txg.c revision 260763
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Portions Copyright 2011 Martin Matuska <mm@FreeBSD.org>
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/txg_impl.h>
29#include <sys/dmu_impl.h>
30#include <sys/dmu_tx.h>
31#include <sys/dsl_pool.h>
32#include <sys/dsl_scan.h>
33#include <sys/callb.h>
34
35/*
36 * ZFS Transaction Groups
37 * ----------------------
38 *
39 * ZFS transaction groups are, as the name implies, groups of transactions
40 * that act on persistent state. ZFS asserts consistency at the granularity of
41 * these transaction groups. Each successive transaction group (txg) is
42 * assigned a 64-bit consecutive identifier. There are three active
43 * transaction group states: open, quiescing, or syncing. At any given time,
44 * there may be an active txg associated with each state; each active txg may
45 * either be processing, or blocked waiting to enter the next state. There may
46 * be up to three active txgs, and there is always a txg in the open state
47 * (though it may be blocked waiting to enter the quiescing state). In broad
48 * strokes, transactions -- operations that change in-memory structures -- are
49 * accepted into the txg in the open state, and are completed while the txg is
50 * in the open or quiescing states. The accumulated changes are written to
51 * disk in the syncing state.
52 *
53 * Open
54 *
55 * When a new txg becomes active, it first enters the open state. New
56 * transactions -- updates to in-memory structures -- are assigned to the
57 * currently open txg. There is always a txg in the open state so that ZFS can
58 * accept new changes (though the txg may refuse new changes if it has hit
59 * some limit). ZFS advances the open txg to the next state for a variety of
60 * reasons such as it hitting a time or size threshold, or the execution of an
61 * administrative action that must be completed in the syncing state.
62 *
63 * Quiescing
64 *
65 * After a txg exits the open state, it enters the quiescing state. The
66 * quiescing state is intended to provide a buffer between accepting new
67 * transactions in the open state and writing them out to stable storage in
68 * the syncing state. While quiescing, transactions can continue their
69 * operation without delaying either of the other states. Typically, a txg is
70 * in the quiescing state very briefly since the operations are bounded by
71 * software latencies rather than, say, slower I/O latencies. After all
72 * transactions complete, the txg is ready to enter the next state.
73 *
74 * Syncing
75 *
76 * In the syncing state, the in-memory state built up during the open and (to
77 * a lesser degree) the quiescing states is written to stable storage. The
78 * process of writing out modified data can, in turn modify more data. For
79 * example when we write new blocks, we need to allocate space for them; those
80 * allocations modify metadata (space maps)... which themselves must be
81 * written to stable storage. During the sync state, ZFS iterates, writing out
82 * data until it converges and all in-memory changes have been written out.
83 * The first such pass is the largest as it encompasses all the modified user
84 * data (as opposed to filesystem metadata). Subsequent passes typically have
85 * far less data to write as they consist exclusively of filesystem metadata.
86 *
87 * To ensure convergence, after a certain number of passes ZFS begins
88 * overwriting locations on stable storage that had been allocated earlier in
89 * the syncing state (and subsequently freed). ZFS usually allocates new
90 * blocks to optimize for large, continuous, writes. For the syncing state to
91 * converge however it must complete a pass where no new blocks are allocated
92 * since each allocation requires a modification of persistent metadata.
93 * Further, to hasten convergence, after a prescribed number of passes, ZFS
94 * also defers frees, and stops compressing.
95 *
96 * In addition to writing out user data, we must also execute synctasks during
97 * the syncing context. A synctask is the mechanism by which some
98 * administrative activities work such as creating and destroying snapshots or
99 * datasets. Note that when a synctask is initiated it enters the open txg,
100 * and ZFS then pushes that txg as quickly as possible to completion of the
101 * syncing state in order to reduce the latency of the administrative
102 * activity. To complete the syncing state, ZFS writes out a new uberblock,
103 * the root of the tree of blocks that comprise all state stored on the ZFS
104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can
105 * now transition to the syncing state.
106 */
107
108static void txg_sync_thread(void *arg);
109static void txg_quiesce_thread(void *arg);
110
111int zfs_txg_timeout = 5;	/* max seconds worth of delta per txg */
112
113SYSCTL_DECL(_vfs_zfs);
114SYSCTL_NODE(_vfs_zfs, OID_AUTO, txg, CTLFLAG_RW, 0, "ZFS TXG");
115TUNABLE_INT("vfs.zfs.txg.timeout", &zfs_txg_timeout);
116SYSCTL_INT(_vfs_zfs_txg, OID_AUTO, timeout, CTLFLAG_RW, &zfs_txg_timeout, 0,
117    "Maximum seconds worth of delta per txg");
118
119/*
120 * Prepare the txg subsystem.
121 */
122void
123txg_init(dsl_pool_t *dp, uint64_t txg)
124{
125	tx_state_t *tx = &dp->dp_tx;
126	int c;
127	bzero(tx, sizeof (tx_state_t));
128
129	tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
130
131	for (c = 0; c < max_ncpus; c++) {
132		int i;
133
134		mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
135		mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT,
136		    NULL);
137		for (i = 0; i < TXG_SIZE; i++) {
138			cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
139			    NULL);
140			list_create(&tx->tx_cpu[c].tc_callbacks[i],
141			    sizeof (dmu_tx_callback_t),
142			    offsetof(dmu_tx_callback_t, dcb_node));
143		}
144	}
145
146	mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
147
148	cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
149	cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
150	cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
151	cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
152	cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
153
154	tx->tx_open_txg = txg;
155}
156
157/*
158 * Close down the txg subsystem.
159 */
160void
161txg_fini(dsl_pool_t *dp)
162{
163	tx_state_t *tx = &dp->dp_tx;
164	int c;
165
166	ASSERT(tx->tx_threads == 0);
167
168	mutex_destroy(&tx->tx_sync_lock);
169
170	cv_destroy(&tx->tx_sync_more_cv);
171	cv_destroy(&tx->tx_sync_done_cv);
172	cv_destroy(&tx->tx_quiesce_more_cv);
173	cv_destroy(&tx->tx_quiesce_done_cv);
174	cv_destroy(&tx->tx_exit_cv);
175
176	for (c = 0; c < max_ncpus; c++) {
177		int i;
178
179		mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
180		mutex_destroy(&tx->tx_cpu[c].tc_lock);
181		for (i = 0; i < TXG_SIZE; i++) {
182			cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
183			list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
184		}
185	}
186
187	if (tx->tx_commit_cb_taskq != NULL)
188		taskq_destroy(tx->tx_commit_cb_taskq);
189
190	kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
191
192	bzero(tx, sizeof (tx_state_t));
193}
194
195/*
196 * Start syncing transaction groups.
197 */
198void
199txg_sync_start(dsl_pool_t *dp)
200{
201	tx_state_t *tx = &dp->dp_tx;
202
203	mutex_enter(&tx->tx_sync_lock);
204
205	dprintf("pool %p\n", dp);
206
207	ASSERT(tx->tx_threads == 0);
208
209	tx->tx_threads = 2;
210
211	tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
212	    dp, 0, &p0, TS_RUN, minclsyspri);
213
214	/*
215	 * The sync thread can need a larger-than-default stack size on
216	 * 32-bit x86.  This is due in part to nested pools and
217	 * scrub_visitbp() recursion.
218	 */
219	tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread,
220	    dp, 0, &p0, TS_RUN, minclsyspri);
221
222	mutex_exit(&tx->tx_sync_lock);
223}
224
225static void
226txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
227{
228	CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
229	mutex_enter(&tx->tx_sync_lock);
230}
231
232static void
233txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
234{
235	ASSERT(*tpp != NULL);
236	*tpp = NULL;
237	tx->tx_threads--;
238	cv_broadcast(&tx->tx_exit_cv);
239	CALLB_CPR_EXIT(cpr);		/* drops &tx->tx_sync_lock */
240	thread_exit();
241}
242
243static void
244txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
245{
246	CALLB_CPR_SAFE_BEGIN(cpr);
247
248	if (time)
249		(void) cv_timedwait(cv, &tx->tx_sync_lock, time);
250	else
251		cv_wait(cv, &tx->tx_sync_lock);
252
253	CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
254}
255
256/*
257 * Stop syncing transaction groups.
258 */
259void
260txg_sync_stop(dsl_pool_t *dp)
261{
262	tx_state_t *tx = &dp->dp_tx;
263
264	dprintf("pool %p\n", dp);
265	/*
266	 * Finish off any work in progress.
267	 */
268	ASSERT(tx->tx_threads == 2);
269
270	/*
271	 * We need to ensure that we've vacated the deferred space_maps.
272	 */
273	txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
274
275	/*
276	 * Wake all sync threads and wait for them to die.
277	 */
278	mutex_enter(&tx->tx_sync_lock);
279
280	ASSERT(tx->tx_threads == 2);
281
282	tx->tx_exiting = 1;
283
284	cv_broadcast(&tx->tx_quiesce_more_cv);
285	cv_broadcast(&tx->tx_quiesce_done_cv);
286	cv_broadcast(&tx->tx_sync_more_cv);
287
288	while (tx->tx_threads != 0)
289		cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
290
291	tx->tx_exiting = 0;
292
293	mutex_exit(&tx->tx_sync_lock);
294}
295
296uint64_t
297txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
298{
299	tx_state_t *tx = &dp->dp_tx;
300	tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID];
301	uint64_t txg;
302
303	mutex_enter(&tc->tc_open_lock);
304	txg = tx->tx_open_txg;
305
306	mutex_enter(&tc->tc_lock);
307	tc->tc_count[txg & TXG_MASK]++;
308	mutex_exit(&tc->tc_lock);
309
310	th->th_cpu = tc;
311	th->th_txg = txg;
312
313	return (txg);
314}
315
316void
317txg_rele_to_quiesce(txg_handle_t *th)
318{
319	tx_cpu_t *tc = th->th_cpu;
320
321	ASSERT(!MUTEX_HELD(&tc->tc_lock));
322	mutex_exit(&tc->tc_open_lock);
323}
324
325void
326txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
327{
328	tx_cpu_t *tc = th->th_cpu;
329	int g = th->th_txg & TXG_MASK;
330
331	mutex_enter(&tc->tc_lock);
332	list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
333	mutex_exit(&tc->tc_lock);
334}
335
336void
337txg_rele_to_sync(txg_handle_t *th)
338{
339	tx_cpu_t *tc = th->th_cpu;
340	int g = th->th_txg & TXG_MASK;
341
342	mutex_enter(&tc->tc_lock);
343	ASSERT(tc->tc_count[g] != 0);
344	if (--tc->tc_count[g] == 0)
345		cv_broadcast(&tc->tc_cv[g]);
346	mutex_exit(&tc->tc_lock);
347
348	th->th_cpu = NULL;	/* defensive */
349}
350
351/*
352 * Blocks until all transactions in the group are committed.
353 *
354 * On return, the transaction group has reached a stable state in which it can
355 * then be passed off to the syncing context.
356 */
357static void
358txg_quiesce(dsl_pool_t *dp, uint64_t txg)
359{
360	tx_state_t *tx = &dp->dp_tx;
361	int g = txg & TXG_MASK;
362	int c;
363
364	/*
365	 * Grab all tc_open_locks so nobody else can get into this txg.
366	 */
367	for (c = 0; c < max_ncpus; c++)
368		mutex_enter(&tx->tx_cpu[c].tc_open_lock);
369
370	ASSERT(txg == tx->tx_open_txg);
371	tx->tx_open_txg++;
372	tx->tx_open_time = gethrtime();
373
374	DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
375	DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
376
377	/*
378	 * Now that we've incremented tx_open_txg, we can let threads
379	 * enter the next transaction group.
380	 */
381	for (c = 0; c < max_ncpus; c++)
382		mutex_exit(&tx->tx_cpu[c].tc_open_lock);
383
384	/*
385	 * Quiesce the transaction group by waiting for everyone to txg_exit().
386	 */
387	for (c = 0; c < max_ncpus; c++) {
388		tx_cpu_t *tc = &tx->tx_cpu[c];
389		mutex_enter(&tc->tc_lock);
390		while (tc->tc_count[g] != 0)
391			cv_wait(&tc->tc_cv[g], &tc->tc_lock);
392		mutex_exit(&tc->tc_lock);
393	}
394}
395
396static void
397txg_do_callbacks(void *arg)
398{
399	list_t *cb_list = arg;
400
401	dmu_tx_do_callbacks(cb_list, 0);
402
403	list_destroy(cb_list);
404
405	kmem_free(cb_list, sizeof (list_t));
406}
407
408/*
409 * Dispatch the commit callbacks registered on this txg to worker threads.
410 *
411 * If no callbacks are registered for a given TXG, nothing happens.
412 * This function creates a taskq for the associated pool, if needed.
413 */
414static void
415txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
416{
417	int c;
418	tx_state_t *tx = &dp->dp_tx;
419	list_t *cb_list;
420
421	for (c = 0; c < max_ncpus; c++) {
422		tx_cpu_t *tc = &tx->tx_cpu[c];
423		/*
424		 * No need to lock tx_cpu_t at this point, since this can
425		 * only be called once a txg has been synced.
426		 */
427
428		int g = txg & TXG_MASK;
429
430		if (list_is_empty(&tc->tc_callbacks[g]))
431			continue;
432
433		if (tx->tx_commit_cb_taskq == NULL) {
434			/*
435			 * Commit callback taskq hasn't been created yet.
436			 */
437			tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
438			    max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2,
439			    TASKQ_PREPOPULATE);
440		}
441
442		cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
443		list_create(cb_list, sizeof (dmu_tx_callback_t),
444		    offsetof(dmu_tx_callback_t, dcb_node));
445
446		list_move_tail(cb_list, &tc->tc_callbacks[g]);
447
448		(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
449		    txg_do_callbacks, cb_list, TQ_SLEEP);
450	}
451}
452
453static void
454txg_sync_thread(void *arg)
455{
456	dsl_pool_t *dp = arg;
457	spa_t *spa = dp->dp_spa;
458	tx_state_t *tx = &dp->dp_tx;
459	callb_cpr_t cpr;
460	uint64_t start, delta;
461
462	txg_thread_enter(tx, &cpr);
463
464	start = delta = 0;
465	for (;;) {
466		uint64_t timeout = zfs_txg_timeout * hz;
467		uint64_t timer;
468		uint64_t txg;
469
470		/*
471		 * We sync when we're scanning, there's someone waiting
472		 * on us, or the quiesce thread has handed off a txg to
473		 * us, or we have reached our timeout.
474		 */
475		timer = (delta >= timeout ? 0 : timeout - delta);
476		while (!dsl_scan_active(dp->dp_scan) &&
477		    !tx->tx_exiting && timer > 0 &&
478		    tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
479		    tx->tx_quiesced_txg == 0 &&
480		    dp->dp_dirty_total < zfs_dirty_data_sync) {
481			dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
482			    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
483			txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
484			delta = ddi_get_lbolt() - start;
485			timer = (delta > timeout ? 0 : timeout - delta);
486		}
487
488		/*
489		 * Wait until the quiesce thread hands off a txg to us,
490		 * prompting it to do so if necessary.
491		 */
492		while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
493			if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
494				tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
495			cv_broadcast(&tx->tx_quiesce_more_cv);
496			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
497		}
498
499		if (tx->tx_exiting)
500			txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
501
502		/*
503		 * Consume the quiesced txg which has been handed off to
504		 * us.  This may cause the quiescing thread to now be
505		 * able to quiesce another txg, so we must signal it.
506		 */
507		txg = tx->tx_quiesced_txg;
508		tx->tx_quiesced_txg = 0;
509		tx->tx_syncing_txg = txg;
510		DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
511		cv_broadcast(&tx->tx_quiesce_more_cv);
512
513		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
514		    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
515		mutex_exit(&tx->tx_sync_lock);
516
517		start = ddi_get_lbolt();
518		spa_sync(spa, txg);
519		delta = ddi_get_lbolt() - start;
520
521		mutex_enter(&tx->tx_sync_lock);
522		tx->tx_synced_txg = txg;
523		tx->tx_syncing_txg = 0;
524		DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
525		cv_broadcast(&tx->tx_sync_done_cv);
526
527		/*
528		 * Dispatch commit callbacks to worker threads.
529		 */
530		txg_dispatch_callbacks(dp, txg);
531	}
532}
533
534static void
535txg_quiesce_thread(void *arg)
536{
537	dsl_pool_t *dp = arg;
538	tx_state_t *tx = &dp->dp_tx;
539	callb_cpr_t cpr;
540
541	txg_thread_enter(tx, &cpr);
542
543	for (;;) {
544		uint64_t txg;
545
546		/*
547		 * We quiesce when there's someone waiting on us.
548		 * However, we can only have one txg in "quiescing" or
549		 * "quiesced, waiting to sync" state.  So we wait until
550		 * the "quiesced, waiting to sync" txg has been consumed
551		 * by the sync thread.
552		 */
553		while (!tx->tx_exiting &&
554		    (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
555		    tx->tx_quiesced_txg != 0))
556			txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
557
558		if (tx->tx_exiting)
559			txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
560
561		txg = tx->tx_open_txg;
562		dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
563		    txg, tx->tx_quiesce_txg_waiting,
564		    tx->tx_sync_txg_waiting);
565		mutex_exit(&tx->tx_sync_lock);
566		txg_quiesce(dp, txg);
567		mutex_enter(&tx->tx_sync_lock);
568
569		/*
570		 * Hand this txg off to the sync thread.
571		 */
572		dprintf("quiesce done, handing off txg %llu\n", txg);
573		tx->tx_quiesced_txg = txg;
574		DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
575		cv_broadcast(&tx->tx_sync_more_cv);
576		cv_broadcast(&tx->tx_quiesce_done_cv);
577	}
578}
579
580/*
581 * Delay this thread by delay nanoseconds if we are still in the open
582 * transaction group and there is already a waiting txg quiesing or quiesced.
583 * Abort the delay if this txg stalls or enters the quiesing state.
584 */
585void
586txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
587{
588	tx_state_t *tx = &dp->dp_tx;
589	hrtime_t start = gethrtime();
590
591	/* don't delay if this txg could transition to quiescing immediately */
592	if (tx->tx_open_txg > txg ||
593	    tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
594		return;
595
596	mutex_enter(&tx->tx_sync_lock);
597	if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
598		mutex_exit(&tx->tx_sync_lock);
599		return;
600	}
601
602	while (gethrtime() - start < delay &&
603	    tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
604		(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
605		    &tx->tx_sync_lock, delay, resolution, 0);
606	}
607
608	mutex_exit(&tx->tx_sync_lock);
609}
610
611void
612txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
613{
614	tx_state_t *tx = &dp->dp_tx;
615
616	ASSERT(!dsl_pool_config_held(dp));
617
618	mutex_enter(&tx->tx_sync_lock);
619	ASSERT(tx->tx_threads == 2);
620	if (txg == 0)
621		txg = tx->tx_open_txg + TXG_DEFER_SIZE;
622	if (tx->tx_sync_txg_waiting < txg)
623		tx->tx_sync_txg_waiting = txg;
624	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
625	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
626	while (tx->tx_synced_txg < txg) {
627		dprintf("broadcasting sync more "
628		    "tx_synced=%llu waiting=%llu dp=%p\n",
629		    tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
630		cv_broadcast(&tx->tx_sync_more_cv);
631		cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
632	}
633	mutex_exit(&tx->tx_sync_lock);
634}
635
636void
637txg_wait_open(dsl_pool_t *dp, uint64_t txg)
638{
639	tx_state_t *tx = &dp->dp_tx;
640
641	ASSERT(!dsl_pool_config_held(dp));
642
643	mutex_enter(&tx->tx_sync_lock);
644	ASSERT(tx->tx_threads == 2);
645	if (txg == 0)
646		txg = tx->tx_open_txg + 1;
647	if (tx->tx_quiesce_txg_waiting < txg)
648		tx->tx_quiesce_txg_waiting = txg;
649	dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
650	    txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
651	while (tx->tx_open_txg < txg) {
652		cv_broadcast(&tx->tx_quiesce_more_cv);
653		cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
654	}
655	mutex_exit(&tx->tx_sync_lock);
656}
657
658/*
659 * If there isn't a txg syncing or in the pipeline, push another txg through
660 * the pipeline by queiscing the open txg.
661 */
662void
663txg_kick(dsl_pool_t *dp)
664{
665	tx_state_t *tx = &dp->dp_tx;
666
667	ASSERT(!dsl_pool_config_held(dp));
668
669	mutex_enter(&tx->tx_sync_lock);
670	if (tx->tx_syncing_txg == 0 &&
671	    tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
672	    tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
673	    tx->tx_quiesced_txg <= tx->tx_synced_txg) {
674		tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
675		cv_broadcast(&tx->tx_quiesce_more_cv);
676	}
677	mutex_exit(&tx->tx_sync_lock);
678}
679
680boolean_t
681txg_stalled(dsl_pool_t *dp)
682{
683	tx_state_t *tx = &dp->dp_tx;
684	return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
685}
686
687boolean_t
688txg_sync_waiting(dsl_pool_t *dp)
689{
690	tx_state_t *tx = &dp->dp_tx;
691
692	return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
693	    tx->tx_quiesced_txg != 0);
694}
695
696/*
697 * Per-txg object lists.
698 */
699void
700txg_list_create(txg_list_t *tl, size_t offset)
701{
702	int t;
703
704	mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
705
706	tl->tl_offset = offset;
707
708	for (t = 0; t < TXG_SIZE; t++)
709		tl->tl_head[t] = NULL;
710}
711
712void
713txg_list_destroy(txg_list_t *tl)
714{
715	int t;
716
717	for (t = 0; t < TXG_SIZE; t++)
718		ASSERT(txg_list_empty(tl, t));
719
720	mutex_destroy(&tl->tl_lock);
721}
722
723boolean_t
724txg_list_empty(txg_list_t *tl, uint64_t txg)
725{
726	return (tl->tl_head[txg & TXG_MASK] == NULL);
727}
728
729/*
730 * Add an entry to the list (unless it's already on the list).
731 * Returns B_TRUE if it was actually added.
732 */
733boolean_t
734txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
735{
736	int t = txg & TXG_MASK;
737	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
738	boolean_t add;
739
740	mutex_enter(&tl->tl_lock);
741	add = (tn->tn_member[t] == 0);
742	if (add) {
743		tn->tn_member[t] = 1;
744		tn->tn_next[t] = tl->tl_head[t];
745		tl->tl_head[t] = tn;
746	}
747	mutex_exit(&tl->tl_lock);
748
749	return (add);
750}
751
752/*
753 * Add an entry to the end of the list, unless it's already on the list.
754 * (walks list to find end)
755 * Returns B_TRUE if it was actually added.
756 */
757boolean_t
758txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
759{
760	int t = txg & TXG_MASK;
761	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
762	boolean_t add;
763
764	mutex_enter(&tl->tl_lock);
765	add = (tn->tn_member[t] == 0);
766	if (add) {
767		txg_node_t **tp;
768
769		for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
770			continue;
771
772		tn->tn_member[t] = 1;
773		tn->tn_next[t] = NULL;
774		*tp = tn;
775	}
776	mutex_exit(&tl->tl_lock);
777
778	return (add);
779}
780
781/*
782 * Remove the head of the list and return it.
783 */
784void *
785txg_list_remove(txg_list_t *tl, uint64_t txg)
786{
787	int t = txg & TXG_MASK;
788	txg_node_t *tn;
789	void *p = NULL;
790
791	mutex_enter(&tl->tl_lock);
792	if ((tn = tl->tl_head[t]) != NULL) {
793		p = (char *)tn - tl->tl_offset;
794		tl->tl_head[t] = tn->tn_next[t];
795		tn->tn_next[t] = NULL;
796		tn->tn_member[t] = 0;
797	}
798	mutex_exit(&tl->tl_lock);
799
800	return (p);
801}
802
803/*
804 * Remove a specific item from the list and return it.
805 */
806void *
807txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
808{
809	int t = txg & TXG_MASK;
810	txg_node_t *tn, **tp;
811
812	mutex_enter(&tl->tl_lock);
813
814	for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
815		if ((char *)tn - tl->tl_offset == p) {
816			*tp = tn->tn_next[t];
817			tn->tn_next[t] = NULL;
818			tn->tn_member[t] = 0;
819			mutex_exit(&tl->tl_lock);
820			return (p);
821		}
822	}
823
824	mutex_exit(&tl->tl_lock);
825
826	return (NULL);
827}
828
829boolean_t
830txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
831{
832	int t = txg & TXG_MASK;
833	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
834
835	return (tn->tn_member[t] != 0);
836}
837
838/*
839 * Walk a txg list -- only safe if you know it's not changing.
840 */
841void *
842txg_list_head(txg_list_t *tl, uint64_t txg)
843{
844	int t = txg & TXG_MASK;
845	txg_node_t *tn = tl->tl_head[t];
846
847	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
848}
849
850void *
851txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
852{
853	int t = txg & TXG_MASK;
854	txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
855
856	tn = tn->tn_next[t];
857
858	return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
859}
860