zap.h revision 307292
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 */
25
26#ifndef	_SYS_ZAP_H
27#define	_SYS_ZAP_H
28
29/*
30 * ZAP - ZFS Attribute Processor
31 *
32 * The ZAP is a module which sits on top of the DMU (Data Management
33 * Unit) and implements a higher-level storage primitive using DMU
34 * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35 *
36 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37 * Users should use only zap routines to access a zapobj - they should
38 * not access the DMU object directly using DMU routines.
39 *
40 * The attributes stored in a zapobj are name-value pairs.  The name is
41 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42 * terminating NULL).  The value is an array of integers, which may be
43 * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45 * Note that an 8-byte integer value can be used to store the location
46 * (object number) of another dmu object (which may be itself a zapobj).
47 * Note that you can use a zero-length attribute to store a single bit
48 * of information - the attribute is present or not.
49 *
50 * The ZAP routines are thread-safe.  However, you must observe the
51 * DMU's restriction that a transaction may not be operated on
52 * concurrently.
53 *
54 * Any of the routines that return an int may return an I/O error (EIO
55 * or ECHECKSUM).
56 *
57 *
58 * Implementation / Performance Notes:
59 *
60 * The ZAP is intended to operate most efficiently on attributes with
61 * short (49 bytes or less) names and single 8-byte values, for which
62 * the microzap will be used.  The ZAP should be efficient enough so
63 * that the user does not need to cache these attributes.
64 *
65 * The ZAP's locking scheme makes its routines thread-safe.  Operations
66 * on different zapobjs will be processed concurrently.  Operations on
67 * the same zapobj which only read data will be processed concurrently.
68 * Operations on the same zapobj which modify data will be processed
69 * concurrently when there are many attributes in the zapobj (because
70 * the ZAP uses per-block locking - more than 128 * (number of cpus)
71 * small attributes will suffice).
72 */
73
74/*
75 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76 * strings) for the names of attributes, rather than a byte string
77 * bounded by an explicit length.  If some day we want to support names
78 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79 * we'll have to add routines for using length-bounded strings.
80 */
81
82#include <sys/dmu.h>
83#include <sys/refcount.h>
84
85#ifdef	__cplusplus
86extern "C" {
87#endif
88
89/*
90 * Specifies matching criteria for ZAP lookups.
91 */
92typedef enum matchtype
93{
94	/* Only find an exact match (non-normalized) */
95	MT_EXACT,
96	/*
97	 * If there is an exact match, find that, otherwise find the
98	 * first normalized match.
99	 */
100	MT_BEST,
101	/*
102	 * Find the "first" normalized (case and Unicode form) match;
103	 * the designated "first" match will not change as long as the
104	 * set of entries with this normalization doesn't change.
105	 */
106	MT_FIRST
107} matchtype_t;
108
109typedef enum zap_flags {
110	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
111	ZAP_FLAG_HASH64 = 1 << 0,
112	/* Key is binary, not string (zap_add_uint64() can be used) */
113	ZAP_FLAG_UINT64_KEY = 1 << 1,
114	/*
115	 * First word of key (which must be an array of uint64) is
116	 * already randomly distributed.
117	 */
118	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
119} zap_flags_t;
120
121/*
122 * Create a new zapobj with no attributes and return its object number.
123 * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
124 * otherwise any matchtype can be used for lookups.
125 *
126 * normflags specifies what normalization will be done.  values are:
127 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
128 *     only)
129 * U8_TEXTPREP_TOLOWER: case normalization will be performed.
130 *     MT_FIRST/MT_BEST matching will find entries that match without
131 *     regard to case (eg. looking for "foo" can find an entry "Foo").
132 * Eventually, other flags will permit unicode normalization as well.
133 */
134uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
135    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
137    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
138uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
139    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
140    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
141uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
142    uint64_t parent_obj, const char *name, dmu_tx_t *tx);
143
144/*
145 * Initialize an already-allocated object.
146 */
147void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
148    zap_flags_t flags, dmu_tx_t *tx);
149
150/*
151 * Create a new zapobj with no attributes from the given (unallocated)
152 * object number.
153 */
154int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
155    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
156int zap_create_claim_norm(objset_t *ds, uint64_t obj,
157    int normflags, dmu_object_type_t ot,
158    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
159
160/*
161 * The zapobj passed in must be a valid ZAP object for all of the
162 * following routines.
163 */
164
165/*
166 * Destroy this zapobj and all its attributes.
167 *
168 * Frees the object number using dmu_object_free.
169 */
170int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
171
172/*
173 * Manipulate attributes.
174 *
175 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
176 */
177
178/*
179 * Retrieve the contents of the attribute with the given name.
180 *
181 * If the requested attribute does not exist, the call will fail and
182 * return ENOENT.
183 *
184 * If 'integer_size' is smaller than the attribute's integer size, the
185 * call will fail and return EINVAL.
186 *
187 * If 'integer_size' is equal to or larger than the attribute's integer
188 * size, the call will succeed and return 0.
189 *
190 * When converting to a larger integer size, the integers will be treated as
191 * unsigned (ie. no sign-extension will be performed).
192 *
193 * 'num_integers' is the length (in integers) of 'buf'.
194 *
195 * If the attribute is longer than the buffer, as many integers as will
196 * fit will be transferred to 'buf'.  If the entire attribute was not
197 * transferred, the call will return EOVERFLOW.
198 */
199int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
200    uint64_t integer_size, uint64_t num_integers, void *buf);
201
202/*
203 * If rn_len is nonzero, realname will be set to the name of the found
204 * entry (which may be different from the requested name if matchtype is
205 * not MT_EXACT).
206 *
207 * If normalization_conflictp is not NULL, it will be set if there is
208 * another name with the same case/unicode normalized form.
209 */
210int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
211    uint64_t integer_size, uint64_t num_integers, void *buf,
212    matchtype_t mt, char *realname, int rn_len,
213    boolean_t *normalization_conflictp);
214int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
215    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
216int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
217int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
218    int key_numints);
219int zap_lookup_by_dnode(dnode_t *dn, const char *name,
220    uint64_t integer_size, uint64_t num_integers, void *buf);
221int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
222    uint64_t integer_size, uint64_t num_integers, void *buf,
223    matchtype_t mt, char *realname, int rn_len,
224    boolean_t *ncp);
225
226int zap_count_write_by_dnode(dnode_t *dn, const char *name,
227    int add, refcount_t *towrite, refcount_t *tooverwrite);
228
229/*
230 * Create an attribute with the given name and value.
231 *
232 * If an attribute with the given name already exists, the call will
233 * fail and return EEXIST.
234 */
235int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
236    int integer_size, uint64_t num_integers,
237    const void *val, dmu_tx_t *tx);
238int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
239    int key_numints, int integer_size, uint64_t num_integers,
240    const void *val, dmu_tx_t *tx);
241
242/*
243 * Set the attribute with the given name to the given value.  If an
244 * attribute with the given name does not exist, it will be created.  If
245 * an attribute with the given name already exists, the previous value
246 * will be overwritten.  The integer_size may be different from the
247 * existing attribute's integer size, in which case the attribute's
248 * integer size will be updated to the new value.
249 */
250int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
251    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
252int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
253    int key_numints,
254    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
255
256/*
257 * Get the length (in integers) and the integer size of the specified
258 * attribute.
259 *
260 * If the requested attribute does not exist, the call will fail and
261 * return ENOENT.
262 */
263int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
264    uint64_t *integer_size, uint64_t *num_integers);
265int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
266    int key_numints, uint64_t *integer_size, uint64_t *num_integers);
267
268/*
269 * Remove the specified attribute.
270 *
271 * If the specified attribute does not exist, the call will fail and
272 * return ENOENT.
273 */
274int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
275int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
276    matchtype_t mt, dmu_tx_t *tx);
277int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
278    int key_numints, dmu_tx_t *tx);
279
280/*
281 * Returns (in *count) the number of attributes in the specified zap
282 * object.
283 */
284int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
285
286/*
287 * Returns (in name) the name of the entry whose (value & mask)
288 * (za_first_integer) is value, or ENOENT if not found.  The string
289 * pointed to by name must be at least 256 bytes long.  If mask==0, the
290 * match must be exact (ie, same as mask=-1ULL).
291 */
292int zap_value_search(objset_t *os, uint64_t zapobj,
293    uint64_t value, uint64_t mask, char *name);
294
295/*
296 * Transfer all the entries from fromobj into intoobj.  Only works on
297 * int_size=8 num_integers=1 values.  Fails if there are any duplicated
298 * entries.
299 */
300int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
301
302/* Same as zap_join, but set the values to 'value'. */
303int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
304    uint64_t value, dmu_tx_t *tx);
305
306/* Same as zap_join, but add together any duplicated entries. */
307int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
308    dmu_tx_t *tx);
309
310/*
311 * Manipulate entries where the name + value are the "same" (the name is
312 * a stringified version of the value).
313 */
314int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
315int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
316int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
317int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
318    dmu_tx_t *tx);
319
320/* Here the key is an int and the value is a different int. */
321int zap_add_int_key(objset_t *os, uint64_t obj,
322    uint64_t key, uint64_t value, dmu_tx_t *tx);
323int zap_update_int_key(objset_t *os, uint64_t obj,
324    uint64_t key, uint64_t value, dmu_tx_t *tx);
325int zap_lookup_int_key(objset_t *os, uint64_t obj,
326    uint64_t key, uint64_t *valuep);
327
328int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
329    dmu_tx_t *tx);
330
331struct zap;
332struct zap_leaf;
333typedef struct zap_cursor {
334	/* This structure is opaque! */
335	objset_t *zc_objset;
336	struct zap *zc_zap;
337	struct zap_leaf *zc_leaf;
338	uint64_t zc_zapobj;
339	uint64_t zc_serialized;
340	uint64_t zc_hash;
341	uint32_t zc_cd;
342} zap_cursor_t;
343
344typedef struct {
345	int za_integer_length;
346	/*
347	 * za_normalization_conflict will be set if there are additional
348	 * entries with this normalized form (eg, "foo" and "Foo").
349	 */
350	boolean_t za_normalization_conflict;
351	uint64_t za_num_integers;
352	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
353	char za_name[ZAP_MAXNAMELEN];
354} zap_attribute_t;
355
356/*
357 * The interface for listing all the attributes of a zapobj can be
358 * thought of as cursor moving down a list of the attributes one by
359 * one.  The cookie returned by the zap_cursor_serialize routine is
360 * persistent across system calls (and across reboot, even).
361 */
362
363/*
364 * Initialize a zap cursor, pointing to the "first" attribute of the
365 * zapobj.  You must _fini the cursor when you are done with it.
366 */
367void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
368void zap_cursor_fini(zap_cursor_t *zc);
369
370/*
371 * Get the attribute currently pointed to by the cursor.  Returns
372 * ENOENT if at the end of the attributes.
373 */
374int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
375
376/*
377 * Advance the cursor to the next attribute.
378 */
379void zap_cursor_advance(zap_cursor_t *zc);
380
381/*
382 * Get a persistent cookie pointing to the current position of the zap
383 * cursor.  The low 4 bits in the cookie are always zero, and thus can
384 * be used as to differentiate a serialized cookie from a different type
385 * of value.  The cookie will be less than 2^32 as long as there are
386 * fewer than 2^22 (4.2 million) entries in the zap object.
387 */
388uint64_t zap_cursor_serialize(zap_cursor_t *zc);
389
390/*
391 * Advance the cursor to the attribute having the given key.
392 */
393int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
394
395/*
396 * Initialize a zap cursor pointing to the position recorded by
397 * zap_cursor_serialize (in the "serialized" argument).  You can also
398 * use a "serialized" argument of 0 to start at the beginning of the
399 * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
400 * zap_cursor_init(...).)
401 */
402void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
403    uint64_t zapobj, uint64_t serialized);
404
405
406#define	ZAP_HISTOGRAM_SIZE 10
407
408typedef struct zap_stats {
409	/*
410	 * Size of the pointer table (in number of entries).
411	 * This is always a power of 2, or zero if it's a microzap.
412	 * In general, it should be considerably greater than zs_num_leafs.
413	 */
414	uint64_t zs_ptrtbl_len;
415
416	uint64_t zs_blocksize;		/* size of zap blocks */
417
418	/*
419	 * The number of blocks used.  Note that some blocks may be
420	 * wasted because old ptrtbl's and large name/value blocks are
421	 * not reused.  (Although their space is reclaimed, we don't
422	 * reuse those offsets in the object.)
423	 */
424	uint64_t zs_num_blocks;
425
426	/*
427	 * Pointer table values from zap_ptrtbl in the zap_phys_t
428	 */
429	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
430	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
431	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
432	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
433	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
434
435	/*
436	 * Values of the other members of the zap_phys_t
437	 */
438	uint64_t zs_block_type;		/* ZBT_HEADER */
439	uint64_t zs_magic;		/* ZAP_MAGIC */
440	uint64_t zs_num_leafs;		/* The number of leaf blocks */
441	uint64_t zs_num_entries;	/* The number of zap entries */
442	uint64_t zs_salt;		/* salt to stir into hash function */
443
444	/*
445	 * Histograms.  For all histograms, the last index
446	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
447	 * than what can be represented.  For example
448	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
449	 * of leafs with more than 45 entries.
450	 */
451
452	/*
453	 * zs_leafs_with_n_pointers[n] is the number of leafs with
454	 * 2^n pointers to it.
455	 */
456	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
457
458	/*
459	 * zs_leafs_with_n_entries[n] is the number of leafs with
460	 * [n*5, (n+1)*5) entries.  In the current implementation, there
461	 * can be at most 55 entries in any block, but there may be
462	 * fewer if the name or value is large, or the block is not
463	 * completely full.
464	 */
465	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
466
467	/*
468	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
469	 * fullness is in the range [n/10, (n+1)/10).
470	 */
471	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
472
473	/*
474	 * zs_entries_using_n_chunks[n] is the number of entries which
475	 * consume n 24-byte chunks.  (Note, large names/values only use
476	 * one chunk, but contribute to zs_num_blocks_large.)
477	 */
478	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
479
480	/*
481	 * zs_buckets_with_n_entries[n] is the number of buckets (each
482	 * leaf has 64 buckets) with n entries.
483	 * zs_buckets_with_n_entries[1] should be very close to
484	 * zs_num_entries.
485	 */
486	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
487} zap_stats_t;
488
489/*
490 * Get statistics about a ZAP object.  Note: you need to be aware of the
491 * internal implementation of the ZAP to correctly interpret some of the
492 * statistics.  This interface shouldn't be relied on unless you really
493 * know what you're doing.
494 */
495int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
496
497#ifdef	__cplusplus
498}
499#endif
500
501#endif	/* _SYS_ZAP_H */
502