zap.h revision 307122
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 */
25
26#ifndef	_SYS_ZAP_H
27#define	_SYS_ZAP_H
28
29/*
30 * ZAP - ZFS Attribute Processor
31 *
32 * The ZAP is a module which sits on top of the DMU (Data Management
33 * Unit) and implements a higher-level storage primitive using DMU
34 * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35 *
36 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37 * Users should use only zap routines to access a zapobj - they should
38 * not access the DMU object directly using DMU routines.
39 *
40 * The attributes stored in a zapobj are name-value pairs.  The name is
41 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42 * terminating NULL).  The value is an array of integers, which may be
43 * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45 * Note that an 8-byte integer value can be used to store the location
46 * (object number) of another dmu object (which may be itself a zapobj).
47 * Note that you can use a zero-length attribute to store a single bit
48 * of information - the attribute is present or not.
49 *
50 * The ZAP routines are thread-safe.  However, you must observe the
51 * DMU's restriction that a transaction may not be operated on
52 * concurrently.
53 *
54 * Any of the routines that return an int may return an I/O error (EIO
55 * or ECHECKSUM).
56 *
57 *
58 * Implementation / Performance Notes:
59 *
60 * The ZAP is intended to operate most efficiently on attributes with
61 * short (49 bytes or less) names and single 8-byte values, for which
62 * the microzap will be used.  The ZAP should be efficient enough so
63 * that the user does not need to cache these attributes.
64 *
65 * The ZAP's locking scheme makes its routines thread-safe.  Operations
66 * on different zapobjs will be processed concurrently.  Operations on
67 * the same zapobj which only read data will be processed concurrently.
68 * Operations on the same zapobj which modify data will be processed
69 * concurrently when there are many attributes in the zapobj (because
70 * the ZAP uses per-block locking - more than 128 * (number of cpus)
71 * small attributes will suffice).
72 */
73
74/*
75 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76 * strings) for the names of attributes, rather than a byte string
77 * bounded by an explicit length.  If some day we want to support names
78 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79 * we'll have to add routines for using length-bounded strings.
80 */
81
82#include <sys/dmu.h>
83#include <sys/refcount.h>
84
85#ifdef	__cplusplus
86extern "C" {
87#endif
88
89/*
90 * Specifies matching criteria for ZAP lookups.
91 */
92typedef enum matchtype
93{
94	/* Only find an exact match (non-normalized) */
95	MT_EXACT,
96	/*
97	 * If there is an exact match, find that, otherwise find the
98	 * first normalized match.
99	 */
100	MT_BEST,
101	/*
102	 * Find the "first" normalized (case and Unicode form) match;
103	 * the designated "first" match will not change as long as the
104	 * set of entries with this normalization doesn't change.
105	 */
106	MT_FIRST
107} matchtype_t;
108
109typedef enum zap_flags {
110	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
111	ZAP_FLAG_HASH64 = 1 << 0,
112	/* Key is binary, not string (zap_add_uint64() can be used) */
113	ZAP_FLAG_UINT64_KEY = 1 << 1,
114	/*
115	 * First word of key (which must be an array of uint64) is
116	 * already randomly distributed.
117	 */
118	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
119} zap_flags_t;
120
121/*
122 * Create a new zapobj with no attributes and return its object number.
123 * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
124 * otherwise any matchtype can be used for lookups.
125 *
126 * normflags specifies what normalization will be done.  values are:
127 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
128 *     only)
129 * U8_TEXTPREP_TOLOWER: case normalization will be performed.
130 *     MT_FIRST/MT_BEST matching will find entries that match without
131 *     regard to case (eg. looking for "foo" can find an entry "Foo").
132 * Eventually, other flags will permit unicode normalization as well.
133 */
134uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
135    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
136uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
137    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
138uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
139    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
140    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
141uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
142    uint64_t parent_obj, const char *name, dmu_tx_t *tx);
143
144/*
145 * Initialize an already-allocated object.
146 */
147void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
148    zap_flags_t flags, dmu_tx_t *tx);
149
150/*
151 * Create a new zapobj with no attributes from the given (unallocated)
152 * object number.
153 */
154int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
155    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
156int zap_create_claim_norm(objset_t *ds, uint64_t obj,
157    int normflags, dmu_object_type_t ot,
158    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
159
160/*
161 * The zapobj passed in must be a valid ZAP object for all of the
162 * following routines.
163 */
164
165/*
166 * Destroy this zapobj and all its attributes.
167 *
168 * Frees the object number using dmu_object_free.
169 */
170int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
171
172/*
173 * Manipulate attributes.
174 *
175 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
176 */
177
178/*
179 * Retrieve the contents of the attribute with the given name.
180 *
181 * If the requested attribute does not exist, the call will fail and
182 * return ENOENT.
183 *
184 * If 'integer_size' is smaller than the attribute's integer size, the
185 * call will fail and return EINVAL.
186 *
187 * If 'integer_size' is equal to or larger than the attribute's integer
188 * size, the call will succeed and return 0.
189 *
190 * When converting to a larger integer size, the integers will be treated as
191 * unsigned (ie. no sign-extension will be performed).
192 *
193 * 'num_integers' is the length (in integers) of 'buf'.
194 *
195 * If the attribute is longer than the buffer, as many integers as will
196 * fit will be transferred to 'buf'.  If the entire attribute was not
197 * transferred, the call will return EOVERFLOW.
198 */
199int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
200    uint64_t integer_size, uint64_t num_integers, void *buf);
201
202/*
203 * If rn_len is nonzero, realname will be set to the name of the found
204 * entry (which may be different from the requested name if matchtype is
205 * not MT_EXACT).
206 *
207 * If normalization_conflictp is not NULL, it will be set if there is
208 * another name with the same case/unicode normalized form.
209 */
210int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
211    uint64_t integer_size, uint64_t num_integers, void *buf,
212    matchtype_t mt, char *realname, int rn_len,
213    boolean_t *normalization_conflictp);
214int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
215    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
216int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
217int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
218    int key_numints);
219
220int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
221    int add, refcount_t *towrite, refcount_t *tooverwrite);
222
223/*
224 * Create an attribute with the given name and value.
225 *
226 * If an attribute with the given name already exists, the call will
227 * fail and return EEXIST.
228 */
229int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
230    int integer_size, uint64_t num_integers,
231    const void *val, dmu_tx_t *tx);
232int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
233    int key_numints, int integer_size, uint64_t num_integers,
234    const void *val, dmu_tx_t *tx);
235
236/*
237 * Set the attribute with the given name to the given value.  If an
238 * attribute with the given name does not exist, it will be created.  If
239 * an attribute with the given name already exists, the previous value
240 * will be overwritten.  The integer_size may be different from the
241 * existing attribute's integer size, in which case the attribute's
242 * integer size will be updated to the new value.
243 */
244int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
245    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
246int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
247    int key_numints,
248    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
249
250/*
251 * Get the length (in integers) and the integer size of the specified
252 * attribute.
253 *
254 * If the requested attribute does not exist, the call will fail and
255 * return ENOENT.
256 */
257int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
258    uint64_t *integer_size, uint64_t *num_integers);
259int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
260    int key_numints, uint64_t *integer_size, uint64_t *num_integers);
261
262/*
263 * Remove the specified attribute.
264 *
265 * If the specified attribute does not exist, the call will fail and
266 * return ENOENT.
267 */
268int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
269int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
270    matchtype_t mt, dmu_tx_t *tx);
271int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
272    int key_numints, dmu_tx_t *tx);
273
274/*
275 * Returns (in *count) the number of attributes in the specified zap
276 * object.
277 */
278int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
279
280/*
281 * Returns (in name) the name of the entry whose (value & mask)
282 * (za_first_integer) is value, or ENOENT if not found.  The string
283 * pointed to by name must be at least 256 bytes long.  If mask==0, the
284 * match must be exact (ie, same as mask=-1ULL).
285 */
286int zap_value_search(objset_t *os, uint64_t zapobj,
287    uint64_t value, uint64_t mask, char *name);
288
289/*
290 * Transfer all the entries from fromobj into intoobj.  Only works on
291 * int_size=8 num_integers=1 values.  Fails if there are any duplicated
292 * entries.
293 */
294int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
295
296/* Same as zap_join, but set the values to 'value'. */
297int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
298    uint64_t value, dmu_tx_t *tx);
299
300/* Same as zap_join, but add together any duplicated entries. */
301int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
302    dmu_tx_t *tx);
303
304/*
305 * Manipulate entries where the name + value are the "same" (the name is
306 * a stringified version of the value).
307 */
308int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
309int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
310int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
311int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
312    dmu_tx_t *tx);
313
314/* Here the key is an int and the value is a different int. */
315int zap_add_int_key(objset_t *os, uint64_t obj,
316    uint64_t key, uint64_t value, dmu_tx_t *tx);
317int zap_update_int_key(objset_t *os, uint64_t obj,
318    uint64_t key, uint64_t value, dmu_tx_t *tx);
319int zap_lookup_int_key(objset_t *os, uint64_t obj,
320    uint64_t key, uint64_t *valuep);
321
322int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
323    dmu_tx_t *tx);
324
325struct zap;
326struct zap_leaf;
327typedef struct zap_cursor {
328	/* This structure is opaque! */
329	objset_t *zc_objset;
330	struct zap *zc_zap;
331	struct zap_leaf *zc_leaf;
332	uint64_t zc_zapobj;
333	uint64_t zc_serialized;
334	uint64_t zc_hash;
335	uint32_t zc_cd;
336} zap_cursor_t;
337
338typedef struct {
339	int za_integer_length;
340	/*
341	 * za_normalization_conflict will be set if there are additional
342	 * entries with this normalized form (eg, "foo" and "Foo").
343	 */
344	boolean_t za_normalization_conflict;
345	uint64_t za_num_integers;
346	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
347	char za_name[ZAP_MAXNAMELEN];
348} zap_attribute_t;
349
350/*
351 * The interface for listing all the attributes of a zapobj can be
352 * thought of as cursor moving down a list of the attributes one by
353 * one.  The cookie returned by the zap_cursor_serialize routine is
354 * persistent across system calls (and across reboot, even).
355 */
356
357/*
358 * Initialize a zap cursor, pointing to the "first" attribute of the
359 * zapobj.  You must _fini the cursor when you are done with it.
360 */
361void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
362void zap_cursor_fini(zap_cursor_t *zc);
363
364/*
365 * Get the attribute currently pointed to by the cursor.  Returns
366 * ENOENT if at the end of the attributes.
367 */
368int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
369
370/*
371 * Advance the cursor to the next attribute.
372 */
373void zap_cursor_advance(zap_cursor_t *zc);
374
375/*
376 * Get a persistent cookie pointing to the current position of the zap
377 * cursor.  The low 4 bits in the cookie are always zero, and thus can
378 * be used as to differentiate a serialized cookie from a different type
379 * of value.  The cookie will be less than 2^32 as long as there are
380 * fewer than 2^22 (4.2 million) entries in the zap object.
381 */
382uint64_t zap_cursor_serialize(zap_cursor_t *zc);
383
384/*
385 * Advance the cursor to the attribute having the given key.
386 */
387int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
388
389/*
390 * Initialize a zap cursor pointing to the position recorded by
391 * zap_cursor_serialize (in the "serialized" argument).  You can also
392 * use a "serialized" argument of 0 to start at the beginning of the
393 * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
394 * zap_cursor_init(...).)
395 */
396void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
397    uint64_t zapobj, uint64_t serialized);
398
399
400#define	ZAP_HISTOGRAM_SIZE 10
401
402typedef struct zap_stats {
403	/*
404	 * Size of the pointer table (in number of entries).
405	 * This is always a power of 2, or zero if it's a microzap.
406	 * In general, it should be considerably greater than zs_num_leafs.
407	 */
408	uint64_t zs_ptrtbl_len;
409
410	uint64_t zs_blocksize;		/* size of zap blocks */
411
412	/*
413	 * The number of blocks used.  Note that some blocks may be
414	 * wasted because old ptrtbl's and large name/value blocks are
415	 * not reused.  (Although their space is reclaimed, we don't
416	 * reuse those offsets in the object.)
417	 */
418	uint64_t zs_num_blocks;
419
420	/*
421	 * Pointer table values from zap_ptrtbl in the zap_phys_t
422	 */
423	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
424	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
425	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
426	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
427	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
428
429	/*
430	 * Values of the other members of the zap_phys_t
431	 */
432	uint64_t zs_block_type;		/* ZBT_HEADER */
433	uint64_t zs_magic;		/* ZAP_MAGIC */
434	uint64_t zs_num_leafs;		/* The number of leaf blocks */
435	uint64_t zs_num_entries;	/* The number of zap entries */
436	uint64_t zs_salt;		/* salt to stir into hash function */
437
438	/*
439	 * Histograms.  For all histograms, the last index
440	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
441	 * than what can be represented.  For example
442	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
443	 * of leafs with more than 45 entries.
444	 */
445
446	/*
447	 * zs_leafs_with_n_pointers[n] is the number of leafs with
448	 * 2^n pointers to it.
449	 */
450	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
451
452	/*
453	 * zs_leafs_with_n_entries[n] is the number of leafs with
454	 * [n*5, (n+1)*5) entries.  In the current implementation, there
455	 * can be at most 55 entries in any block, but there may be
456	 * fewer if the name or value is large, or the block is not
457	 * completely full.
458	 */
459	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
460
461	/*
462	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
463	 * fullness is in the range [n/10, (n+1)/10).
464	 */
465	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
466
467	/*
468	 * zs_entries_using_n_chunks[n] is the number of entries which
469	 * consume n 24-byte chunks.  (Note, large names/values only use
470	 * one chunk, but contribute to zs_num_blocks_large.)
471	 */
472	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
473
474	/*
475	 * zs_buckets_with_n_entries[n] is the number of buckets (each
476	 * leaf has 64 buckets) with n entries.
477	 * zs_buckets_with_n_entries[1] should be very close to
478	 * zs_num_entries.
479	 */
480	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
481} zap_stats_t;
482
483/*
484 * Get statistics about a ZAP object.  Note: you need to be aware of the
485 * internal implementation of the ZAP to correctly interpret some of the
486 * statistics.  This interface shouldn't be relied on unless you really
487 * know what you're doing.
488 */
489int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
490
491#ifdef	__cplusplus
492}
493#endif
494
495#endif	/* _SYS_ZAP_H */
496