev_mg;
772	tvd->vdev_ms = svd->vdev_ms;
773
774	svd->vdev_mg = NULL;
775	svd->vdev_ms = NULL;
776
777	if (tvd->vdev_mg != NULL)
778		tvd->vdev_mg->mg_vd = tvd;
779
780	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
781	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
782	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
783
784	svd->vdev_stat.vs_alloc = 0;
785	svd->vdev_stat.vs_space = 0;
786	svd->vdev_stat.vs_dspace = 0;
787
788	for (t = 0; t < TXG_SIZE; t++) {
789		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
790			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
791		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
792			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
793		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
794			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
795	}
796
797	if (list_link_active(&svd->vdev_config_dirty_node)) {
798		vdev_config_clean(svd);
799		vdev_config_dirty(tvd);
800	}
801
802	if (list_link_active(&svd->vdev_state_dirty_node)) {
803		vdev_state_clean(svd);
804		vdev_state_dirty(tvd);
805	}
806
807	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
808	svd->vdev_deflate_ratio = 0;
809
810	tvd->vdev_islog = svd->vdev_islog;
811	svd->vdev_islog = 0;
812}
813
814static void
815vdev_top_update(vdev_t *tvd, vdev_t *vd)
816{
817	if (vd == NULL)
818		return;
819
820	vd->vdev_top = tvd;
821
822	for (int c = 0; c < vd->vdev_children; c++)
823		vdev_top_update(tvd, vd->vdev_child[c]);
824}
825
826/*
827 * Add a mirror/replacing vdev above an existing vdev.
828 */
829vdev_t *
830vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
831{
832	spa_t *spa = cvd->vdev_spa;
833	vdev_t *pvd = cvd->vdev_parent;
834	vdev_t *mvd;
835
836	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
837
838	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
839
840	mvd->vdev_asize = cvd->vdev_asize;
841	mvd->vdev_min_asize = cvd->vdev_min_asize;
842	mvd->vdev_max_asize = cvd->vdev_max_asize;
843	mvd->vdev_ashift = cvd->vdev_ashift;
844	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
845	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
846	mvd->vdev_state = cvd->vdev_state;
847	mvd->vdev_crtxg = cvd->vdev_crtxg;
848
849	vdev_remove_child(pvd, cvd);
850	vdev_add_child(pvd, mvd);
851	cvd->vdev_id = mvd->vdev_children;
852	vdev_add_child(mvd, cvd);
853	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
854
855	if (mvd == mvd->vdev_top)
856		vdev_top_transfer(cvd, mvd);
857
858	return (mvd);
859}
860
861/*
862 * Remove a 1-way mirror/replacing vdev from the tree.
863 */
864void
865vdev_remove_parent(vdev_t *cvd)
866{
867	vdev_t *mvd = cvd->vdev_parent;
868	vdev_t *pvd = mvd->vdev_parent;
869
870	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
871
872	ASSERT(mvd->vdev_children == 1);
873	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
874	    mvd->vdev_ops == &vdev_replacing_ops ||
875	    mvd->vdev_ops == &vdev_spare_ops);
876	cvd->vdev_ashift = mvd->vdev_ashift;
877	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
878	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
879
880	vdev_remove_child(mvd, cvd);
881	vdev_remove_child(pvd, mvd);
882
883	/*
884	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
885	 * Otherwise, we could have detached an offline device, and when we
886	 * go to import the pool we'll think we have two top-level vdevs,
887	 * instead of a different version of the same top-level vdev.
888	 */
889	if (mvd->vdev_top == mvd) {
890		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
891		cvd->vdev_orig_guid = cvd->vdev_guid;
892		cvd->vdev_guid += guid_delta;
893		cvd->vdev_guid_sum += guid_delta;
894	}
895	cvd->vdev_id = mvd->vdev_id;
896	vdev_add_child(pvd, cvd);
897	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
898
899	if (cvd == cvd->vdev_top)
900		vdev_top_transfer(mvd, cvd);
901
902	ASSERT(mvd->vdev_children == 0);
903	vdev_free(mvd);
904}
905
906int
907vdev_metaslab_init(vdev_t *vd, uint64_t txg)
908{
909	spa_t *spa = vd->vdev_spa;
910	objset_t *mos = spa->spa_meta_objset;
911	uint64_t m;
912	uint64_t oldc = vd->vdev_ms_count;
913	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
914	metaslab_t **mspp;
915	int error;
916
917	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
918
919	/*
920	 * This vdev is not being allocated from yet or is a hole.
921	 */
922	if (vd->vdev_ms_shift == 0)
923		return (0);
924
925	ASSERT(!vd->vdev_ishole);
926
927	/*
928	 * Compute the raidz-deflation ratio.  Note, we hard-code
929	 * in 128k (1 << 17) because it is the "typical" blocksize.
930	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
931	 * otherwise it would inconsistently account for existing bp's.
932	 */
933	vd->vdev_deflate_ratio = (1 << 17) /
934	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
935
936	ASSERT(oldc <= newc);
937
938	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
939
940	if (oldc != 0) {
941		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
942		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
943	}
944
945	vd->vdev_ms = mspp;
946	vd->vdev_ms_count = newc;
947
948	for (m = oldc; m < newc; m++) {
949		uint64_t object = 0;
950
951		if (txg == 0) {
952			error = dmu_read(mos, vd->vdev_ms_array,
953			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
954			    DMU_READ_PREFETCH);
955			if (error)
956				return (error);
957		}
958		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
959	}
960
961	if (txg == 0)
962		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
963
964	/*
965	 * If the vdev is being removed we don't activate
966	 * the metaslabs since we want to ensure that no new
967	 * allocations are performed on this device.
968	 */
969	if (oldc == 0 && !vd->vdev_removing)
970		metaslab_group_activate(vd->vdev_mg);
971
972	if (txg == 0)
973		spa_config_exit(spa, SCL_ALLOC, FTAG);
974
975	return (0);
976}
977
978void
979vdev_metaslab_fini(vdev_t *vd)
980{
981	uint64_t m;
982	uint64_t count = vd->vdev_ms_count;
983
984	if (vd->vdev_ms != NULL) {
985		metaslab_group_passivate(vd->vdev_mg);
986		for (m = 0; m < count; m++) {
987			metaslab_t *msp = vd->vdev_ms[m];
988
989			if (msp != NULL)
990				metaslab_fini(msp);
991		}
992		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
993		vd->vdev_ms = NULL;
994	}
995}
996
997typedef struct vdev_probe_stats {
998	boolean_t	vps_readable;
999	boolean_t	vps_writeable;
1000	int		vps_flags;
1001} vdev_probe_stats_t;
1002
1003static void
1004vdev_probe_done(zio_t *zio)
1005{
1006	spa_t *spa = zio->io_spa;
1007	vdev_t *vd = zio->io_vd;
1008	vdev_probe_stats_t *vps = zio->io_private;
1009
1010	ASSERT(vd->vdev_probe_zio != NULL);
1011
1012	if (zio->io_type == ZIO_TYPE_READ) {
1013		if (zio->io_error == 0)
1014			vps->vps_readable = 1;
1015		if (zio->io_error == 0 && spa_writeable(spa)) {
1016			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1017			    zio->io_offset, zio->io_size, zio->io_data,
1018			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1019			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1020		} else {
1021			zio_buf_free(zio->io_data, zio->io_size);
1022		}
1023	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1024		if (zio->io_error == 0)
1025			vps->vps_writeable = 1;
1026		zio_buf_free(zio->io_data, zio->io_size);
1027	} else if (zio->io_type == ZIO_TYPE_NULL) {
1028		zio_t *pio;
1029
1030		vd->vdev_cant_read |= !vps->vps_readable;
1031		vd->vdev_cant_write |= !vps->vps_writeable;
1032
1033		if (vdev_readable(vd) &&
1034		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1035			zio->io_error = 0;
1036		} else {
1037			ASSERT(zio->io_error != 0);
1038			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1039			    spa, vd, NULL, 0, 0);
1040			zio->io_error = SET_ERROR(ENXIO);
1041		}
1042
1043		mutex_enter(&vd->vdev_probe_lock);
1044		ASSERT(vd->vdev_probe_zio == zio);
1045		vd->vdev_probe_zio = NULL;
1046		mutex_exit(&vd->vdev_probe_lock);
1047
1048		while ((pio = zio_walk_parents(zio)) != NULL)
1049			if (!vdev_accessible(vd, pio))
1050				pio->io_error = SET_ERROR(ENXIO);
1051
1052		kmem_free(vps, sizeof (*vps));
1053	}
1054}
1055
1056/*
1057 * Determine whether this device is accessible.
1058 *
1059 * Read and write to several known locations: the pad regions of each
1060 * vdev label but the first, which we leave alone in case it contains
1061 * a VTOC.
1062 */
1063zio_t *
1064vdev_probe(vdev_t *vd, zio_t *zio)
1065{
1066	spa_t *spa = vd->vdev_spa;
1067	vdev_probe_stats_t *vps = NULL;
1068	zio_t *pio;
1069
1070	ASSERT(vd->vdev_ops->vdev_op_leaf);
1071
1072	/*
1073	 * Don't probe the probe.
1074	 */
1075	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1076		return (NULL);
1077
1078	/*
1079	 * To prevent 'probe storms' when a device fails, we create
1080	 * just one probe i/o at a time.  All zios that want to probe
1081	 * this vdev will become parents of the probe io.
1082	 */
1083	mutex_enter(&vd->vdev_probe_lock);
1084
1085	if ((pio = vd->vdev_probe_zio) == NULL) {
1086		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1087
1088		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1089		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1090		    ZIO_FLAG_TRYHARD;
1091
1092		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1093			/*
1094			 * vdev_cant_read and vdev_cant_write can only
1095			 * transition from TRUE to FALSE when we have the
1096			 * SCL_ZIO lock as writer; otherwise they can only
1097			 * transition from FALSE to TRUE.  This ensures that
1098			 * any zio looking at these values can assume that
1099			 * failures persist for the life of the I/O.  That's
1100			 * important because when a device has intermittent
1101			 * connectivity problems, we want to ensure that
1102			 * they're ascribed to the device (ENXIO) and not
1103			 * the zio (EIO).
1104			 *
1105			 * Since we hold SCL_ZIO as writer here, clear both
1106			 * values so the probe can reevaluate from first
1107			 * principles.
1108			 */
1109			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1110			vd->vdev_cant_read = B_FALSE;
1111			vd->vdev_cant_write = B_FALSE;
1112		}
1113
1114		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1115		    vdev_probe_done, vps,
1116		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1117
1118		/*
1119		 * We can't change the vdev state in this context, so we
1120		 * kick off an async task to do it on our behalf.
1121		 */
1122		if (zio != NULL) {
1123			vd->vdev_probe_wanted = B_TRUE;
1124			spa_async_request(spa, SPA_ASYNC_PROBE);
1125		}
1126	}
1127
1128	if (zio != NULL)
1129		zio_add_child(zio, pio);
1130
1131	mutex_exit(&vd->vdev_probe_lock);
1132
1133	if (vps == NULL) {
1134		ASSERT(zio != NULL);
1135		return (NULL);
1136	}
1137
1138	for (int l = 1; l < VDEV_LABELS; l++) {
1139		zio_nowait(zio_read_phys(pio, vd,
1140		    vdev_label_offset(vd->vdev_psize, l,
1141		    offsetof(vdev_label_t, vl_pad2)),
1142		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1143		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1144		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1145	}
1146
1147	if (zio == NULL)
1148		return (pio);
1149
1150	zio_nowait(pio);
1151	return (NULL);
1152}
1153
1154static void
1155vdev_open_child(void *arg)
1156{
1157	vdev_t *vd = arg;
1158
1159	vd->vdev_open_thread = curthread;
1160	vd->vdev_open_error = vdev_open(vd);
1161	vd->vdev_open_thread = NULL;
1162}
1163
1164boolean_t
1165vdev_uses_zvols(vdev_t *vd)
1166{
1167	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1168	    strlen(ZVOL_DIR)) == 0)
1169		return (B_TRUE);
1170	for (int c = 0; c < vd->vdev_children; c++)
1171		if (vdev_uses_zvols(vd->vdev_child[c]))
1172			return (B_TRUE);
1173	return (B_FALSE);
1174}
1175
1176void
1177vdev_open_children(vdev_t *vd)
1178{
1179	taskq_t *tq;
1180	int children = vd->vdev_children;
1181
1182	/*
1183	 * in order to handle pools on top of zvols, do the opens
1184	 * in a single thread so that the same thread holds the
1185	 * spa_namespace_lock
1186	 */
1187	if (B_TRUE || vdev_uses_zvols(vd)) {
1188		for (int c = 0; c < children; c++)
1189			vd->vdev_child[c]->vdev_open_error =
1190			    vdev_open(vd->vdev_child[c]);
1191		return;
1192	}
1193	tq = taskq_create("vdev_open", children, minclsyspri,
1194	    children, children, TASKQ_PREPOPULATE);
1195
1196	for (int c = 0; c < children; c++)
1197		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1198		    TQ_SLEEP) != 0);
1199
1200	taskq_destroy(tq);
1201}
1202
1203/*
1204 * Prepare a virtual device for access.
1205 */
1206int
1207vdev_open(vdev_t *vd)
1208{
1209	spa_t *spa = vd->vdev_spa;
1210	int error;
1211	uint64_t osize = 0;
1212	uint64_t max_osize = 0;
1213	uint64_t asize, max_asize, psize;
1214	uint64_t logical_ashift = 0;
1215	uint64_t physical_ashift = 0;
1216
1217	ASSERT(vd->vdev_open_thread == curthread ||
1218	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1219	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1220	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1221	    vd->vdev_state == VDEV_STATE_OFFLINE);
1222
1223	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1224	vd->vdev_cant_read = B_FALSE;
1225	vd->vdev_cant_write = B_FALSE;
1226	vd->vdev_notrim = B_FALSE;
1227	vd->vdev_min_asize = vdev_get_min_asize(vd);
1228
1229	/*
1230	 * If this vdev is not removed, check its fault status.  If it's
1231	 * faulted, bail out of the open.
1232	 */
1233	if (!vd->vdev_removed && vd->vdev_faulted) {
1234		ASSERT(vd->vdev_children == 0);
1235		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1236		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1237		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1238		    vd->vdev_label_aux);
1239		return (SET_ERROR(ENXIO));
1240	} else if (vd->vdev_offline) {
1241		ASSERT(vd->vdev_children == 0);
1242		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1243		return (SET_ERROR(ENXIO));
1244	}
1245
1246	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1247	    &logical_ashift, &physical_ashift);
1248
1249	/*
1250	 * Reset the vdev_reopening flag so that we actually close
1251	 * the vdev on error.
1252	 */
1253	vd->vdev_reopening = B_FALSE;
1254	if (zio_injection_enabled && error == 0)
1255		error = zio_handle_device_injection(vd, NULL, ENXIO);
1256
1257	if (error) {
1258		if (vd->vdev_removed &&
1259		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1260			vd->vdev_removed = B_FALSE;
1261
1262		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263		    vd->vdev_stat.vs_aux);
1264		return (error);
1265	}
1266
1267	vd->vdev_removed = B_FALSE;
1268
1269	/*
1270	 * Recheck the faulted flag now that we have confirmed that
1271	 * the vdev is accessible.  If we're faulted, bail.
1272	 */
1273	if (vd->vdev_faulted) {
1274		ASSERT(vd->vdev_children == 0);
1275		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1276		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1277		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1278		    vd->vdev_label_aux);
1279		return (SET_ERROR(ENXIO));
1280	}
1281
1282	if (vd->vdev_degraded) {
1283		ASSERT(vd->vdev_children == 0);
1284		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1285		    VDEV_AUX_ERR_EXCEEDED);
1286	} else {
1287		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1288	}
1289
1290	/*
1291	 * For hole or missing vdevs we just return success.
1292	 */
1293	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1294		return (0);
1295
1296	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1297		trim_map_create(vd);
1298
1299	for (int c = 0; c < vd->vdev_children; c++) {
1300		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1301			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1302			    VDEV_AUX_NONE);
1303			break;
1304		}
1305	}
1306
1307	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1308	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1309
1310	if (vd->vdev_children == 0) {
1311		if (osize < SPA_MINDEVSIZE) {
1312			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313			    VDEV_AUX_TOO_SMALL);
1314			return (SET_ERROR(EOVERFLOW));
1315		}
1316		psize = osize;
1317		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1318		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1319		    VDEV_LABEL_END_SIZE);
1320	} else {
1321		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1322		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1323			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1324			    VDEV_AUX_TOO_SMALL);
1325			return (SET_ERROR(EOVERFLOW));
1326		}
1327		psize = 0;
1328		asize = osize;
1329		max_asize = max_osize;
1330	}
1331
1332	vd->vdev_psize = psize;
1333
1334	/*
1335	 * Make sure the allocatable size hasn't shrunk.
1336	 */
1337	if (asize < vd->vdev_min_asize) {
1338		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1339		    VDEV_AUX_BAD_LABEL);
1340		return (SET_ERROR(EINVAL));
1341	}
1342
1343	vd->vdev_physical_ashift =
1344	    MAX(physical_ashift, vd->vdev_physical_ashift);
1345	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1346	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1347
1348	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1349		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350		    VDEV_AUX_ASHIFT_TOO_BIG);
1351		return (EINVAL);
1352	}
1353
1354	if (vd->vdev_asize == 0) {
1355		/*
1356		 * This is the first-ever open, so use the computed values.
1357		 * For testing purposes, a higher ashift can be requested.
1358		 */
1359		vd->vdev_asize = asize;
1360		vd->vdev_max_asize = max_asize;
1361	} else {
1362		/*
1363		 * Make sure the alignment requirement hasn't increased.
1364		 */
1365		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1366		    vd->vdev_ops->vdev_op_leaf) {
1367			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368			    VDEV_AUX_BAD_LABEL);
1369			return (EINVAL);
1370		}
1371		vd->vdev_max_asize = max_asize;
1372	}
1373
1374	/*
1375	 * If all children are healthy and the asize has increased,
1376	 * then we've experienced dynamic LUN growth.  If automatic
1377	 * expansion is enabled then use the additional space.
1378	 */
1379	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1380	    (vd->vdev_expanding || spa->spa_autoexpand))
1381		vd->vdev_asize = asize;
1382
1383	vdev_set_min_asize(vd);
1384
1385	/*
1386	 * Ensure we can issue some IO before declaring the
1387	 * vdev open for business.
1388	 */
1389	if (vd->vdev_ops->vdev_op_leaf &&
1390	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1391		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1392		    VDEV_AUX_ERR_EXCEEDED);
1393		return (error);
1394	}
1395
1396	/*
1397	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1398	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1399	 * since this would just restart the scrub we are already doing.
1400	 */
1401	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1402	    vdev_resilver_needed(vd, NULL, NULL))
1403		spa_async_request(spa, SPA_ASYNC_RESILVER);
1404
1405	return (0);
1406}
1407
1408/*
1409 * Called once the vdevs are all opened, this routine validates the label
1410 * contents.  This needs to be done before vdev_load() so that we don't
1411 * inadvertently do repair I/Os to the wrong device.
1412 *
1413 * If 'strict' is false ignore the spa guid check. This is necessary because
1414 * if the machine crashed during a re-guid the new guid might have been written
1415 * to all of the vdev labels, but not the cached config. The strict check
1416 * will be performed when the pool is opened again using the mos config.
1417 *
1418 * This function will only return failure if one of the vdevs indicates that it
1419 * has since been destroyed or exported.  This is only possible if
1420 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1421 * will be updated but the function will return 0.
1422 */
1423int
1424vdev_validate(vdev_t *vd, boolean_t strict)
1425{
1426	spa_t *spa = vd->vdev_spa;
1427	nvlist_t *label;
1428	uint64_t guid = 0, top_guid;
1429	uint64_t state;
1430
1431	for (int c = 0; c < vd->vdev_children; c++)
1432		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1433			return (SET_ERROR(EBADF));
1434
1435	/*
1436	 * If the device has already failed, or was marked offline, don't do
1437	 * any further validation.  Otherwise, label I/O will fail and we will
1438	 * overwrite the previous state.
1439	 */
1440	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1441		uint64_t aux_guid = 0;
1442		nvlist_t *nvl;
1443		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1444		    spa_last_synced_txg(spa) : -1ULL;
1445
1446		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1447			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1448			    VDEV_AUX_BAD_LABEL);
1449			return (0);
1450		}
1451
1452		/*
1453		 * Determine if this vdev has been split off into another
1454		 * pool.  If so, then refuse to open it.
1455		 */
1456		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1457		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1458			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1459			    VDEV_AUX_SPLIT_POOL);
1460			nvlist_free(label);
1461			return (0);
1462		}
1463
1464		if (strict && (nvlist_lookup_uint64(label,
1465		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1466		    guid != spa_guid(spa))) {
1467			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1468			    VDEV_AUX_CORRUPT_DATA);
1469			nvlist_free(label);
1470			return (0);
1471		}
1472
1473		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1474		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1475		    &aux_guid) != 0)
1476			aux_guid = 0;
1477
1478		/*
1479		 * If this vdev just became a top-level vdev because its
1480		 * sibling was detached, it will have adopted the parent's
1481		 * vdev guid -- but the label may or may not be on disk yet.
1482		 * Fortunately, either version of the label will have the
1483		 * same top guid, so if we're a top-level vdev, we can
1484		 * safely compare to that instead.
1485		 *
1486		 * If we split this vdev off instead, then we also check the
1487		 * original pool's guid.  We don't want to consider the vdev
1488		 * corrupt if it is partway through a split operation.
1489		 */
1490		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1491		    &guid) != 0 ||
1492		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1493		    &top_guid) != 0 ||
1494		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1495		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1496			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497			    VDEV_AUX_CORRUPT_DATA);
1498			nvlist_free(label);
1499			return (0);
1500		}
1501
1502		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1503		    &state) != 0) {
1504			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1505			    VDEV_AUX_CORRUPT_DATA);
1506			nvlist_free(label);
1507			return (0);
1508		}
1509
1510		nvlist_free(label);
1511
1512		/*
1513		 * If this is a verbatim import, no need to check the
1514		 * state of the pool.
1515		 */
1516		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1517		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1518		    state != POOL_STATE_ACTIVE)
1519			return (SET_ERROR(EBADF));
1520
1521		/*
1522		 * If we were able to open and validate a vdev that was
1523		 * previously marked permanently unavailable, clear that state
1524		 * now.
1525		 */
1526		if (vd->vdev_not_present)
1527			vd->vdev_not_present = 0;
1528	}
1529
1530	return (0);
1531}
1532
1533/*
1534 * Close a virtual device.
1535 */
1536void
1537vdev_close(vdev_t *vd)
1538{
1539	spa_t *spa = vd->vdev_spa;
1540	vdev_t *pvd = vd->vdev_parent;
1541
1542	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1543
1544	/*
1545	 * If our parent is reopening, then we are as well, unless we are
1546	 * going offline.
1547	 */
1548	if (pvd != NULL && pvd->vdev_reopening)
1549		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1550
1551	vd->vdev_ops->vdev_op_close(vd);
1552
1553	vdev_cache_purge(vd);
1554
1555	if (vd->vdev_ops->vdev_op_leaf)
1556		trim_map_destroy(vd);
1557
1558	/*
1559	 * We record the previous state before we close it, so that if we are
1560	 * doing a reopen(), we don't generate FMA ereports if we notice that
1561	 * it's still faulted.
1562	 */
1563	vd->vdev_prevstate = vd->vdev_state;
1564
1565	if (vd->vdev_offline)
1566		vd->vdev_state = VDEV_STATE_OFFLINE;
1567	else
1568		vd->vdev_state = VDEV_STATE_CLOSED;
1569	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1570}
1571
1572void
1573vdev_hold(vdev_t *vd)
1574{
1575	spa_t *spa = vd->vdev_spa;
1576
1577	ASSERT(spa_is_root(spa));
1578	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1579		return;
1580
1581	for (int c = 0; c < vd->vdev_children; c++)
1582		vdev_hold(vd->vdev_child[c]);
1583
1584	if (vd->vdev_ops->vdev_op_leaf)
1585		vd->vdev_ops->vdev_op_hold(vd);
1586}
1587
1588void
1589vdev_rele(vdev_t *vd)
1590{
1591	spa_t *spa = vd->vdev_spa;
1592
1593	ASSERT(spa_is_root(spa));
1594	for (int c = 0; c < vd->vdev_children; c++)
1595		vdev_rele(vd->vdev_child[c]);
1596
1597	if (vd->vdev_ops->vdev_op_leaf)
1598		vd->vdev_ops->vdev_op_rele(vd);
1599}
1600
1601/*
1602 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1603 * reopen leaf vdevs which had previously been opened as they might deadlock
1604 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1605 * If the leaf has never been opened then open it, as usual.
1606 */
1607void
1608vdev_reopen(vdev_t *vd)
1609{
1610	spa_t *spa = vd->vdev_spa;
1611
1612	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1613
1614	/* set the reopening flag unless we're taking the vdev offline */
1615	vd->vdev_reopening = !vd->vdev_offline;
1616	vdev_close(vd);
1617	(void) vdev_open(vd);
1618
1619	/*
1620	 * Call vdev_validate() here to make sure we have the same device.
1621	 * Otherwise, a device with an invalid label could be successfully
1622	 * opened in response to vdev_reopen().
1623	 */
1624	if (vd->vdev_aux) {
1625		(void) vdev_validate_aux(vd);
1626		if (vdev_readable(vd) && vdev_writeable(vd) &&
1627		    vd->vdev_aux == &spa->spa_l2cache &&
1628		    !l2arc_vdev_present(vd))
1629			l2arc_add_vdev(spa, vd);
1630	} else {
1631		(void) vdev_validate(vd, B_TRUE);
1632	}
1633
1634	/*
1635	 * Reassess parent vdev's health.
1636	 */
1637	vdev_propagate_state(vd);
1638}
1639
1640int
1641vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1642{
1643	int error;
1644
1645	/*
1646	 * Normally, partial opens (e.g. of a mirror) are allowed.
1647	 * For a create, however, we want to fail the request if
1648	 * there are any components we can't open.
1649	 */
1650	error = vdev_open(vd);
1651
1652	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1653		vdev_close(vd);
1654		return (error ? error : ENXIO);
1655	}
1656
1657	/*
1658	 * Recursively load DTLs and initialize all labels.
1659	 */
1660	if ((error = vdev_dtl_load(vd)) != 0 ||
1661	    (error = vdev_label_init(vd, txg, isreplacing ?
1662	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1663		vdev_close(vd);
1664		return (error);
1665	}
1666
1667	return (0);
1668}
1669
1670void
1671vdev_metaslab_set_size(vdev_t *vd)
1672{
1673	/*
1674	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1675	 */
1676	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1677	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1678}
1679
1680/*
1681 * Maximize performance by inflating the configured ashift for top level
1682 * vdevs to be as close to the physical ashift as possible while maintaining
1683 * administrator defined limits and ensuring it doesn't go below the
1684 * logical ashift.
1685 */
1686void
1687vdev_ashift_optimize(vdev_t *vd)
1688{
1689	if (vd == vd->vdev_top) {
1690		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1691			vd->vdev_ashift = MIN(
1692			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1693			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1694		} else {
1695			/*
1696			 * Unusual case where logical ashift > physical ashift
1697			 * so we can't cap the calculated ashift based on max
1698			 * ashift as that would cause failures.
1699			 * We still check if we need to increase it to match
1700			 * the min ashift.
1701			 */
1702			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1703			    vd->vdev_ashift);
1704		}
1705	}
1706}
1707
1708void
1709vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1710{
1711	ASSERT(vd == vd->vdev_top);
1712	ASSERT(!vd->vdev_ishole);
1713	ASSERT(ISP2(flags));
1714	ASSERT(spa_writeable(vd->vdev_spa));
1715
1716	if (flags & VDD_METASLAB)
1717		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1718
1719	if (flags & VDD_DTL)
1720		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1721
1722	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1723}
1724
1725void
1726vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1727{
1728	for (int c = 0; c < vd->vdev_children; c++)
1729		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1730
1731	if (vd->vdev_ops->vdev_op_leaf)
1732		vdev_dirty(vd->vdev_top, flags, vd, txg);
1733}
1734
1735/*
1736 * DTLs.
1737 *
1738 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1739 * the vdev has less than perfect replication.  There are four kinds of DTL:
1740 *
1741 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1742 *
1743 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1744 *
1745 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1746 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1747 *	txgs that was scrubbed.
1748 *
1749 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1750 *	persistent errors or just some device being offline.
1751 *	Unlike the other three, the DTL_OUTAGE map is not generally
1752 *	maintained; it's only computed when needed, typically to
1753 *	determine whether a device can be detached.
1754 *
1755 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1756 * either has the data or it doesn't.
1757 *
1758 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1759 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1760 * if any child is less than fully replicated, then so is its parent.
1761 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1762 * comprising only those txgs which appear in 'maxfaults' or more children;
1763 * those are the txgs we don't have enough replication to read.  For example,
1764 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1765 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1766 * two child DTL_MISSING maps.
1767 *
1768 * It should be clear from the above that to compute the DTLs and outage maps
1769 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1770 * Therefore, that is all we keep on disk.  When loading the pool, or after
1771 * a configuration change, we generate all other DTLs from first principles.
1772 */
1773void
1774vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1775{
1776	range_tree_t *rt = vd->vdev_dtl[t];
1777
1778	ASSERT(t < DTL_TYPES);
1779	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1780	ASSERT(spa_writeable(vd->vdev_spa));
1781
1782	mutex_enter(rt->rt_lock);
1783	if (!range_tree_contains(rt, txg, size))
1784		range_tree_add(rt, txg, size);
1785	mutex_exit(rt->rt_lock);
1786}
1787
1788boolean_t
1789vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1790{
1791	range_tree_t *rt = vd->vdev_dtl[t];
1792	boolean_t dirty = B_FALSE;
1793
1794	ASSERT(t < DTL_TYPES);
1795	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1796
1797	mutex_enter(rt->rt_lock);
1798	if (range_tree_space(rt) != 0)
1799		dirty = range_tree_contains(rt, txg, size);
1800	mutex_exit(rt->rt_lock);
1801
1802	return (dirty);
1803}
1804
1805boolean_t
1806vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1807{
1808	range_tree_t *rt = vd->vdev_dtl[t];
1809	boolean_t empty;
1810
1811	mutex_enter(rt->rt_lock);
1812	empty = (range_tree_space(rt) == 0);
1813	mutex_exit(rt->rt_lock);
1814
1815	return (empty);
1816}
1817
1818/*
1819 * Returns the lowest txg in the DTL range.
1820 */
1821static uint64_t
1822vdev_dtl_min(vdev_t *vd)
1823{
1824	range_seg_t *rs;
1825
1826	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1827	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1828	ASSERT0(vd->vdev_children);
1829
1830	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1831	return (rs->rs_start - 1);
1832}
1833
1834/*
1835 * Returns the highest txg in the DTL.
1836 */
1837static uint64_t
1838vdev_dtl_max(vdev_t *vd)
1839{
1840	range_seg_t *rs;
1841
1842	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1843	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1844	ASSERT0(vd->vdev_children);
1845
1846	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1847	return (rs->rs_end);
1848}
1849
1850/*
1851 * Determine if a resilvering vdev should remove any DTL entries from
1852 * its range. If the vdev was resilvering for the entire duration of the
1853 * scan then it should excise that range from its DTLs. Otherwise, this
1854 * vdev is considered partially resilvered and should leave its DTL
1855 * entries intact. The comment in vdev_dtl_reassess() describes how we
1856 * excise the DTLs.
1857 */
1858static boolean_t
1859vdev_dtl_should_excise(vdev_t *vd)
1860{
1861	spa_t *spa = vd->vdev_spa;
1862	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1863
1864	ASSERT0(scn->scn_phys.scn_errors);
1865	ASSERT0(vd->vdev_children);
1866
1867	if (vd->vdev_resilver_txg == 0 ||
1868	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1869		return (B_TRUE);
1870
1871	/*
1872	 * When a resilver is initiated the scan will assign the scn_max_txg
1873	 * value to the highest txg value that exists in all DTLs. If this
1874	 * device's max DTL is not part of this scan (i.e. it is not in
1875	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1876	 * for excision.
1877	 */
1878	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1879		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1880		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1881		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1882		return (B_TRUE);
1883	}
1884	return (B_FALSE);
1885}
1886
1887/*
1888 * Reassess DTLs after a config change or scrub completion.
1889 */
1890void
1891vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1892{
1893	spa_t *spa = vd->vdev_spa;
1894	avl_tree_t reftree;
1895	int minref;
1896
1897	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1898
1899	for (int c = 0; c < vd->vdev_children; c++)
1900		vdev_dtl_reassess(vd->vdev_child[c], txg,
1901		    scrub_txg, scrub_done);
1902
1903	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1904		return;
1905
1906	if (vd->vdev_ops->vdev_op_leaf) {
1907		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1908
1909		mutex_enter(&vd->vdev_dtl_lock);
1910
1911		/*
1912		 * If we've completed a scan cleanly then determine
1913		 * if this vdev should remove any DTLs. We only want to
1914		 * excise regions on vdevs that were available during
1915		 * the entire duration of this scan.
1916		 */
1917		if (scrub_txg != 0 &&
1918		    (spa->spa_scrub_started ||
1919		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1920		    vdev_dtl_should_excise(vd)) {
1921			/*
1922			 * We completed a scrub up to scrub_txg.  If we
1923			 * did it without rebooting, then the scrub dtl
1924			 * will be valid, so excise the old region and
1925			 * fold in the scrub dtl.  Otherwise, leave the
1926			 * dtl as-is if there was an error.
1927			 *
1928			 * There's little trick here: to excise the beginning
1929			 * of the DTL_MISSING map, we put it into a reference
1930			 * tree and then add a segment with refcnt -1 that
1931			 * covers the range [0, scrub_txg).  This means
1932			 * that each txg in that range has refcnt -1 or 0.
1933			 * We then add DTL_SCRUB with a refcnt of 2, so that
1934			 * entries in the range [0, scrub_txg) will have a
1935			 * positive refcnt -- either 1 or 2.  We then convert
1936			 * the reference tree into the new DTL_MISSING map.
1937			 */
1938			space_reftree_create(&reftree);
1939			space_reftree_add_map(&reftree,
1940			    vd->vdev_dtl[DTL_MISSING], 1);
1941			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1942			space_reftree_add_map(&reftree,
1943			    vd->vdev_dtl[DTL_SCRUB], 2);
1944			space_reftree_generate_map(&reftree,
1945			    vd->vdev_dtl[DTL_MISSING], 1);
1946			space_reftree_destroy(&reftree);
1947		}
1948		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1949		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1951		if (scrub_done)
1952			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1953		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1954		if (!vdev_readable(vd))
1955			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1956		else
1957			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1958			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1959
1960		/*
1961		 * If the vdev was resilvering and no longer has any
1962		 * DTLs then reset its resilvering flag and dirty
1963		 * the top level so that we persist the change.
1964		 */
1965		if (vd->vdev_resilver_txg != 0 &&
1966		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1967		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1968			vd->vdev_resilver_txg = 0;
1969			vdev_config_dirty(vd->vdev_top);
1970		}
1971
1972		mutex_exit(&vd->vdev_dtl_lock);
1973
1974		if (txg != 0)
1975			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1976		return;
1977	}
1978
1979	mutex_enter(&vd->vdev_dtl_lock);
1980	for (int t = 0; t < DTL_TYPES; t++) {
1981		/* account for child's outage in parent's missing map */
1982		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1983		if (t == DTL_SCRUB)
1984			continue;			/* leaf vdevs only */
1985		if (t == DTL_PARTIAL)
1986			minref = 1;			/* i.e. non-zero */
1987		else if (vd->vdev_nparity != 0)
1988			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1989		else
1990			minref = vd->vdev_children;	/* any kind of mirror */
1991		space_reftree_create(&reftree);
1992		for (int c = 0; c < vd->vdev_children; c++) {
1993			vdev_t *cvd = vd->vdev_child[c];
1994			mutex_enter(&cvd->vdev_dtl_lock);
1995			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1996			mutex_exit(&cvd->vdev_dtl_lock);
1997		}
1998		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1999		space_reftree_destroy(&reftree);
2000	}
2001	mutex_exit(&vd->vdev_dtl_lock);
2002}
2003
2004int
2005vdev_dtl_load(vdev_t *vd)
2006{
2007	spa_t *spa = vd->vdev_spa;
2008	objset_t *mos = spa->spa_meta_objset;
2009	int error = 0;
2010
2011	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2012		ASSERT(!vd->vdev_ishole);
2013
2014		error = space_map_open(&vd->vdev_dtl_sm, mos,
2015		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2016		if (error)
2017			return (error);
2018		ASSERT(vd->vdev_dtl_sm != NULL);
2019
2020		mutex_enter(&vd->vdev_dtl_lock);
2021
2022		/*
2023		 * Now that we've opened the space_map we need to update
2024		 * the in-core DTL.
2025		 */
2026		space_map_update(vd->vdev_dtl_sm);
2027
2028		error = space_map_load(vd->vdev_dtl_sm,
2029		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2030		mutex_exit(&vd->vdev_dtl_lock);
2031
2032		return (error);
2033	}
2034
2035	for (int c = 0; c < vd->vdev_children; c++) {
2036		error = vdev_dtl_load(vd->vdev_child[c]);
2037		if (error != 0)
2038			break;
2039	}
2040
2041	return (error);
2042}
2043
2044void
2045vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2046{
2047	spa_t *spa = vd->vdev_spa;
2048	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2049	objset_t *mos = spa->spa_meta_objset;
2050	range_tree_t *rtsync;
2051	kmutex_t rtlock;
2052	dmu_tx_t *tx;
2053	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2054
2055	ASSERT(!vd->vdev_ishole);
2056	ASSERT(vd->vdev_ops->vdev_op_leaf);
2057
2058	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2059
2060	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2061		mutex_enter(&vd->vdev_dtl_lock);
2062		space_map_free(vd->vdev_dtl_sm, tx);
2063		space_map_close(vd->vdev_dtl_sm);
2064		vd->vdev_dtl_sm = NULL;
2065		mutex_exit(&vd->vdev_dtl_lock);
2066		dmu_tx_commit(tx);
2067		return;
2068	}
2069
2070	if (vd->vdev_dtl_sm == NULL) {
2071		uint64_t new_object;
2072
2073		new_object = space_map_alloc(mos, tx);
2074		VERIFY3U(new_object, !=, 0);
2075
2076		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2077		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2078		ASSERT(vd->vdev_dtl_sm != NULL);
2079	}
2080
2081	bzero(&rtlock, sizeof(rtlock));
2082	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2083
2084	rtsync = range_tree_create(NULL, NULL, &rtlock);
2085
2086	mutex_enter(&rtlock);
2087
2088	mutex_enter(&vd->vdev_dtl_lock);
2089	range_tree_walk(rt, range_tree_add, rtsync);
2090	mutex_exit(&vd->vdev_dtl_lock);
2091
2092	space_map_truncate(vd->vdev_dtl_sm, tx);
2093	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2094	range_tree_vacate(rtsync, NULL, NULL);
2095
2096	range_tree_destroy(rtsync);
2097
2098	mutex_exit(&rtlock);
2099	mutex_destroy(&rtlock);
2100
2101	/*
2102	 * If the object for the space map has changed then dirty
2103	 * the top level so that we update the config.
2104	 */
2105	if (object != space_map_object(vd->vdev_dtl_sm)) {
2106		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2107		    "new object %llu", txg, spa_name(spa), object,
2108		    space_map_object(vd->vdev_dtl_sm));
2109		vdev_config_dirty(vd->vdev_top);
2110	}
2111
2112	dmu_tx_commit(tx);
2113
2114	mutex_enter(&vd->vdev_dtl_lock);
2115	space_map_update(vd->vdev_dtl_sm);
2116	mutex_exit(&vd->vdev_dtl_lock);
2117}
2118
2119/*
2120 * Determine whether the specified vdev can be offlined/detached/removed
2121 * without losing data.
2122 */
2123boolean_t
2124vdev_dtl_required(vdev_t *vd)
2125{
2126	spa_t *spa = vd->vdev_spa;
2127	vdev_t *tvd = vd->vdev_top;
2128	uint8_t cant_read = vd->vdev_cant_read;
2129	boolean_t required;
2130
2131	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2132
2133	if (vd == spa->spa_root_vdev || vd == tvd)
2134		return (B_TRUE);
2135
2136	/*
2137	 * Temporarily mark the device as unreadable, and then determine
2138	 * whether this results in any DTL outages in the top-level vdev.
2139	 * If not, we can safely offline/detach/remove the device.
2140	 */
2141	vd->vdev_cant_read = B_TRUE;
2142	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2143	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2144	vd->vdev_cant_read = cant_read;
2145	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2146
2147	if (!required && zio_injection_enabled)
2148		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2149
2150	return (required);
2151}
2152
2153/*
2154 * Determine if resilver is needed, and if so the txg range.
2155 */
2156boolean_t
2157vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2158{
2159	boolean_t needed = B_FALSE;
2160	uint64_t thismin = UINT64_MAX;
2161	uint64_t thismax = 0;
2162
2163	if (vd->vdev_children == 0) {
2164		mutex_enter(&vd->vdev_dtl_lock);
2165		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2166		    vdev_writeable(vd)) {
2167
2168			thismin = vdev_dtl_min(vd);
2169			thismax = vdev_dtl_max(vd);
2170			needed = B_TRUE;
2171		}
2172		mutex_exit(&vd->vdev_dtl_lock);
2173	} else {
2174		for (int c = 0; c < vd->vdev_children; c++) {
2175			vdev_t *cvd = vd->vdev_child[c];
2176			uint64_t cmin, cmax;
2177
2178			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2179				thismin = MIN(thismin, cmin);
2180				thismax = MAX(thismax, cmax);
2181				needed = B_TRUE;
2182			}
2183		}
2184	}
2185
2186	if (needed && minp) {
2187		*minp = thismin;
2188		*maxp = thismax;
2189	}
2190	return (needed);
2191}
2192
2193void
2194vdev_load(vdev_t *vd)
2195{
2196	/*
2197	 * Recursively load all children.
2198	 */
2199	for (int c = 0; c < vd->vdev_children; c++)
2200		vdev_load(vd->vdev_child[c]);
2201
2202	/*
2203	 * If this is a top-level vdev, initialize its metaslabs.
2204	 */
2205	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2206	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2207	    vdev_metaslab_init(vd, 0) != 0))
2208		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2209		    VDEV_AUX_CORRUPT_DATA);
2210
2211	/*
2212	 * If this is a leaf vdev, load its DTL.
2213	 */
2214	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2215		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2216		    VDEV_AUX_CORRUPT_DATA);
2217}
2218
2219/*
2220 * The special vdev case is used for hot spares and l2cache devices.  Its
2221 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2222 * we make sure that we can open the underlying device, then try to read the
2223 * label, and make sure that the label is sane and that it hasn't been
2224 * repurposed to another pool.
2225 */
2226int
2227vdev_validate_aux(vdev_t *vd)
2228{
2229	nvlist_t *label;
2230	uint64_t guid, version;
2231	uint64_t state;
2232
2233	if (!vdev_readable(vd))
2234		return (0);
2235
2236	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2237		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2238		    VDEV_AUX_CORRUPT_DATA);
2239		return (-1);
2240	}
2241
2242	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2243	    !SPA_VERSION_IS_SUPPORTED(version) ||
2244	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2245	    guid != vd->vdev_guid ||
2246	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2247		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2248		    VDEV_AUX_CORRUPT_DATA);
2249		nvlist_free(label);
2250		return (-1);
2251	}
2252
2253	/*
2254	 * We don't actually check the pool state here.  If it's in fact in
2255	 * use by another pool, we update this fact on the fly when requested.
2256	 */
2257	nvlist_free(label);
2258	return (0);
2259}
2260
2261void
2262vdev_remove(vdev_t *vd, uint64_t txg)
2263{
2264	spa_t *spa = vd->vdev_spa;
2265	objset_t *mos = spa->spa_meta_objset;
2266	dmu_tx_t *tx;
2267
2268	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2269
2270	if (vd->vdev_ms != NULL) {
2271		metaslab_group_t *mg = vd->vdev_mg;
2272
2273		metaslab_group_histogram_verify(mg);
2274		metaslab_class_histogram_verify(mg->mg_class);
2275
2276		for (int m = 0; m < vd->vdev_ms_count; m++) {
2277			metaslab_t *msp = vd->vdev_ms[m];
2278
2279			if (msp == NULL || msp->ms_sm == NULL)
2280				continue;
2281
2282			mutex_enter(&msp->ms_lock);
2283			/*
2284			 * If the metaslab was not loaded when the vdev
2285			 * was removed then the histogram accounting may
2286			 * not be accurate. Update the histogram information
2287			 * here so that we ensure that the metaslab group
2288			 * and metaslab class are up-to-date.
2289			 */
2290			metaslab_group_histogram_remove(mg, msp);
2291
2292			VERIFY0(space_map_allocated(msp->ms_sm));
2293			space_map_free(msp->ms_sm, tx);
2294			space_map_close(msp->ms_sm);
2295			msp->ms_sm = NULL;
2296			mutex_exit(&msp->ms_lock);
2297		}
2298
2299		metaslab_group_histogram_verify(mg);
2300		metaslab_class_histogram_verify(mg->mg_class);
2301		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2302			ASSERT0(mg->mg_histogram[i]);
2303
2304	}
2305
2306	if (vd->vdev_ms_array) {
2307		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2308		vd->vdev_ms_array = 0;
2309	}
2310	dmu_tx_commit(tx);
2311}
2312
2313void
2314vdev_sync_done(vdev_t *vd, uint64_t txg)
2315{
2316	metaslab_t *msp;
2317	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2318
2319	ASSERT(!vd->vdev_ishole);
2320
2321	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2322		metaslab_sync_done(msp, txg);
2323
2324	if (reassess)
2325		metaslab_sync_reassess(vd->vdev_mg);
2326}
2327
2328void
2329vdev_sync(vdev_t *vd, uint64_t txg)
2330{
2331	spa_t *spa = vd->vdev_spa;
2332	vdev_t *lvd;
2333	metaslab_t *msp;
2334	dmu_tx_t *tx;
2335
2336	ASSERT(!vd->vdev_ishole);
2337
2338	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2339		ASSERT(vd == vd->vdev_top);
2340		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2341		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2342		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2343		ASSERT(vd->vdev_ms_array != 0);
2344		vdev_config_dirty(vd);
2345		dmu_tx_commit(tx);
2346	}
2347
2348	/*
2349	 * Remove the metadata associated with this vdev once it's empty.
2350	 */
2351	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2352		vdev_remove(vd, txg);
2353
2354	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2355		metaslab_sync(msp, txg);
2356		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2357	}
2358
2359	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2360		vdev_dtl_sync(lvd, txg);
2361
2362	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2363}
2364
2365uint64_t
2366vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2367{
2368	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2369}
2370
2371/*
2372 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2373 * not be opened, and no I/O is attempted.
2374 */
2375int
2376vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2377{
2378	vdev_t *vd, *tvd;
2379
2380	spa_vdev_state_enter(spa, SCL_NONE);
2381
2382	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2383		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2384
2385	if (!vd->vdev_ops->vdev_op_leaf)
2386		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2387
2388	tvd = vd->vdev_top;
2389
2390	/*
2391	 * We don't directly use the aux state here, but if we do a
2392	 * vdev_reopen(), we need this value to be present to remember why we
2393	 * were faulted.
2394	 */
2395	vd->vdev_label_aux = aux;
2396
2397	/*
2398	 * Faulted state takes precedence over degraded.
2399	 */
2400	vd->vdev_delayed_close = B_FALSE;
2401	vd->vdev_faulted = 1ULL;
2402	vd->vdev_degraded = 0ULL;
2403	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2404
2405	/*
2406	 * If this device has the only valid copy of the data, then
2407	 * back off and simply mark the vdev as degraded instead.
2408	 */
2409	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2410		vd->vdev_degraded = 1ULL;
2411		vd->vdev_faulted = 0ULL;
2412
2413		/*
2414		 * If we reopen the device and it's not dead, only then do we
2415		 * mark it degraded.
2416		 */
2417		vdev_reopen(tvd);
2418
2419		if (vdev_readable(vd))
2420			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2421	}
2422
2423	return (spa_vdev_state_exit(spa, vd, 0));
2424}
2425
2426/*
2427 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2428 * user that something is wrong.  The vdev continues to operate as normal as far
2429 * as I/O is concerned.
2430 */
2431int
2432vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2433{
2434	vdev_t *vd;
2435
2436	spa_vdev_state_enter(spa, SCL_NONE);
2437
2438	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2439		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2440
2441	if (!vd->vdev_ops->vdev_op_leaf)
2442		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2443
2444	/*
2445	 * If the vdev is already faulted, then don't do anything.
2446	 */
2447	if (vd->vdev_faulted || vd->vdev_degraded)
2448		return (spa_vdev_state_exit(spa, NULL, 0));
2449
2450	vd->vdev_degraded = 1ULL;
2451	if (!vdev_is_dead(vd))
2452		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2453		    aux);
2454
2455	return (spa_vdev_state_exit(spa, vd, 0));
2456}
2457
2458/*
2459 * Online the given vdev.
2460 *
2461 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2462 * spare device should be detached when the device finishes resilvering.
2463 * Second, the online should be treated like a 'test' online case, so no FMA
2464 * events are generated if the device fails to open.
2465 */
2466int
2467vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2468{
2469	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2470
2471	spa_vdev_state_enter(spa, SCL_NONE);
2472
2473	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2474		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2475
2476	if (!vd->vdev_ops->vdev_op_leaf)
2477		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2478
2479	tvd = vd->vdev_top;
2480	vd->vdev_offline = B_FALSE;
2481	vd->vdev_tmpoffline = B_FALSE;
2482	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2483	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2484
2485	/* XXX - L2ARC 1.0 does not support expansion */
2486	if (!vd->vdev_aux) {
2487		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2488			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2489	}
2490
2491	vdev_reopen(tvd);
2492	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2493
2494	if (!vd->vdev_aux) {
2495		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2496			pvd->vdev_expanding = B_FALSE;
2497	}
2498
2499	if (newstate)
2500		*newstate = vd->vdev_state;
2501	if ((flags & ZFS_ONLINE_UNSPARE) &&
2502	    !vdev_is_dead(vd) && vd->vdev_parent &&
2503	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2504	    vd->vdev_parent->vdev_child[0] == vd)
2505		vd->vdev_unspare = B_TRUE;
2506
2507	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2508
2509		/* XXX - L2ARC 1.0 does not support expansion */
2510		if (vd->vdev_aux)
2511			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2512		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2513	}
2514	return (spa_vdev_state_exit(spa, vd, 0));
2515}
2516
2517static int
2518vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2519{
2520	vdev_t *vd, *tvd;
2521	int error = 0;
2522	uint64_t generation;
2523	metaslab_group_t *mg;
2524
2525top:
2526	spa_vdev_state_enter(spa, SCL_ALLOC);
2527
2528	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2529		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2530
2531	if (!vd->vdev_ops->vdev_op_leaf)
2532		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2533
2534	tvd = vd->vdev_top;
2535	mg = tvd->vdev_mg;
2536	generation = spa->spa_config_generation + 1;
2537
2538	/*
2539	 * If the device isn't already offline, try to offline it.
2540	 */
2541	if (!vd->vdev_offline) {
2542		/*
2543		 * If this device has the only valid copy of some data,
2544		 * don't allow it to be offlined. Log devices are always
2545		 * expendable.
2546		 */
2547		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2548		    vdev_dtl_required(vd))
2549			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2550
2551		/*
2552		 * If the top-level is a slog and it has had allocations
2553		 * then proceed.  We check that the vdev's metaslab group
2554		 * is not NULL since it's possible that we may have just
2555		 * added this vdev but not yet initialized its metaslabs.
2556		 */
2557		if (tvd->vdev_islog && mg != NULL) {
2558			/*
2559			 * Prevent any future allocations.
2560			 */
2561			metaslab_group_passivate(mg);
2562			(void) spa_vdev_state_exit(spa, vd, 0);
2563
2564			error = spa_offline_log(spa);
2565
2566			spa_vdev_state_enter(spa, SCL_ALLOC);
2567
2568			/*
2569			 * Check to see if the config has changed.
2570			 */
2571			if (error || generation != spa->spa_config_generation) {
2572				metaslab_group_activate(mg);
2573				if (error)
2574					return (spa_vdev_state_exit(spa,
2575					    vd, error));
2576				(void) spa_vdev_state_exit(spa, vd, 0);
2577				goto top;
2578			}
2579			ASSERT0(tvd->vdev_stat.vs_alloc);
2580		}
2581
2582		/*
2583		 * Offline this device and reopen its top-level vdev.
2584		 * If the top-level vdev is a log device then just offline
2585		 * it. Otherwise, if this action results in the top-level
2586		 * vdev becoming unusable, undo it and fail the request.
2587		 */
2588		vd->vdev_offline = B_TRUE;
2589		vdev_reopen(tvd);
2590
2591		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2592		    vdev_is_dead(tvd)) {
2593			vd->vdev_offline = B_FALSE;
2594			vdev_reopen(tvd);
2595			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2596		}
2597
2598		/*
2599		 * Add the device back into the metaslab rotor so that
2600		 * once we online the device it's open for business.
2601		 */
2602		if (tvd->vdev_islog && mg != NULL)
2603			metaslab_group_activate(mg);
2604	}
2605
2606	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2607
2608	return (spa_vdev_state_exit(spa, vd, 0));
2609}
2610
2611int
2612vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2613{
2614	int error;
2615
2616	mutex_enter(&spa->spa_vdev_top_lock);
2617	error = vdev_offline_locked(spa, guid, flags);
2618	mutex_exit(&spa->spa_vdev_top_lock);
2619
2620	return (error);
2621}
2622
2623/*
2624 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2625 * vdev_offline(), we assume the spa config is locked.  We also clear all
2626 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2627 */
2628void
2629vdev_clear(spa_t *spa, vdev_t *vd)
2630{
2631	vdev_t *rvd = spa->spa_root_vdev;
2632
2633	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2634
2635	if (vd == NULL)
2636		vd = rvd;
2637
2638	vd->vdev_stat.vs_read_errors = 0;
2639	vd->vdev_stat.vs_write_errors = 0;
2640	vd->vdev_stat.vs_checksum_errors = 0;
2641
2642	for (int c = 0; c < vd->vdev_children; c++)
2643		vdev_clear(spa, vd->vdev_child[c]);
2644
2645	if (vd == rvd) {
2646		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2647			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2648
2649		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2650			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2651	}
2652
2653	/*
2654	 * If we're in the FAULTED state or have experienced failed I/O, then
2655	 * clear the persistent state and attempt to reopen the device.  We
2656	 * also mark the vdev config dirty, so that the new faulted state is
2657	 * written out to disk.
2658	 */
2659	if (vd->vdev_faulted || vd->vdev_degraded ||
2660	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2661
2662		/*
2663		 * When reopening in reponse to a clear event, it may be due to
2664		 * a fmadm repair request.  In this case, if the device is
2665		 * still broken, we want to still post the ereport again.
2666		 */
2667		vd->vdev_forcefault = B_TRUE;
2668
2669		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2670		vd->vdev_cant_read = B_FALSE;
2671		vd->vdev_cant_write = B_FALSE;
2672
2673		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2674
2675		vd->vdev_forcefault = B_FALSE;
2676
2677		if (vd != rvd && vdev_writeable(vd->vdev_top))
2678			vdev_state_dirty(vd->vdev_top);
2679
2680		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2681			spa_async_request(spa, SPA_ASYNC_RESILVER);
2682
2683		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2684	}
2685
2686	/*
2687	 * When clearing a FMA-diagnosed fault, we always want to
2688	 * unspare the device, as we assume that the original spare was
2689	 * done in response to the FMA fault.
2690	 */
2691	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2692	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2693	    vd->vdev_parent->vdev_child[0] == vd)
2694		vd->vdev_unspare = B_TRUE;
2695}
2696
2697boolean_t
2698vdev_is_dead(vdev_t *vd)
2699{
2700	/*
2701	 * Holes and missing devices are always considered "dead".
2702	 * This simplifies the code since we don't have to check for
2703	 * these types of devices in the various code paths.
2704	 * Instead we rely on the fact that we skip over dead devices
2705	 * before issuing I/O to them.
2706	 */
2707	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2708	    vd->vdev_ops == &vdev_missing_ops);
2709}
2710
2711boolean_t
2712vdev_readable(vdev_t *vd)
2713{
2714	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2715}
2716
2717boolean_t
2718vdev_writeable(vdev_t *vd)
2719{
2720	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2721}
2722
2723boolean_t
2724vdev_allocatable(vdev_t *vd)
2725{
2726	uint64_t state = vd->vdev_state;
2727
2728	/*
2729	 * We currently allow allocations from vdevs which may be in the
2730	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2731	 * fails to reopen then we'll catch it later when we're holding
2732	 * the proper locks.  Note that we have to get the vdev state
2733	 * in a local variable because although it changes atomically,
2734	 * we're asking two separate questions about it.
2735	 */
2736	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2737	    !vd->vdev_cant_write && !vd->vdev_ishole);
2738}
2739
2740boolean_t
2741vdev_accessible(vdev_t *vd, zio_t *zio)
2742{
2743	ASSERT(zio->io_vd == vd);
2744
2745	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2746		return (B_FALSE);
2747
2748	if (zio->io_type == ZIO_TYPE_READ)
2749		return (!vd->vdev_cant_read);
2750
2751	if (zio->io_type == ZIO_TYPE_WRITE)
2752		return (!vd->vdev_cant_write);
2753
2754	return (B_TRUE);
2755}
2756
2757/*
2758 * Get statistics for the given vdev.
2759 */
2760void
2761vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2762{
2763	spa_t *spa = vd->vdev_spa;
2764	vdev_t *rvd = spa->spa_root_vdev;
2765
2766	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2767
2768	mutex_enter(&vd->vdev_stat_lock);
2769	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2770	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2771	vs->vs_state = vd->vdev_state;
2772	vs->vs_rsize = vdev_get_min_asize(vd);
2773	if (vd->vdev_ops->vdev_op_leaf)
2774		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2775	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2776	vs->vs_configured_ashift = vd->vdev_top != NULL
2777	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2778	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2779	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2780	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2781		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2782	}
2783
2784	/*
2785	 * If we're getting stats on the root vdev, aggregate the I/O counts
2786	 * over all top-level vdevs (i.e. the direct children of the root).
2787	 */
2788	if (vd == rvd) {
2789		for (int c = 0; c < rvd->vdev_children; c++) {
2790			vdev_t *cvd = rvd->vdev_child[c];
2791			vdev_stat_t *cvs = &cvd->vdev_stat;
2792
2793			for (int t = 0; t < ZIO_TYPES; t++) {
2794				vs->vs_ops[t] += cvs->vs_ops[t];
2795				vs->vs_bytes[t] += cvs->vs_bytes[t];
2796			}
2797			cvs->vs_scan_removing = cvd->vdev_removing;
2798		}
2799	}
2800	mutex_exit(&vd->vdev_stat_lock);
2801}
2802
2803void
2804vdev_clear_stats(vdev_t *vd)
2805{
2806	mutex_enter(&vd->vdev_stat_lock);
2807	vd->vdev_stat.vs_space = 0;
2808	vd->vdev_stat.vs_dspace = 0;
2809	vd->vdev_stat.vs_alloc = 0;
2810	mutex_exit(&vd->vdev_stat_lock);
2811}
2812
2813void
2814vdev_scan_stat_init(vdev_t *vd)
2815{
2816	vdev_stat_t *vs = &vd->vdev_stat;
2817
2818	for (int c = 0; c < vd->vdev_children; c++)
2819		vdev_scan_stat_init(vd->vdev_child[c]);
2820
2821	mutex_enter(&vd->vdev_stat_lock);
2822	vs->vs_scan_processed = 0;
2823	mutex_exit(&vd->vdev_stat_lock);
2824}
2825
2826void
2827vdev_stat_update(zio_t *zio, uint64_t psize)
2828{
2829	spa_t *spa = zio->io_spa;
2830	vdev_t *rvd = spa->spa_root_vdev;
2831	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2832	vdev_t *pvd;
2833	uint64_t txg = zio->io_txg;
2834	vdev_stat_t *vs = &vd->vdev_stat;
2835	zio_type_t type = zio->io_type;
2836	int flags = zio->io_flags;
2837
2838	/*
2839	 * If this i/o is a gang leader, it didn't do any actual work.
2840	 */
2841	if (zio->io_gang_tree)
2842		return;
2843
2844	if (zio->io_error == 0) {
2845		/*
2846		 * If this is a root i/o, don't count it -- we've already
2847		 * counted the top-level vdevs, and vdev_get_stats() will
2848		 * aggregate them when asked.  This reduces contention on
2849		 * the root vdev_stat_lock and implicitly handles blocks
2850		 * that compress away to holes, for which there is no i/o.
2851		 * (Holes never create vdev children, so all the counters
2852		 * remain zero, which is what we want.)
2853		 *
2854		 * Note: this only applies to successful i/o (io_error == 0)
2855		 * because unlike i/o counts, errors are not additive.
2856		 * When reading a ditto block, for example, failure of
2857		 * one top-level vdev does not imply a root-level error.
2858		 */
2859		if (vd == rvd)
2860			return;
2861
2862		ASSERT(vd == zio->io_vd);
2863
2864		if (flags & ZIO_FLAG_IO_BYPASS)
2865			return;
2866
2867		mutex_enter(&vd->vdev_stat_lock);
2868
2869		if (flags & ZIO_FLAG_IO_REPAIR) {
2870			if (flags & ZIO_FLAG_SCAN_THREAD) {
2871				dsl_scan_phys_t *scn_phys =
2872				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2873				uint64_t *processed = &scn_phys->scn_processed;
2874
2875				/* XXX cleanup? */
2876				if (vd->vdev_ops->vdev_op_leaf)
2877					atomic_add_64(processed, psize);
2878				vs->vs_scan_processed += psize;
2879			}
2880
2881			if (flags & ZIO_FLAG_SELF_HEAL)
2882				vs->vs_self_healed += psize;
2883		}
2884
2885		vs->vs_ops[type]++;
2886		vs->vs_bytes[type] += psize;
2887
2888		mutex_exit(&vd->vdev_stat_lock);
2889		return;
2890	}
2891
2892	if (flags & ZIO_FLAG_SPECULATIVE)
2893		return;
2894
2895	/*
2896	 * If this is an I/O error that is going to be retried, then ignore the
2897	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2898	 * hard errors, when in reality they can happen for any number of
2899	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2900	 */
2901	if (zio->io_error == EIO &&
2902	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2903		return;
2904
2905	/*
2906	 * Intent logs writes won't propagate their error to the root
2907	 * I/O so don't mark these types of failures as pool-level
2908	 * errors.
2909	 */
2910	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2911		return;
2912
2913	mutex_enter(&vd->vdev_stat_lock);
2914	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2915		if (zio->io_error == ECKSUM)
2916			vs->vs_checksum_errors++;
2917		else
2918			vs->vs_read_errors++;
2919	}
2920	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2921		vs->vs_write_errors++;
2922	mutex_exit(&vd->vdev_stat_lock);
2923
2924	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2925	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2926	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2927	    spa->spa_claiming)) {
2928		/*
2929		 * This is either a normal write (not a repair), or it's
2930		 * a repair induced by the scrub thread, or it's a repair
2931		 * made by zil_claim() during spa_load() in the first txg.
2932		 * In the normal case, we commit the DTL change in the same
2933		 * txg as the block was born.  In the scrub-induced repair
2934		 * case, we know that scrubs run in first-pass syncing context,
2935		 * so we commit the DTL change in spa_syncing_txg(spa).
2936		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2937		 *
2938		 * We currently do not make DTL entries for failed spontaneous
2939		 * self-healing writes triggered by normal (non-scrubbing)
2940		 * reads, because we have no transactional context in which to
2941		 * do so -- and it's not clear that it'd be desirable anyway.
2942		 */
2943		if (vd->vdev_ops->vdev_op_leaf) {
2944			uint64_t commit_txg = txg;
2945			if (flags & ZIO_FLAG_SCAN_THREAD) {
2946				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2947				ASSERT(spa_sync_pass(spa) == 1);
2948				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2949				commit_txg = spa_syncing_txg(spa);
2950			} else if (spa->spa_claiming) {
2951				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2952				commit_txg = spa_first_txg(spa);
2953			}
2954			ASSERT(commit_txg >= spa_syncing_txg(spa));
2955			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2956				return;
2957			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2958				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2959			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2960		}
2961		if (vd != rvd)
2962			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2963	}
2964}
2965
2966/*
2967 * Update the in-core space usage stats for this vdev, its metaslab class,
2968 * and the root vdev.
2969 */
2970void
2971vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2972    int64_t space_delta)
2973{
2974	int64_t dspace_delta = space_delta;
2975	spa_t *spa = vd->vdev_spa;
2976	vdev_t *rvd = spa->spa_root_vdev;
2977	metaslab_group_t *mg = vd->vdev_mg;
2978	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2979
2980	ASSERT(vd == vd->vdev_top);
2981
2982	/*
2983	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2984	 * factor.  We must calculate this here and not at the root vdev
2985	 * because the root vdev's psize-to-asize is simply the max of its
2986	 * childrens', thus not accurate enough for us.
2987	 */
2988	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2989	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2990	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2991	    vd->vdev_deflate_ratio;
2992
2993	mutex_enter(&vd->vdev_stat_lock);
2994	vd->vdev_stat.vs_alloc += alloc_delta;
2995	vd->vdev_stat.vs_space += space_delta;
2996	vd->vdev_stat.vs_dspace += dspace_delta;
2997	mutex_exit(&vd->vdev_stat_lock);
2998
2999	if (mc == spa_normal_class(spa)) {
3000		mutex_enter(&rvd->vdev_stat_lock);
3001		rvd->vdev_stat.vs_alloc += alloc_delta;
3002		rvd->vdev_stat.vs_space += space_delta;
3003		rvd->vdev_stat.vs_dspace += dspace_delta;
3004		mutex_exit(&rvd->vdev_stat_lock);
3005	}
3006
3007	if (mc != NULL) {
3008		ASSERT(rvd == vd->vdev_parent);
3009		ASSERT(vd->vdev_ms_count != 0);
3010
3011		metaslab_class_space_update(mc,
3012		    alloc_delta, defer_delta, space_delta, dspace_delta);
3013	}
3014}
3015
3016/*
3017 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3018 * so that it will be written out next time the vdev configuration is synced.
3019 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3020 */
3021void
3022vdev_config_dirty(vdev_t *vd)
3023{
3024	spa_t *spa = vd->vdev_spa;
3025	vdev_t *rvd = spa->spa_root_vdev;
3026	int c;
3027
3028	ASSERT(spa_writeable(spa));
3029
3030	/*
3031	 * If this is an aux vdev (as with l2cache and spare devices), then we
3032	 * update the vdev config manually and set the sync flag.
3033	 */
3034	if (vd->vdev_aux != NULL) {
3035		spa_aux_vdev_t *sav = vd->vdev_aux;
3036		nvlist_t **aux;
3037		uint_t naux;
3038
3039		for (c = 0; c < sav->sav_count; c++) {
3040			if (sav->sav_vdevs[c] == vd)
3041				break;
3042		}
3043
3044		if (c == sav->sav_count) {
3045			/*
3046			 * We're being removed.  There's nothing more to do.
3047			 */
3048			ASSERT(sav->sav_sync == B_TRUE);
3049			return;
3050		}
3051
3052		sav->sav_sync = B_TRUE;
3053
3054		if (nvlist_lookup_nvlist_array(sav->sav_config,
3055		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3056			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3057			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3058		}
3059
3060		ASSERT(c < naux);
3061
3062		/*
3063		 * Setting the nvlist in the middle if the array is a little
3064		 * sketchy, but it will work.
3065		 */
3066		nvlist_free(aux[c]);
3067		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3068
3069		return;
3070	}
3071
3072	/*
3073	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3074	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3075	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3076	 * so this is sufficient to ensure mutual exclusion.
3077	 */
3078	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3079	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3080	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3081
3082	if (vd == rvd) {
3083		for (c = 0; c < rvd->vdev_children; c++)
3084			vdev_config_dirty(rvd->vdev_child[c]);
3085	} else {
3086		ASSERT(vd == vd->vdev_top);
3087
3088		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3089		    !vd->vdev_ishole)
3090			list_insert_head(&spa->spa_config_dirty_list, vd);
3091	}
3092}
3093
3094void
3095vdev_config_clean(vdev_t *vd)
3096{
3097	spa_t *spa = vd->vdev_spa;
3098
3099	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3100	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3101	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3102
3103	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3104	list_remove(&spa->spa_config_dirty_list, vd);
3105}
3106
3107/*
3108 * Mark a top-level vdev's state as dirty, so that the next pass of
3109 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3110 * the state changes from larger config changes because they require
3111 * much less locking, and are often needed for administrative actions.
3112 */
3113void
3114vdev_state_dirty(vdev_t *vd)
3115{
3116	spa_t *spa = vd->vdev_spa;
3117
3118	ASSERT(spa_writeable(spa));
3119	ASSERT(vd == vd->vdev_top);
3120
3121	/*
3122	 * The state list is protected by the SCL_STATE lock.  The caller
3123	 * must either hold SCL_STATE as writer, or must be the sync thread
3124	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3125	 * so this is sufficient to ensure mutual exclusion.
3126	 */
3127	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3128	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3129	    spa_config_held(spa, SCL_STATE, RW_READER)));
3130
3131	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3132		list_insert_head(&spa->spa_state_dirty_list, vd);
3133}
3134
3135void
3136vdev_state_clean(vdev_t *vd)
3137{
3138	spa_t *spa = vd->vdev_spa;
3139
3140	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3141	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3142	    spa_config_held(spa, SCL_STATE, RW_READER)));
3143
3144	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3145	list_remove(&spa->spa_state_dirty_list, vd);
3146}
3147
3148/*
3149 * Propagate vdev state up from children to parent.
3150 */
3151void
3152vdev_propagate_state(vdev_t *vd)
3153{
3154	spa_t *spa = vd->vdev_spa;
3155	vdev_t *rvd = spa->spa_root_vdev;
3156	int degraded = 0, faulted = 0;
3157	int corrupted = 0;
3158	vdev_t *child;
3159
3160	if (vd->vdev_children > 0) {
3161		for (int c = 0; c < vd->vdev_children; c++) {
3162			child = vd->vdev_child[c];
3163
3164			/*
3165			 * Don't factor holes into the decision.
3166			 */
3167			if (child->vdev_ishole)
3168				continue;
3169
3170			if (!vdev_readable(child) ||
3171			    (!vdev_writeable(child) && spa_writeable(spa))) {
3172				/*
3173				 * Root special: if there is a top-level log
3174				 * device, treat the root vdev as if it were
3175				 * degraded.
3176				 */
3177				if (child->vdev_islog && vd == rvd)
3178					degraded++;
3179				else
3180					faulted++;
3181			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3182				degraded++;
3183			}
3184
3185			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3186				corrupted++;
3187		}
3188
3189		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3190
3191		/*
3192		 * Root special: if there is a top-level vdev that cannot be
3193		 * opened due to corrupted metadata, then propagate the root
3194		 * vdev's aux state as 'corrupt' rather than 'insufficient
3195		 * replicas'.
3196		 */
3197		if (corrupted && vd == rvd &&
3198		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3199			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3200			    VDEV_AUX_CORRUPT_DATA);
3201	}
3202
3203	if (vd->vdev_parent)
3204		vdev_propagate_state(vd->vdev_parent);
3205}
3206
3207/*
3208 * Set a vdev's state.  If this is during an open, we don't update the parent
3209 * state, because we're in the process of opening children depth-first.
3210 * Otherwise, we propagate the change to the parent.
3211 *
3212 * If this routine places a device in a faulted state, an appropriate ereport is
3213 * generated.
3214 */
3215void
3216vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3217{
3218	uint64_t save_state;
3219	spa_t *spa = vd->vdev_spa;
3220
3221	if (state == vd->vdev_state) {
3222		vd->vdev_stat.vs_aux = aux;
3223		return;
3224	}
3225
3226	save_state = vd->vdev_state;
3227
3228	vd->vdev_state = state;
3229	vd->vdev_stat.vs_aux = aux;
3230
3231	/*
3232	 * If we are setting the vdev state to anything but an open state, then
3233	 * always close the underlying device unless the device has requested
3234	 * a delayed close (i.e. we're about to remove or fault the device).
3235	 * Otherwise, we keep accessible but invalid devices open forever.
3236	 * We don't call vdev_close() itself, because that implies some extra
3237	 * checks (offline, etc) that we don't want here.  This is limited to
3238	 * leaf devices, because otherwise closing the device will affect other
3239	 * children.
3240	 */
3241	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3242	    vd->vdev_ops->vdev_op_leaf)
3243		vd->vdev_ops->vdev_op_close(vd);
3244
3245	/*
3246	 * If we have brought this vdev back into service, we need
3247	 * to notify fmd so that it can gracefully repair any outstanding
3248	 * cases due to a missing device.  We do this in all cases, even those
3249	 * that probably don't correlate to a repaired fault.  This is sure to
3250	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3251	 * this is a transient state it's OK, as the retire agent will
3252	 * double-check the state of the vdev before repairing it.
3253	 */
3254	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3255	    vd->vdev_prevstate != state)
3256		zfs_post_state_change(spa, vd);
3257
3258	if (vd->vdev_removed &&
3259	    state == VDEV_STATE_CANT_OPEN &&
3260	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3261		/*
3262		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3263		 * device was previously marked removed and someone attempted to
3264		 * reopen it.  If this failed due to a nonexistent device, then
3265		 * keep the device in the REMOVED state.  We also let this be if
3266		 * it is one of our special test online cases, which is only
3267		 * attempting to online the device and shouldn't generate an FMA
3268		 * fault.
3269		 */
3270		vd->vdev_state = VDEV_STATE_REMOVED;
3271		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3272	} else if (state == VDEV_STATE_REMOVED) {
3273		vd->vdev_removed = B_TRUE;
3274	} else if (state == VDEV_STATE_CANT_OPEN) {
3275		/*
3276		 * If we fail to open a vdev during an import or recovery, we
3277		 * mark it as "not available", which signifies that it was
3278		 * never there to begin with.  Failure to open such a device
3279		 * is not considered an error.
3280		 */
3281		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3282		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3283		    vd->vdev_ops->vdev_op_leaf)
3284			vd->vdev_not_present = 1;
3285
3286		/*
3287		 * Post the appropriate ereport.  If the 'prevstate' field is
3288		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3289		 * that this is part of a vdev_reopen().  In this case, we don't
3290		 * want to post the ereport if the device was already in the
3291		 * CANT_OPEN state beforehand.
3292		 *
3293		 * If the 'checkremove' flag is set, then this is an attempt to
3294		 * online the device in response to an insertion event.  If we
3295		 * hit this case, then we have detected an insertion event for a
3296		 * faulted or offline device that wasn't in the removed state.
3297		 * In this scenario, we don't post an ereport because we are
3298		 * about to replace the device, or attempt an online with
3299		 * vdev_forcefault, which will generate the fault for us.
3300		 */
3301		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3302		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3303		    vd != spa->spa_root_vdev) {
3304			const char *class;
3305
3306			switch (aux) {
3307			case VDEV_AUX_OPEN_FAILED:
3308				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3309				break;
3310			case VDEV_AUX_CORRUPT_DATA:
3311				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3312				break;
3313			case VDEV_AUX_NO_REPLICAS:
3314				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3315				break;
3316			case VDEV_AUX_BAD_GUID_SUM:
3317				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3318				break;
3319			case VDEV_AUX_TOO_SMALL:
3320				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3321				break;
3322			case VDEV_AUX_BAD_LABEL:
3323				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3324				break;
3325			default:
3326				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3327			}
3328
3329			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3330		}
3331
3332		/* Erase any notion of persistent removed state */
3333		vd->vdev_removed = B_FALSE;
3334	} else {
3335		vd->vdev_removed = B_FALSE;
3336	}
3337
3338	if (!isopen && vd->vdev_parent)
3339		vdev_propagate_state(vd->vdev_parent);
3340}
3341
3342/*
3343 * Check the vdev configuration to ensure that it's capable of supporting
3344 * a root pool.
3345 *
3346 * On Solaris, we do not support RAID-Z or partial configuration.  In
3347 * addition, only a single top-level vdev is allowed and none of the
3348 * leaves can be wholedisks.
3349 *
3350 * For FreeBSD, we can boot from any configuration. There is a
3351 * limitation that the boot filesystem must be either uncompressed or
3352 * compresses with lzjb compression but I'm not sure how to enforce
3353 * that here.
3354 */
3355boolean_t
3356vdev_is_bootable(vdev_t *vd)
3357{
3358#ifdef sun
3359	if (!vd->vdev_ops->vdev_op_leaf) {
3360		char *vdev_type = vd->vdev_ops->vdev_op_type;
3361
3362		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3363		    vd->vdev_children > 1) {
3364			return (B_FALSE);
3365		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3366		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3367			return (B_FALSE);
3368		}
3369	} else if (vd->vdev_wholedisk == 1) {
3370		return (B_FALSE);
3371	}
3372
3373	for (int c = 0; c < vd->vdev_children; c++) {
3374		if (!vdev_is_bootable(vd->vdev_child[c]))
3375			return (B_FALSE);
3376	}
3377#endif	/* sun */
3378	return (B_TRUE);
3379}
3380
3381/*
3382 * Load the state from the original vdev tree (ovd) which
3383 * we've retrieved from the MOS config object. If the original
3384 * vdev was offline or faulted then we transfer that state to the
3385 * device in the current vdev tree (nvd).
3386 */
3387void
3388vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3389{
3390	spa_t *spa = nvd->vdev_spa;
3391
3392	ASSERT(nvd->vdev_top->vdev_islog);
3393	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3394	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3395
3396	for (int c = 0; c < nvd->vdev_children; c++)
3397		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3398
3399	if (nvd->vdev_ops->vdev_op_leaf) {
3400		/*
3401		 * Restore the persistent vdev state
3402		 */
3403		nvd->vdev_offline = ovd->vdev_offline;
3404		nvd->vdev_faulted = ovd->vdev_faulted;
3405		nvd->vdev_degraded = ovd->vdev_degraded;
3406		nvd->vdev_removed = ovd->vdev_removed;
3407	}
3408}
3409
3410/*
3411 * Determine if a log device has valid content.  If the vdev was
3412 * removed or faulted in the MOS config then we know that
3413 * the content on the log device has already been written to the pool.
3414 */
3415boolean_t
3416vdev_log_state_valid(vdev_t *vd)
3417{
3418	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3419	    !vd->vdev_removed)
3420		return (B_TRUE);
3421
3422	for (int c = 0; c < vd->vdev_children; c++)
3423		if (vdev_log_state_valid(vd->vdev_child[c]))
3424			return (B_TRUE);
3425
3426	return (B_FALSE);
3427}
3428
3429/*
3430 * Expand a vdev if possible.
3431 */
3432void
3433vdev_expand(vdev_t *vd, uint64_t txg)
3434{
3435	ASSERT(vd->vdev_top == vd);
3436	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3437
3438	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3439		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3440		vdev_config_dirty(vd);
3441	}
3442}
3443
3444/*
3445 * Split a vdev.
3446 */
3447void
3448vdev_split(vdev_t *vd)
3449{
3450	vdev_t *cvd, *pvd = vd->vdev_parent;
3451
3452	vdev_remove_child(pvd, vd);
3453	vdev_compact_children(pvd);
3454
3455	cvd = pvd->vdev_child[0];
3456	if (pvd->vdev_children == 1) {
3457		vdev_remove_parent(cvd);
3458		cvd->vdev_splitting = B_TRUE;
3459	}
3460	vdev_propagate_state(cvd);
3461}
3462
3463void
3464vdev_deadman(vdev_t *vd)
3465{
3466	for (int c = 0; c < vd->vdev_children; c++) {
3467		vdev_t *cvd = vd->vdev_child[c];
3468
3469		vdev_deadman(cvd);
3470	}
3471
3472	if (vd->vdev_ops->vdev_op_leaf) {
3473		vdev_queue_t *vq = &vd->vdev_queue;
3474
3475		mutex_enter(&vq->vq_lock);
3476		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3477			spa_t *spa = vd->vdev_spa;
3478			zio_t *fio;
3479			uint64_t delta;
3480
3481			/*
3482			 * Look at the head of all the pending queues,
3483			 * if any I/O has been outstanding for longer than
3484			 * the spa_deadman_synctime we panic the system.
3485			 */
3486			fio = avl_first(&vq->vq_active_tree);
3487			delta = gethrtime() - fio->io_timestamp;
3488			if (delta > spa_deadman_synctime(spa)) {
3489				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3490				    "delta %lluns, last io %lluns",
3491				    fio->io_timestamp, delta,
3492				    vq->vq_io_complete_ts);
3493				fm_panic("I/O to pool '%s' appears to be "
3494				    "hung on vdev guid %llu at '%s'.",
3495				    spa_name(spa),
3496				    (long long unsigned int) vd->vdev_guid,
3497				    vd->vdev_path);
3498			}
3499		}
3500		mutex_exit(&vq->vq_lock);
3501	}
3502}
3503