vdev.c revision 265740
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/fm/fs/zfs.h>
31#include <sys/spa.h>
32#include <sys/spa_impl.h>
33#include <sys/dmu.h>
34#include <sys/dmu_tx.h>
35#include <sys/vdev_impl.h>
36#include <sys/uberblock_impl.h>
37#include <sys/metaslab.h>
38#include <sys/metaslab_impl.h>
39#include <sys/space_map.h>
40#include <sys/space_reftree.h>
41#include <sys/zio.h>
42#include <sys/zap.h>
43#include <sys/fs/zfs.h>
44#include <sys/arc.h>
45#include <sys/zil.h>
46#include <sys/dsl_scan.h>
47#include <sys/trim_map.h>
48
49SYSCTL_DECL(_vfs_zfs);
50SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
51
52/*
53 * Virtual device management.
54 */
55
56/**
57 * The limit for ZFS to automatically increase a top-level vdev's ashift
58 * from logical ashift to physical ashift.
59 *
60 * Example: one or more 512B emulation child vdevs
61 *          child->vdev_ashift = 9 (512 bytes)
62 *          child->vdev_physical_ashift = 12 (4096 bytes)
63 *          zfs_max_auto_ashift = 11 (2048 bytes)
64 *
65 * On pool creation or the addition of a new top-leve vdev, ZFS will
66 * bump the ashift of the top-level vdev to 2048.
67 *
68 * Example: one or more 512B emulation child vdevs
69 *          child->vdev_ashift = 9 (512 bytes)
70 *          child->vdev_physical_ashift = 12 (4096 bytes)
71 *          zfs_max_auto_ashift = 13 (8192 bytes)
72 *
73 * On pool creation or the addition of a new top-leve vdev, ZFS will
74 * bump the ashift of the top-level vdev to 4096.
75 */
76static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
77
78static int
79sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
80{
81	uint64_t val;
82	int err;
83
84	val = zfs_max_auto_ashift;
85	err = sysctl_handle_64(oidp, &val, 0, req);
86	if (err != 0 || req->newptr == NULL)
87		return (err);
88
89	if (val > SPA_MAXASHIFT)
90		val = SPA_MAXASHIFT;
91
92	zfs_max_auto_ashift = val;
93
94	return (0);
95}
96SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
97    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
98    sysctl_vfs_zfs_max_auto_ashift, "QU",
99    "Cap on logical -> physical ashift adjustment on new top-level vdevs.");
100
101static vdev_ops_t *vdev_ops_table[] = {
102	&vdev_root_ops,
103	&vdev_raidz_ops,
104	&vdev_mirror_ops,
105	&vdev_replacing_ops,
106	&vdev_spare_ops,
107#ifdef _KERNEL
108	&vdev_geom_ops,
109#else
110	&vdev_disk_ops,
111#endif
112	&vdev_file_ops,
113	&vdev_missing_ops,
114	&vdev_hole_ops,
115	NULL
116};
117
118
119/*
120 * Given a vdev type, return the appropriate ops vector.
121 */
122static vdev_ops_t *
123vdev_getops(const char *type)
124{
125	vdev_ops_t *ops, **opspp;
126
127	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
128		if (strcmp(ops->vdev_op_type, type) == 0)
129			break;
130
131	return (ops);
132}
133
134/*
135 * Default asize function: return the MAX of psize with the asize of
136 * all children.  This is what's used by anything other than RAID-Z.
137 */
138uint64_t
139vdev_default_asize(vdev_t *vd, uint64_t psize)
140{
141	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
142	uint64_t csize;
143
144	for (int c = 0; c < vd->vdev_children; c++) {
145		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
146		asize = MAX(asize, csize);
147	}
148
149	return (asize);
150}
151
152/*
153 * Get the minimum allocatable size. We define the allocatable size as
154 * the vdev's asize rounded to the nearest metaslab. This allows us to
155 * replace or attach devices which don't have the same physical size but
156 * can still satisfy the same number of allocations.
157 */
158uint64_t
159vdev_get_min_asize(vdev_t *vd)
160{
161	vdev_t *pvd = vd->vdev_parent;
162
163	/*
164	 * If our parent is NULL (inactive spare or cache) or is the root,
165	 * just return our own asize.
166	 */
167	if (pvd == NULL)
168		return (vd->vdev_asize);
169
170	/*
171	 * The top-level vdev just returns the allocatable size rounded
172	 * to the nearest metaslab.
173	 */
174	if (vd == vd->vdev_top)
175		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
176
177	/*
178	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
179	 * so each child must provide at least 1/Nth of its asize.
180	 */
181	if (pvd->vdev_ops == &vdev_raidz_ops)
182		return (pvd->vdev_min_asize / pvd->vdev_children);
183
184	return (pvd->vdev_min_asize);
185}
186
187void
188vdev_set_min_asize(vdev_t *vd)
189{
190	vd->vdev_min_asize = vdev_get_min_asize(vd);
191
192	for (int c = 0; c < vd->vdev_children; c++)
193		vdev_set_min_asize(vd->vdev_child[c]);
194}
195
196vdev_t *
197vdev_lookup_top(spa_t *spa, uint64_t vdev)
198{
199	vdev_t *rvd = spa->spa_root_vdev;
200
201	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
202
203	if (vdev < rvd->vdev_children) {
204		ASSERT(rvd->vdev_child[vdev] != NULL);
205		return (rvd->vdev_child[vdev]);
206	}
207
208	return (NULL);
209}
210
211vdev_t *
212vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
213{
214	vdev_t *mvd;
215
216	if (vd->vdev_guid == guid)
217		return (vd);
218
219	for (int c = 0; c < vd->vdev_children; c++)
220		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
221		    NULL)
222			return (mvd);
223
224	return (NULL);
225}
226
227void
228vdev_add_child(vdev_t *pvd, vdev_t *cvd)
229{
230	size_t oldsize, newsize;
231	uint64_t id = cvd->vdev_id;
232	vdev_t **newchild;
233
234	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
235	ASSERT(cvd->vdev_parent == NULL);
236
237	cvd->vdev_parent = pvd;
238
239	if (pvd == NULL)
240		return;
241
242	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
243
244	oldsize = pvd->vdev_children * sizeof (vdev_t *);
245	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
246	newsize = pvd->vdev_children * sizeof (vdev_t *);
247
248	newchild = kmem_zalloc(newsize, KM_SLEEP);
249	if (pvd->vdev_child != NULL) {
250		bcopy(pvd->vdev_child, newchild, oldsize);
251		kmem_free(pvd->vdev_child, oldsize);
252	}
253
254	pvd->vdev_child = newchild;
255	pvd->vdev_child[id] = cvd;
256
257	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
258	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
259
260	/*
261	 * Walk up all ancestors to update guid sum.
262	 */
263	for (; pvd != NULL; pvd = pvd->vdev_parent)
264		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
265}
266
267void
268vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
269{
270	int c;
271	uint_t id = cvd->vdev_id;
272
273	ASSERT(cvd->vdev_parent == pvd);
274
275	if (pvd == NULL)
276		return;
277
278	ASSERT(id < pvd->vdev_children);
279	ASSERT(pvd->vdev_child[id] == cvd);
280
281	pvd->vdev_child[id] = NULL;
282	cvd->vdev_parent = NULL;
283
284	for (c = 0; c < pvd->vdev_children; c++)
285		if (pvd->vdev_child[c])
286			break;
287
288	if (c == pvd->vdev_children) {
289		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
290		pvd->vdev_child = NULL;
291		pvd->vdev_children = 0;
292	}
293
294	/*
295	 * Walk up all ancestors to update guid sum.
296	 */
297	for (; pvd != NULL; pvd = pvd->vdev_parent)
298		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
299}
300
301/*
302 * Remove any holes in the child array.
303 */
304void
305vdev_compact_children(vdev_t *pvd)
306{
307	vdev_t **newchild, *cvd;
308	int oldc = pvd->vdev_children;
309	int newc;
310
311	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
312
313	for (int c = newc = 0; c < oldc; c++)
314		if (pvd->vdev_child[c])
315			newc++;
316
317	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
318
319	for (int c = newc = 0; c < oldc; c++) {
320		if ((cvd = pvd->vdev_child[c]) != NULL) {
321			newchild[newc] = cvd;
322			cvd->vdev_id = newc++;
323		}
324	}
325
326	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
327	pvd->vdev_child = newchild;
328	pvd->vdev_children = newc;
329}
330
331/*
332 * Allocate and minimally initialize a vdev_t.
333 */
334vdev_t *
335vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
336{
337	vdev_t *vd;
338
339	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
340
341	if (spa->spa_root_vdev == NULL) {
342		ASSERT(ops == &vdev_root_ops);
343		spa->spa_root_vdev = vd;
344		spa->spa_load_guid = spa_generate_guid(NULL);
345	}
346
347	if (guid == 0 && ops != &vdev_hole_ops) {
348		if (spa->spa_root_vdev == vd) {
349			/*
350			 * The root vdev's guid will also be the pool guid,
351			 * which must be unique among all pools.
352			 */
353			guid = spa_generate_guid(NULL);
354		} else {
355			/*
356			 * Any other vdev's guid must be unique within the pool.
357			 */
358			guid = spa_generate_guid(spa);
359		}
360		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
361	}
362
363	vd->vdev_spa = spa;
364	vd->vdev_id = id;
365	vd->vdev_guid = guid;
366	vd->vdev_guid_sum = guid;
367	vd->vdev_ops = ops;
368	vd->vdev_state = VDEV_STATE_CLOSED;
369	vd->vdev_ishole = (ops == &vdev_hole_ops);
370
371	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
372	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
373	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
374	for (int t = 0; t < DTL_TYPES; t++) {
375		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
376		    &vd->vdev_dtl_lock);
377	}
378	txg_list_create(&vd->vdev_ms_list,
379	    offsetof(struct metaslab, ms_txg_node));
380	txg_list_create(&vd->vdev_dtl_list,
381	    offsetof(struct vdev, vdev_dtl_node));
382	vd->vdev_stat.vs_timestamp = gethrtime();
383	vdev_queue_init(vd);
384	vdev_cache_init(vd);
385
386	return (vd);
387}
388
389/*
390 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
391 * creating a new vdev or loading an existing one - the behavior is slightly
392 * different for each case.
393 */
394int
395vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
396    int alloctype)
397{
398	vdev_ops_t *ops;
399	char *type;
400	uint64_t guid = 0, islog, nparity;
401	vdev_t *vd;
402
403	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
404
405	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
406		return (SET_ERROR(EINVAL));
407
408	if ((ops = vdev_getops(type)) == NULL)
409		return (SET_ERROR(EINVAL));
410
411	/*
412	 * If this is a load, get the vdev guid from the nvlist.
413	 * Otherwise, vdev_alloc_common() will generate one for us.
414	 */
415	if (alloctype == VDEV_ALLOC_LOAD) {
416		uint64_t label_id;
417
418		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
419		    label_id != id)
420			return (SET_ERROR(EINVAL));
421
422		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423			return (SET_ERROR(EINVAL));
424	} else if (alloctype == VDEV_ALLOC_SPARE) {
425		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
426			return (SET_ERROR(EINVAL));
427	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
428		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
429			return (SET_ERROR(EINVAL));
430	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
431		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
432			return (SET_ERROR(EINVAL));
433	}
434
435	/*
436	 * The first allocated vdev must be of type 'root'.
437	 */
438	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
439		return (SET_ERROR(EINVAL));
440
441	/*
442	 * Determine whether we're a log vdev.
443	 */
444	islog = 0;
445	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
446	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
447		return (SET_ERROR(ENOTSUP));
448
449	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
450		return (SET_ERROR(ENOTSUP));
451
452	/*
453	 * Set the nparity property for RAID-Z vdevs.
454	 */
455	nparity = -1ULL;
456	if (ops == &vdev_raidz_ops) {
457		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
458		    &nparity) == 0) {
459			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
460				return (SET_ERROR(EINVAL));
461			/*
462			 * Previous versions could only support 1 or 2 parity
463			 * device.
464			 */
465			if (nparity > 1 &&
466			    spa_version(spa) < SPA_VERSION_RAIDZ2)
467				return (SET_ERROR(ENOTSUP));
468			if (nparity > 2 &&
469			    spa_version(spa) < SPA_VERSION_RAIDZ3)
470				return (SET_ERROR(ENOTSUP));
471		} else {
472			/*
473			 * We require the parity to be specified for SPAs that
474			 * support multiple parity levels.
475			 */
476			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
477				return (SET_ERROR(EINVAL));
478			/*
479			 * Otherwise, we default to 1 parity device for RAID-Z.
480			 */
481			nparity = 1;
482		}
483	} else {
484		nparity = 0;
485	}
486	ASSERT(nparity != -1ULL);
487
488	vd = vdev_alloc_common(spa, id, guid, ops);
489
490	vd->vdev_islog = islog;
491	vd->vdev_nparity = nparity;
492
493	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
494		vd->vdev_path = spa_strdup(vd->vdev_path);
495	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
496		vd->vdev_devid = spa_strdup(vd->vdev_devid);
497	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
498	    &vd->vdev_physpath) == 0)
499		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
500	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
501		vd->vdev_fru = spa_strdup(vd->vdev_fru);
502
503	/*
504	 * Set the whole_disk property.  If it's not specified, leave the value
505	 * as -1.
506	 */
507	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
508	    &vd->vdev_wholedisk) != 0)
509		vd->vdev_wholedisk = -1ULL;
510
511	/*
512	 * Look for the 'not present' flag.  This will only be set if the device
513	 * was not present at the time of import.
514	 */
515	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
516	    &vd->vdev_not_present);
517
518	/*
519	 * Get the alignment requirement.
520	 */
521	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
522
523	/*
524	 * Retrieve the vdev creation time.
525	 */
526	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
527	    &vd->vdev_crtxg);
528
529	/*
530	 * If we're a top-level vdev, try to load the allocation parameters.
531	 */
532	if (parent && !parent->vdev_parent &&
533	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
534		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
535		    &vd->vdev_ms_array);
536		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
537		    &vd->vdev_ms_shift);
538		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
539		    &vd->vdev_asize);
540		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
541		    &vd->vdev_removing);
542	}
543
544	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
545		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
546		    alloctype == VDEV_ALLOC_ADD ||
547		    alloctype == VDEV_ALLOC_SPLIT ||
548		    alloctype == VDEV_ALLOC_ROOTPOOL);
549		vd->vdev_mg = metaslab_group_create(islog ?
550		    spa_log_class(spa) : spa_normal_class(spa), vd);
551	}
552
553	/*
554	 * If we're a leaf vdev, try to load the DTL object and other state.
555	 */
556	if (vd->vdev_ops->vdev_op_leaf &&
557	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
558	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
559		if (alloctype == VDEV_ALLOC_LOAD) {
560			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
561			    &vd->vdev_dtl_object);
562			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
563			    &vd->vdev_unspare);
564		}
565
566		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
567			uint64_t spare = 0;
568
569			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
570			    &spare) == 0 && spare)
571				spa_spare_add(vd);
572		}
573
574		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
575		    &vd->vdev_offline);
576
577		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
578		    &vd->vdev_resilver_txg);
579
580		/*
581		 * When importing a pool, we want to ignore the persistent fault
582		 * state, as the diagnosis made on another system may not be
583		 * valid in the current context.  Local vdevs will
584		 * remain in the faulted state.
585		 */
586		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
587			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
588			    &vd->vdev_faulted);
589			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
590			    &vd->vdev_degraded);
591			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
592			    &vd->vdev_removed);
593
594			if (vd->vdev_faulted || vd->vdev_degraded) {
595				char *aux;
596
597				vd->vdev_label_aux =
598				    VDEV_AUX_ERR_EXCEEDED;
599				if (nvlist_lookup_string(nv,
600				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
601				    strcmp(aux, "external") == 0)
602					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
603			}
604		}
605	}
606
607	/*
608	 * Add ourselves to the parent's list of children.
609	 */
610	vdev_add_child(parent, vd);
611
612	*vdp = vd;
613
614	return (0);
615}
616
617void
618vdev_free(vdev_t *vd)
619{
620	spa_t *spa = vd->vdev_spa;
621
622	/*
623	 * vdev_free() implies closing the vdev first.  This is simpler than
624	 * trying to ensure complicated semantics for all callers.
625	 */
626	vdev_close(vd);
627
628	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
629	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
630
631	/*
632	 * Free all children.
633	 */
634	for (int c = 0; c < vd->vdev_children; c++)
635		vdev_free(vd->vdev_child[c]);
636
637	ASSERT(vd->vdev_child == NULL);
638	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
639
640	/*
641	 * Discard allocation state.
642	 */
643	if (vd->vdev_mg != NULL) {
644		vdev_metaslab_fini(vd);
645		metaslab_group_destroy(vd->vdev_mg);
646	}
647
648	ASSERT0(vd->vdev_stat.vs_space);
649	ASSERT0(vd->vdev_stat.vs_dspace);
650	ASSERT0(vd->vdev_stat.vs_alloc);
651
652	/*
653	 * Remove this vdev from its parent's child list.
654	 */
655	vdev_remove_child(vd->vdev_parent, vd);
656
657	ASSERT(vd->vdev_parent == NULL);
658
659	/*
660	 * Clean up vdev structure.
661	 */
662	vdev_queue_fini(vd);
663	vdev_cache_fini(vd);
664
665	if (vd->vdev_path)
666		spa_strfree(vd->vdev_path);
667	if (vd->vdev_devid)
668		spa_strfree(vd->vdev_devid);
669	if (vd->vdev_physpath)
670		spa_strfree(vd->vdev_physpath);
671	if (vd->vdev_fru)
672		spa_strfree(vd->vdev_fru);
673
674	if (vd->vdev_isspare)
675		spa_spare_remove(vd);
676	if (vd->vdev_isl2cache)
677		spa_l2cache_remove(vd);
678
679	txg_list_destroy(&vd->vdev_ms_list);
680	txg_list_destroy(&vd->vdev_dtl_list);
681
682	mutex_enter(&vd->vdev_dtl_lock);
683	space_map_close(vd->vdev_dtl_sm);
684	for (int t = 0; t < DTL_TYPES; t++) {
685		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
686		range_tree_destroy(vd->vdev_dtl[t]);
687	}
688	mutex_exit(&vd->vdev_dtl_lock);
689
690	mutex_destroy(&vd->vdev_dtl_lock);
691	mutex_destroy(&vd->vdev_stat_lock);
692	mutex_destroy(&vd->vdev_probe_lock);
693
694	if (vd == spa->spa_root_vdev)
695		spa->spa_root_vdev = NULL;
696
697	kmem_free(vd, sizeof (vdev_t));
698}
699
700/*
701 * Transfer top-level vdev state from svd to tvd.
702 */
703static void
704vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
705{
706	spa_t *spa = svd->vdev_spa;
707	metaslab_t *msp;
708	vdev_t *vd;
709	int t;
710
711	ASSERT(tvd == tvd->vdev_top);
712
713	tvd->vdev_ms_array = svd->vdev_ms_array;
714	tvd->vdev_ms_shift = svd->vdev_ms_shift;
715	tvd->vdev_ms_count = svd->vdev_ms_count;
716
717	svd->vdev_ms_array = 0;
718	svd->vdev_ms_shift = 0;
719	svd->vdev_ms_count = 0;
720
721	if (tvd->vdev_mg)
722		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
723	tvd->vdev_mg = svd->vdev_mg;
724	tvd->vdev_ms = svd->vdev_ms;
725
726	svd->vdev_mg = NULL;
727	svd->vdev_ms = NULL;
728
729	if (tvd->vdev_mg != NULL)
730		tvd->vdev_mg->mg_vd = tvd;
731
732	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
733	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
734	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
735
736	svd->vdev_stat.vs_alloc = 0;
737	svd->vdev_stat.vs_space = 0;
738	svd->vdev_stat.vs_dspace = 0;
739
740	for (t = 0; t < TXG_SIZE; t++) {
741		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
742			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
743		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
744			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
745		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
746			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
747	}
748
749	if (list_link_active(&svd->vdev_config_dirty_node)) {
750		vdev_config_clean(svd);
751		vdev_config_dirty(tvd);
752	}
753
754	if (list_link_active(&svd->vdev_state_dirty_node)) {
755		vdev_state_clean(svd);
756		vdev_state_dirty(tvd);
757	}
758
759	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
760	svd->vdev_deflate_ratio = 0;
761
762	tvd->vdev_islog = svd->vdev_islog;
763	svd->vdev_islog = 0;
764}
765
766static void
767vdev_top_update(vdev_t *tvd, vdev_t *vd)
768{
769	if (vd == NULL)
770		return;
771
772	vd->vdev_top = tvd;
773
774	for (int c = 0; c < vd->vdev_children; c++)
775		vdev_top_update(tvd, vd->vdev_child[c]);
776}
777
778/*
779 * Add a mirror/replacing vdev above an existing vdev.
780 */
781vdev_t *
782vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
783{
784	spa_t *spa = cvd->vdev_spa;
785	vdev_t *pvd = cvd->vdev_parent;
786	vdev_t *mvd;
787
788	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
789
790	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
791
792	mvd->vdev_asize = cvd->vdev_asize;
793	mvd->vdev_min_asize = cvd->vdev_min_asize;
794	mvd->vdev_max_asize = cvd->vdev_max_asize;
795	mvd->vdev_ashift = cvd->vdev_ashift;
796	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
797	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
798	mvd->vdev_state = cvd->vdev_state;
799	mvd->vdev_crtxg = cvd->vdev_crtxg;
800
801	vdev_remove_child(pvd, cvd);
802	vdev_add_child(pvd, mvd);
803	cvd->vdev_id = mvd->vdev_children;
804	vdev_add_child(mvd, cvd);
805	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
806
807	if (mvd == mvd->vdev_top)
808		vdev_top_transfer(cvd, mvd);
809
810	return (mvd);
811}
812
813/*
814 * Remove a 1-way mirror/replacing vdev from the tree.
815 */
816void
817vdev_remove_parent(vdev_t *cvd)
818{
819	vdev_t *mvd = cvd->vdev_parent;
820	vdev_t *pvd = mvd->vdev_parent;
821
822	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
823
824	ASSERT(mvd->vdev_children == 1);
825	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
826	    mvd->vdev_ops == &vdev_replacing_ops ||
827	    mvd->vdev_ops == &vdev_spare_ops);
828	cvd->vdev_ashift = mvd->vdev_ashift;
829	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
830	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
831
832	vdev_remove_child(mvd, cvd);
833	vdev_remove_child(pvd, mvd);
834
835	/*
836	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
837	 * Otherwise, we could have detached an offline device, and when we
838	 * go to import the pool we'll think we have two top-level vdevs,
839	 * instead of a different version of the same top-level vdev.
840	 */
841	if (mvd->vdev_top == mvd) {
842		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
843		cvd->vdev_orig_guid = cvd->vdev_guid;
844		cvd->vdev_guid += guid_delta;
845		cvd->vdev_guid_sum += guid_delta;
846	}
847	cvd->vdev_id = mvd->vdev_id;
848	vdev_add_child(pvd, cvd);
849	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
850
851	if (cvd == cvd->vdev_top)
852		vdev_top_transfer(mvd, cvd);
853
854	ASSERT(mvd->vdev_children == 0);
855	vdev_free(mvd);
856}
857
858int
859vdev_metaslab_init(vdev_t *vd, uint64_t txg)
860{
861	spa_t *spa = vd->vdev_spa;
862	objset_t *mos = spa->spa_meta_objset;
863	uint64_t m;
864	uint64_t oldc = vd->vdev_ms_count;
865	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
866	metaslab_t **mspp;
867	int error;
868
869	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
870
871	/*
872	 * This vdev is not being allocated from yet or is a hole.
873	 */
874	if (vd->vdev_ms_shift == 0)
875		return (0);
876
877	ASSERT(!vd->vdev_ishole);
878
879	/*
880	 * Compute the raidz-deflation ratio.  Note, we hard-code
881	 * in 128k (1 << 17) because it is the current "typical" blocksize.
882	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
883	 * or we will inconsistently account for existing bp's.
884	 */
885	vd->vdev_deflate_ratio = (1 << 17) /
886	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
887
888	ASSERT(oldc <= newc);
889
890	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
891
892	if (oldc != 0) {
893		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
894		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
895	}
896
897	vd->vdev_ms = mspp;
898	vd->vdev_ms_count = newc;
899
900	for (m = oldc; m < newc; m++) {
901		uint64_t object = 0;
902
903		if (txg == 0) {
904			error = dmu_read(mos, vd->vdev_ms_array,
905			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
906			    DMU_READ_PREFETCH);
907			if (error)
908				return (error);
909		}
910		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
911	}
912
913	if (txg == 0)
914		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
915
916	/*
917	 * If the vdev is being removed we don't activate
918	 * the metaslabs since we want to ensure that no new
919	 * allocations are performed on this device.
920	 */
921	if (oldc == 0 && !vd->vdev_removing)
922		metaslab_group_activate(vd->vdev_mg);
923
924	if (txg == 0)
925		spa_config_exit(spa, SCL_ALLOC, FTAG);
926
927	return (0);
928}
929
930void
931vdev_metaslab_fini(vdev_t *vd)
932{
933	uint64_t m;
934	uint64_t count = vd->vdev_ms_count;
935
936	if (vd->vdev_ms != NULL) {
937		metaslab_group_passivate(vd->vdev_mg);
938		for (m = 0; m < count; m++) {
939			metaslab_t *msp = vd->vdev_ms[m];
940
941			if (msp != NULL)
942				metaslab_fini(msp);
943		}
944		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
945		vd->vdev_ms = NULL;
946	}
947}
948
949typedef struct vdev_probe_stats {
950	boolean_t	vps_readable;
951	boolean_t	vps_writeable;
952	int		vps_flags;
953} vdev_probe_stats_t;
954
955static void
956vdev_probe_done(zio_t *zio)
957{
958	spa_t *spa = zio->io_spa;
959	vdev_t *vd = zio->io_vd;
960	vdev_probe_stats_t *vps = zio->io_private;
961
962	ASSERT(vd->vdev_probe_zio != NULL);
963
964	if (zio->io_type == ZIO_TYPE_READ) {
965		if (zio->io_error == 0)
966			vps->vps_readable = 1;
967		if (zio->io_error == 0 && spa_writeable(spa)) {
968			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
969			    zio->io_offset, zio->io_size, zio->io_data,
970			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
971			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
972		} else {
973			zio_buf_free(zio->io_data, zio->io_size);
974		}
975	} else if (zio->io_type == ZIO_TYPE_WRITE) {
976		if (zio->io_error == 0)
977			vps->vps_writeable = 1;
978		zio_buf_free(zio->io_data, zio->io_size);
979	} else if (zio->io_type == ZIO_TYPE_NULL) {
980		zio_t *pio;
981
982		vd->vdev_cant_read |= !vps->vps_readable;
983		vd->vdev_cant_write |= !vps->vps_writeable;
984
985		if (vdev_readable(vd) &&
986		    (vdev_writeable(vd) || !spa_writeable(spa))) {
987			zio->io_error = 0;
988		} else {
989			ASSERT(zio->io_error != 0);
990			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
991			    spa, vd, NULL, 0, 0);
992			zio->io_error = SET_ERROR(ENXIO);
993		}
994
995		mutex_enter(&vd->vdev_probe_lock);
996		ASSERT(vd->vdev_probe_zio == zio);
997		vd->vdev_probe_zio = NULL;
998		mutex_exit(&vd->vdev_probe_lock);
999
1000		while ((pio = zio_walk_parents(zio)) != NULL)
1001			if (!vdev_accessible(vd, pio))
1002				pio->io_error = SET_ERROR(ENXIO);
1003
1004		kmem_free(vps, sizeof (*vps));
1005	}
1006}
1007
1008/*
1009 * Determine whether this device is accessible.
1010 *
1011 * Read and write to several known locations: the pad regions of each
1012 * vdev label but the first, which we leave alone in case it contains
1013 * a VTOC.
1014 */
1015zio_t *
1016vdev_probe(vdev_t *vd, zio_t *zio)
1017{
1018	spa_t *spa = vd->vdev_spa;
1019	vdev_probe_stats_t *vps = NULL;
1020	zio_t *pio;
1021
1022	ASSERT(vd->vdev_ops->vdev_op_leaf);
1023
1024	/*
1025	 * Don't probe the probe.
1026	 */
1027	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1028		return (NULL);
1029
1030	/*
1031	 * To prevent 'probe storms' when a device fails, we create
1032	 * just one probe i/o at a time.  All zios that want to probe
1033	 * this vdev will become parents of the probe io.
1034	 */
1035	mutex_enter(&vd->vdev_probe_lock);
1036
1037	if ((pio = vd->vdev_probe_zio) == NULL) {
1038		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1039
1040		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1041		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1042		    ZIO_FLAG_TRYHARD;
1043
1044		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1045			/*
1046			 * vdev_cant_read and vdev_cant_write can only
1047			 * transition from TRUE to FALSE when we have the
1048			 * SCL_ZIO lock as writer; otherwise they can only
1049			 * transition from FALSE to TRUE.  This ensures that
1050			 * any zio looking at these values can assume that
1051			 * failures persist for the life of the I/O.  That's
1052			 * important because when a device has intermittent
1053			 * connectivity problems, we want to ensure that
1054			 * they're ascribed to the device (ENXIO) and not
1055			 * the zio (EIO).
1056			 *
1057			 * Since we hold SCL_ZIO as writer here, clear both
1058			 * values so the probe can reevaluate from first
1059			 * principles.
1060			 */
1061			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1062			vd->vdev_cant_read = B_FALSE;
1063			vd->vdev_cant_write = B_FALSE;
1064		}
1065
1066		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1067		    vdev_probe_done, vps,
1068		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1069
1070		/*
1071		 * We can't change the vdev state in this context, so we
1072		 * kick off an async task to do it on our behalf.
1073		 */
1074		if (zio != NULL) {
1075			vd->vdev_probe_wanted = B_TRUE;
1076			spa_async_request(spa, SPA_ASYNC_PROBE);
1077		}
1078	}
1079
1080	if (zio != NULL)
1081		zio_add_child(zio, pio);
1082
1083	mutex_exit(&vd->vdev_probe_lock);
1084
1085	if (vps == NULL) {
1086		ASSERT(zio != NULL);
1087		return (NULL);
1088	}
1089
1090	for (int l = 1; l < VDEV_LABELS; l++) {
1091		zio_nowait(zio_read_phys(pio, vd,
1092		    vdev_label_offset(vd->vdev_psize, l,
1093		    offsetof(vdev_label_t, vl_pad2)),
1094		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1095		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1096		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1097	}
1098
1099	if (zio == NULL)
1100		return (pio);
1101
1102	zio_nowait(pio);
1103	return (NULL);
1104}
1105
1106static void
1107vdev_open_child(void *arg)
1108{
1109	vdev_t *vd = arg;
1110
1111	vd->vdev_open_thread = curthread;
1112	vd->vdev_open_error = vdev_open(vd);
1113	vd->vdev_open_thread = NULL;
1114}
1115
1116boolean_t
1117vdev_uses_zvols(vdev_t *vd)
1118{
1119	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1120	    strlen(ZVOL_DIR)) == 0)
1121		return (B_TRUE);
1122	for (int c = 0; c < vd->vdev_children; c++)
1123		if (vdev_uses_zvols(vd->vdev_child[c]))
1124			return (B_TRUE);
1125	return (B_FALSE);
1126}
1127
1128void
1129vdev_open_children(vdev_t *vd)
1130{
1131	taskq_t *tq;
1132	int children = vd->vdev_children;
1133
1134	/*
1135	 * in order to handle pools on top of zvols, do the opens
1136	 * in a single thread so that the same thread holds the
1137	 * spa_namespace_lock
1138	 */
1139	if (B_TRUE || vdev_uses_zvols(vd)) {
1140		for (int c = 0; c < children; c++)
1141			vd->vdev_child[c]->vdev_open_error =
1142			    vdev_open(vd->vdev_child[c]);
1143		return;
1144	}
1145	tq = taskq_create("vdev_open", children, minclsyspri,
1146	    children, children, TASKQ_PREPOPULATE);
1147
1148	for (int c = 0; c < children; c++)
1149		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1150		    TQ_SLEEP) != 0);
1151
1152	taskq_destroy(tq);
1153}
1154
1155/*
1156 * Prepare a virtual device for access.
1157 */
1158int
1159vdev_open(vdev_t *vd)
1160{
1161	spa_t *spa = vd->vdev_spa;
1162	int error;
1163	uint64_t osize = 0;
1164	uint64_t max_osize = 0;
1165	uint64_t asize, max_asize, psize;
1166	uint64_t logical_ashift = 0;
1167	uint64_t physical_ashift = 0;
1168
1169	ASSERT(vd->vdev_open_thread == curthread ||
1170	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1171	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1172	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1173	    vd->vdev_state == VDEV_STATE_OFFLINE);
1174
1175	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1176	vd->vdev_cant_read = B_FALSE;
1177	vd->vdev_cant_write = B_FALSE;
1178	vd->vdev_min_asize = vdev_get_min_asize(vd);
1179
1180	/*
1181	 * If this vdev is not removed, check its fault status.  If it's
1182	 * faulted, bail out of the open.
1183	 */
1184	if (!vd->vdev_removed && vd->vdev_faulted) {
1185		ASSERT(vd->vdev_children == 0);
1186		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1187		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1188		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1189		    vd->vdev_label_aux);
1190		return (SET_ERROR(ENXIO));
1191	} else if (vd->vdev_offline) {
1192		ASSERT(vd->vdev_children == 0);
1193		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1194		return (SET_ERROR(ENXIO));
1195	}
1196
1197	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1198	    &logical_ashift, &physical_ashift);
1199
1200	/*
1201	 * Reset the vdev_reopening flag so that we actually close
1202	 * the vdev on error.
1203	 */
1204	vd->vdev_reopening = B_FALSE;
1205	if (zio_injection_enabled && error == 0)
1206		error = zio_handle_device_injection(vd, NULL, ENXIO);
1207
1208	if (error) {
1209		if (vd->vdev_removed &&
1210		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1211			vd->vdev_removed = B_FALSE;
1212
1213		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214		    vd->vdev_stat.vs_aux);
1215		return (error);
1216	}
1217
1218	vd->vdev_removed = B_FALSE;
1219
1220	/*
1221	 * Recheck the faulted flag now that we have confirmed that
1222	 * the vdev is accessible.  If we're faulted, bail.
1223	 */
1224	if (vd->vdev_faulted) {
1225		ASSERT(vd->vdev_children == 0);
1226		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1227		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1228		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1229		    vd->vdev_label_aux);
1230		return (SET_ERROR(ENXIO));
1231	}
1232
1233	if (vd->vdev_degraded) {
1234		ASSERT(vd->vdev_children == 0);
1235		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1236		    VDEV_AUX_ERR_EXCEEDED);
1237	} else {
1238		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1239	}
1240
1241	/*
1242	 * For hole or missing vdevs we just return success.
1243	 */
1244	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1245		return (0);
1246
1247	if (vd->vdev_ops->vdev_op_leaf) {
1248		vd->vdev_notrim = B_FALSE;
1249		trim_map_create(vd);
1250	}
1251
1252	for (int c = 0; c < vd->vdev_children; c++) {
1253		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1254			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1255			    VDEV_AUX_NONE);
1256			break;
1257		}
1258	}
1259
1260	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1261	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1262
1263	if (vd->vdev_children == 0) {
1264		if (osize < SPA_MINDEVSIZE) {
1265			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266			    VDEV_AUX_TOO_SMALL);
1267			return (SET_ERROR(EOVERFLOW));
1268		}
1269		psize = osize;
1270		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1271		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1272		    VDEV_LABEL_END_SIZE);
1273	} else {
1274		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1275		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1276			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1277			    VDEV_AUX_TOO_SMALL);
1278			return (SET_ERROR(EOVERFLOW));
1279		}
1280		psize = 0;
1281		asize = osize;
1282		max_asize = max_osize;
1283	}
1284
1285	vd->vdev_psize = psize;
1286
1287	/*
1288	 * Make sure the allocatable size hasn't shrunk.
1289	 */
1290	if (asize < vd->vdev_min_asize) {
1291		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1292		    VDEV_AUX_BAD_LABEL);
1293		return (SET_ERROR(EINVAL));
1294	}
1295
1296	vd->vdev_physical_ashift =
1297	    MAX(physical_ashift, vd->vdev_physical_ashift);
1298	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1299	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1300
1301	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1302		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303		    VDEV_AUX_ASHIFT_TOO_BIG);
1304		return (EINVAL);
1305	}
1306
1307	if (vd->vdev_asize == 0) {
1308		/*
1309		 * This is the first-ever open, so use the computed values.
1310		 * For testing purposes, a higher ashift can be requested.
1311		 */
1312		vd->vdev_asize = asize;
1313		vd->vdev_max_asize = max_asize;
1314	} else {
1315		/*
1316		 * Make sure the alignment requirement hasn't increased.
1317		 */
1318		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1319		    vd->vdev_ops->vdev_op_leaf) {
1320			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1321			    VDEV_AUX_BAD_LABEL);
1322			return (EINVAL);
1323		}
1324		vd->vdev_max_asize = max_asize;
1325	}
1326
1327	/*
1328	 * If all children are healthy and the asize has increased,
1329	 * then we've experienced dynamic LUN growth.  If automatic
1330	 * expansion is enabled then use the additional space.
1331	 */
1332	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1333	    (vd->vdev_expanding || spa->spa_autoexpand))
1334		vd->vdev_asize = asize;
1335
1336	vdev_set_min_asize(vd);
1337
1338	/*
1339	 * Ensure we can issue some IO before declaring the
1340	 * vdev open for business.
1341	 */
1342	if (vd->vdev_ops->vdev_op_leaf &&
1343	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1344		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1345		    VDEV_AUX_ERR_EXCEEDED);
1346		return (error);
1347	}
1348
1349	/*
1350	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1351	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1352	 * since this would just restart the scrub we are already doing.
1353	 */
1354	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1355	    vdev_resilver_needed(vd, NULL, NULL))
1356		spa_async_request(spa, SPA_ASYNC_RESILVER);
1357
1358	return (0);
1359}
1360
1361/*
1362 * Called once the vdevs are all opened, this routine validates the label
1363 * contents.  This needs to be done before vdev_load() so that we don't
1364 * inadvertently do repair I/Os to the wrong device.
1365 *
1366 * If 'strict' is false ignore the spa guid check. This is necessary because
1367 * if the machine crashed during a re-guid the new guid might have been written
1368 * to all of the vdev labels, but not the cached config. The strict check
1369 * will be performed when the pool is opened again using the mos config.
1370 *
1371 * This function will only return failure if one of the vdevs indicates that it
1372 * has since been destroyed or exported.  This is only possible if
1373 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1374 * will be updated but the function will return 0.
1375 */
1376int
1377vdev_validate(vdev_t *vd, boolean_t strict)
1378{
1379	spa_t *spa = vd->vdev_spa;
1380	nvlist_t *label;
1381	uint64_t guid = 0, top_guid;
1382	uint64_t state;
1383
1384	for (int c = 0; c < vd->vdev_children; c++)
1385		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1386			return (SET_ERROR(EBADF));
1387
1388	/*
1389	 * If the device has already failed, or was marked offline, don't do
1390	 * any further validation.  Otherwise, label I/O will fail and we will
1391	 * overwrite the previous state.
1392	 */
1393	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1394		uint64_t aux_guid = 0;
1395		nvlist_t *nvl;
1396		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1397		    spa_last_synced_txg(spa) : -1ULL;
1398
1399		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1400			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1401			    VDEV_AUX_BAD_LABEL);
1402			return (0);
1403		}
1404
1405		/*
1406		 * Determine if this vdev has been split off into another
1407		 * pool.  If so, then refuse to open it.
1408		 */
1409		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1410		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1411			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1412			    VDEV_AUX_SPLIT_POOL);
1413			nvlist_free(label);
1414			return (0);
1415		}
1416
1417		if (strict && (nvlist_lookup_uint64(label,
1418		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1419		    guid != spa_guid(spa))) {
1420			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1421			    VDEV_AUX_CORRUPT_DATA);
1422			nvlist_free(label);
1423			return (0);
1424		}
1425
1426		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1427		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1428		    &aux_guid) != 0)
1429			aux_guid = 0;
1430
1431		/*
1432		 * If this vdev just became a top-level vdev because its
1433		 * sibling was detached, it will have adopted the parent's
1434		 * vdev guid -- but the label may or may not be on disk yet.
1435		 * Fortunately, either version of the label will have the
1436		 * same top guid, so if we're a top-level vdev, we can
1437		 * safely compare to that instead.
1438		 *
1439		 * If we split this vdev off instead, then we also check the
1440		 * original pool's guid.  We don't want to consider the vdev
1441		 * corrupt if it is partway through a split operation.
1442		 */
1443		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1444		    &guid) != 0 ||
1445		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1446		    &top_guid) != 0 ||
1447		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1448		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1449			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450			    VDEV_AUX_CORRUPT_DATA);
1451			nvlist_free(label);
1452			return (0);
1453		}
1454
1455		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1456		    &state) != 0) {
1457			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1458			    VDEV_AUX_CORRUPT_DATA);
1459			nvlist_free(label);
1460			return (0);
1461		}
1462
1463		nvlist_free(label);
1464
1465		/*
1466		 * If this is a verbatim import, no need to check the
1467		 * state of the pool.
1468		 */
1469		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1470		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1471		    state != POOL_STATE_ACTIVE)
1472			return (SET_ERROR(EBADF));
1473
1474		/*
1475		 * If we were able to open and validate a vdev that was
1476		 * previously marked permanently unavailable, clear that state
1477		 * now.
1478		 */
1479		if (vd->vdev_not_present)
1480			vd->vdev_not_present = 0;
1481	}
1482
1483	return (0);
1484}
1485
1486/*
1487 * Close a virtual device.
1488 */
1489void
1490vdev_close(vdev_t *vd)
1491{
1492	spa_t *spa = vd->vdev_spa;
1493	vdev_t *pvd = vd->vdev_parent;
1494
1495	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1496
1497	/*
1498	 * If our parent is reopening, then we are as well, unless we are
1499	 * going offline.
1500	 */
1501	if (pvd != NULL && pvd->vdev_reopening)
1502		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1503
1504	vd->vdev_ops->vdev_op_close(vd);
1505
1506	vdev_cache_purge(vd);
1507
1508	if (vd->vdev_ops->vdev_op_leaf)
1509		trim_map_destroy(vd);
1510
1511	/*
1512	 * We record the previous state before we close it, so that if we are
1513	 * doing a reopen(), we don't generate FMA ereports if we notice that
1514	 * it's still faulted.
1515	 */
1516	vd->vdev_prevstate = vd->vdev_state;
1517
1518	if (vd->vdev_offline)
1519		vd->vdev_state = VDEV_STATE_OFFLINE;
1520	else
1521		vd->vdev_state = VDEV_STATE_CLOSED;
1522	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1523}
1524
1525void
1526vdev_hold(vdev_t *vd)
1527{
1528	spa_t *spa = vd->vdev_spa;
1529
1530	ASSERT(spa_is_root(spa));
1531	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1532		return;
1533
1534	for (int c = 0; c < vd->vdev_children; c++)
1535		vdev_hold(vd->vdev_child[c]);
1536
1537	if (vd->vdev_ops->vdev_op_leaf)
1538		vd->vdev_ops->vdev_op_hold(vd);
1539}
1540
1541void
1542vdev_rele(vdev_t *vd)
1543{
1544	spa_t *spa = vd->vdev_spa;
1545
1546	ASSERT(spa_is_root(spa));
1547	for (int c = 0; c < vd->vdev_children; c++)
1548		vdev_rele(vd->vdev_child[c]);
1549
1550	if (vd->vdev_ops->vdev_op_leaf)
1551		vd->vdev_ops->vdev_op_rele(vd);
1552}
1553
1554/*
1555 * Reopen all interior vdevs and any unopened leaves.  We don't actually
1556 * reopen leaf vdevs which had previously been opened as they might deadlock
1557 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1558 * If the leaf has never been opened then open it, as usual.
1559 */
1560void
1561vdev_reopen(vdev_t *vd)
1562{
1563	spa_t *spa = vd->vdev_spa;
1564
1565	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1566
1567	/* set the reopening flag unless we're taking the vdev offline */
1568	vd->vdev_reopening = !vd->vdev_offline;
1569	vdev_close(vd);
1570	(void) vdev_open(vd);
1571
1572	/*
1573	 * Call vdev_validate() here to make sure we have the same device.
1574	 * Otherwise, a device with an invalid label could be successfully
1575	 * opened in response to vdev_reopen().
1576	 */
1577	if (vd->vdev_aux) {
1578		(void) vdev_validate_aux(vd);
1579		if (vdev_readable(vd) && vdev_writeable(vd) &&
1580		    vd->vdev_aux == &spa->spa_l2cache &&
1581		    !l2arc_vdev_present(vd))
1582			l2arc_add_vdev(spa, vd);
1583	} else {
1584		(void) vdev_validate(vd, B_TRUE);
1585	}
1586
1587	/*
1588	 * Reassess parent vdev's health.
1589	 */
1590	vdev_propagate_state(vd);
1591}
1592
1593int
1594vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1595{
1596	int error;
1597
1598	/*
1599	 * Normally, partial opens (e.g. of a mirror) are allowed.
1600	 * For a create, however, we want to fail the request if
1601	 * there are any components we can't open.
1602	 */
1603	error = vdev_open(vd);
1604
1605	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1606		vdev_close(vd);
1607		return (error ? error : ENXIO);
1608	}
1609
1610	/*
1611	 * Recursively load DTLs and initialize all labels.
1612	 */
1613	if ((error = vdev_dtl_load(vd)) != 0 ||
1614	    (error = vdev_label_init(vd, txg, isreplacing ?
1615	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1616		vdev_close(vd);
1617		return (error);
1618	}
1619
1620	return (0);
1621}
1622
1623void
1624vdev_metaslab_set_size(vdev_t *vd)
1625{
1626	/*
1627	 * Aim for roughly 200 metaslabs per vdev.
1628	 */
1629	vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1630	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1631}
1632
1633/*
1634 * Maximize performance by inflating the configured ashift for
1635 * top level vdevs to be as close to the physical ashift as
1636 * possible without exceeding the administrator specified
1637 * limit.
1638 */
1639void
1640vdev_ashift_optimize(vdev_t *vd)
1641{
1642	if (vd == vd->vdev_top &&
1643	    (vd->vdev_ashift < vd->vdev_physical_ashift) &&
1644	    (vd->vdev_ashift < zfs_max_auto_ashift)) {
1645		vd->vdev_ashift = MIN(zfs_max_auto_ashift,
1646		    vd->vdev_physical_ashift);
1647	}
1648}
1649
1650void
1651vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1652{
1653	ASSERT(vd == vd->vdev_top);
1654	ASSERT(!vd->vdev_ishole);
1655	ASSERT(ISP2(flags));
1656	ASSERT(spa_writeable(vd->vdev_spa));
1657
1658	if (flags & VDD_METASLAB)
1659		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1660
1661	if (flags & VDD_DTL)
1662		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1663
1664	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1665}
1666
1667void
1668vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1669{
1670	for (int c = 0; c < vd->vdev_children; c++)
1671		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1672
1673	if (vd->vdev_ops->vdev_op_leaf)
1674		vdev_dirty(vd->vdev_top, flags, vd, txg);
1675}
1676
1677/*
1678 * DTLs.
1679 *
1680 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1681 * the vdev has less than perfect replication.  There are four kinds of DTL:
1682 *
1683 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1684 *
1685 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1686 *
1687 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1688 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1689 *	txgs that was scrubbed.
1690 *
1691 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1692 *	persistent errors or just some device being offline.
1693 *	Unlike the other three, the DTL_OUTAGE map is not generally
1694 *	maintained; it's only computed when needed, typically to
1695 *	determine whether a device can be detached.
1696 *
1697 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1698 * either has the data or it doesn't.
1699 *
1700 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1701 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1702 * if any child is less than fully replicated, then so is its parent.
1703 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1704 * comprising only those txgs which appear in 'maxfaults' or more children;
1705 * those are the txgs we don't have enough replication to read.  For example,
1706 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1707 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1708 * two child DTL_MISSING maps.
1709 *
1710 * It should be clear from the above that to compute the DTLs and outage maps
1711 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1712 * Therefore, that is all we keep on disk.  When loading the pool, or after
1713 * a configuration change, we generate all other DTLs from first principles.
1714 */
1715void
1716vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1717{
1718	range_tree_t *rt = vd->vdev_dtl[t];
1719
1720	ASSERT(t < DTL_TYPES);
1721	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1722	ASSERT(spa_writeable(vd->vdev_spa));
1723
1724	mutex_enter(rt->rt_lock);
1725	if (!range_tree_contains(rt, txg, size))
1726		range_tree_add(rt, txg, size);
1727	mutex_exit(rt->rt_lock);
1728}
1729
1730boolean_t
1731vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1732{
1733	range_tree_t *rt = vd->vdev_dtl[t];
1734	boolean_t dirty = B_FALSE;
1735
1736	ASSERT(t < DTL_TYPES);
1737	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1738
1739	mutex_enter(rt->rt_lock);
1740	if (range_tree_space(rt) != 0)
1741		dirty = range_tree_contains(rt, txg, size);
1742	mutex_exit(rt->rt_lock);
1743
1744	return (dirty);
1745}
1746
1747boolean_t
1748vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1749{
1750	range_tree_t *rt = vd->vdev_dtl[t];
1751	boolean_t empty;
1752
1753	mutex_enter(rt->rt_lock);
1754	empty = (range_tree_space(rt) == 0);
1755	mutex_exit(rt->rt_lock);
1756
1757	return (empty);
1758}
1759
1760/*
1761 * Returns the lowest txg in the DTL range.
1762 */
1763static uint64_t
1764vdev_dtl_min(vdev_t *vd)
1765{
1766	range_seg_t *rs;
1767
1768	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1769	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1770	ASSERT0(vd->vdev_children);
1771
1772	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1773	return (rs->rs_start - 1);
1774}
1775
1776/*
1777 * Returns the highest txg in the DTL.
1778 */
1779static uint64_t
1780vdev_dtl_max(vdev_t *vd)
1781{
1782	range_seg_t *rs;
1783
1784	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1785	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1786	ASSERT0(vd->vdev_children);
1787
1788	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1789	return (rs->rs_end);
1790}
1791
1792/*
1793 * Determine if a resilvering vdev should remove any DTL entries from
1794 * its range. If the vdev was resilvering for the entire duration of the
1795 * scan then it should excise that range from its DTLs. Otherwise, this
1796 * vdev is considered partially resilvered and should leave its DTL
1797 * entries intact. The comment in vdev_dtl_reassess() describes how we
1798 * excise the DTLs.
1799 */
1800static boolean_t
1801vdev_dtl_should_excise(vdev_t *vd)
1802{
1803	spa_t *spa = vd->vdev_spa;
1804	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1805
1806	ASSERT0(scn->scn_phys.scn_errors);
1807	ASSERT0(vd->vdev_children);
1808
1809	if (vd->vdev_resilver_txg == 0 ||
1810	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1811		return (B_TRUE);
1812
1813	/*
1814	 * When a resilver is initiated the scan will assign the scn_max_txg
1815	 * value to the highest txg value that exists in all DTLs. If this
1816	 * device's max DTL is not part of this scan (i.e. it is not in
1817	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1818	 * for excision.
1819	 */
1820	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1821		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1822		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1823		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1824		return (B_TRUE);
1825	}
1826	return (B_FALSE);
1827}
1828
1829/*
1830 * Reassess DTLs after a config change or scrub completion.
1831 */
1832void
1833vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1834{
1835	spa_t *spa = vd->vdev_spa;
1836	avl_tree_t reftree;
1837	int minref;
1838
1839	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1840
1841	for (int c = 0; c < vd->vdev_children; c++)
1842		vdev_dtl_reassess(vd->vdev_child[c], txg,
1843		    scrub_txg, scrub_done);
1844
1845	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1846		return;
1847
1848	if (vd->vdev_ops->vdev_op_leaf) {
1849		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1850
1851		mutex_enter(&vd->vdev_dtl_lock);
1852
1853		/*
1854		 * If we've completed a scan cleanly then determine
1855		 * if this vdev should remove any DTLs. We only want to
1856		 * excise regions on vdevs that were available during
1857		 * the entire duration of this scan.
1858		 */
1859		if (scrub_txg != 0 &&
1860		    (spa->spa_scrub_started ||
1861		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1862		    vdev_dtl_should_excise(vd)) {
1863			/*
1864			 * We completed a scrub up to scrub_txg.  If we
1865			 * did it without rebooting, then the scrub dtl
1866			 * will be valid, so excise the old region and
1867			 * fold in the scrub dtl.  Otherwise, leave the
1868			 * dtl as-is if there was an error.
1869			 *
1870			 * There's little trick here: to excise the beginning
1871			 * of the DTL_MISSING map, we put it into a reference
1872			 * tree and then add a segment with refcnt -1 that
1873			 * covers the range [0, scrub_txg).  This means
1874			 * that each txg in that range has refcnt -1 or 0.
1875			 * We then add DTL_SCRUB with a refcnt of 2, so that
1876			 * entries in the range [0, scrub_txg) will have a
1877			 * positive refcnt -- either 1 or 2.  We then convert
1878			 * the reference tree into the new DTL_MISSING map.
1879			 */
1880			space_reftree_create(&reftree);
1881			space_reftree_add_map(&reftree,
1882			    vd->vdev_dtl[DTL_MISSING], 1);
1883			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1884			space_reftree_add_map(&reftree,
1885			    vd->vdev_dtl[DTL_SCRUB], 2);
1886			space_reftree_generate_map(&reftree,
1887			    vd->vdev_dtl[DTL_MISSING], 1);
1888			space_reftree_destroy(&reftree);
1889		}
1890		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1891		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1892		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1893		if (scrub_done)
1894			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1895		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1896		if (!vdev_readable(vd))
1897			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1898		else
1899			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1900			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1901
1902		/*
1903		 * If the vdev was resilvering and no longer has any
1904		 * DTLs then reset its resilvering flag.
1905		 */
1906		if (vd->vdev_resilver_txg != 0 &&
1907		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1908		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1909			vd->vdev_resilver_txg = 0;
1910
1911		mutex_exit(&vd->vdev_dtl_lock);
1912
1913		if (txg != 0)
1914			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1915		return;
1916	}
1917
1918	mutex_enter(&vd->vdev_dtl_lock);
1919	for (int t = 0; t < DTL_TYPES; t++) {
1920		/* account for child's outage in parent's missing map */
1921		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1922		if (t == DTL_SCRUB)
1923			continue;			/* leaf vdevs only */
1924		if (t == DTL_PARTIAL)
1925			minref = 1;			/* i.e. non-zero */
1926		else if (vd->vdev_nparity != 0)
1927			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1928		else
1929			minref = vd->vdev_children;	/* any kind of mirror */
1930		space_reftree_create(&reftree);
1931		for (int c = 0; c < vd->vdev_children; c++) {
1932			vdev_t *cvd = vd->vdev_child[c];
1933			mutex_enter(&cvd->vdev_dtl_lock);
1934			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1935			mutex_exit(&cvd->vdev_dtl_lock);
1936		}
1937		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1938		space_reftree_destroy(&reftree);
1939	}
1940	mutex_exit(&vd->vdev_dtl_lock);
1941}
1942
1943int
1944vdev_dtl_load(vdev_t *vd)
1945{
1946	spa_t *spa = vd->vdev_spa;
1947	objset_t *mos = spa->spa_meta_objset;
1948	int error = 0;
1949
1950	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1951		ASSERT(!vd->vdev_ishole);
1952
1953		error = space_map_open(&vd->vdev_dtl_sm, mos,
1954		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1955		if (error)
1956			return (error);
1957		ASSERT(vd->vdev_dtl_sm != NULL);
1958
1959		mutex_enter(&vd->vdev_dtl_lock);
1960
1961		/*
1962		 * Now that we've opened the space_map we need to update
1963		 * the in-core DTL.
1964		 */
1965		space_map_update(vd->vdev_dtl_sm);
1966
1967		error = space_map_load(vd->vdev_dtl_sm,
1968		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1969		mutex_exit(&vd->vdev_dtl_lock);
1970
1971		return (error);
1972	}
1973
1974	for (int c = 0; c < vd->vdev_children; c++) {
1975		error = vdev_dtl_load(vd->vdev_child[c]);
1976		if (error != 0)
1977			break;
1978	}
1979
1980	return (error);
1981}
1982
1983void
1984vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1985{
1986	spa_t *spa = vd->vdev_spa;
1987	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1988	objset_t *mos = spa->spa_meta_objset;
1989	range_tree_t *rtsync;
1990	kmutex_t rtlock;
1991	dmu_tx_t *tx;
1992	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1993
1994	ASSERT(!vd->vdev_ishole);
1995	ASSERT(vd->vdev_ops->vdev_op_leaf);
1996
1997	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1998
1999	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2000		mutex_enter(&vd->vdev_dtl_lock);
2001		space_map_free(vd->vdev_dtl_sm, tx);
2002		space_map_close(vd->vdev_dtl_sm);
2003		vd->vdev_dtl_sm = NULL;
2004		mutex_exit(&vd->vdev_dtl_lock);
2005		dmu_tx_commit(tx);
2006		return;
2007	}
2008
2009	if (vd->vdev_dtl_sm == NULL) {
2010		uint64_t new_object;
2011
2012		new_object = space_map_alloc(mos, tx);
2013		VERIFY3U(new_object, !=, 0);
2014
2015		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2016		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2017		ASSERT(vd->vdev_dtl_sm != NULL);
2018	}
2019
2020	bzero(&rtlock, sizeof(rtlock));
2021	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2022
2023	rtsync = range_tree_create(NULL, NULL, &rtlock);
2024
2025	mutex_enter(&rtlock);
2026
2027	mutex_enter(&vd->vdev_dtl_lock);
2028	range_tree_walk(rt, range_tree_add, rtsync);
2029	mutex_exit(&vd->vdev_dtl_lock);
2030
2031	space_map_truncate(vd->vdev_dtl_sm, tx);
2032	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2033	range_tree_vacate(rtsync, NULL, NULL);
2034
2035	range_tree_destroy(rtsync);
2036
2037	mutex_exit(&rtlock);
2038	mutex_destroy(&rtlock);
2039
2040	/*
2041	 * If the object for the space map has changed then dirty
2042	 * the top level so that we update the config.
2043	 */
2044	if (object != space_map_object(vd->vdev_dtl_sm)) {
2045		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2046		    "new object %llu", txg, spa_name(spa), object,
2047		    space_map_object(vd->vdev_dtl_sm));
2048		vdev_config_dirty(vd->vdev_top);
2049	}
2050
2051	dmu_tx_commit(tx);
2052
2053	mutex_enter(&vd->vdev_dtl_lock);
2054	space_map_update(vd->vdev_dtl_sm);
2055	mutex_exit(&vd->vdev_dtl_lock);
2056}
2057
2058/*
2059 * Determine whether the specified vdev can be offlined/detached/removed
2060 * without losing data.
2061 */
2062boolean_t
2063vdev_dtl_required(vdev_t *vd)
2064{
2065	spa_t *spa = vd->vdev_spa;
2066	vdev_t *tvd = vd->vdev_top;
2067	uint8_t cant_read = vd->vdev_cant_read;
2068	boolean_t required;
2069
2070	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2071
2072	if (vd == spa->spa_root_vdev || vd == tvd)
2073		return (B_TRUE);
2074
2075	/*
2076	 * Temporarily mark the device as unreadable, and then determine
2077	 * whether this results in any DTL outages in the top-level vdev.
2078	 * If not, we can safely offline/detach/remove the device.
2079	 */
2080	vd->vdev_cant_read = B_TRUE;
2081	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2082	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2083	vd->vdev_cant_read = cant_read;
2084	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2085
2086	if (!required && zio_injection_enabled)
2087		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2088
2089	return (required);
2090}
2091
2092/*
2093 * Determine if resilver is needed, and if so the txg range.
2094 */
2095boolean_t
2096vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2097{
2098	boolean_t needed = B_FALSE;
2099	uint64_t thismin = UINT64_MAX;
2100	uint64_t thismax = 0;
2101
2102	if (vd->vdev_children == 0) {
2103		mutex_enter(&vd->vdev_dtl_lock);
2104		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2105		    vdev_writeable(vd)) {
2106
2107			thismin = vdev_dtl_min(vd);
2108			thismax = vdev_dtl_max(vd);
2109			needed = B_TRUE;
2110		}
2111		mutex_exit(&vd->vdev_dtl_lock);
2112	} else {
2113		for (int c = 0; c < vd->vdev_children; c++) {
2114			vdev_t *cvd = vd->vdev_child[c];
2115			uint64_t cmin, cmax;
2116
2117			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2118				thismin = MIN(thismin, cmin);
2119				thismax = MAX(thismax, cmax);
2120				needed = B_TRUE;
2121			}
2122		}
2123	}
2124
2125	if (needed && minp) {
2126		*minp = thismin;
2127		*maxp = thismax;
2128	}
2129	return (needed);
2130}
2131
2132void
2133vdev_load(vdev_t *vd)
2134{
2135	/*
2136	 * Recursively load all children.
2137	 */
2138	for (int c = 0; c < vd->vdev_children; c++)
2139		vdev_load(vd->vdev_child[c]);
2140
2141	/*
2142	 * If this is a top-level vdev, initialize its metaslabs.
2143	 */
2144	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2145	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2146	    vdev_metaslab_init(vd, 0) != 0))
2147		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2148		    VDEV_AUX_CORRUPT_DATA);
2149
2150	/*
2151	 * If this is a leaf vdev, load its DTL.
2152	 */
2153	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2154		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2155		    VDEV_AUX_CORRUPT_DATA);
2156}
2157
2158/*
2159 * The special vdev case is used for hot spares and l2cache devices.  Its
2160 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2161 * we make sure that we can open the underlying device, then try to read the
2162 * label, and make sure that the label is sane and that it hasn't been
2163 * repurposed to another pool.
2164 */
2165int
2166vdev_validate_aux(vdev_t *vd)
2167{
2168	nvlist_t *label;
2169	uint64_t guid, version;
2170	uint64_t state;
2171
2172	if (!vdev_readable(vd))
2173		return (0);
2174
2175	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2176		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2177		    VDEV_AUX_CORRUPT_DATA);
2178		return (-1);
2179	}
2180
2181	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2182	    !SPA_VERSION_IS_SUPPORTED(version) ||
2183	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2184	    guid != vd->vdev_guid ||
2185	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2186		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2187		    VDEV_AUX_CORRUPT_DATA);
2188		nvlist_free(label);
2189		return (-1);
2190	}
2191
2192	/*
2193	 * We don't actually check the pool state here.  If it's in fact in
2194	 * use by another pool, we update this fact on the fly when requested.
2195	 */
2196	nvlist_free(label);
2197	return (0);
2198}
2199
2200void
2201vdev_remove(vdev_t *vd, uint64_t txg)
2202{
2203	spa_t *spa = vd->vdev_spa;
2204	objset_t *mos = spa->spa_meta_objset;
2205	dmu_tx_t *tx;
2206
2207	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2208
2209	if (vd->vdev_ms != NULL) {
2210		for (int m = 0; m < vd->vdev_ms_count; m++) {
2211			metaslab_t *msp = vd->vdev_ms[m];
2212
2213			if (msp == NULL || msp->ms_sm == NULL)
2214				continue;
2215
2216			mutex_enter(&msp->ms_lock);
2217			VERIFY0(space_map_allocated(msp->ms_sm));
2218			space_map_free(msp->ms_sm, tx);
2219			space_map_close(msp->ms_sm);
2220			msp->ms_sm = NULL;
2221			mutex_exit(&msp->ms_lock);
2222		}
2223	}
2224
2225	if (vd->vdev_ms_array) {
2226		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2227		vd->vdev_ms_array = 0;
2228	}
2229	dmu_tx_commit(tx);
2230}
2231
2232void
2233vdev_sync_done(vdev_t *vd, uint64_t txg)
2234{
2235	metaslab_t *msp;
2236	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2237
2238	ASSERT(!vd->vdev_ishole);
2239
2240	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2241		metaslab_sync_done(msp, txg);
2242
2243	if (reassess)
2244		metaslab_sync_reassess(vd->vdev_mg);
2245}
2246
2247void
2248vdev_sync(vdev_t *vd, uint64_t txg)
2249{
2250	spa_t *spa = vd->vdev_spa;
2251	vdev_t *lvd;
2252	metaslab_t *msp;
2253	dmu_tx_t *tx;
2254
2255	ASSERT(!vd->vdev_ishole);
2256
2257	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2258		ASSERT(vd == vd->vdev_top);
2259		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2260		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2261		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2262		ASSERT(vd->vdev_ms_array != 0);
2263		vdev_config_dirty(vd);
2264		dmu_tx_commit(tx);
2265	}
2266
2267	/*
2268	 * Remove the metadata associated with this vdev once it's empty.
2269	 */
2270	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2271		vdev_remove(vd, txg);
2272
2273	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2274		metaslab_sync(msp, txg);
2275		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2276	}
2277
2278	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2279		vdev_dtl_sync(lvd, txg);
2280
2281	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2282}
2283
2284uint64_t
2285vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2286{
2287	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2288}
2289
2290/*
2291 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2292 * not be opened, and no I/O is attempted.
2293 */
2294int
2295vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2296{
2297	vdev_t *vd, *tvd;
2298
2299	spa_vdev_state_enter(spa, SCL_NONE);
2300
2301	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2302		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2303
2304	if (!vd->vdev_ops->vdev_op_leaf)
2305		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2306
2307	tvd = vd->vdev_top;
2308
2309	/*
2310	 * We don't directly use the aux state here, but if we do a
2311	 * vdev_reopen(), we need this value to be present to remember why we
2312	 * were faulted.
2313	 */
2314	vd->vdev_label_aux = aux;
2315
2316	/*
2317	 * Faulted state takes precedence over degraded.
2318	 */
2319	vd->vdev_delayed_close = B_FALSE;
2320	vd->vdev_faulted = 1ULL;
2321	vd->vdev_degraded = 0ULL;
2322	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2323
2324	/*
2325	 * If this device has the only valid copy of the data, then
2326	 * back off and simply mark the vdev as degraded instead.
2327	 */
2328	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2329		vd->vdev_degraded = 1ULL;
2330		vd->vdev_faulted = 0ULL;
2331
2332		/*
2333		 * If we reopen the device and it's not dead, only then do we
2334		 * mark it degraded.
2335		 */
2336		vdev_reopen(tvd);
2337
2338		if (vdev_readable(vd))
2339			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2340	}
2341
2342	return (spa_vdev_state_exit(spa, vd, 0));
2343}
2344
2345/*
2346 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2347 * user that something is wrong.  The vdev continues to operate as normal as far
2348 * as I/O is concerned.
2349 */
2350int
2351vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2352{
2353	vdev_t *vd;
2354
2355	spa_vdev_state_enter(spa, SCL_NONE);
2356
2357	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2358		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2359
2360	if (!vd->vdev_ops->vdev_op_leaf)
2361		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2362
2363	/*
2364	 * If the vdev is already faulted, then don't do anything.
2365	 */
2366	if (vd->vdev_faulted || vd->vdev_degraded)
2367		return (spa_vdev_state_exit(spa, NULL, 0));
2368
2369	vd->vdev_degraded = 1ULL;
2370	if (!vdev_is_dead(vd))
2371		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2372		    aux);
2373
2374	return (spa_vdev_state_exit(spa, vd, 0));
2375}
2376
2377/*
2378 * Online the given vdev.
2379 *
2380 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2381 * spare device should be detached when the device finishes resilvering.
2382 * Second, the online should be treated like a 'test' online case, so no FMA
2383 * events are generated if the device fails to open.
2384 */
2385int
2386vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2387{
2388	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2389
2390	spa_vdev_state_enter(spa, SCL_NONE);
2391
2392	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2393		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2394
2395	if (!vd->vdev_ops->vdev_op_leaf)
2396		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2397
2398	tvd = vd->vdev_top;
2399	vd->vdev_offline = B_FALSE;
2400	vd->vdev_tmpoffline = B_FALSE;
2401	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2402	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2403
2404	/* XXX - L2ARC 1.0 does not support expansion */
2405	if (!vd->vdev_aux) {
2406		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2407			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2408	}
2409
2410	vdev_reopen(tvd);
2411	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2412
2413	if (!vd->vdev_aux) {
2414		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2415			pvd->vdev_expanding = B_FALSE;
2416	}
2417
2418	if (newstate)
2419		*newstate = vd->vdev_state;
2420	if ((flags & ZFS_ONLINE_UNSPARE) &&
2421	    !vdev_is_dead(vd) && vd->vdev_parent &&
2422	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2423	    vd->vdev_parent->vdev_child[0] == vd)
2424		vd->vdev_unspare = B_TRUE;
2425
2426	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2427
2428		/* XXX - L2ARC 1.0 does not support expansion */
2429		if (vd->vdev_aux)
2430			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2431		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2432	}
2433	return (spa_vdev_state_exit(spa, vd, 0));
2434}
2435
2436static int
2437vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2438{
2439	vdev_t *vd, *tvd;
2440	int error = 0;
2441	uint64_t generation;
2442	metaslab_group_t *mg;
2443
2444top:
2445	spa_vdev_state_enter(spa, SCL_ALLOC);
2446
2447	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2448		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2449
2450	if (!vd->vdev_ops->vdev_op_leaf)
2451		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2452
2453	tvd = vd->vdev_top;
2454	mg = tvd->vdev_mg;
2455	generation = spa->spa_config_generation + 1;
2456
2457	/*
2458	 * If the device isn't already offline, try to offline it.
2459	 */
2460	if (!vd->vdev_offline) {
2461		/*
2462		 * If this device has the only valid copy of some data,
2463		 * don't allow it to be offlined. Log devices are always
2464		 * expendable.
2465		 */
2466		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2467		    vdev_dtl_required(vd))
2468			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2469
2470		/*
2471		 * If the top-level is a slog and it has had allocations
2472		 * then proceed.  We check that the vdev's metaslab group
2473		 * is not NULL since it's possible that we may have just
2474		 * added this vdev but not yet initialized its metaslabs.
2475		 */
2476		if (tvd->vdev_islog && mg != NULL) {
2477			/*
2478			 * Prevent any future allocations.
2479			 */
2480			metaslab_group_passivate(mg);
2481			(void) spa_vdev_state_exit(spa, vd, 0);
2482
2483			error = spa_offline_log(spa);
2484
2485			spa_vdev_state_enter(spa, SCL_ALLOC);
2486
2487			/*
2488			 * Check to see if the config has changed.
2489			 */
2490			if (error || generation != spa->spa_config_generation) {
2491				metaslab_group_activate(mg);
2492				if (error)
2493					return (spa_vdev_state_exit(spa,
2494					    vd, error));
2495				(void) spa_vdev_state_exit(spa, vd, 0);
2496				goto top;
2497			}
2498			ASSERT0(tvd->vdev_stat.vs_alloc);
2499		}
2500
2501		/*
2502		 * Offline this device and reopen its top-level vdev.
2503		 * If the top-level vdev is a log device then just offline
2504		 * it. Otherwise, if this action results in the top-level
2505		 * vdev becoming unusable, undo it and fail the request.
2506		 */
2507		vd->vdev_offline = B_TRUE;
2508		vdev_reopen(tvd);
2509
2510		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2511		    vdev_is_dead(tvd)) {
2512			vd->vdev_offline = B_FALSE;
2513			vdev_reopen(tvd);
2514			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2515		}
2516
2517		/*
2518		 * Add the device back into the metaslab rotor so that
2519		 * once we online the device it's open for business.
2520		 */
2521		if (tvd->vdev_islog && mg != NULL)
2522			metaslab_group_activate(mg);
2523	}
2524
2525	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2526
2527	return (spa_vdev_state_exit(spa, vd, 0));
2528}
2529
2530int
2531vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2532{
2533	int error;
2534
2535	mutex_enter(&spa->spa_vdev_top_lock);
2536	error = vdev_offline_locked(spa, guid, flags);
2537	mutex_exit(&spa->spa_vdev_top_lock);
2538
2539	return (error);
2540}
2541
2542/*
2543 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2544 * vdev_offline(), we assume the spa config is locked.  We also clear all
2545 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2546 */
2547void
2548vdev_clear(spa_t *spa, vdev_t *vd)
2549{
2550	vdev_t *rvd = spa->spa_root_vdev;
2551
2552	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2553
2554	if (vd == NULL)
2555		vd = rvd;
2556
2557	vd->vdev_stat.vs_read_errors = 0;
2558	vd->vdev_stat.vs_write_errors = 0;
2559	vd->vdev_stat.vs_checksum_errors = 0;
2560
2561	for (int c = 0; c < vd->vdev_children; c++)
2562		vdev_clear(spa, vd->vdev_child[c]);
2563
2564	if (vd == rvd) {
2565		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
2566			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
2567
2568		for (int c = 0; c < spa->spa_spares.sav_count; c++)
2569			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
2570	}
2571
2572	/*
2573	 * If we're in the FAULTED state or have experienced failed I/O, then
2574	 * clear the persistent state and attempt to reopen the device.  We
2575	 * also mark the vdev config dirty, so that the new faulted state is
2576	 * written out to disk.
2577	 */
2578	if (vd->vdev_faulted || vd->vdev_degraded ||
2579	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2580
2581		/*
2582		 * When reopening in reponse to a clear event, it may be due to
2583		 * a fmadm repair request.  In this case, if the device is
2584		 * still broken, we want to still post the ereport again.
2585		 */
2586		vd->vdev_forcefault = B_TRUE;
2587
2588		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2589		vd->vdev_cant_read = B_FALSE;
2590		vd->vdev_cant_write = B_FALSE;
2591
2592		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2593
2594		vd->vdev_forcefault = B_FALSE;
2595
2596		if (vd != rvd && vdev_writeable(vd->vdev_top))
2597			vdev_state_dirty(vd->vdev_top);
2598
2599		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2600			spa_async_request(spa, SPA_ASYNC_RESILVER);
2601
2602		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2603	}
2604
2605	/*
2606	 * When clearing a FMA-diagnosed fault, we always want to
2607	 * unspare the device, as we assume that the original spare was
2608	 * done in response to the FMA fault.
2609	 */
2610	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2611	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2612	    vd->vdev_parent->vdev_child[0] == vd)
2613		vd->vdev_unspare = B_TRUE;
2614}
2615
2616boolean_t
2617vdev_is_dead(vdev_t *vd)
2618{
2619	/*
2620	 * Holes and missing devices are always considered "dead".
2621	 * This simplifies the code since we don't have to check for
2622	 * these types of devices in the various code paths.
2623	 * Instead we rely on the fact that we skip over dead devices
2624	 * before issuing I/O to them.
2625	 */
2626	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2627	    vd->vdev_ops == &vdev_missing_ops);
2628}
2629
2630boolean_t
2631vdev_readable(vdev_t *vd)
2632{
2633	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2634}
2635
2636boolean_t
2637vdev_writeable(vdev_t *vd)
2638{
2639	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2640}
2641
2642boolean_t
2643vdev_allocatable(vdev_t *vd)
2644{
2645	uint64_t state = vd->vdev_state;
2646
2647	/*
2648	 * We currently allow allocations from vdevs which may be in the
2649	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2650	 * fails to reopen then we'll catch it later when we're holding
2651	 * the proper locks.  Note that we have to get the vdev state
2652	 * in a local variable because although it changes atomically,
2653	 * we're asking two separate questions about it.
2654	 */
2655	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2656	    !vd->vdev_cant_write && !vd->vdev_ishole);
2657}
2658
2659boolean_t
2660vdev_accessible(vdev_t *vd, zio_t *zio)
2661{
2662	ASSERT(zio->io_vd == vd);
2663
2664	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2665		return (B_FALSE);
2666
2667	if (zio->io_type == ZIO_TYPE_READ)
2668		return (!vd->vdev_cant_read);
2669
2670	if (zio->io_type == ZIO_TYPE_WRITE)
2671		return (!vd->vdev_cant_write);
2672
2673	return (B_TRUE);
2674}
2675
2676/*
2677 * Get statistics for the given vdev.
2678 */
2679void
2680vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2681{
2682	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2683
2684	mutex_enter(&vd->vdev_stat_lock);
2685	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2686	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2687	vs->vs_state = vd->vdev_state;
2688	vs->vs_rsize = vdev_get_min_asize(vd);
2689	if (vd->vdev_ops->vdev_op_leaf)
2690		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2691	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2692	vs->vs_configured_ashift = vd->vdev_top != NULL
2693	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
2694	vs->vs_logical_ashift = vd->vdev_logical_ashift;
2695	vs->vs_physical_ashift = vd->vdev_physical_ashift;
2696	mutex_exit(&vd->vdev_stat_lock);
2697
2698	/*
2699	 * If we're getting stats on the root vdev, aggregate the I/O counts
2700	 * over all top-level vdevs (i.e. the direct children of the root).
2701	 */
2702	if (vd == rvd) {
2703		for (int c = 0; c < rvd->vdev_children; c++) {
2704			vdev_t *cvd = rvd->vdev_child[c];
2705			vdev_stat_t *cvs = &cvd->vdev_stat;
2706
2707			mutex_enter(&vd->vdev_stat_lock);
2708			for (int t = 0; t < ZIO_TYPES; t++) {
2709				vs->vs_ops[t] += cvs->vs_ops[t];
2710				vs->vs_bytes[t] += cvs->vs_bytes[t];
2711			}
2712			cvs->vs_scan_removing = cvd->vdev_removing;
2713			mutex_exit(&vd->vdev_stat_lock);
2714		}
2715	}
2716}
2717
2718void
2719vdev_clear_stats(vdev_t *vd)
2720{
2721	mutex_enter(&vd->vdev_stat_lock);
2722	vd->vdev_stat.vs_space = 0;
2723	vd->vdev_stat.vs_dspace = 0;
2724	vd->vdev_stat.vs_alloc = 0;
2725	mutex_exit(&vd->vdev_stat_lock);
2726}
2727
2728void
2729vdev_scan_stat_init(vdev_t *vd)
2730{
2731	vdev_stat_t *vs = &vd->vdev_stat;
2732
2733	for (int c = 0; c < vd->vdev_children; c++)
2734		vdev_scan_stat_init(vd->vdev_child[c]);
2735
2736	mutex_enter(&vd->vdev_stat_lock);
2737	vs->vs_scan_processed = 0;
2738	mutex_exit(&vd->vdev_stat_lock);
2739}
2740
2741void
2742vdev_stat_update(zio_t *zio, uint64_t psize)
2743{
2744	spa_t *spa = zio->io_spa;
2745	vdev_t *rvd = spa->spa_root_vdev;
2746	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2747	vdev_t *pvd;
2748	uint64_t txg = zio->io_txg;
2749	vdev_stat_t *vs = &vd->vdev_stat;
2750	zio_type_t type = zio->io_type;
2751	int flags = zio->io_flags;
2752
2753	/*
2754	 * If this i/o is a gang leader, it didn't do any actual work.
2755	 */
2756	if (zio->io_gang_tree)
2757		return;
2758
2759	if (zio->io_error == 0) {
2760		/*
2761		 * If this is a root i/o, don't count it -- we've already
2762		 * counted the top-level vdevs, and vdev_get_stats() will
2763		 * aggregate them when asked.  This reduces contention on
2764		 * the root vdev_stat_lock and implicitly handles blocks
2765		 * that compress away to holes, for which there is no i/o.
2766		 * (Holes never create vdev children, so all the counters
2767		 * remain zero, which is what we want.)
2768		 *
2769		 * Note: this only applies to successful i/o (io_error == 0)
2770		 * because unlike i/o counts, errors are not additive.
2771		 * When reading a ditto block, for example, failure of
2772		 * one top-level vdev does not imply a root-level error.
2773		 */
2774		if (vd == rvd)
2775			return;
2776
2777		ASSERT(vd == zio->io_vd);
2778
2779		if (flags & ZIO_FLAG_IO_BYPASS)
2780			return;
2781
2782		mutex_enter(&vd->vdev_stat_lock);
2783
2784		if (flags & ZIO_FLAG_IO_REPAIR) {
2785			if (flags & ZIO_FLAG_SCAN_THREAD) {
2786				dsl_scan_phys_t *scn_phys =
2787				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2788				uint64_t *processed = &scn_phys->scn_processed;
2789
2790				/* XXX cleanup? */
2791				if (vd->vdev_ops->vdev_op_leaf)
2792					atomic_add_64(processed, psize);
2793				vs->vs_scan_processed += psize;
2794			}
2795
2796			if (flags & ZIO_FLAG_SELF_HEAL)
2797				vs->vs_self_healed += psize;
2798		}
2799
2800		vs->vs_ops[type]++;
2801		vs->vs_bytes[type] += psize;
2802
2803		mutex_exit(&vd->vdev_stat_lock);
2804		return;
2805	}
2806
2807	if (flags & ZIO_FLAG_SPECULATIVE)
2808		return;
2809
2810	/*
2811	 * If this is an I/O error that is going to be retried, then ignore the
2812	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2813	 * hard errors, when in reality they can happen for any number of
2814	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2815	 */
2816	if (zio->io_error == EIO &&
2817	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2818		return;
2819
2820	/*
2821	 * Intent logs writes won't propagate their error to the root
2822	 * I/O so don't mark these types of failures as pool-level
2823	 * errors.
2824	 */
2825	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2826		return;
2827
2828	mutex_enter(&vd->vdev_stat_lock);
2829	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2830		if (zio->io_error == ECKSUM)
2831			vs->vs_checksum_errors++;
2832		else
2833			vs->vs_read_errors++;
2834	}
2835	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2836		vs->vs_write_errors++;
2837	mutex_exit(&vd->vdev_stat_lock);
2838
2839	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2840	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2841	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2842	    spa->spa_claiming)) {
2843		/*
2844		 * This is either a normal write (not a repair), or it's
2845		 * a repair induced by the scrub thread, or it's a repair
2846		 * made by zil_claim() during spa_load() in the first txg.
2847		 * In the normal case, we commit the DTL change in the same
2848		 * txg as the block was born.  In the scrub-induced repair
2849		 * case, we know that scrubs run in first-pass syncing context,
2850		 * so we commit the DTL change in spa_syncing_txg(spa).
2851		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2852		 *
2853		 * We currently do not make DTL entries for failed spontaneous
2854		 * self-healing writes triggered by normal (non-scrubbing)
2855		 * reads, because we have no transactional context in which to
2856		 * do so -- and it's not clear that it'd be desirable anyway.
2857		 */
2858		if (vd->vdev_ops->vdev_op_leaf) {
2859			uint64_t commit_txg = txg;
2860			if (flags & ZIO_FLAG_SCAN_THREAD) {
2861				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2862				ASSERT(spa_sync_pass(spa) == 1);
2863				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2864				commit_txg = spa_syncing_txg(spa);
2865			} else if (spa->spa_claiming) {
2866				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2867				commit_txg = spa_first_txg(spa);
2868			}
2869			ASSERT(commit_txg >= spa_syncing_txg(spa));
2870			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2871				return;
2872			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2873				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2874			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2875		}
2876		if (vd != rvd)
2877			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2878	}
2879}
2880
2881/*
2882 * Update the in-core space usage stats for this vdev, its metaslab class,
2883 * and the root vdev.
2884 */
2885void
2886vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2887    int64_t space_delta)
2888{
2889	int64_t dspace_delta = space_delta;
2890	spa_t *spa = vd->vdev_spa;
2891	vdev_t *rvd = spa->spa_root_vdev;
2892	metaslab_group_t *mg = vd->vdev_mg;
2893	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2894
2895	ASSERT(vd == vd->vdev_top);
2896
2897	/*
2898	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2899	 * factor.  We must calculate this here and not at the root vdev
2900	 * because the root vdev's psize-to-asize is simply the max of its
2901	 * childrens', thus not accurate enough for us.
2902	 */
2903	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2904	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2905	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2906	    vd->vdev_deflate_ratio;
2907
2908	mutex_enter(&vd->vdev_stat_lock);
2909	vd->vdev_stat.vs_alloc += alloc_delta;
2910	vd->vdev_stat.vs_space += space_delta;
2911	vd->vdev_stat.vs_dspace += dspace_delta;
2912	mutex_exit(&vd->vdev_stat_lock);
2913
2914	if (mc == spa_normal_class(spa)) {
2915		mutex_enter(&rvd->vdev_stat_lock);
2916		rvd->vdev_stat.vs_alloc += alloc_delta;
2917		rvd->vdev_stat.vs_space += space_delta;
2918		rvd->vdev_stat.vs_dspace += dspace_delta;
2919		mutex_exit(&rvd->vdev_stat_lock);
2920	}
2921
2922	if (mc != NULL) {
2923		ASSERT(rvd == vd->vdev_parent);
2924		ASSERT(vd->vdev_ms_count != 0);
2925
2926		metaslab_class_space_update(mc,
2927		    alloc_delta, defer_delta, space_delta, dspace_delta);
2928	}
2929}
2930
2931/*
2932 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2933 * so that it will be written out next time the vdev configuration is synced.
2934 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2935 */
2936void
2937vdev_config_dirty(vdev_t *vd)
2938{
2939	spa_t *spa = vd->vdev_spa;
2940	vdev_t *rvd = spa->spa_root_vdev;
2941	int c;
2942
2943	ASSERT(spa_writeable(spa));
2944
2945	/*
2946	 * If this is an aux vdev (as with l2cache and spare devices), then we
2947	 * update the vdev config manually and set the sync flag.
2948	 */
2949	if (vd->vdev_aux != NULL) {
2950		spa_aux_vdev_t *sav = vd->vdev_aux;
2951		nvlist_t **aux;
2952		uint_t naux;
2953
2954		for (c = 0; c < sav->sav_count; c++) {
2955			if (sav->sav_vdevs[c] == vd)
2956				break;
2957		}
2958
2959		if (c == sav->sav_count) {
2960			/*
2961			 * We're being removed.  There's nothing more to do.
2962			 */
2963			ASSERT(sav->sav_sync == B_TRUE);
2964			return;
2965		}
2966
2967		sav->sav_sync = B_TRUE;
2968
2969		if (nvlist_lookup_nvlist_array(sav->sav_config,
2970		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2971			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2972			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2973		}
2974
2975		ASSERT(c < naux);
2976
2977		/*
2978		 * Setting the nvlist in the middle if the array is a little
2979		 * sketchy, but it will work.
2980		 */
2981		nvlist_free(aux[c]);
2982		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2983
2984		return;
2985	}
2986
2987	/*
2988	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2989	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2990	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2991	 * so this is sufficient to ensure mutual exclusion.
2992	 */
2993	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2994	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2995	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2996
2997	if (vd == rvd) {
2998		for (c = 0; c < rvd->vdev_children; c++)
2999			vdev_config_dirty(rvd->vdev_child[c]);
3000	} else {
3001		ASSERT(vd == vd->vdev_top);
3002
3003		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3004		    !vd->vdev_ishole)
3005			list_insert_head(&spa->spa_config_dirty_list, vd);
3006	}
3007}
3008
3009void
3010vdev_config_clean(vdev_t *vd)
3011{
3012	spa_t *spa = vd->vdev_spa;
3013
3014	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3015	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3016	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3017
3018	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3019	list_remove(&spa->spa_config_dirty_list, vd);
3020}
3021
3022/*
3023 * Mark a top-level vdev's state as dirty, so that the next pass of
3024 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3025 * the state changes from larger config changes because they require
3026 * much less locking, and are often needed for administrative actions.
3027 */
3028void
3029vdev_state_dirty(vdev_t *vd)
3030{
3031	spa_t *spa = vd->vdev_spa;
3032
3033	ASSERT(spa_writeable(spa));
3034	ASSERT(vd == vd->vdev_top);
3035
3036	/*
3037	 * The state list is protected by the SCL_STATE lock.  The caller
3038	 * must either hold SCL_STATE as writer, or must be the sync thread
3039	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3040	 * so this is sufficient to ensure mutual exclusion.
3041	 */
3042	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3043	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3044	    spa_config_held(spa, SCL_STATE, RW_READER)));
3045
3046	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3047		list_insert_head(&spa->spa_state_dirty_list, vd);
3048}
3049
3050void
3051vdev_state_clean(vdev_t *vd)
3052{
3053	spa_t *spa = vd->vdev_spa;
3054
3055	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3056	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3057	    spa_config_held(spa, SCL_STATE, RW_READER)));
3058
3059	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3060	list_remove(&spa->spa_state_dirty_list, vd);
3061}
3062
3063/*
3064 * Propagate vdev state up from children to parent.
3065 */
3066void
3067vdev_propagate_state(vdev_t *vd)
3068{
3069	spa_t *spa = vd->vdev_spa;
3070	vdev_t *rvd = spa->spa_root_vdev;
3071	int degraded = 0, faulted = 0;
3072	int corrupted = 0;
3073	vdev_t *child;
3074
3075	if (vd->vdev_children > 0) {
3076		for (int c = 0; c < vd->vdev_children; c++) {
3077			child = vd->vdev_child[c];
3078
3079			/*
3080			 * Don't factor holes into the decision.
3081			 */
3082			if (child->vdev_ishole)
3083				continue;
3084
3085			if (!vdev_readable(child) ||
3086			    (!vdev_writeable(child) && spa_writeable(spa))) {
3087				/*
3088				 * Root special: if there is a top-level log
3089				 * device, treat the root vdev as if it were
3090				 * degraded.
3091				 */
3092				if (child->vdev_islog && vd == rvd)
3093					degraded++;
3094				else
3095					faulted++;
3096			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3097				degraded++;
3098			}
3099
3100			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3101				corrupted++;
3102		}
3103
3104		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3105
3106		/*
3107		 * Root special: if there is a top-level vdev that cannot be
3108		 * opened due to corrupted metadata, then propagate the root
3109		 * vdev's aux state as 'corrupt' rather than 'insufficient
3110		 * replicas'.
3111		 */
3112		if (corrupted && vd == rvd &&
3113		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3114			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3115			    VDEV_AUX_CORRUPT_DATA);
3116	}
3117
3118	if (vd->vdev_parent)
3119		vdev_propagate_state(vd->vdev_parent);
3120}
3121
3122/*
3123 * Set a vdev's state.  If this is during an open, we don't update the parent
3124 * state, because we're in the process of opening children depth-first.
3125 * Otherwise, we propagate the change to the parent.
3126 *
3127 * If this routine places a device in a faulted state, an appropriate ereport is
3128 * generated.
3129 */
3130void
3131vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3132{
3133	uint64_t save_state;
3134	spa_t *spa = vd->vdev_spa;
3135
3136	if (state == vd->vdev_state) {
3137		vd->vdev_stat.vs_aux = aux;
3138		return;
3139	}
3140
3141	save_state = vd->vdev_state;
3142
3143	vd->vdev_state = state;
3144	vd->vdev_stat.vs_aux = aux;
3145
3146	/*
3147	 * If we are setting the vdev state to anything but an open state, then
3148	 * always close the underlying device unless the device has requested
3149	 * a delayed close (i.e. we're about to remove or fault the device).
3150	 * Otherwise, we keep accessible but invalid devices open forever.
3151	 * We don't call vdev_close() itself, because that implies some extra
3152	 * checks (offline, etc) that we don't want here.  This is limited to
3153	 * leaf devices, because otherwise closing the device will affect other
3154	 * children.
3155	 */
3156	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3157	    vd->vdev_ops->vdev_op_leaf)
3158		vd->vdev_ops->vdev_op_close(vd);
3159
3160	/*
3161	 * If we have brought this vdev back into service, we need
3162	 * to notify fmd so that it can gracefully repair any outstanding
3163	 * cases due to a missing device.  We do this in all cases, even those
3164	 * that probably don't correlate to a repaired fault.  This is sure to
3165	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3166	 * this is a transient state it's OK, as the retire agent will
3167	 * double-check the state of the vdev before repairing it.
3168	 */
3169	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3170	    vd->vdev_prevstate != state)
3171		zfs_post_state_change(spa, vd);
3172
3173	if (vd->vdev_removed &&
3174	    state == VDEV_STATE_CANT_OPEN &&
3175	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3176		/*
3177		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3178		 * device was previously marked removed and someone attempted to
3179		 * reopen it.  If this failed due to a nonexistent device, then
3180		 * keep the device in the REMOVED state.  We also let this be if
3181		 * it is one of our special test online cases, which is only
3182		 * attempting to online the device and shouldn't generate an FMA
3183		 * fault.
3184		 */
3185		vd->vdev_state = VDEV_STATE_REMOVED;
3186		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3187	} else if (state == VDEV_STATE_REMOVED) {
3188		vd->vdev_removed = B_TRUE;
3189	} else if (state == VDEV_STATE_CANT_OPEN) {
3190		/*
3191		 * If we fail to open a vdev during an import or recovery, we
3192		 * mark it as "not available", which signifies that it was
3193		 * never there to begin with.  Failure to open such a device
3194		 * is not considered an error.
3195		 */
3196		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3197		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3198		    vd->vdev_ops->vdev_op_leaf)
3199			vd->vdev_not_present = 1;
3200
3201		/*
3202		 * Post the appropriate ereport.  If the 'prevstate' field is
3203		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3204		 * that this is part of a vdev_reopen().  In this case, we don't
3205		 * want to post the ereport if the device was already in the
3206		 * CANT_OPEN state beforehand.
3207		 *
3208		 * If the 'checkremove' flag is set, then this is an attempt to
3209		 * online the device in response to an insertion event.  If we
3210		 * hit this case, then we have detected an insertion event for a
3211		 * faulted or offline device that wasn't in the removed state.
3212		 * In this scenario, we don't post an ereport because we are
3213		 * about to replace the device, or attempt an online with
3214		 * vdev_forcefault, which will generate the fault for us.
3215		 */
3216		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3217		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3218		    vd != spa->spa_root_vdev) {
3219			const char *class;
3220
3221			switch (aux) {
3222			case VDEV_AUX_OPEN_FAILED:
3223				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3224				break;
3225			case VDEV_AUX_CORRUPT_DATA:
3226				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3227				break;
3228			case VDEV_AUX_NO_REPLICAS:
3229				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3230				break;
3231			case VDEV_AUX_BAD_GUID_SUM:
3232				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3233				break;
3234			case VDEV_AUX_TOO_SMALL:
3235				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3236				break;
3237			case VDEV_AUX_BAD_LABEL:
3238				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3239				break;
3240			default:
3241				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3242			}
3243
3244			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3245		}
3246
3247		/* Erase any notion of persistent removed state */
3248		vd->vdev_removed = B_FALSE;
3249	} else {
3250		vd->vdev_removed = B_FALSE;
3251	}
3252
3253	if (!isopen && vd->vdev_parent)
3254		vdev_propagate_state(vd->vdev_parent);
3255}
3256
3257/*
3258 * Check the vdev configuration to ensure that it's capable of supporting
3259 * a root pool.
3260 *
3261 * On Solaris, we do not support RAID-Z or partial configuration.  In
3262 * addition, only a single top-level vdev is allowed and none of the
3263 * leaves can be wholedisks.
3264 *
3265 * For FreeBSD, we can boot from any configuration. There is a
3266 * limitation that the boot filesystem must be either uncompressed or
3267 * compresses with lzjb compression but I'm not sure how to enforce
3268 * that here.
3269 */
3270boolean_t
3271vdev_is_bootable(vdev_t *vd)
3272{
3273#ifdef sun
3274	if (!vd->vdev_ops->vdev_op_leaf) {
3275		char *vdev_type = vd->vdev_ops->vdev_op_type;
3276
3277		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3278		    vd->vdev_children > 1) {
3279			return (B_FALSE);
3280		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3281		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3282			return (B_FALSE);
3283		}
3284	} else if (vd->vdev_wholedisk == 1) {
3285		return (B_FALSE);
3286	}
3287
3288	for (int c = 0; c < vd->vdev_children; c++) {
3289		if (!vdev_is_bootable(vd->vdev_child[c]))
3290			return (B_FALSE);
3291	}
3292#endif	/* sun */
3293	return (B_TRUE);
3294}
3295
3296/*
3297 * Load the state from the original vdev tree (ovd) which
3298 * we've retrieved from the MOS config object. If the original
3299 * vdev was offline or faulted then we transfer that state to the
3300 * device in the current vdev tree (nvd).
3301 */
3302void
3303vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3304{
3305	spa_t *spa = nvd->vdev_spa;
3306
3307	ASSERT(nvd->vdev_top->vdev_islog);
3308	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3309	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3310
3311	for (int c = 0; c < nvd->vdev_children; c++)
3312		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3313
3314	if (nvd->vdev_ops->vdev_op_leaf) {
3315		/*
3316		 * Restore the persistent vdev state
3317		 */
3318		nvd->vdev_offline = ovd->vdev_offline;
3319		nvd->vdev_faulted = ovd->vdev_faulted;
3320		nvd->vdev_degraded = ovd->vdev_degraded;
3321		nvd->vdev_removed = ovd->vdev_removed;
3322	}
3323}
3324
3325/*
3326 * Determine if a log device has valid content.  If the vdev was
3327 * removed or faulted in the MOS config then we know that
3328 * the content on the log device has already been written to the pool.
3329 */
3330boolean_t
3331vdev_log_state_valid(vdev_t *vd)
3332{
3333	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3334	    !vd->vdev_removed)
3335		return (B_TRUE);
3336
3337	for (int c = 0; c < vd->vdev_children; c++)
3338		if (vdev_log_state_valid(vd->vdev_child[c]))
3339			return (B_TRUE);
3340
3341	return (B_FALSE);
3342}
3343
3344/*
3345 * Expand a vdev if possible.
3346 */
3347void
3348vdev_expand(vdev_t *vd, uint64_t txg)
3349{
3350	ASSERT(vd->vdev_top == vd);
3351	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3352
3353	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3354		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3355		vdev_config_dirty(vd);
3356	}
3357}
3358
3359/*
3360 * Split a vdev.
3361 */
3362void
3363vdev_split(vdev_t *vd)
3364{
3365	vdev_t *cvd, *pvd = vd->vdev_parent;
3366
3367	vdev_remove_child(pvd, vd);
3368	vdev_compact_children(pvd);
3369
3370	cvd = pvd->vdev_child[0];
3371	if (pvd->vdev_children == 1) {
3372		vdev_remove_parent(cvd);
3373		cvd->vdev_splitting = B_TRUE;
3374	}
3375	vdev_propagate_state(cvd);
3376}
3377
3378void
3379vdev_deadman(vdev_t *vd)
3380{
3381	for (int c = 0; c < vd->vdev_children; c++) {
3382		vdev_t *cvd = vd->vdev_child[c];
3383
3384		vdev_deadman(cvd);
3385	}
3386
3387	if (vd->vdev_ops->vdev_op_leaf) {
3388		vdev_queue_t *vq = &vd->vdev_queue;
3389
3390		mutex_enter(&vq->vq_lock);
3391		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3392			spa_t *spa = vd->vdev_spa;
3393			zio_t *fio;
3394			uint64_t delta;
3395
3396			/*
3397			 * Look at the head of all the pending queues,
3398			 * if any I/O has been outstanding for longer than
3399			 * the spa_deadman_synctime we panic the system.
3400			 */
3401			fio = avl_first(&vq->vq_active_tree);
3402			delta = gethrtime() - fio->io_timestamp;
3403			if (delta > spa_deadman_synctime(spa)) {
3404				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3405				    "delta %lluns, last io %lluns",
3406				    fio->io_timestamp, delta,
3407				    vq->vq_io_complete_ts);
3408				fm_panic("I/O to pool '%s' appears to be "
3409				    "hung on vdev guid %llu at '%s'.",
3410				    spa_name(spa),
3411				    (long long unsigned int) vd->vdev_guid,
3412				    vd->vdev_path);
3413			}
3414		}
3415		mutex_exit(&vq->vq_lock);
3416	}
3417}
3418