vdev.c revision 269773
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/*
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *          zfs_min_auto_ashift = 9 (512 bytes)
65 *
66 * On pool creation or the addition of a new top-level vdev, ZFS will
67 * increase the ashift of the top-level vdev to 2048 as limited by
68 * zfs_max_auto_ashift.
69 *
70 * Example: one or more 512B emulation child vdevs
71 *          child->vdev_ashift = 9 (512 bytes)
72 *          child->vdev_physical_ashift = 12 (4096 bytes)
73 *          zfs_max_auto_ashift = 13 (8192 bytes)
74 *          zfs_min_auto_ashift = 9 (512 bytes)
75 *
76 * On pool creation or the addition of a new top-level vdev, ZFS will
77 * increase the ashift of the top-level vdev to 4096 to match the
78 * max vdev_physical_ashift.
79 *
80 * Example: one or more 512B emulation child vdevs
81 *          child->vdev_ashift = 9 (512 bytes)
82 *          child->vdev_physical_ashift = 9 (512 bytes)
83 *          zfs_max_auto_ashift = 13 (8192 bytes)
84 *          zfs_min_auto_ashift = 12 (4096 bytes)
85 *
86 * On pool creation or the addition of a new top-level vdev, ZFS will
87 * increase the ashift of the top-level vdev to 4096 to match the
88 * zfs_min_auto_ashift.
89 */
90static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
91static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
92
93static int
94sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
95{
96	uint64_t val;
97	int err;
98
99	val = zfs_max_auto_ashift;
100	err = sysctl_handle_64(oidp, &val, 0, req);
101	if (err != 0 || req->newptr == NULL)
102		return (err);
103
104	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
105		return (EINVAL);
106
107	zfs_max_auto_ashift = val;
108
109	return (0);
110}
111SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
112    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
113    sysctl_vfs_zfs_max_auto_ashift, "QU",
114    "Max ashift used when optimising for logical -> physical sectors size on "
115    "new top-level vdevs.");
116
117static int
118sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
119{
120	uint64_t val;
121	int err;
122
123	val = zfs_min_auto_ashift;
124	err = sysctl_handle_64(oidp, &val, 0, req);
125	if (err != 0 || req->newptr == NULL)
126		return (err);
127
128	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
129		return (EINVAL);
130
131	zfs_min_auto_ashift = val;
132
133	return (0);
134}
135SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
136    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
137    sysctl_vfs_zfs_min_auto_ashift, "QU",
138    "Min ashift used when creating new top-level vdevs.");
139
140static vdev_ops_t *vdev_ops_table[] = {
141	&vdev_root_ops,
142	&vdev_raidz_ops,
143	&vdev_mirror_ops,
144	&vdev_replacing_ops,
145	&vdev_spare_ops,
146#ifdef _KERNEL
147	&vdev_geom_ops,
148#else
149	&vdev_disk_ops,
150#endif
151	&vdev_file_ops,
152	&vdev_missing_ops,
153	&vdev_hole_ops,
154	NULL
155};
156
157
158/*
159 * Given a vdev type, return the appropriate ops vector.
160 */
161static vdev_ops_t *
162vdev_getops(const char *type)
163{
164	vdev_ops_t *ops, **opspp;
165
166	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
167		if (strcmp(ops->vdev_op_type, type) == 0)
168			break;
169
170	return (ops);
171}
172
173/*
174 * Default asize function: return the MAX of psize with the asize of
175 * all children.  This is what's used by anything other than RAID-Z.
176 */
177uint64_t
178vdev_default_asize(vdev_t *vd, uint64_t psize)
179{
180	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
181	uint64_t csize;
182
183	for (int c = 0; c < vd->vdev_children; c++) {
184		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
185		asize = MAX(asize, csize);
186	}
187
188	return (asize);
189}
190
191/*
192 * Get the minimum allocatable size. We define the allocatable size as
193 * the vdev's asize rounded to the nearest metaslab. This allows us to
194 * replace or attach devices which don't have the same physical size but
195 * can still satisfy the same number of allocations.
196 */
197uint64_t
198vdev_get_min_asize(vdev_t *vd)
199{
200	vdev_t *pvd = vd->vdev_parent;
201
202	/*
203	 * If our parent is NULL (inactive spare or cache) or is the root,
204	 * just return our own asize.
205	 */
206	if (pvd == NULL)
207		return (vd->vdev_asize);
208
209	/*
210	 * The top-level vdev just returns the allocatable size rounded
211	 * to the nearest metaslab.
212	 */
213	if (vd == vd->vdev_top)
214		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
215
216	/*
217	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
218	 * so each child must provide at least 1/Nth of its asize.
219	 */
220	if (pvd->vdev_ops == &vdev_raidz_ops)
221		return (pvd->vdev_min_asize / pvd->vdev_children);
222
223	return (pvd->vdev_min_asize);
224}
225
226void
227vdev_set_min_asize(vdev_t *vd)
228{
229	vd->vdev_min_asize = vdev_get_min_asize(vd);
230
231	for (int c = 0; c < vd->vdev_children; c++)
232		vdev_set_min_asize(vd->vdev_child[c]);
233}
234
235vdev_t *
236vdev_lookup_top(spa_t *spa, uint64_t vdev)
237{
238	vdev_t *rvd = spa->spa_root_vdev;
239
240	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
241
242	if (vdev < rvd->vdev_children) {
243		ASSERT(rvd->vdev_child[vdev] != NULL);
244		return (rvd->vdev_child[vdev]);
245	}
246
247	return (NULL);
248}
249
250vdev_t *
251vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
252{
253	vdev_t *mvd;
254
255	if (vd->vdev_guid == guid)
256		return (vd);
257
258	for (int c = 0; c < vd->vdev_children; c++)
259		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
260		    NULL)
261			return (mvd);
262
263	return (NULL);
264}
265
266void
267vdev_add_child(vdev_t *pvd, vdev_t *cvd)
268{
269	size_t oldsize, newsize;
270	uint64_t id = cvd->vdev_id;
271	vdev_t **newchild;
272
273	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
274	ASSERT(cvd->vdev_parent == NULL);
275
276	cvd->vdev_parent = pvd;
277
278	if (pvd == NULL)
279		return;
280
281	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
282
283	oldsize = pvd->vdev_children * sizeof (vdev_t *);
284	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
285	newsize = pvd->vdev_children * sizeof (vdev_t *);
286
287	newchild = kmem_zalloc(newsize, KM_SLEEP);
288	if (pvd->vdev_child != NULL) {
289		bcopy(pvd->vdev_child, newchild, oldsize);
290		kmem_free(pvd->vdev_child, oldsize);
291	}
292
293	pvd->vdev_child = newchild;
294	pvd->vdev_child[id] = cvd;
295
296	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
297	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
298
299	/*
300	 * Walk up all ancestors to update guid sum.
301	 */
302	for (; pvd != NULL; pvd = pvd->vdev_parent)
303		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
304}
305
306void
307vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
308{
309	int c;
310	uint_t id = cvd->vdev_id;
311
312	ASSERT(cvd->vdev_parent == pvd);
313
314	if (pvd == NULL)
315		return;
316
317	ASSERT(id < pvd->vdev_children);
318	ASSERT(pvd->vdev_child[id] == cvd);
319
320	pvd->vdev_child[id] = NULL;
321	cvd->vdev_parent = NULL;
322
323	for (c = 0; c < pvd->vdev_children; c++)
324		if (pvd->vdev_child[c])
325			break;
326
327	if (c == pvd->vdev_children) {
328		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
329		pvd->vdev_child = NULL;
330		pvd->vdev_children = 0;
331	}
332
333	/*
334	 * Walk up all ancestors to update guid sum.
335	 */
336	for (; pvd != NULL; pvd = pvd->vdev_parent)
337		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
338}
339
340/*
341 * Remove any holes in the child array.
342 */
343void
344vdev_compact_children(vdev_t *pvd)
345{
346	vdev_t **newchild, *cvd;
347	int oldc = pvd->vdev_children;
348	int newc;
349
350	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351
352	for (int c = newc = 0; c < oldc; c++)
353		if (pvd->vdev_child[c])
354			newc++;
355
356	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
357
358	for (int c = newc = 0; c < oldc; c++) {
359		if ((cvd = pvd->vdev_child[c]) != NULL) {
360			newchild[newc] = cvd;
361			cvd->vdev_id = newc++;
362		}
363	}
364
365	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
366	pvd->vdev_child = newchild;
367	pvd->vdev_children = newc;
368}
369
370/*
371 * Allocate and minimally initialize a vdev_t.
372 */
373vdev_t *
374vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
375{
376	vdev_t *vd;
377
378	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
379
380	if (spa->spa_root_vdev == NULL) {
381		ASSERT(ops == &vdev_root_ops);
382		spa->spa_root_vdev = vd;
383		spa->spa_load_guid = spa_generate_guid(NULL);
384	}
385
386	if (guid == 0 && ops != &vdev_hole_ops) {
387		if (spa->spa_root_vdev == vd) {
388			/*
389			 * The root vdev's guid will also be the pool guid,
390			 * which must be unique among all pools.
391			 */
392			guid = spa_generate_guid(NULL);
393		} else {
394			/*
395			 * Any other vdev's guid must be unique within the pool.
396			 */
397			guid = spa_generate_guid(spa);
398		}
399		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
400	}
401
402	vd->vdev_spa = spa;
403	vd->vdev_id = id;
404	vd->vdev_guid = guid;
405	vd->vdev_guid_sum = guid;
406	vd->vdev_ops = ops;
407	vd->vdev_state = VDEV_STATE_CLOSED;
408	vd->vdev_ishole = (ops == &vdev_hole_ops);
409
410	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
411	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
412	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
413	for (int t = 0; t < DTL_TYPES; t++) {
414		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
415		    &vd->vdev_dtl_lock);
416	}
417	txg_list_create(&vd->vdev_ms_list,
418	    offsetof(struct metaslab, ms_txg_node));
419	txg_list_create(&vd->vdev_dtl_list,
420	    offsetof(struct vdev, vdev_dtl_node));
421	vd->vdev_stat.vs_timestamp = gethrtime();
422	vdev_queue_init(vd);
423	vdev_cache_init(vd);
424
425	return (vd);
426}
427
428/*
429 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
430 * creating a new vdev or loading an existing one - the behavior is slightly
431 * different for each case.
432 */
433int
434vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
435    int alloctype)
436{
437	vdev_ops_t *ops;
438	char *type;
439	uint64_t guid = 0, islog, nparity;
440	vdev_t *vd;
441
442	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
443
444	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
445		return (SET_ERROR(EINVAL));
446
447	if ((ops = vdev_getops(type)) == NULL)
448		return (SET_ERROR(EINVAL));
449
450	/*
451	 * If this is a load, get the vdev guid from the nvlist.
452	 * Otherwise, vdev_alloc_common() will generate one for us.
453	 */
454	if (alloctype == VDEV_ALLOC_LOAD) {
455		uint64_t label_id;
456
457		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
458		    label_id != id)
459			return (SET_ERROR(EINVAL));
460
461		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
462			return (SET_ERROR(EINVAL));
463	} else if (alloctype == VDEV_ALLOC_SPARE) {
464		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
465			return (SET_ERROR(EINVAL));
466	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
467		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
468			return (SET_ERROR(EINVAL));
469	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
470		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
471			return (SET_ERROR(EINVAL));
472	}
473
474	/*
475	 * The first allocated vdev must be of type 'root'.
476	 */
477	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
478		return (SET_ERROR(EINVAL));
479
480	/*
481	 * Determine whether we're a log vdev.
482	 */
483	islog = 0;
484	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
485	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
486		return (SET_ERROR(ENOTSUP));
487
488	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
489		return (SET_ERROR(ENOTSUP));
490
491	/*
492	 * Set the nparity property for RAID-Z vdevs.
493	 */
494	nparity = -1ULL;
495	if (ops == &vdev_raidz_ops) {
496		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
497		    &nparity) == 0) {
498			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
499				return (SET_ERROR(EINVAL));
500			/*
501			 * Previous versions could only support 1 or 2 parity
502			 * device.
503			 */
504			if (nparity > 1 &&
505			    spa_version(spa) < SPA_VERSION_RAIDZ2)
506				return (SET_ERROR(ENOTSUP));
507			if (nparity > 2 &&
508			    spa_version(spa) < SPA_VERSION_RAIDZ3)
509				return (SET_ERROR(ENOTSUP));
510		} else {
511			/*
512			 * We require the parity to be specified for SPAs that
513			 * support multiple parity levels.
514			 */
515			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
516				return (SET_ERROR(EINVAL));
517			/*
518			 * Otherwise, we default to 1 parity device for RAID-Z.
519			 */
520			nparity = 1;
521		}
522	} else {
523		nparity = 0;
524	}
525	ASSERT(nparity != -1ULL);
526
527	vd = vdev_alloc_common(spa, id, guid, ops);
528
529	vd->vdev_islog = islog;
530	vd->vdev_nparity = nparity;
531
532	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
533		vd->vdev_path = spa_strdup(vd->vdev_path);
534	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
535		vd->vdev_devid = spa_strdup(vd->vdev_devid);
536	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
537	    &vd->vdev_physpath) == 0)
538		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
539	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
540		vd->vdev_fru = spa_strdup(vd->vdev_fru);
541
542	/*
543	 * Set the whole_disk property.  If it's not specified, leave the value
544	 * as -1.
545	 */
546	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
547	    &vd->vdev_wholedisk) != 0)
548		vd->vdev_wholedisk = -1ULL;
549
550	/*
551	 * Look for the 'not present' flag.  This will only be set if the device
552	 * was not present at the time of import.
553	 */
554	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
555	    &vd->vdev_not_present);
556
557	/*
558	 * Get the alignment requirement.
559	 */
560	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
561
562	/*
563	 * Retrieve the vdev creation time.
564	 */
565	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
566	    &vd->vdev_crtxg);
567
568	/*
569	 * If we're a top-level vdev, try to load the allocation parameters.
570	 */
571	if (parent && !parent->vdev_parent &&
572	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
573		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
574		    &vd->vdev_ms_array);
575		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
576		    &vd->vdev_ms_shift);
577		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
578		    &vd->vdev_asize);
579		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
580		    &vd->vdev_removing);
581	}
582
583	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
584		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
585		    alloctype == VDEV_ALLOC_ADD ||
586		    alloctype == VDEV_ALLOC_SPLIT ||
587		    alloctype == VDEV_ALLOC_ROOTPOOL);
588		vd->vdev_mg = metaslab_group_create(islog ?
589		    spa_log_class(spa) : spa_normal_class(spa), vd);
590	}
591
592	/*
593	 * If we're a leaf vdev, try to load the DTL object and other state.
594	 */
595	if (vd->vdev_ops->vdev_op_leaf &&
596	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
597	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
598		if (alloctype == VDEV_ALLOC_LOAD) {
599			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
600			    &vd->vdev_dtl_object);
601			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
602			    &vd->vdev_unspare);
603		}
604
605		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
606			uint64_t spare = 0;
607
608			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
609			    &spare) == 0 && spare)
610				spa_spare_add(vd);
611		}
612
613		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
614		    &vd->vdev_offline);
615
616		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
617		    &vd->vdev_resilver_txg);
618
619		/*
620		 * When importing a pool, we want to ignore the persistent fault
621		 * state, as the diagnosis made on another system may not be
622		 * valid in the current context.  Local vdevs will
623		 * remain in the faulted state.
624		 */
625		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
626			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
627			    &vd->vdev_faulted);
628			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
629			    &vd->vdev_degraded);
630			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
631			    &vd->vdev_removed);
632
633			if (vd->vdev_faulted || vd->vdev_degraded) {
634				char *aux;
635
636				vd->vdev_label_aux =
637				    VDEV_AUX_ERR_EXCEEDED;
638				if (nvlist_lookup_string(nv,
639				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
640				    strcmp(aux, "external") == 0)
641					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
642			}
643		}
644	}
645
646	/*
647	 * Add ourselves to the parent's list of children.
648	 */
649	vdev_add_child(parent, vd);
650
651	*vdp = vd;
652
653	return (0);
654}
655
656void
657vdev_free(vdev_t *vd)
658{
659	spa_t *spa = vd->vdev_spa;
660
661	/*
662	 * vdev_free() implies closing the vdev first.  This is simpler than
663	 * trying to ensure complicated semantics for all callers.
664	 */
665	vdev_close(vd);
666
667	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
668	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
669
670	/*
671	 * Free all children.
672	 */
673	for (int c = 0; c < vd->vdev_children; c++)
674		vdev_free(vd->vdev_child[c]);
675
676	ASSERT(vd->vdev_child == NULL);
677	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
678
679	/*
680	 * Discard allocation state.
681	 */
682	if (vd->vdev_mg != NULL) {
683		vdev_metaslab_fini(vd);
684		metaslab_group_destroy(vd->vdev_mg);
685	}
686
687	ASSERT0(vd->vdev_stat.vs_space);
688	ASSERT0(vd->vdev_stat.vs_dspace);
689	ASSERT0(vd->vdev_stat.vs_alloc);
690
691	/*
692	 * Remove this vdev from its parent's child list.
693	 */
694	vdev_remove_child(vd->vdev_parent, vd);
695
696	ASSERT(vd->vdev_parent == NULL);
697
698	/*
699	 * Clean up vdev structure.
700	 */
701	vdev_queue_fini(vd);
702	vdev_cache_fini(vd);
703
704	if (vd->vdev_path)
705		spa_strfree(vd->vdev_path);
706	if (vd->vdev_devid)
707		spa_strfree(vd->vdev_devid);
708	if (vd->vdev_physpath)
709		spa_strfree(vd->vdev_physpath);
710	if (vd->vdev_fru)
711		spa_strfree(vd->vdev_fru);
712
713	if (vd->vdev_isspare)
714		spa_spare_remove(vd);
715	if (vd->vdev_isl2cache)
716		spa_l2cache_remove(vd);
717
718	txg_list_destroy(&vd->vdev_ms_list);
719	txg_list_destroy(&vd->vdev_dtl_list);
720
721	mutex_enter(&vd->vdev_dtl_lock);
722	space_map_close(vd->vdev_dtl_sm);
723	for (int t = 0; t < DTL_TYPES; t++) {
724		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
725		range_tree_destroy(vd->vdev_dtl[t]);
726	}
727	mutex_exit(&vd->vdev_dtl_lock);
728
729	mutex_destroy(&vd->vdev_dtl_lock);
730	mutex_destroy(&vd->vdev_stat_lock);
731	mutex_destroy(&vd->vdev_probe_lock);
732
733	if (vd == spa->spa_root_vdev)
734		spa->spa_root_vdev = NULL;
735
736	kmem_free(vd, sizeof (vdev_t));
737}
738
739/*
740 * Transfer top-level vdev state from svd to tvd.
741 */
742static void
743vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
744{
745	spa_t *spa = svd->vdev_spa;
746	metaslab_t *msp;
747	vdev_t *vd;
748	int t;
749
750	ASSERT(tvd == tvd->vdev_top);
751
752	tvd->vdev_ms_array = svd->vdev_ms_array;
753	tvd->vdev_ms_shift = svd->vdev_ms_shift;
754	tvd->vdev_ms_count = svd->vdev_ms_count;
755
756	svd->vdev_ms_array = 0;
757	svd->vdev_ms_shift = 0;
758	svd->vdev_ms_count = 0;
759
760	if (tvd->vdev_mg)
761		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
762	tvd->vdev_mg = svd->vdev_mg;
763	tvd->vdev_ms = svd->vdev_ms;
764
765	svd->vdev_mg = NULL;
766	svd->vdev_ms = NULL;
767
768	if (tvd->vdev_mg != NULL)
769		tvd->vdev_mg->mg_vd = tvd;
770
771	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
772	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
773	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
774
775	svd->vdev_stat.vs_alloc = 0;
776	svd->vdev_stat.vs_space = 0;
777	svd->vdev_stat.vs_dspace = 0;
778
779	for (t = 0; t < TXG_SIZE; t++) {
780		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
781			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
782		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
783			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
784		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
785			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
786	}
787
788	if (list_link_active(&svd->vdev_config_dirty_node)) {
789		vdev_config_clean(svd);
790		vdev_config_dirty(tvd);
791	}
792
793	if (list_link_active(&svd->vdev_state_dirty_node)) {
794		vdev_state_clean(svd);
795		vdev_state_dirty(tvd);
796	}
797
798	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
799	svd->vdev_deflate_ratio = 0;
800
801	tvd->vdev_islog = svd->vdev_islog;
802	svd->vdev_islog = 0;
803}
804
805static void
806vdev_top_update(vdev_t *tvd, vdev_t *vd)
807{
808	if (vd == NULL)
809		return;
810
811	vd->vdev_top = tvd;
812
813	for (int c = 0; c < vd->vdev_children; c++)
814		vdev_top_update(tvd, vd->vdev_child[c]);
815}
816
817/*
818 * Add a mirror/replacing vdev above an existing vdev.
819 */
820vdev_t *
821vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
822{
823	spa_t *spa = cvd->vdev_spa;
824	vdev_t *pvd = cvd->vdev_parent;
825	vdev_t *mvd;
826
827	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
828
829	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
830
831	mvd->vdev_asize = cvd->vdev_asize;
832	mvd->vdev_min_asize = cvd->vdev_min_asize;
833	mvd->vdev_max_asize = cvd->vdev_max_asize;
834	mvd->vdev_ashift = cvd->vdev_ashift;
835	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
836	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
837	mvd->vdev_state = cvd->vdev_state;
838	mvd->vdev_crtxg = cvd->vdev_crtxg;
839
840	vdev_remove_child(pvd, cvd);
841	vdev_add_child(pvd, mvd);
842	cvd->vdev_id = mvd->vdev_children;
843	vdev_add_child(mvd, cvd);
844	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
845
846	if (mvd == mvd->vdev_top)
847		vdev_top_transfer(cvd, mvd);
848
849	return (mvd);
850}
851
852/*
853 * Remove a 1-way mirror/replacing vdev from the tree.
854 */
855void
856vdev_remove_parent(vdev_t *cvd)
857{
858	vdev_t *mvd = cvd->vdev_parent;
859	vdev_t *pvd = mvd->vdev_parent;
860
861	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
862
863	ASSERT(mvd->vdev_children == 1);
864	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
865	    mvd->vdev_ops == &vdev_replacing_ops ||
866	    mvd->vdev_ops == &vdev_spare_ops);
867	cvd->vdev_ashift = mvd->vdev_ashift;
868	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
869	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
870
871	vdev_remove_child(mvd, cvd);
872	vdev_remove_child(pvd, mvd);
873
874	/*
875	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
876	 * Otherwise, we could have detached an offline device, and when we
877	 * go to import the pool we'll think we have two top-level vdevs,
878	 * instead of a different version of the same top-level vdev.
879	 */
880	if (mvd->vdev_top == mvd) {
881		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
882		cvd->vdev_orig_guid = cvd->vdev_guid;
883		cvd->vdev_guid += guid_delta;
884		cvd->vdev_guid_sum += guid_delta;
885	}
886	cvd->vdev_id = mvd->vdev_id;
887	vdev_add_child(pvd, cvd);
888	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
889
890	if (cvd == cvd->vdev_top)
891		vdev_top_transfer(mvd, cvd);
892
893	ASSERT(mvd->vdev_children == 0);
894	vdev_free(mvd);
895}
896
897int
898vdev_metaslab_init(vdev_t *vd, uint64_t txg)
899{
900	spa_t *spa = vd->vdev_spa;
901	objset_t *mos = spa->spa_meta_objset;
902	uint64_t m;
903	uint64_t oldc = vd->vdev_ms_count;
904	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
905	metaslab_t **mspp;
906	int error;
907
908	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
909
910	/*
911	 * This vdev is not being allocated from yet or is a hole.
912	 */
913	if (vd->vdev_ms_shift == 0)
914		return (0);
915
916	ASSERT(!vd->vdev_ishole);
917
918	/*
919	 * Compute the raidz-deflation ratio.  Note, we hard-code
920	 * in 128k (1 << 17) because it is the current "typical" blocksize.
921	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
922	 * or we will inconsistently account for existing bp's.
923	 */
924	vd->vdev_deflate_ratio = (1 << 17) /
925	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
926
927	ASSERT(oldc <= newc);
928
929	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
930
931	if (oldc != 0) {
932		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
933		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
934	}
935
936	vd->vdev_ms = mspp;
937	vd->vdev_ms_count = newc;
938
939	for (m = oldc; m < newc; m++) {
940		uint64_t object = 0;
941
942		if (txg == 0) {
943			error = dmu_read(mos, vd->vdev_ms_array,
944			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
945			    DMU_READ_PREFETCH);
946			if (error)
947				return (error);
948		}
949		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
950	}
951
952	if (txg == 0)
953		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
954
955	/*
956	 * If the vdev is being removed we don't activate
957	 * the metaslabs since we want to ensure that no new
958	 * allocations are performed on this device.
959	 */
960	if (oldc == 0 && !vd->vdev_removing)
961		metaslab_group_activate(vd->vdev_mg);
962
963	if (txg == 0)
964		spa_config_exit(spa, SCL_ALLOC, FTAG);
965
966	return (0);
967}
968
969void
970vdev_metaslab_fini(vdev_t *vd)
971{
972	uint64_t m;
973	uint64_t count = vd->vdev_ms_count;
974
975	if (vd->vdev_ms != NULL) {
976		metaslab_group_passivate(vd->vdev_mg);
977		for (m = 0; m < count; m++) {
978			metaslab_t *msp = vd->vdev_ms[m];
979
980			if (msp != NULL)
981				metaslab_fini(msp);
982		}
983		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
984		vd->vdev_ms = NULL;
985	}
986}
987
988typedef struct vdev_probe_stats {
989	boolean_t	vps_readable;
990	boolean_t	vps_writeable;
991	int		vps_flags;
992} vdev_probe_stats_t;
993
994static void
995vdev_probe_done(zio_t *zio)
996{
997	spa_t *spa = zio->io_spa;
998	vdev_t *vd = zio->io_vd;
999	vdev_probe_stats_t *vps = zio->io_private;
1000
1001	ASSERT(vd->vdev_probe_zio != NULL);
1002
1003	if (zio->io_type == ZIO_TYPE_READ) {
1004		if (zio->io_error == 0)
1005			vps->vps_readable = 1;
1006		if (zio->io_error == 0 && spa_writeable(spa)) {
1007			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1008			    zio->io_offset, zio->io_size, zio->io_data,
1009			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1010			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1011		} else {
1012			zio_buf_free(zio->io_data, zio->io_size);
1013		}
1014	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1015		if (zio->io_error == 0)
1016			vps->vps_writeable = 1;
1017		zio_buf_free(zio->io_data, zio->io_size);
1018	} else if (zio->io_type == ZIO_TYPE_NULL) {
1019		zio_t *pio;
1020
1021		vd->vdev_cant_read |= !vps->vps_readable;
1022		vd->vdev_cant_write |= !vps->vps_writeable;
1023
1024		if (vdev_readable(vd) &&
1025		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1026			zio->io_error = 0;
1027		} else {
1028			ASSERT(zio->io_error != 0);
1029			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1030			    spa, vd, NULL, 0, 0);
1031			zio->io_error = SET_ERROR(ENXIO);
1032		}
1033
1034		mutex_enter(&vd->vdev_probe_lock);
1035		ASSERT(vd->vdev_probe_zio == zio);
1036		vd->vdev_probe_zio = NULL;
1037		mutex_exit(&vd->vdev_probe_lock);
1038
1039		while ((pio = zio_walk_parents(zio)) != NULL)
1040			if (!vdev_accessible(vd, pio))
1041				pio->io_error = SET_ERROR(ENXIO);
1042
1043		kmem_free(vps, sizeof (*vps));
1044	}
1045}
1046
1047/*
1048 * Determine whether this device is accessible.
1049 *
1050 * Read and write to several known locations: the pad regions of each
1051 * vdev label but the first, which we leave alone in case it contains
1052 * a VTOC.
1053 */
1054zio_t *
1055vdev_probe(vdev_t *vd, zio_t *zio)
1056{
1057	spa_t *spa = vd->vdev_spa;
1058	vdev_probe_stats_t *vps = NULL;
1059	zio_t *pio;
1060
1061	ASSERT(vd->vdev_ops->vdev_op_leaf);
1062
1063	/*
1064	 * Don't probe the probe.
1065	 */
1066	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1067		return (NULL);
1068
1069	/*
1070	 * To prevent 'probe storms' when a device fails, we create
1071	 * just one probe i/o at a time.  All zios that want to probe
1072	 * this vdev will become parents of the probe io.
1073	 */
1074	mutex_enter(&vd->vdev_probe_lock);
1075
1076	if ((pio = vd->vdev_probe_zio) == NULL) {
1077		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1078
1079		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1080		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1081		    ZIO_FLAG_TRYHARD;
1082
1083		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1084			/*
1085			 * vdev_cant_read and vdev_cant_write can only
1086			 * transition from TRUE to FALSE when we have the
1087			 * SCL_ZIO lock as writer; otherwise they can only
1088			 * transition from FALSE to TRUE.  This ensures that
1089			 * any zio looking at these values can assume that
1090			 * failures persist for the life of the I/O.  That's
1091			 * important because when a device has intermittent
1092			 * connectivity problems, we want to ensure that
1093			 * they're ascribed to the device (ENXIO) and not
1094			 * the zio (EIO).
1095			 *
1096			 * Since we hold SCL_ZIO as writer here, clear both
1097			 * values so the probe can reevaluate from first
1098			 * principles.
1099			 */
1100			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1101			vd->vdev_cant_read = B_FALSE;
1102			vd->vdev_cant_write = B_FALSE;
1103		}
1104
1105		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1106		    vdev_probe_done, vps,
1107		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1108
1109		/*
1110		 * We can't change the vdev state in this context, so we
1111		 * kick off an async task to do it on our behalf.
1112		 */
1113		if (zio != NULL) {
1114			vd->vdev_probe_wanted = B_TRUE;
1115			spa_async_request(spa, SPA_ASYNC_PROBE);
1116		}
1117	}
1118
1119	if (zio != NULL)
1120		zio_add_child(zio, pio);
1121
1122	mutex_exit(&vd->vdev_probe_lock);
1123
1124	if (vps == NULL) {
1125		ASSERT(zio != NULL);
1126		return (NULL);
1127	}
1128
1129	for (int l = 1; l < VDEV_LABELS; l++) {
1130		zio_nowait(zio_read_phys(pio, vd,
1131		    vdev_label_offset(vd->vdev_psize, l,
1132		    offsetof(vdev_label_t, vl_pad2)),
1133		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1134		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1135		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1136	}
1137
1138	if (zio == NULL)
1139		return (pio);
1140
1141	zio_nowait(pio);
1142	return (NULL);
1143}
1144
1145static void
1146vdev_open_child(void *arg)
1147{
1148	vdev_t *vd = arg;
1149
1150	vd->vdev_open_thread = curthread;
1151	vd->vdev_open_error = vdev_open(vd);
1152	vd->vdev_open_thread = NULL;
1153}
1154
1155boolean_t
1156vdev_uses_zvols(vdev_t *vd)
1157{
1158	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1159	    strlen(ZVOL_DIR)) == 0)
1160		return (B_TRUE);
1161	for (int c = 0; c < vd->vdev_children; c++)
1162		if (vdev_uses_zvols(vd->vdev_child[c]))
1163			return (B_TRUE);
1164	return (B_FALSE);
1165}
1166
1167void
1168vdev_open_children(vdev_t *vd)
1169{
1170	taskq_t *tq;
1171	int children = vd->vdev_children;
1172
1173	/*
1174	 * in order to handle pools on top of zvols, do the opens
1175	 * in a single thread so that the same thread holds the
1176	 * spa_namespace_lock
1177	 */
1178	if (B_TRUE || vdev_uses_zvols(vd)) {
1179		for (int c = 0; c < children; c++)
1180			vd->vdev_child[c]->vdev_open_error =
1181			    vdev_open(vd->vdev_child[c]);
1182		return;
1183	}
1184	tq = taskq_create("vdev_open", children, minclsyspri,
1185	    children, children, TASKQ_PREPOPULATE);
1186
1187	for (int c = 0; c < children; c++)
1188		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1189		    TQ_SLEEP) != 0);
1190
1191	taskq_destroy(tq);
1192}
1193
1194/*
1195 * Prepare a virtual device for access.
1196 */
1197int
1198vdev_open(vdev_t *vd)
1199{
1200	spa_t *spa = vd->vdev_spa;
1201	int error;
1202	uint64_t osize = 0;
1203	uint64_t max_osize = 0;
1204	uint64_t asize, max_asize, psize;
1205	uint64_t logical_ashift = 0;
1206	uint64_t physical_ashift = 0;
1207
1208	ASSERT(vd->vdev_open_thread == curthread ||
1209	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1210	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1211	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1212	    vd->vdev_state == VDEV_STATE_OFFLINE);
1213
1214	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1215	vd->vdev_cant_read = B_FALSE;
1216	vd->vdev_cant_write = B_FALSE;
1217	vd->vdev_min_asize = vdev_get_min_asize(vd);
1218
1219	/*
1220	 * If this vdev is not removed, check its fault status.  If it's
1221	 * faulted, bail out of the open.
1222	 */
1223	if (!vd->vdev_removed && vd->vdev_faulted) {
1224		ASSERT(vd->vdev_children == 0);
1225		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1226		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1227		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1228		    vd->vdev_label_aux);
1229		return (SET_ERROR(ENXIO));
1230	} else if (vd->vdev_offline) {
1231		ASSERT(vd->vdev_children == 0);
1232		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1233		return (SET_ERROR(ENXIO));
1234	}
1235
1236	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1237	    &logical_ashift, &physical_ashift);
1238
1239	/*
1240	 * Reset the vdev_reopening flag so that we actually close
1241	 * the vdev on error.
1242	 */
1243	vd->vdev_reopening = B_FALSE;
1244	if (zio_injection_enabled && error == 0)
1245		error = zio_handle_device_injection(vd, NULL, ENXIO);
1246
1247	if (error) {
1248		if (vd->vdev_removed &&
1249		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1250			vd->vdev_removed = B_FALSE;
1251
1252		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253		    vd->vdev_stat.vs_aux);
1254		return (error);
1255	}
1256
1257	vd->vdev_removed = B_FALSE;
1258
1259	/*
1260	 * Recheck the faulted flag now that we have confirmed that
1261	 * the vdev is accessible.  If we're faulted, bail.
1262	 */
1263	if (vd->vdev_faulted) {
1264		ASSERT(vd->vdev_children == 0);
1265		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1266		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1267		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1268		    vd->vdev_label_aux);
1269		return (SET_ERROR(ENXIO));
1270	}
1271
1272	if (vd->vdev_degraded) {
1273		ASSERT(vd->vdev_children == 0);
1274		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1275		    VDEV_AUX_ERR_EXCEEDED);
1276	} else {
1277		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1278	}
1279
1280	/*
1281	 * For hole or missing vdevs we just return success.
1282	 */
1283	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1284		return (0);
1285
1286	if (vd->vdev_ops->vdev_op_leaf) {
1287		vd->vdev_notrim = B_FALSE;
1288		trim_map_create(vd);
1289	}
1290
1291	for (int c = 0; c < vd->vdev_children; c++) {
1292		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1293			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1294			    VDEV_AUX_NONE);
1295			break;
1296		}
1297	}
1298
1299	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1300	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1301
1302	if (vd->vdev_children == 0) {
1303		if (osize < SPA_MINDEVSIZE) {
1304			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1305			    VDEV_AUX_TOO_SMALL);
1306			return (SET_ERROR(EOVERFLOW));
1307		}
1308		psize = osize;
1309		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1310		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1311		    VDEV_LABEL_END_SIZE);
1312	} else {
1313		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1314		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1315			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1316			    VDEV_AUX_TOO_SMALL);
1317			return (SET_ERROR(EOVERFLOW));
1318		}
1319		psize = 0;
1320		asize = osize;
1321		max_asize = max_osize;
1322	}
1323
1324	vd->vdev_psize = psize;
1325
1326	/*
1327	 * Make sure the allocatable size hasn't shrunk.
1328	 */
1329	if (asize < vd->vdev_min_asize) {
1330		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1331		    VDEV_AUX_BAD_LABEL);
1332		return (SET_ERROR(EINVAL));
1333	}
1334
1335	vd->vdev_physical_ashift =
1336	    MAX(physical_ashift, vd->vdev_physical_ashift);
1337	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1338	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1339
1340	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1341		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1342		    VDEV_AUX_ASHIFT_TOO_BIG);
1343		return (EINVAL);
1344	}
1345
1346	if (vd->vdev_asize == 0) {
1347		/*
1348		 * This is the first-ever open, so use the computed values.
1349		 * For testing purposes, a higher ashift can be requested.
1350		 */
1351		vd->vdev_asize = asize;
1352		vd->vdev_max_asize = max_asize;
1353	} else {
1354		/*
1355		 * Make sure the alignment requirement hasn't increased.
1356		 */
1357		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1358		    vd->vdev_ops->vdev_op_leaf) {
1359			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360			    VDEV_AUX_BAD_LABEL);
1361			return (EINVAL);
1362		}
1363		vd->vdev_max_asize = max_asize;
1364	}
1365
1366	/*
1367	 * If all children are healthy and the asize has increased,
1368	 * then we've experienced dynamic LUN growth.  If automatic
1369	 * expansion is enabled then use the additional space.
1370	 */
1371	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1372	    (vd->vdev_expanding || spa->spa_autoexpand))
1373		vd->vdev_asize = asize;
1374
1375	vdev_set_min_asize(vd);
1376
1377	/*
1378	 * Ensure we can issue some IO before declaring the
1379	 * vdev open for business.
1380	 */
1381	if (vd->vdev_ops->vdev_op_leaf &&
1382	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1383		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1384		    VDEV_AUX_ERR_EXCEEDED);
1385		return (error);
1386	}
1387
1388	/*
1389	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1390	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1391	 * since this would just restart the scrub we are already doing.
1392	 */
1393	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1394	    vdev_resilver_needed(vd, NULL, NULL))
1395		spa_async_request(spa, SPA_ASYNC_RESILVER);
1396
1397	return (0);
1398}
1399
1400/*
1401 * Called once the vdevs are all opened, this routine validates the label
1402 * contents.  This needs to be done before vdev_load() so that we don't
1403 * inadvertently do repair I/Os to the wrong device.
1404 *
1405 * If 'strict' is false ignore the spa guid check. This is necessary because
1406 * if the machine crashed during a re-guid the new guid might have been written
1407 * to all of the vdev labels, but not the cached config. The strict check
1408 * will be performed when the pool is opened again using the mos config.
1409 *
1410 * This function will only return failure if one of the vdevs indicates that it
1411 * has since been destroyed or exported.  This is only possible if
1412 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1413 * will be updated but the function will return 0.
1414 */
1415int
1416vdev_validate(vdev_t *vd, boolean_t strict)
1417{
1418	spa_t *spa = vd->vdev_spa;
1419	nvlist_t *label;
1420	uint64_t guid = 0, top_guid;
1421	uint64_t state;
1422
1423	for (int c = 0; c < vd->vdev_children; c++)
1424		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1425			return (SET_ERROR(EBADF));
1426
1427	/*
1428	 * If the device has already failed, or was marked offline, don't do
1429	 * any further validation.  Otherwise, label I/O will fail and we will
1430	 * overwrite the previous state.
1431	 */
1432	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1433		uint64_t aux_guid = 0;
1434		nvlist_t *nvl;
1435		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1436		    spa_last_synced_txg(spa) : -1ULL;
1437
1438		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1439			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1440			    VDEV_AUX_BAD_LABEL);
1441			return (0);
1442		}
1443
1444		/*
1445		 * Determine if this vdev has been split off into another
1446		 * pool.  If so, then refuse to open it.
1447		 */
1448		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1449		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1450			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1451			    VDEV_AUX_SPLIT_POOL);
1452			nvlist_free(label);
1453			return (0);
1454		}
1455
1456		if (strict && (nvlist_lookup_uint64(label,
1457		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1458		    guid != spa_guid(spa))) {
1459			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460			    VDEV_AUX_CORRUPT_DATA);
1461			nvlist_free(label);
1462			return (0);
1463		}
1464
1465		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1466		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1467		    &aux_guid) != 0)
1468			aux_guid = 0;
1469
1470		/*
1471		 * If this vdev just became a top-level vdev because its
1472		 * sibling was detached, it will have adopted the parent's
1473		 * vdev guid -- but the label may or may not be on disk yet.
1474		 * Fortunately, either version of the label will have the
1475		 * same top guid, so if we're a top-level vdev, we can
1476		 * safely compare to that instead.
1477		 *
1478		 * If we split this vdev off instead, then we also check the
1479		 * original pool's guid.  We don't want to consider the vdev
1480		 * corrupt if it is partway through a split operation.
1481		 */
1482		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1483		    &guid) != 0 ||
1484		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1485		    &top_guid) != 0 ||
1486		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1487		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1488			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1489			    VDEV_AUX_CORRUPT_DATA);
1490			nvlist_free(label);
1491			return (0);
1492		}
1493
1494		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1495		    &state) != 0) {
1496			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497			    VDEV_AUX_CORRUPT_DATA);
1498			nvlist_free(label);
1499			return (0);
1500		}
1501
1502		nvlist_free(label);
1503
1504		/*
1505		 * If this is a verbatim import, no need to check the
1506		 * state of the pool.
1507		 */
1508		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1509		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1510		    state != POOL_STATE_ACTIVE)
1511			return (SET_ERROR(EBADF));
1512
1513		/*
1514		 * If we were able to open and validate a vdev that was
1515		 * previously marked permanently unavailable, clear that state
1516		 * now.
1517		 */
1518		if (vd->vdev_not_present)
1519			vd->vdev_not_present = 0;
1520	}
1521
1522	return (0);
1523}
1524
1525/*
1526 * Close a virtual device.
1527 */
1528void
1529vdev_close(vdev_t *vd)
1530{
1531	spa_t *spa = vd->vdev_spa;
1532	vdev_t *pvd = vd->vdev_parent;
1533
1534	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1535
1536	/*
1537	 * If our parent is reopening, then we are as well, unless we are
1538	 * going offline.
1539	 */
1540	if (pvd != NULL && pvd->vdev_reopening)
1541		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1542
1543	vd->vdev_ops->vdev_op_close(vd);
1544
1545	vdev_cache_purge(vd);
1546
1547	if (vd->vdev_ops->vdev_op_leaf)
1548		trim_map_destroy(vd);
1549
1550	/*
1551	 * We record the previous state before we close it, so that if we are
1552	 * doing a reopen(), we don't generate FMA ereports if we notice that
1553	 * it's still faulted.
1554	 */
1555	vd->vdev_prevstate = vd->vdev_state;
1556
1557	if (vd->vdev_offline)
1558		vd->vdev_state = VDEV_STATE_OFFLINE;
1559	else
1560		vd->vdev_state = VDEV_STATE_CLOSED;
1561	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1562}
1563
1564void
1565vdev_hold(vdev_t *vd)
1566{
1567	spa_t *spa = vd->vdev_spa;
1568
1569	ASSERT(spa_is_root(spa));
1570	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1571		return;
1572
1573	for (int c = 0; c < vd->vdev_children; c++)
1574		vdev_hold(vd->vdev_child[c]);
1575
1576	if (vd->vdev_ops->vdev_op_leaf)
1577		vd->vdev_ops->vdev_op_hold(vd);
1578}
1579
1580void
1581vdev_rele(vdev_t *vd)
1582{
1583	spa_t *spa = vd->vdev_spa;
1584
1585	ASSERT(spa_is_root(spa));
1586	for (int c = 0; c < vd->vdev_children; c++)
1587		vdev_rele(vd->vdev_child[c]);
1588
1589	if (vd->vdev_ops->vdev_op_leaf)
1590		vd->vdev_ops->vdev_op_rele(vd);
1591}
1592
1593/*
1594 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1595 * reopen leaf vdevs which had previously been opened as they might deadlock
1596 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1597 * If the leaf has never been opened then open it, as usual.
1598 */
1599void
1600vdev_reopen(vdev_t *vd)
1601{
1602	spa_t *spa = vd->vdev_spa;
1603
1604	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1605
1606	/* set the reopening flag unless we're taking the vdev offline */
1607	vd->vdev_reopening = !vd->vdev_offline;
1608	vdev_close(vd);
1609	(void) vdev_open(vd);
1610
1611	/*
1612	 * Call vdev_validate() here to make sure we have the same device.
1613	 * Otherwise, a device with an invalid label could be successfully
1614	 * opened in response to vdev_reopen().
1615	 */
1616	if (vd->vdev_aux) {
1617		(void) vdev_validate_aux(vd);
1618		if (vdev_readable(vd) && vdev_writeable(vd) &&
1619		    vd->vdev_aux == &spa->spa_l2cache &&
1620		    !l2arc_vdev_present(vd))
1621			l2arc_add_vdev(spa, vd);
1622	} else {
1623		(void) vdev_validate(vd, B_TRUE);
1624	}
1625
1626	/*
1627	 * Reassess parent vdev's health.
1628	 */
1629	vdev_propagate_state(vd);
1630}
1631
1632int
1633vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1634{
1635	int error;
1636
1637	/*
1638	 * Normally, partial opens (e.g. of a mirror) are allowed.
1639	 * For a create, however, we want to fail the request if
1640	 * there are any components we can't open.
1641	 */
1642	error = vdev_open(vd);
1643
1644	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1645		vdev_close(vd);
1646		return (error ? error : ENXIO);
1647	}
1648
1649	/*
1650	 * Recursively load DTLs and initialize all labels.
1651	 */
1652	if ((error = vdev_dtl_load(vd)) != 0 ||
1653	    (error = vdev_label_init(vd, txg, isreplacing ?
1654	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1655		vdev_close(vd);
1656		return (error);
1657	}
1658
1659	return (0);
1660}
1661
1662void
1663vdev_metaslab_set_size(vdev_t *vd)
1664{
1665	/*
1666	 * Aim for roughly 200 metaslabs per vdev.
1667	 */
1668	vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1669	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1670}
1671
1672/*
1673 * Maximize performance by inflating the configured ashift for top level
1674 * vdevs to be as close to the physical ashift as possible while maintaining
1675 * administrator defined limits and ensuring it doesn't go below the
1676 * logical ashift.
1677 */
1678void
1679vdev_ashift_optimize(vdev_t *vd)
1680{
1681	if (vd == vd->vdev_top) {
1682		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1683			vd->vdev_ashift = MIN(
1684			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
1685			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
1686		} else {
1687			/*
1688			 * Unusual case where logical ashift > physical ashift
1689			 * so we can't cap the calculated ashift based on max
1690			 * ashift as that would cause failures.
1691			 * We still check if we need to increase it to match
1692			 * the min ashift.
1693			 */
1694			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
1695			    vd->vdev_ashift);
1696		}
1697	}
1698}
1699
1700void
1701vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1702{
1703	ASSERT(vd == vd->vdev_top);
1704	ASSERT(!vd->vdev_ishole);
1705	ASSERT(ISP2(flags));
1706	ASSERT(spa_writeable(vd->vdev_spa));
1707
1708	if (flags & VDD_METASLAB)
1709		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1710
1711	if (flags & VDD_DTL)
1712		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1713
1714	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1715}
1716
1717void
1718vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1719{
1720	for (int c = 0; c < vd->vdev_children; c++)
1721		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1722
1723	if (vd->vdev_ops->vdev_op_leaf)
1724		vdev_dirty(vd->vdev_top, flags, vd, txg);
1725}
1726
1727/*
1728 * DTLs.
1729 *
1730 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1731 * the vdev has less than perfect replication.  There are four kinds of DTL:
1732 *
1733 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1734 *
1735 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1736 *
1737 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1738 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1739 *	txgs that was scrubbed.
1740 *
1741 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1742 *	persistent errors or just some device being offline.
1743 *	Unlike the other three, the DTL_OUTAGE map is not generally
1744 *	maintained; it's only computed when needed, typically to
1745 *	determine whether a device can be detached.
1746 *
1747 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1748 * either has the data or it doesn't.
1749 *
1750 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1751 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1752 * if any child is less than fully replicated, then so is its parent.
1753 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1754 * comprising only those txgs which appear in 'maxfaults' or more children;
1755 * those are the txgs we don't have enough replication to read.  For example,
1756 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1757 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1758 * two child DTL_MISSING maps.
1759 *
1760 * It should be clear from the above that to compute the DTLs and outage maps
1761 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1762 * Therefore, that is all we keep on disk.  When loading the pool, or after
1763 * a configuration change, we generate all other DTLs from first principles.
1764 */
1765void
1766vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1767{
1768	range_tree_t *rt = vd->vdev_dtl[t];
1769
1770	ASSERT(t < DTL_TYPES);
1771	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1772	ASSERT(spa_writeable(vd->vdev_spa));
1773
1774	mutex_enter(rt->rt_lock);
1775	if (!range_tree_contains(rt, txg, size))
1776		range_tree_add(rt, txg, size);
1777	mutex_exit(rt->rt_lock);
1778}
1779
1780boolean_t
1781vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1782{
1783	range_tree_t *rt = vd->vdev_dtl[t];
1784	boolean_t dirty = B_FALSE;
1785
1786	ASSERT(t < DTL_TYPES);
1787	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1788
1789	mutex_enter(rt->rt_lock);
1790	if (range_tree_space(rt) != 0)
1791		dirty = range_tree_contains(rt, txg, size);
1792	mutex_exit(rt->rt_lock);
1793
1794	return (dirty);
1795}
1796
1797boolean_t
1798vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1799{
1800	range_tree_t *rt = vd->vdev_dtl[t];
1801	boolean_t empty;
1802
1803	mutex_enter(rt->rt_lock);
1804	empty = (range_tree_space(rt) == 0);
1805	mutex_exit(rt->rt_lock);
1806
1807	return (empty);
1808}
1809
1810/*
1811 * Returns the lowest txg in the DTL range.
1812 */
1813static uint64_t
1814vdev_dtl_min(vdev_t *vd)
1815{
1816	range_seg_t *rs;
1817
1818	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1819	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1820	ASSERT0(vd->vdev_children);
1821
1822	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1823	return (rs->rs_start - 1);
1824}
1825
1826/*
1827 * Returns the highest txg in the DTL.
1828 */
1829static uint64_t
1830vdev_dtl_max(vdev_t *vd)
1831{
1832	range_seg_t *rs;
1833
1834	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1835	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1836	ASSERT0(vd->vdev_children);
1837
1838	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1839	return (rs->rs_end);
1840}
1841
1842/*
1843 * Determine if a resilvering vdev should remove any DTL entries from
1844 * its range. If the vdev was resilvering for the entire duration of the
1845 * scan then it should excise that range from its DTLs. Otherwise, this
1846 * vdev is considered partially resilvered and should leave its DTL
1847 * entries intact. The comment in vdev_dtl_reassess() describes how we
1848 * excise the DTLs.
1849 */
1850static boolean_t
1851vdev_dtl_should_excise(vdev_t *vd)
1852{
1853	spa_t *spa = vd->vdev_spa;
1854	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1855
1856	ASSERT0(scn->scn_phys.scn_errors);
1857	ASSERT0(vd->vdev_children);
1858
1859	if (vd->vdev_resilver_txg == 0 ||
1860	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1861		return (B_TRUE);
1862
1863	/*
1864	 * When a resilver is initiated the scan will assign the scn_max_txg
1865	 * value to the highest txg value that exists in all DTLs. If this
1866	 * device's max DTL is not part of this scan (i.e. it is not in
1867	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1868	 * for excision.
1869	 */
1870	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1871		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1872		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1873		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1874		return (B_TRUE);
1875	}
1876	return (B_FALSE);
1877}
1878
1879/*
1880 * Reassess DTLs after a config change or scrub completion.
1881 */
1882void
1883vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1884{
1885	spa_t *spa = vd->vdev_spa;
1886	avl_tree_t reftree;
1887	int minref;
1888
1889	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1890
1891	for (int c = 0; c < vd->vdev_children; c++)
1892		vdev_dtl_reassess(vd->vdev_child[c], txg,
1893		    scrub_txg, scrub_done);
1894
1895	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1896		return;
1897
1898	if (vd->vdev_ops->vdev_op_leaf) {
1899		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1900
1901		mutex_enter(&vd->vdev_dtl_lock);
1902
1903		/*
1904		 * If we've completed a scan cleanly then determine
1905		 * if this vdev should remove any DTLs. We only want to
1906		 * excise regions on vdevs that were available during
1907		 * the entire duration of this scan.
1908		 */
1909		if (scrub_txg != 0 &&
1910		    (spa->spa_scrub_started ||
1911		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1912		    vdev_dtl_should_excise(vd)) {
1913			/*
1914			 * We completed a scrub up to scrub_txg.  If we
1915			 * did it without rebooting, then the scrub dtl
1916			 * will be valid, so excise the old region and
1917			 * fold in the scrub dtl.  Otherwise, leave the
1918			 * dtl as-is if there was an error.
1919			 *
1920			 * There's little trick here: to excise the beginning
1921			 * of the DTL_MISSING map, we put it into a reference
1922			 * tree and then add a segment with refcnt -1 that
1923			 * covers the range [0, scrub_txg).  This means
1924			 * that each txg in that range has refcnt -1 or 0.
1925			 * We then add DTL_SCRUB with a refcnt of 2, so that
1926			 * entries in the range [0, scrub_txg) will have a
1927			 * positive refcnt -- either 1 or 2.  We then convert
1928			 * the reference tree into the new DTL_MISSING map.
1929			 */
1930			space_reftree_create(&reftree);
1931			space_reftree_add_map(&reftree,
1932			    vd->vdev_dtl[DTL_MISSING], 1);
1933			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1934			space_reftree_add_map(&reftree,
1935			    vd->vdev_dtl[DTL_SCRUB], 2);
1936			space_reftree_generate_map(&reftree,
1937			    vd->vdev_dtl[DTL_MISSING], 1);
1938			space_reftree_destroy(&reftree);
1939		}
1940		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1941		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1942		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1943		if (scrub_done)
1944			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1945		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1946		if (!vdev_readable(vd))
1947			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1948		else
1949			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1950			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1951
1952		/*
1953		 * If the vdev was resilvering and no longer has any
1954		 * DTLs then reset its resilvering flag.
1955		 */
1956		if (vd->vdev_resilver_txg != 0 &&
1957		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1958		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1959			vd->vdev_resilver_txg = 0;
1960
1961		mutex_exit(&vd->vdev_dtl_lock);
1962
1963		if (txg != 0)
1964			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1965		return;
1966	}
1967
1968	mutex_enter(&vd->vdev_dtl_lock);
1969	for (int t = 0; t < DTL_TYPES; t++) {
1970		/* account for child's outage in parent's missing map */
1971		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1972		if (t == DTL_SCRUB)
1973			continue;			/* leaf vdevs only */
1974		if (t == DTL_PARTIAL)
1975			minref = 1;			/* i.e. non-zero */
1976		else if (vd->vdev_nparity != 0)
1977			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1978		else
1979			minref = vd->vdev_children;	/* any kind of mirror */
1980		space_reftree_create(&reftree);
1981		for (int c = 0; c < vd->vdev_children; c++) {
1982			vdev_t *cvd = vd->vdev_child[c];
1983			mutex_enter(&cvd->vdev_dtl_lock);
1984			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1985			mutex_exit(&cvd->vdev_dtl_lock);
1986		}
1987		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1988		space_reftree_destroy(&reftree);
1989	}
1990	mutex_exit(&vd->vdev_dtl_lock);
1991}
1992
1993int
1994vdev_dtl_load(vdev_t *vd)
1995{
1996	spa_t *spa = vd->vdev_spa;
1997	objset_t *mos = spa->spa_meta_objset;
1998	int error = 0;
1999
2000	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2001		ASSERT(!vd->vdev_ishole);
2002
2003		error = space_map_open(&vd->vdev_dtl_sm, mos,
2004		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2005		if (error)
2006			return (error);
2007		ASSERT(vd->vdev_dtl_sm != NULL);
2008
2009		mutex_enter(&vd->vdev_dtl_lock);
2010
2011		/*
2012		 * Now that we've opened the space_map we need to update
2013		 * the in-core DTL.
2014		 */
2015		space_map_update(vd->vdev_dtl_sm);
2016
2017		error = space_map_load(vd->vdev_dtl_sm,
2018		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2019		mutex_exit(&vd->vdev_dtl_lock);
2020
2021		return (error);
2022	}
2023
2024	for (int c = 0; c < vd->vdev_children; c++) {
2025		error = vdev_dtl_load(vd->vdev_child[c]);
2026		if (error != 0)
2027			break;
2028	}
2029
2030	return (error);
2031}
2032
2033void
2034vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2035{
2036	spa_t *spa = vd->vdev_spa;
2037	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2038	objset_t *mos = spa->spa_meta_objset;
2039	range_tree_t *rtsync;
2040	kmutex_t rtlock;
2041	dmu_tx_t *tx;
2042	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2043
2044	ASSERT(!vd->vdev_ishole);
2045	ASSERT(vd->vdev_ops->vdev_op_leaf);
2046
2047	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2048
2049	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2050		mutex_enter(&vd->vdev_dtl_lock);
2051		space_map_free(vd->vdev_dtl_sm, tx);
2052		space_map_close(vd->vdev_dtl_sm);
2053		vd->vdev_dtl_sm = NULL;
2054		mutex_exit(&vd->vdev_dtl_lock);
2055		dmu_tx_commit(tx);
2056		return;
2057	}
2058
2059	if (vd->vdev_dtl_sm == NULL) {
2060		uint64_t new_object;
2061
2062		new_object = space_map_alloc(mos, tx);
2063		VERIFY3U(new_object, !=, 0);
2064
2065		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2066		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2067		ASSERT(vd->vdev_dtl_sm != NULL);
2068	}
2069
2070	bzero(&rtlock, sizeof(rtlock));
2071	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2072
2073	rtsync = range_tree_create(NULL, NULL, &rtlock);
2074
2075	mutex_enter(&rtlock);
2076
2077	mutex_enter(&vd->vdev_dtl_lock);
2078	range_tree_walk(rt, range_tree_add, rtsync);
2079	mutex_exit(&vd->vdev_dtl_lock);
2080
2081	space_map_truncate(vd->vdev_dtl_sm, tx);
2082	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2083	range_tree_vacate(rtsync, NULL, NULL);
2084
2085	range_tree_destroy(rtsync);
2086
2087	mutex_exit(&rtlock);
2088	mutex_destroy(&rtlock);
2089
2090	/*
2091	 * If the object for the space map has changed then dirty
2092	 * the top level so that we update the config.
2093	 */
2094	if (object != space_map_object(vd->vdev_dtl_sm)) {
2095		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2096		    "new object %llu", txg, spa_name(spa), object,
2097		    space_map_object(vd->vdev_dtl_sm));
2098		vdev_config_dirty(vd->vdev_top);
2099	}
2100
2101	dmu_tx_commit(tx);
2102
2103	mutex_enter(&vd->vdev_dtl_lock);
2104	space_map_update(vd->vdev_dtl_sm);
2105	mutex_exit(&vd->vdev_dtl_lock);
2106}
2107
2108/*
2109 * Determine whether the specified vdev can be offlined/detached/removed
2110 * without losing data.
2111 */
2112boolean_t
2113vdev_dtl_required(vdev_t *vd)
2114{
2115	spa_t *spa = vd->vdev_spa;
2116	vdev_t *tvd = vd->vdev_top;
2117	uint8_t cant_read = vd->vdev_cant_read;
2118	boolean_t required;
2119
2120	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2121
2122	if (vd == spa->spa_root_vdev || vd == tvd)
2123		return (B_TRUE);
2124
2125	/*
2126	 * Temporarily mark the device as unreadable, and then determine
2127	 * whether this results in any DTL outages in the top-level vdev.
2128	 * If not, we can safely offline/detach/remove the device.
2129	 */
2130	vd->vdev_cant_read = B_TRUE;
2131	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2132	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2133	vd->vdev_cant_read = cant_read;
2134	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2135
2136	if (!required && zio_injection_enabled)
2137		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2138
2139	return (required);
2140}
2141
2142/*
2143 * Determine if resilver is needed, and if so the txg range.
2144 */
2145boolean_t
2146vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2147{
2148	boolean_t needed = B_FALSE;
2149	uint64_t thismin = UINT64_MAX;
2150	uint64_t thismax = 0;
2151
2152	if (vd->vdev_children == 0) {
2153		mutex_enter(&vd->vdev_dtl_lock);
2154		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2155		    vdev_writeable(vd)) {
2156
2157			thismin = vdev_dtl_min(vd);
2158			thismax = vdev_dtl_max(vd);
2159			needed = B_TRUE;
2160		}
2161		mutex_exit(&vd->vdev_dtl_lock);
2162	} else {
2163		for (int c = 0; c < vd->vdev_children; c++) {
2164			vdev_t *cvd = vd->vdev_child[c];
2165			uint64_t cmin, cmax;
2166
2167			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2168				thismin = MIN(thismin, cmin);
2169				thismax = MAX(thismax, cmax);
2170				needed = B_TRUE;
2171			}
2172		}
2173	}
2174
2175	if (needed && minp) {
2176		*minp = thismin;
2177		*maxp = thismax;
2178	}
2179	return (needed);
2180}
2181
2182void
2183vdev_load(vdev_t *vd)
2184{
2185	/*
2186	 * Recursively load all children.
2187	 */
2188	for (int c = 0; c < vd->vdev_children; c++)
2189		vdev_load(vd->vdev_child[c]);
2190
2191	/*
2192	 * If this is a top-level vdev, initialize its metaslabs.
2193	 */
2194	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2195	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2196	    vdev_metaslab_init(vd, 0) != 0))
2197		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2198		    VDEV_AUX_CORRUPT_DATA);
2199
2200	/*
2201	 * If this is a leaf vdev, load its DTL.
2202	 */
2203	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2204		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2205		    VDEV_AUX_CORRUPT_DATA);
2206}
2207
2208/*
2209 * The special vdev case is used for hot spares and l2cache devices.  Its
2210 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2211 * we make sure that we can open the underlying device, then try to read the
2212 * label, and make sure that the label is sane and that it hasn't been
2213 * repurposed to another pool.
2214 */
2215int
2216vdev_validate_aux(vdev_t *vd)
2217{
2218	nvlist_t *label;
2219	uint64_t guid, version;
2220	uint64_t state;
2221
2222	if (!vdev_readable(vd))
2223		return (0);
2224
2225	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2226		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2227		    VDEV_AUX_CORRUPT_DATA);
2228		return (-1);
2229	}
2230
2231	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2232	    !SPA_VERSION_IS_SUPPORTED(version) ||
2233	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2234	    guid != vd->vdev_guid ||
2235	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2236		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2237		    VDEV_AUX_CORRUPT_DATA);
2238		nvlist_free(label);
2239		return (-1);
2240	}
2241
2242	/*
2243	 * We don't actually check the pool state here.  If it's in fact in
2244	 * use by another pool, we update this fact on the fly when requested.
2245	 */
2246	nvlist_free(label);
2247	return (0);
2248}
2249
2250void
2251vdev_remove(vdev_t *vd, uint64_t txg)
2252{
2253	spa_t *spa = vd->vdev_spa;
2254	objset_t *mos = spa->spa_meta_objset;
2255	dmu_tx_t *tx;
2256
2257	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2258
2259	if (vd->vdev_ms != NULL) {
2260		metaslab_group_t *mg = vd->vdev_mg;
2261
2262		metaslab_group_histogram_verify(mg);
2263		metaslab_class_histogram_verify(mg->mg_class);
2264
2265		for (int m = 0; m < vd->vdev_ms_count; m++) {
2266			metaslab_t *msp = vd->vdev_ms[m];
2267
2268			if (msp == NULL || msp->ms_sm == NULL)
2269				continue;
2270
2271			mutex_enter(&msp->ms_lock);
2272			/*
2273			 * If the metaslab was not loaded when the vdev
2274			 * was removed then the histogram accounting may
2275			 * not be accurate. Update the histogram information
2276			 * here so that we ensure that the metaslab group
2277			 * and metaslab class are up-to-date.
2278			 */
2279			metaslab_group_histogram_remove(mg, msp);
2280
2281			VERIFY0(space_map_allocated(msp->ms_sm));
2282			space_map_free(msp->ms_sm, tx);
2283			space_map_close(msp->ms_sm);
2284			msp->ms_sm = NULL;
2285			mutex_exit(&msp->ms_lock);
2286		}
2287
2288		metaslab_group_histogram_verify(mg);
2289		metaslab_class_histogram_verify(mg->mg_class);
2290		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2291			ASSERT0(mg->mg_histogram[i]);
2292
2293	}
2294
2295	if (vd->vdev_ms_array) {
2296		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2297		vd->vdev_ms_array = 0;
2298	}
2299	dmu_tx_commit(tx);
2300}
2301
2302void
2303vdev_sync_done(vdev_t *vd, uint64_t txg)
2304{
2305	metaslab_t *msp;
2306	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2307
2308	ASSERT(!vd->vdev_ishole);
2309
2310	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2311		metaslab_sync_done(msp, txg);
2312
2313	if (reassess)
2314		metaslab_sync_reassess(vd->vdev_mg);
2315}
2316
2317void
2318vdev_sync(vdev_t *vd, uint64_t txg)
2319{
2320	spa_t *spa = vd->vdev_spa;
2321	vdev_t *lvd;
2322	metaslab_t *msp;
2323	dmu_tx_t *tx;
2324
2325	ASSERT(!vd->vdev_ishole);
2326
2327	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2328		ASSERT(vd == vd->vdev_top);
2329		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2330		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2331		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2332		ASSERT(vd->vdev_ms_array != 0);
2333		vdev_config_dirty(vd);
2334		dmu_tx_commit(tx);
2335	}
2336
2337	/*
2338	 * Remove the metadata associated with this vdev once it's empty.
2339	 */
2340	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2341		vdev_remove(vd, txg);
2342
2343	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2344		metaslab_sync(msp, txg);
2345		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2346	}
2347
2348	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2349		vdev_dtl_sync(lvd, txg);
2350
2351	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2352}
2353
2354uint64_t
2355vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2356{
2357	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2358}
2359
2360/*
2361 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2362 * not be opened, and no I/O is attempted.
2363 */
2364int
2365vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2366{
2367	vdev_t *vd, *tvd;
2368
2369	spa_vdev_state_enter(spa, SCL_NONE);
2370
2371	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2372		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2373
2374	if (!vd->vdev_ops->vdev_op_leaf)
2375		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2376
2377	tvd = vd->vdev_top;
2378
2379	/*
2380	 * We don't directly use the aux state here, but if we do a
2381	 * vdev_reopen(), we need this value to be present to remember why we
2382	 * were faulted.
2383	 */
2384	vd->vdev_label_aux = aux;
2385
2386	/*
2387	 * Faulted state takes precedence over degraded.
2388	 */
2389	vd->vdev_delayed_close = B_FALSE;
2390	vd->vdev_faulted = 1ULL;
2391	vd->vdev_degraded = 0ULL;
2392	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2393
2394	/*
2395	 * If this device has the only valid copy of the data, then
2396	 * back off and simply mark the vdev as degraded instead.
2397	 */
2398	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2399		vd->vdev_degraded = 1ULL;
2400		vd->vdev_faulted = 0ULL;
2401
2402		/*
2403		 * If we reopen the device and it's not dead, only then do we
2404		 * mark it degraded.
2405		 */
2406		vdev_reopen(tvd);
2407
2408		if (vdev_readable(vd))
2409			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2410	}
2411
2412	return (spa_vdev_state_exit(spa, vd, 0));
2413}
2414
2415/*
2416 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2417 * user that something is wrong.  The vdev continues to operate as normal as far
2418 * as I/O is concerned.
2419 */
2420int
2421vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2422{
2423	vdev_t *vd;
2424
2425	spa_vdev_state_enter(spa, SCL_NONE);
2426
2427	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2428		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2429
2430	if (!vd->vdev_ops->vdev_op_leaf)
2431		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2432
2433	/*
2434	 * If the vdev is already faulted, then don't do anything.
2435	 */
2436	if (vd->vdev_faulted || vd->vdev_degraded)
2437		return (spa_vdev_state_exit(spa, NULL, 0));
2438
2439	vd->vdev_degraded = 1ULL;
2440	if (!vdev_is_dead(vd))
2441		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2442		    aux);
2443
2444	return (spa_vdev_state_exit(spa, vd, 0));
2445}
2446
2447/*
2448 * Online the given vdev.
2449 *
2450 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2451 * spare device should be detached when the device finishes resilvering.
2452 * Second, the online should be treated like a 'test' online case, so no FMA
2453 * events are generated if the device fails to open.
2454 */
2455int
2456vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2457{
2458	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2459
2460	spa_vdev_state_enter(spa, SCL_NONE);
2461
2462	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2463		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2464
2465	if (!vd->vdev_ops->vdev_op_leaf)
2466		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2467
2468	tvd = vd->vdev_top;
2469	vd->vdev_offline = B_FALSE;
2470	vd->vdev_tmpoffline = B_FALSE;
2471	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2472	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2473
2474	/* XXX - L2ARC 1.0 does not support expansion */
2475	if (!vd->vdev_aux) {
2476		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2477			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2478	}
2479
2480	vdev_reopen(tvd);
2481	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2482
2483	if (!vd->vdev_aux) {
2484		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2485			pvd->vdev_expanding = B_FALSE;
2486	}
2487
2488	if (newstate)
2489		*newstate = vd->vdev_state;
2490	if ((flags & ZFS_ONLINE_UNSPARE) &&
2491	    !vdev_is_dead(vd) && vd->vdev_parent &&
2492	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2493	    vd->vdev_parent->vdev_child[0] == vd)
2494		vd->vdev_unspare = B_TRUE;
2495
2496	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2497
2498		/* XXX - L2ARC 1.0 does not support expansion */
2499		if (vd->vdev_aux)
2500			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2501		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2502	}
2503	return (spa_vdev_state_exit(spa, vd, 0));
2504}
2505
2506static int
2507vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2508{
2509	vdev_t *vd, *tvd;
2510	int error = 0;
2511	uint64_t generation;
2512	metaslab_group_t *mg;
2513
2514top:
2515	spa_vdev_state_enter(spa, SCL_ALLOC);
2516
2517	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2518		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2519
2520	if (!vd->vdev_ops->vdev_op_leaf)
2521		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2522
2523	tvd = vd->vdev_top;
2524	mg = tvd->vdev_mg;
2525	generation = spa->spa_config_generation + 1;
2526
2527	/*
2528	 * If the device isn't already offline, try to offline it.
2529	 */
2530	if (!vd->vdev_offline) {
2531		/*
2532		 * If this device has the only valid copy of some data,
2533		 * don't allow it to be offlined. Log devices are always
2534		 * expendable.
2535		 */
2536		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2537		    vdev_dtl_required(vd))
2538			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2539
2540		/*
2541		 * If the top-level is a slog and it has had allocations
2542		 * then proceed.  We check that the vdev's metaslab group
2543		 * is not NULL since it's possible that we may have just
2544		 * added this vdev but not yet initialized its metaslabs.
2545		 */
2546		if (tvd->vdev_islog && mg != NULL) {
2547			/*
2548			 * Prevent any future allocations.
2549			 */
2550			metaslab_group_passivate(mg);
2551			(void) spa_vdev_state_exit(spa, vd, 0);
2552
2553			error = spa_offline_log(spa);
2554
2555			spa_vdev_state_enter(spa, SCL_ALLOC);
2556
2557			/*
2558			 * Check to see if the config has changed.
2559			 */
2560			if (error || generation != spa->spa_config_generation) {
2561				metaslab_group_activate(mg);
2562				if (error)
2563					return (spa_vdev_state_exit(spa,
2564					    vd, error));
2565				(void) spa_vdev_state_exit(spa, vd, 0);
2566				goto top;
2567			}
2568			ASSERT0(tvd->vdev_stat.vs_alloc);
2569		}
2570
2571		/*
2572		 * Offline this device and reopen its top-level vdev.
2573		 * If the top-level vdev is a log device then just offline
2574		 * it. Otherwise, if this action results in the top-level
2575		 * vdev becoming unusable, undo it and fail the request.
2576		 */
2577		vd->vdev_offline = B_TRUE;
2578		vdev_reopen(tvd);
2579
2580		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2581		    vdev_is_dead(tvd)) {
2582			vd->vdev_offline = B_FALSE;
2583			vdev_reopen(tvd);
2584			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2585		}
2586
2587		/*
2588		 * Add the device back into the metaslab rotor so that
2589		 * once we online the device it's open for business.
2590		 */
2591		if (tvd->vdev_islog && mg != NULL)
2592			metaslab_group_activate(mg);
2593	}
2594
2595	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2596
2597	return (spa_vdev_state_exit(spa, vd, 0));
2598}
2599
2600int
2601vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2602{
2603	int error;
2604
2605	mutex_enter(&spa->spa_vdev_top_lock);
2606	error = vdev_offline_locked(spa, guid, flags);
2607	mutex_exit(&spa->spa_vdev_top_lock);
2608
2609	return (error);
2610}
2611
2612/*
2613 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2614 * vdev_offline(), we assume the spa config is locked.  We also clear all
2615 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2616 */
2617void
2618vdev_clear(spa_t *spa, vdev_t *vd)
2619{
2620	vdev_t *rvd = spa->spa_root_vdev;
2621
2622	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2623
2624	if (vd == NULL)
2625		vd = rvd;
2626
2627	vd->vdev_stat.vs_read_errors = 0;
2628	vd->vdev_stat.vs_write_errors = 0;
2629	vd->vdev_stat.vs_checksum_errors = 0;
2630
2631	for (int c = 0; c < vd->vdev_children; c++)
2632		vdev_clear(spa, vd->vdev_child[c]);
2633
2634	if (vd == rvd) {
2635		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2636			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2637
2638		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2639			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2640	}
2641
2642	/*
2643	 * If we're in the FAULTED state or have experienced failed I/O, then
2644	 * clear the persistent state and attempt to reopen the device.  We
2645	 * also mark the vdev config dirty, so that the new faulted state is
2646	 * written out to disk.
2647	 */
2648	if (vd->vdev_faulted || vd->vdev_degraded ||
2649	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2650
2651		/*
2652		 * When reopening in reponse to a clear event, it may be due to
2653		 * a fmadm repair request.  In this case, if the device is
2654		 * still broken, we want to still post the ereport again.
2655		 */
2656		vd->vdev_forcefault = B_TRUE;
2657
2658		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2659		vd->vdev_cant_read = B_FALSE;
2660		vd->vdev_cant_write = B_FALSE;
2661
2662		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2663
2664		vd->vdev_forcefault = B_FALSE;
2665
2666		if (vd != rvd && vdev_writeable(vd->vdev_top))
2667			vdev_state_dirty(vd->vdev_top);
2668
2669		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2670			spa_async_request(spa, SPA_ASYNC_RESILVER);
2671
2672		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2673	}
2674
2675	/*
2676	 * When clearing a FMA-diagnosed fault, we always want to
2677	 * unspare the device, as we assume that the original spare was
2678	 * done in response to the FMA fault.
2679	 */
2680	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2681	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2682	    vd->vdev_parent->vdev_child[0] == vd)
2683		vd->vdev_unspare = B_TRUE;
2684}
2685
2686boolean_t
2687vdev_is_dead(vdev_t *vd)
2688{
2689	/*
2690	 * Holes and missing devices are always considered "dead".
2691	 * This simplifies the code since we don't have to check for
2692	 * these types of devices in the various code paths.
2693	 * Instead we rely on the fact that we skip over dead devices
2694	 * before issuing I/O to them.
2695	 */
2696	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2697	    vd->vdev_ops == &vdev_missing_ops);
2698}
2699
2700boolean_t
2701vdev_readable(vdev_t *vd)
2702{
2703	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2704}
2705
2706boolean_t
2707vdev_writeable(vdev_t *vd)
2708{
2709	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2710}
2711
2712boolean_t
2713vdev_allocatable(vdev_t *vd)
2714{
2715	uint64_t state = vd->vdev_state;
2716
2717	/*
2718	 * We currently allow allocations from vdevs which may be in the
2719	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2720	 * fails to reopen then we'll catch it later when we're holding
2721	 * the proper locks.  Note that we have to get the vdev state
2722	 * in a local variable because although it changes atomically,
2723	 * we're asking two separate questions about it.
2724	 */
2725	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2726	    !vd->vdev_cant_write && !vd->vdev_ishole);
2727}
2728
2729boolean_t
2730vdev_accessible(vdev_t *vd, zio_t *zio)
2731{
2732	ASSERT(zio->io_vd == vd);
2733
2734	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2735		return (B_FALSE);
2736
2737	if (zio->io_type == ZIO_TYPE_READ)
2738		return (!vd->vdev_cant_read);
2739
2740	if (zio->io_type == ZIO_TYPE_WRITE)
2741		return (!vd->vdev_cant_write);
2742
2743	return (B_TRUE);
2744}
2745
2746/*
2747 * Get statistics for the given vdev.
2748 */
2749void
2750vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2751{
2752	spa_t *spa = vd->vdev_spa;
2753	vdev_t *rvd = spa->spa_root_vdev;
2754
2755	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2756
2757	mutex_enter(&vd->vdev_stat_lock);
2758	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2759	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2760	vs->vs_state = vd->vdev_state;
2761	vs->vs_rsize = vdev_get_min_asize(vd);
2762	if (vd->vdev_ops->vdev_op_leaf)
2763		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2764	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2765	vs->vs_configured_ashift = vd->vdev_top != NULL
2766	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2767	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2768	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2769	if (vd->vdev_aux == NULL && vd == vd->vdev_top)
2770		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2771
2772	/*
2773	 * If we're getting stats on the root vdev, aggregate the I/O counts
2774	 * over all top-level vdevs (i.e. the direct children of the root).
2775	 */
2776	if (vd == rvd) {
2777		for (int c = 0; c < rvd->vdev_children; c++) {
2778			vdev_t *cvd = rvd->vdev_child[c];
2779			vdev_stat_t *cvs = &cvd->vdev_stat;
2780
2781			for (int t = 0; t < ZIO_TYPES; t++) {
2782				vs->vs_ops[t] += cvs->vs_ops[t];
2783				vs->vs_bytes[t] += cvs->vs_bytes[t];
2784			}
2785			cvs->vs_scan_removing = cvd->vdev_removing;
2786		}
2787	}
2788	mutex_exit(&vd->vdev_stat_lock);
2789}
2790
2791void
2792vdev_clear_stats(vdev_t *vd)
2793{
2794	mutex_enter(&vd->vdev_stat_lock);
2795	vd->vdev_stat.vs_space = 0;
2796	vd->vdev_stat.vs_dspace = 0;
2797	vd->vdev_stat.vs_alloc = 0;
2798	mutex_exit(&vd->vdev_stat_lock);
2799}
2800
2801void
2802vdev_scan_stat_init(vdev_t *vd)
2803{
2804	vdev_stat_t *vs = &vd->vdev_stat;
2805
2806	for (int c = 0; c < vd->vdev_children; c++)
2807		vdev_scan_stat_init(vd->vdev_child[c]);
2808
2809	mutex_enter(&vd->vdev_stat_lock);
2810	vs->vs_scan_processed = 0;
2811	mutex_exit(&vd->vdev_stat_lock);
2812}
2813
2814void
2815vdev_stat_update(zio_t *zio, uint64_t psize)
2816{
2817	spa_t *spa = zio->io_spa;
2818	vdev_t *rvd = spa->spa_root_vdev;
2819	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2820	vdev_t *pvd;
2821	uint64_t txg = zio->io_txg;
2822	vdev_stat_t *vs = &vd->vdev_stat;
2823	zio_type_t type = zio->io_type;
2824	int flags = zio->io_flags;
2825
2826	/*
2827	 * If this i/o is a gang leader, it didn't do any actual work.
2828	 */
2829	if (zio->io_gang_tree)
2830		return;
2831
2832	if (zio->io_error == 0) {
2833		/*
2834		 * If this is a root i/o, don't count it -- we've already
2835		 * counted the top-level vdevs, and vdev_get_stats() will
2836		 * aggregate them when asked.  This reduces contention on
2837		 * the root vdev_stat_lock and implicitly handles blocks
2838		 * that compress away to holes, for which there is no i/o.
2839		 * (Holes never create vdev children, so all the counters
2840		 * remain zero, which is what we want.)
2841		 *
2842		 * Note: this only applies to successful i/o (io_error == 0)
2843		 * because unlike i/o counts, errors are not additive.
2844		 * When reading a ditto block, for example, failure of
2845		 * one top-level vdev does not imply a root-level error.
2846		 */
2847		if (vd == rvd)
2848			return;
2849
2850		ASSERT(vd == zio->io_vd);
2851
2852		if (flags & ZIO_FLAG_IO_BYPASS)
2853			return;
2854
2855		mutex_enter(&vd->vdev_stat_lock);
2856
2857		if (flags & ZIO_FLAG_IO_REPAIR) {
2858			if (flags & ZIO_FLAG_SCAN_THREAD) {
2859				dsl_scan_phys_t *scn_phys =
2860				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2861				uint64_t *processed = &scn_phys->scn_processed;
2862
2863				/* XXX cleanup? */
2864				if (vd->vdev_ops->vdev_op_leaf)
2865					atomic_add_64(processed, psize);
2866				vs->vs_scan_processed += psize;
2867			}
2868
2869			if (flags & ZIO_FLAG_SELF_HEAL)
2870				vs->vs_self_healed += psize;
2871		}
2872
2873		vs->vs_ops[type]++;
2874		vs->vs_bytes[type] += psize;
2875
2876		mutex_exit(&vd->vdev_stat_lock);
2877		return;
2878	}
2879
2880	if (flags & ZIO_FLAG_SPECULATIVE)
2881		return;
2882
2883	/*
2884	 * If this is an I/O error that is going to be retried, then ignore the
2885	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2886	 * hard errors, when in reality they can happen for any number of
2887	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2888	 */
2889	if (zio->io_error == EIO &&
2890	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2891		return;
2892
2893	/*
2894	 * Intent logs writes won't propagate their error to the root
2895	 * I/O so don't mark these types of failures as pool-level
2896	 * errors.
2897	 */
2898	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2899		return;
2900
2901	mutex_enter(&vd->vdev_stat_lock);
2902	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2903		if (zio->io_error == ECKSUM)
2904			vs->vs_checksum_errors++;
2905		else
2906			vs->vs_read_errors++;
2907	}
2908	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2909		vs->vs_write_errors++;
2910	mutex_exit(&vd->vdev_stat_lock);
2911
2912	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2913	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2914	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2915	    spa->spa_claiming)) {
2916		/*
2917		 * This is either a normal write (not a repair), or it's
2918		 * a repair induced by the scrub thread, or it's a repair
2919		 * made by zil_claim() during spa_load() in the first txg.
2920		 * In the normal case, we commit the DTL change in the same
2921		 * txg as the block was born.  In the scrub-induced repair
2922		 * case, we know that scrubs run in first-pass syncing context,
2923		 * so we commit the DTL change in spa_syncing_txg(spa).
2924		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2925		 *
2926		 * We currently do not make DTL entries for failed spontaneous
2927		 * self-healing writes triggered by normal (non-scrubbing)
2928		 * reads, because we have no transactional context in which to
2929		 * do so -- and it's not clear that it'd be desirable anyway.
2930		 */
2931		if (vd->vdev_ops->vdev_op_leaf) {
2932			uint64_t commit_txg = txg;
2933			if (flags & ZIO_FLAG_SCAN_THREAD) {
2934				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2935				ASSERT(spa_sync_pass(spa) == 1);
2936				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2937				commit_txg = spa_syncing_txg(spa);
2938			} else if (spa->spa_claiming) {
2939				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2940				commit_txg = spa_first_txg(spa);
2941			}
2942			ASSERT(commit_txg >= spa_syncing_txg(spa));
2943			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2944				return;
2945			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2946				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2947			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2948		}
2949		if (vd != rvd)
2950			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2951	}
2952}
2953
2954/*
2955 * Update the in-core space usage stats for this vdev, its metaslab class,
2956 * and the root vdev.
2957 */
2958void
2959vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2960    int64_t space_delta)
2961{
2962	int64_t dspace_delta = space_delta;
2963	spa_t *spa = vd->vdev_spa;
2964	vdev_t *rvd = spa->spa_root_vdev;
2965	metaslab_group_t *mg = vd->vdev_mg;
2966	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2967
2968	ASSERT(vd == vd->vdev_top);
2969
2970	/*
2971	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2972	 * factor.  We must calculate this here and not at the root vdev
2973	 * because the root vdev's psize-to-asize is simply the max of its
2974	 * childrens', thus not accurate enough for us.
2975	 */
2976	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2977	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2978	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2979	    vd->vdev_deflate_ratio;
2980
2981	mutex_enter(&vd->vdev_stat_lock);
2982	vd->vdev_stat.vs_alloc += alloc_delta;
2983	vd->vdev_stat.vs_space += space_delta;
2984	vd->vdev_stat.vs_dspace += dspace_delta;
2985	mutex_exit(&vd->vdev_stat_lock);
2986
2987	if (mc == spa_normal_class(spa)) {
2988		mutex_enter(&rvd->vdev_stat_lock);
2989		rvd->vdev_stat.vs_alloc += alloc_delta;
2990		rvd->vdev_stat.vs_space += space_delta;
2991		rvd->vdev_stat.vs_dspace += dspace_delta;
2992		mutex_exit(&rvd->vdev_stat_lock);
2993	}
2994
2995	if (mc != NULL) {
2996		ASSERT(rvd == vd->vdev_parent);
2997		ASSERT(vd->vdev_ms_count != 0);
2998
2999		metaslab_class_space_update(mc,
3000		    alloc_delta, defer_delta, space_delta, dspace_delta);
3001	}
3002}
3003
3004/*
3005 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3006 * so that it will be written out next time the vdev configuration is synced.
3007 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3008 */
3009void
3010vdev_config_dirty(vdev_t *vd)
3011{
3012	spa_t *spa = vd->vdev_spa;
3013	vdev_t *rvd = spa->spa_root_vdev;
3014	int c;
3015
3016	ASSERT(spa_writeable(spa));
3017
3018	/*
3019	 * If this is an aux vdev (as with l2cache and spare devices), then we
3020	 * update the vdev config manually and set the sync flag.
3021	 */
3022	if (vd->vdev_aux != NULL) {
3023		spa_aux_vdev_t *sav = vd->vdev_aux;
3024		nvlist_t **aux;
3025		uint_t naux;
3026
3027		for (c = 0; c < sav->sav_count; c++) {
3028			if (sav->sav_vdevs[c] == vd)
3029				break;
3030		}
3031
3032		if (c == sav->sav_count) {
3033			/*
3034			 * We're being removed.  There's nothing more to do.
3035			 */
3036			ASSERT(sav->sav_sync == B_TRUE);
3037			return;
3038		}
3039
3040		sav->sav_sync = B_TRUE;
3041
3042		if (nvlist_lookup_nvlist_array(sav->sav_config,
3043		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3044			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3045			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3046		}
3047
3048		ASSERT(c < naux);
3049
3050		/*
3051		 * Setting the nvlist in the middle if the array is a little
3052		 * sketchy, but it will work.
3053		 */
3054		nvlist_free(aux[c]);
3055		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3056
3057		return;
3058	}
3059
3060	/*
3061	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3062	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3063	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3064	 * so this is sufficient to ensure mutual exclusion.
3065	 */
3066	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3067	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3068	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3069
3070	if (vd == rvd) {
3071		for (c = 0; c < rvd->vdev_children; c++)
3072			vdev_config_dirty(rvd->vdev_child[c]);
3073	} else {
3074		ASSERT(vd == vd->vdev_top);
3075
3076		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3077		    !vd->vdev_ishole)
3078			list_insert_head(&spa->spa_config_dirty_list, vd);
3079	}
3080}
3081
3082void
3083vdev_config_clean(vdev_t *vd)
3084{
3085	spa_t *spa = vd->vdev_spa;
3086
3087	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3088	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3089	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3090
3091	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3092	list_remove(&spa->spa_config_dirty_list, vd);
3093}
3094
3095/*
3096 * Mark a top-level vdev's state as dirty, so that the next pass of
3097 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3098 * the state changes from larger config changes because they require
3099 * much less locking, and are often needed for administrative actions.
3100 */
3101void
3102vdev_state_dirty(vdev_t *vd)
3103{
3104	spa_t *spa = vd->vdev_spa;
3105
3106	ASSERT(spa_writeable(spa));
3107	ASSERT(vd == vd->vdev_top);
3108
3109	/*
3110	 * The state list is protected by the SCL_STATE lock.  The caller
3111	 * must either hold SCL_STATE as writer, or must be the sync thread
3112	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3113	 * so this is sufficient to ensure mutual exclusion.
3114	 */
3115	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3116	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3117	    spa_config_held(spa, SCL_STATE, RW_READER)));
3118
3119	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3120		list_insert_head(&spa->spa_state_dirty_list, vd);
3121}
3122
3123void
3124vdev_state_clean(vdev_t *vd)
3125{
3126	spa_t *spa = vd->vdev_spa;
3127
3128	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3129	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3130	    spa_config_held(spa, SCL_STATE, RW_READER)));
3131
3132	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3133	list_remove(&spa->spa_state_dirty_list, vd);
3134}
3135
3136/*
3137 * Propagate vdev state up from children to parent.
3138 */
3139void
3140vdev_propagate_state(vdev_t *vd)
3141{
3142	spa_t *spa = vd->vdev_spa;
3143	vdev_t *rvd = spa->spa_root_vdev;
3144	int degraded = 0, faulted = 0;
3145	int corrupted = 0;
3146	vdev_t *child;
3147
3148	if (vd->vdev_children > 0) {
3149		for (int c = 0; c < vd->vdev_children; c++) {
3150			child = vd->vdev_child[c];
3151
3152			/*
3153			 * Don't factor holes into the decision.
3154			 */
3155			if (child->vdev_ishole)
3156				continue;
3157
3158			if (!vdev_readable(child) ||
3159			    (!vdev_writeable(child) && spa_writeable(spa))) {
3160				/*
3161				 * Root special: if there is a top-level log
3162				 * device, treat the root vdev as if it were
3163				 * degraded.
3164				 */
3165				if (child->vdev_islog && vd == rvd)
3166					degraded++;
3167				else
3168					faulted++;
3169			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3170				degraded++;
3171			}
3172
3173			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3174				corrupted++;
3175		}
3176
3177		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3178
3179		/*
3180		 * Root special: if there is a top-level vdev that cannot be
3181		 * opened due to corrupted metadata, then propagate the root
3182		 * vdev's aux state as 'corrupt' rather than 'insufficient
3183		 * replicas'.
3184		 */
3185		if (corrupted && vd == rvd &&
3186		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3187			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3188			    VDEV_AUX_CORRUPT_DATA);
3189	}
3190
3191	if (vd->vdev_parent)
3192		vdev_propagate_state(vd->vdev_parent);
3193}
3194
3195/*
3196 * Set a vdev's state.  If this is during an open, we don't update the parent
3197 * state, because we're in the process of opening children depth-first.
3198 * Otherwise, we propagate the change to the parent.
3199 *
3200 * If this routine places a device in a faulted state, an appropriate ereport is
3201 * generated.
3202 */
3203void
3204vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3205{
3206	uint64_t save_state;
3207	spa_t *spa = vd->vdev_spa;
3208
3209	if (state == vd->vdev_state) {
3210		vd->vdev_stat.vs_aux = aux;
3211		return;
3212	}
3213
3214	save_state = vd->vdev_state;
3215
3216	vd->vdev_state = state;
3217	vd->vdev_stat.vs_aux = aux;
3218
3219	/*
3220	 * If we are setting the vdev state to anything but an open state, then
3221	 * always close the underlying device unless the device has requested
3222	 * a delayed close (i.e. we're about to remove or fault the device).
3223	 * Otherwise, we keep accessible but invalid devices open forever.
3224	 * We don't call vdev_close() itself, because that implies some extra
3225	 * checks (offline, etc) that we don't want here.  This is limited to
3226	 * leaf devices, because otherwise closing the device will affect other
3227	 * children.
3228	 */
3229	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3230	    vd->vdev_ops->vdev_op_leaf)
3231		vd->vdev_ops->vdev_op_close(vd);
3232
3233	/*
3234	 * If we have brought this vdev back into service, we need
3235	 * to notify fmd so that it can gracefully repair any outstanding
3236	 * cases due to a missing device.  We do this in all cases, even those
3237	 * that probably don't correlate to a repaired fault.  This is sure to
3238	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3239	 * this is a transient state it's OK, as the retire agent will
3240	 * double-check the state of the vdev before repairing it.
3241	 */
3242	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3243	    vd->vdev_prevstate != state)
3244		zfs_post_state_change(spa, vd);
3245
3246	if (vd->vdev_removed &&
3247	    state == VDEV_STATE_CANT_OPEN &&
3248	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3249		/*
3250		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3251		 * device was previously marked removed and someone attempted to
3252		 * reopen it.  If this failed due to a nonexistent device, then
3253		 * keep the device in the REMOVED state.  We also let this be if
3254		 * it is one of our special test online cases, which is only
3255		 * attempting to online the device and shouldn't generate an FMA
3256		 * fault.
3257		 */
3258		vd->vdev_state = VDEV_STATE_REMOVED;
3259		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3260	} else if (state == VDEV_STATE_REMOVED) {
3261		vd->vdev_removed = B_TRUE;
3262	} else if (state == VDEV_STATE_CANT_OPEN) {
3263		/*
3264		 * If we fail to open a vdev during an import or recovery, we
3265		 * mark it as "not available", which signifies that it was
3266		 * never there to begin with.  Failure to open such a device
3267		 * is not considered an error.
3268		 */
3269		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3270		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3271		    vd->vdev_ops->vdev_op_leaf)
3272			vd->vdev_not_present = 1;
3273
3274		/*
3275		 * Post the appropriate ereport.  If the 'prevstate' field is
3276		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3277		 * that this is part of a vdev_reopen().  In this case, we don't
3278		 * want to post the ereport if the device was already in the
3279		 * CANT_OPEN state beforehand.
3280		 *
3281		 * If the 'checkremove' flag is set, then this is an attempt to
3282		 * online the device in response to an insertion event.  If we
3283		 * hit this case, then we have detected an insertion event for a
3284		 * faulted or offline device that wasn't in the removed state.
3285		 * In this scenario, we don't post an ereport because we are
3286		 * about to replace the device, or attempt an online with
3287		 * vdev_forcefault, which will generate the fault for us.
3288		 */
3289		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3290		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3291		    vd != spa->spa_root_vdev) {
3292			const char *class;
3293
3294			switch (aux) {
3295			case VDEV_AUX_OPEN_FAILED:
3296				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3297				break;
3298			case VDEV_AUX_CORRUPT_DATA:
3299				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3300				break;
3301			case VDEV_AUX_NO_REPLICAS:
3302				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3303				break;
3304			case VDEV_AUX_BAD_GUID_SUM:
3305				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3306				break;
3307			case VDEV_AUX_TOO_SMALL:
3308				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3309				break;
3310			case VDEV_AUX_BAD_LABEL:
3311				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3312				break;
3313			default:
3314				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3315			}
3316
3317			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3318		}
3319
3320		/* Erase any notion of persistent removed state */
3321		vd->vdev_removed = B_FALSE;
3322	} else {
3323		vd->vdev_removed = B_FALSE;
3324	}
3325
3326	if (!isopen && vd->vdev_parent)
3327		vdev_propagate_state(vd->vdev_parent);
3328}
3329
3330/*
3331 * Check the vdev configuration to ensure that it's capable of supporting
3332 * a root pool.
3333 *
3334 * On Solaris, we do not support RAID-Z or partial configuration.  In
3335 * addition, only a single top-level vdev is allowed and none of the
3336 * leaves can be wholedisks.
3337 *
3338 * For FreeBSD, we can boot from any configuration. There is a
3339 * limitation that the boot filesystem must be either uncompressed or
3340 * compresses with lzjb compression but I'm not sure how to enforce
3341 * that here.
3342 */
3343boolean_t
3344vdev_is_bootable(vdev_t *vd)
3345{
3346#ifdef sun
3347	if (!vd->vdev_ops->vdev_op_leaf) {
3348		char *vdev_type = vd->vdev_ops->vdev_op_type;
3349
3350		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3351		    vd->vdev_children > 1) {
3352			return (B_FALSE);
3353		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3354		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3355			return (B_FALSE);
3356		}
3357	} else if (vd->vdev_wholedisk == 1) {
3358		return (B_FALSE);
3359	}
3360
3361	for (int c = 0; c < vd->vdev_children; c++) {
3362		if (!vdev_is_bootable(vd->vdev_child[c]))
3363			return (B_FALSE);
3364	}
3365#endif	/* sun */
3366	return (B_TRUE);
3367}
3368
3369/*
3370 * Load the state from the original vdev tree (ovd) which
3371 * we've retrieved from the MOS config object. If the original
3372 * vdev was offline or faulted then we transfer that state to the
3373 * device in the current vdev tree (nvd).
3374 */
3375void
3376vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3377{
3378	spa_t *spa = nvd->vdev_spa;
3379
3380	ASSERT(nvd->vdev_top->vdev_islog);
3381	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3382	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3383
3384	for (int c = 0; c < nvd->vdev_children; c++)
3385		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3386
3387	if (nvd->vdev_ops->vdev_op_leaf) {
3388		/*
3389		 * Restore the persistent vdev state
3390		 */
3391		nvd->vdev_offline = ovd->vdev_offline;
3392		nvd->vdev_faulted = ovd->vdev_faulted;
3393		nvd->vdev_degraded = ovd->vdev_degraded;
3394		nvd->vdev_removed = ovd->vdev_removed;
3395	}
3396}
3397
3398/*
3399 * Determine if a log device has valid content.  If the vdev was
3400 * removed or faulted in the MOS config then we know that
3401 * the content on the log device has already been written to the pool.
3402 */
3403boolean_t
3404vdev_log_state_valid(vdev_t *vd)
3405{
3406	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3407	    !vd->vdev_removed)
3408		return (B_TRUE);
3409
3410	for (int c = 0; c < vd->vdev_children; c++)
3411		if (vdev_log_state_valid(vd->vdev_child[c]))
3412			return (B_TRUE);
3413
3414	return (B_FALSE);
3415}
3416
3417/*
3418 * Expand a vdev if possible.
3419 */
3420void
3421vdev_expand(vdev_t *vd, uint64_t txg)
3422{
3423	ASSERT(vd->vdev_top == vd);
3424	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3425
3426	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3427		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3428		vdev_config_dirty(vd);
3429	}
3430}
3431
3432/*
3433 * Split a vdev.
3434 */
3435void
3436vdev_split(vdev_t *vd)
3437{
3438	vdev_t *cvd, *pvd = vd->vdev_parent;
3439
3440	vdev_remove_child(pvd, vd);
3441	vdev_compact_children(pvd);
3442
3443	cvd = pvd->vdev_child[0];
3444	if (pvd->vdev_children == 1) {
3445		vdev_remove_parent(cvd);
3446		cvd->vdev_splitting = B_TRUE;
3447	}
3448	vdev_propagate_state(cvd);
3449}
3450
3451void
3452vdev_deadman(vdev_t *vd)
3453{
3454	for (int c = 0; c < vd->vdev_children; c++) {
3455		vdev_t *cvd = vd->vdev_child[c];
3456
3457		vdev_deadman(cvd);
3458	}
3459
3460	if (vd->vdev_ops->vdev_op_leaf) {
3461		vdev_queue_t *vq = &vd->vdev_queue;
3462
3463		mutex_enter(&vq->vq_lock);
3464		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3465			spa_t *spa = vd->vdev_spa;
3466			zio_t *fio;
3467			uint64_t delta;
3468
3469			/*
3470			 * Look at the head of all the pending queues,
3471			 * if any I/O has been outstanding for longer than
3472			 * the spa_deadman_synctime we panic the system.
3473			 */
3474			fio = avl_first(&vq->vq_active_tree);
3475			delta = gethrtime() - fio->io_timestamp;
3476			if (delta > spa_deadman_synctime(spa)) {
3477				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3478				    "delta %lluns, last io %lluns",
3479				    fio->io_timestamp, delta,
3480				    vq->vq_io_complete_ts);
3481				fm_panic("I/O to pool '%s' appears to be "
3482				    "hung on vdev guid %llu at '%s'.",
3483				    spa_name(spa),
3484				    (long long unsigned int) vd->vdev_guid,
3485				    vd->vdev_path);
3486			}
3487		}
3488		mutex_exit(&vq->vq_lock);
3489	}
3490}
3491