zap_impl.h revision 307057
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28#ifndef	_SYS_ZAP_IMPL_H
29#define	_SYS_ZAP_IMPL_H
30
31#include <sys/zap.h>
32#include <sys/zfs_context.h>
33#include <sys/avl.h>
34
35#ifdef	__cplusplus
36extern "C" {
37#endif
38
39extern int fzap_default_block_shift;
40
41#define	ZAP_MAGIC 0x2F52AB2ABULL
42
43#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_f.zap_block_shift)
44
45#define	MZAP_ENT_LEN		64
46#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
47#define	MZAP_MAX_BLKSZ		SPA_OLD_MAXBLOCKSIZE
48
49#define	ZAP_NEED_CD		(-1U)
50
51typedef struct mzap_ent_phys {
52	uint64_t mze_value;
53	uint32_t mze_cd;
54	uint16_t mze_pad;	/* in case we want to chain them someday */
55	char mze_name[MZAP_NAME_LEN];
56} mzap_ent_phys_t;
57
58typedef struct mzap_phys {
59	uint64_t mz_block_type;	/* ZBT_MICRO */
60	uint64_t mz_salt;
61	uint64_t mz_normflags;
62	uint64_t mz_pad[5];
63	mzap_ent_phys_t mz_chunk[1];
64	/* actually variable size depending on block size */
65} mzap_phys_t;
66
67typedef struct mzap_ent {
68	avl_node_t mze_node;
69	int mze_chunkid;
70	uint64_t mze_hash;
71	uint32_t mze_cd; /* copy from mze_phys->mze_cd */
72} mzap_ent_t;
73
74#define	MZE_PHYS(zap, mze) \
75	(&zap_m_phys(zap)->mz_chunk[(mze)->mze_chunkid])
76
77/*
78 * The (fat) zap is stored in one object. It is an array of
79 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
80 *
81 * ptrtbl fits in first block:
82 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
83 *
84 * ptrtbl too big for first block:
85 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
86 *
87 */
88
89struct dmu_buf;
90struct zap_leaf;
91
92#define	ZBT_LEAF		((1ULL << 63) + 0)
93#define	ZBT_HEADER		((1ULL << 63) + 1)
94#define	ZBT_MICRO		((1ULL << 63) + 3)
95/* any other values are ptrtbl blocks */
96
97/*
98 * the embedded pointer table takes up half a block:
99 * block size / entry size (2^3) / 2
100 */
101#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
102
103/*
104 * The embedded pointer table starts half-way through the block.  Since
105 * the pointer table itself is half the block, it starts at (64-bit)
106 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
107 */
108#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
109	((uint64_t *)zap_f_phys(zap)) \
110	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
111
112/*
113 * TAKE NOTE:
114 * If zap_phys_t is modified, zap_byteswap() must be modified.
115 */
116typedef struct zap_phys {
117	uint64_t zap_block_type;	/* ZBT_HEADER */
118	uint64_t zap_magic;		/* ZAP_MAGIC */
119
120	struct zap_table_phys {
121		uint64_t zt_blk;	/* starting block number */
122		uint64_t zt_numblks;	/* number of blocks */
123		uint64_t zt_shift;	/* bits to index it */
124		uint64_t zt_nextblk;	/* next (larger) copy start block */
125		uint64_t zt_blks_copied; /* number source blocks copied */
126	} zap_ptrtbl;
127
128	uint64_t zap_freeblk;		/* the next free block */
129	uint64_t zap_num_leafs;		/* number of leafs */
130	uint64_t zap_num_entries;	/* number of entries */
131	uint64_t zap_salt;		/* salt to stir into hash function */
132	uint64_t zap_normflags;		/* flags for u8_textprep_str() */
133	uint64_t zap_flags;		/* zap_flags_t */
134	/*
135	 * This structure is followed by padding, and then the embedded
136	 * pointer table.  The embedded pointer table takes up second
137	 * half of the block.  It is accessed using the
138	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
139	 */
140} zap_phys_t;
141
142typedef struct zap_table_phys zap_table_phys_t;
143
144typedef struct zap {
145	dmu_buf_user_t zap_dbu;
146	objset_t *zap_objset;
147	uint64_t zap_object;
148	struct dmu_buf *zap_dbuf;
149	krwlock_t zap_rwlock;
150	boolean_t zap_ismicro;
151	int zap_normflags;
152	uint64_t zap_salt;
153	union {
154		struct {
155			/*
156			 * zap_num_entries_mtx protects
157			 * zap_num_entries
158			 */
159			kmutex_t zap_num_entries_mtx;
160			int zap_block_shift;
161		} zap_fat;
162		struct {
163			int16_t zap_num_entries;
164			int16_t zap_num_chunks;
165			int16_t zap_alloc_next;
166			avl_tree_t zap_avl;
167		} zap_micro;
168	} zap_u;
169} zap_t;
170
171inline zap_phys_t *
172zap_f_phys(zap_t *zap)
173{
174	return (zap->zap_dbuf->db_data);
175}
176
177inline mzap_phys_t *
178zap_m_phys(zap_t *zap)
179{
180	return (zap->zap_dbuf->db_data);
181}
182
183typedef struct zap_name {
184	zap_t *zn_zap;
185	int zn_key_intlen;
186	const void *zn_key_orig;
187	int zn_key_orig_numints;
188	const void *zn_key_norm;
189	int zn_key_norm_numints;
190	uint64_t zn_hash;
191	matchtype_t zn_matchtype;
192	char zn_normbuf[ZAP_MAXNAMELEN];
193} zap_name_t;
194
195#define	zap_f	zap_u.zap_fat
196#define	zap_m	zap_u.zap_micro
197
198boolean_t zap_match(zap_name_t *zn, const char *matchname);
199int zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
200    krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp);
201void zap_unlockdir(zap_t *zap);
202void zap_evict(void *dbu);
203zap_name_t *zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt);
204void zap_name_free(zap_name_t *zn);
205int zap_hashbits(zap_t *zap);
206uint32_t zap_maxcd(zap_t *zap);
207uint64_t zap_getflags(zap_t *zap);
208
209#define	ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
210
211void fzap_byteswap(void *buf, size_t size);
212int fzap_count(zap_t *zap, uint64_t *count);
213int fzap_lookup(zap_name_t *zn,
214    uint64_t integer_size, uint64_t num_integers, void *buf,
215    char *realname, int rn_len, boolean_t *normalization_conflictp);
216void fzap_prefetch(zap_name_t *zn);
217int fzap_count_write(zap_name_t *zn, int add, refcount_t *towrite,
218    refcount_t *tooverwrite);
219int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers,
220    const void *val, dmu_tx_t *tx);
221int fzap_update(zap_name_t *zn,
222    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
223int fzap_length(zap_name_t *zn,
224    uint64_t *integer_size, uint64_t *num_integers);
225int fzap_remove(zap_name_t *zn, dmu_tx_t *tx);
226int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za);
227void fzap_get_stats(zap_t *zap, zap_stats_t *zs);
228void zap_put_leaf(struct zap_leaf *l);
229
230int fzap_add_cd(zap_name_t *zn,
231    uint64_t integer_size, uint64_t num_integers,
232    const void *val, uint32_t cd, dmu_tx_t *tx);
233void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags);
234int fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn);
235
236#ifdef	__cplusplus
237}
238#endif
239
240#endif /* _SYS_ZAP_IMPL_H */
241