zap.h revision 263390
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26#ifndef	_SYS_ZAP_H
27#define	_SYS_ZAP_H
28
29/*
30 * ZAP - ZFS Attribute Processor
31 *
32 * The ZAP is a module which sits on top of the DMU (Data Management
33 * Unit) and implements a higher-level storage primitive using DMU
34 * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
35 *
36 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
37 * Users should use only zap routines to access a zapobj - they should
38 * not access the DMU object directly using DMU routines.
39 *
40 * The attributes stored in a zapobj are name-value pairs.  The name is
41 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
42 * terminating NULL).  The value is an array of integers, which may be
43 * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
44 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
45 * Note that an 8-byte integer value can be used to store the location
46 * (object number) of another dmu object (which may be itself a zapobj).
47 * Note that you can use a zero-length attribute to store a single bit
48 * of information - the attribute is present or not.
49 *
50 * The ZAP routines are thread-safe.  However, you must observe the
51 * DMU's restriction that a transaction may not be operated on
52 * concurrently.
53 *
54 * Any of the routines that return an int may return an I/O error (EIO
55 * or ECHECKSUM).
56 *
57 *
58 * Implementation / Performance Notes:
59 *
60 * The ZAP is intended to operate most efficiently on attributes with
61 * short (49 bytes or less) names and single 8-byte values, for which
62 * the microzap will be used.  The ZAP should be efficient enough so
63 * that the user does not need to cache these attributes.
64 *
65 * The ZAP's locking scheme makes its routines thread-safe.  Operations
66 * on different zapobjs will be processed concurrently.  Operations on
67 * the same zapobj which only read data will be processed concurrently.
68 * Operations on the same zapobj which modify data will be processed
69 * concurrently when there are many attributes in the zapobj (because
70 * the ZAP uses per-block locking - more than 128 * (number of cpus)
71 * small attributes will suffice).
72 */
73
74/*
75 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
76 * strings) for the names of attributes, rather than a byte string
77 * bounded by an explicit length.  If some day we want to support names
78 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
79 * we'll have to add routines for using length-bounded strings.
80 */
81
82#include <sys/dmu.h>
83
84#ifdef	__cplusplus
85extern "C" {
86#endif
87
88/*
89 * Specifies matching criteria for ZAP lookups.
90 */
91typedef enum matchtype
92{
93	/* Only find an exact match (non-normalized) */
94	MT_EXACT,
95	/*
96	 * If there is an exact match, find that, otherwise find the
97	 * first normalized match.
98	 */
99	MT_BEST,
100	/*
101	 * Find the "first" normalized (case and Unicode form) match;
102	 * the designated "first" match will not change as long as the
103	 * set of entries with this normalization doesn't change.
104	 */
105	MT_FIRST
106} matchtype_t;
107
108typedef enum zap_flags {
109	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
110	ZAP_FLAG_HASH64 = 1 << 0,
111	/* Key is binary, not string (zap_add_uint64() can be used) */
112	ZAP_FLAG_UINT64_KEY = 1 << 1,
113	/*
114	 * First word of key (which must be an array of uint64) is
115	 * already randomly distributed.
116	 */
117	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
118} zap_flags_t;
119
120/*
121 * Create a new zapobj with no attributes and return its object number.
122 * MT_EXACT will cause the zap object to only support MT_EXACT lookups,
123 * otherwise any matchtype can be used for lookups.
124 *
125 * normflags specifies what normalization will be done.  values are:
126 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching
127 *     only)
128 * U8_TEXTPREP_TOLOWER: case normalization will be performed.
129 *     MT_FIRST/MT_BEST matching will find entries that match without
130 *     regard to case (eg. looking for "foo" can find an entry "Foo").
131 * Eventually, other flags will permit unicode normalization as well.
132 */
133uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
134    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
135uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
136    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
137uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
138    dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
139    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
140uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
141    uint64_t parent_obj, const char *name, dmu_tx_t *tx);
142
143/*
144 * Initialize an already-allocated object.
145 */
146void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
147    zap_flags_t flags, dmu_tx_t *tx);
148
149/*
150 * Create a new zapobj with no attributes from the given (unallocated)
151 * object number.
152 */
153int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
154    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
155int zap_create_claim_norm(objset_t *ds, uint64_t obj,
156    int normflags, dmu_object_type_t ot,
157    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
158
159/*
160 * The zapobj passed in must be a valid ZAP object for all of the
161 * following routines.
162 */
163
164/*
165 * Destroy this zapobj and all its attributes.
166 *
167 * Frees the object number using dmu_object_free.
168 */
169int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
170
171/*
172 * Manipulate attributes.
173 *
174 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
175 */
176
177/*
178 * Retrieve the contents of the attribute with the given name.
179 *
180 * If the requested attribute does not exist, the call will fail and
181 * return ENOENT.
182 *
183 * If 'integer_size' is smaller than the attribute's integer size, the
184 * call will fail and return EINVAL.
185 *
186 * If 'integer_size' is equal to or larger than the attribute's integer
187 * size, the call will succeed and return 0.
188 *
189 * When converting to a larger integer size, the integers will be treated as
190 * unsigned (ie. no sign-extension will be performed).
191 *
192 * 'num_integers' is the length (in integers) of 'buf'.
193 *
194 * If the attribute is longer than the buffer, as many integers as will
195 * fit will be transferred to 'buf'.  If the entire attribute was not
196 * transferred, the call will return EOVERFLOW.
197 */
198int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
199    uint64_t integer_size, uint64_t num_integers, void *buf);
200
201/*
202 * If rn_len is nonzero, realname will be set to the name of the found
203 * entry (which may be different from the requested name if matchtype is
204 * not MT_EXACT).
205 *
206 * If normalization_conflictp is not NULL, it will be set if there is
207 * another name with the same case/unicode normalized form.
208 */
209int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
210    uint64_t integer_size, uint64_t num_integers, void *buf,
211    matchtype_t mt, char *realname, int rn_len,
212    boolean_t *normalization_conflictp);
213int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
214    int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
215int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
216int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
217    int key_numints);
218
219int zap_count_write(objset_t *os, uint64_t zapobj, const char *name,
220    int add, uint64_t *towrite, uint64_t *tooverwrite);
221
222/*
223 * Create an attribute with the given name and value.
224 *
225 * If an attribute with the given name already exists, the call will
226 * fail and return EEXIST.
227 */
228int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
229    int integer_size, uint64_t num_integers,
230    const void *val, dmu_tx_t *tx);
231int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
232    int key_numints, int integer_size, uint64_t num_integers,
233    const void *val, dmu_tx_t *tx);
234
235/*
236 * Set the attribute with the given name to the given value.  If an
237 * attribute with the given name does not exist, it will be created.  If
238 * an attribute with the given name already exists, the previous value
239 * will be overwritten.  The integer_size may be different from the
240 * existing attribute's integer size, in which case the attribute's
241 * integer size will be updated to the new value.
242 */
243int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
244    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
245int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
246    int key_numints,
247    int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
248
249/*
250 * Get the length (in integers) and the integer size of the specified
251 * attribute.
252 *
253 * If the requested attribute does not exist, the call will fail and
254 * return ENOENT.
255 */
256int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
257    uint64_t *integer_size, uint64_t *num_integers);
258int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
259    int key_numints, uint64_t *integer_size, uint64_t *num_integers);
260
261/*
262 * Remove the specified attribute.
263 *
264 * If the specified attribute does not exist, the call will fail and
265 * return ENOENT.
266 */
267int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
268int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
269    matchtype_t mt, dmu_tx_t *tx);
270int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
271    int key_numints, dmu_tx_t *tx);
272
273/*
274 * Returns (in *count) the number of attributes in the specified zap
275 * object.
276 */
277int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
278
279/*
280 * Returns (in name) the name of the entry whose (value & mask)
281 * (za_first_integer) is value, or ENOENT if not found.  The string
282 * pointed to by name must be at least 256 bytes long.  If mask==0, the
283 * match must be exact (ie, same as mask=-1ULL).
284 */
285int zap_value_search(objset_t *os, uint64_t zapobj,
286    uint64_t value, uint64_t mask, char *name);
287
288/*
289 * Transfer all the entries from fromobj into intoobj.  Only works on
290 * int_size=8 num_integers=1 values.  Fails if there are any duplicated
291 * entries.
292 */
293int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
294
295/* Same as zap_join, but set the values to 'value'. */
296int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
297    uint64_t value, dmu_tx_t *tx);
298
299/* Same as zap_join, but add together any duplicated entries. */
300int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
301    dmu_tx_t *tx);
302
303/*
304 * Manipulate entries where the name + value are the "same" (the name is
305 * a stringified version of the value).
306 */
307int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
308int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
309int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
310int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
311    dmu_tx_t *tx);
312
313/* Here the key is an int and the value is a different int. */
314int zap_add_int_key(objset_t *os, uint64_t obj,
315    uint64_t key, uint64_t value, dmu_tx_t *tx);
316int zap_update_int_key(objset_t *os, uint64_t obj,
317    uint64_t key, uint64_t value, dmu_tx_t *tx);
318int zap_lookup_int_key(objset_t *os, uint64_t obj,
319    uint64_t key, uint64_t *valuep);
320
321int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
322    dmu_tx_t *tx);
323
324struct zap;
325struct zap_leaf;
326typedef struct zap_cursor {
327	/* This structure is opaque! */
328	objset_t *zc_objset;
329	struct zap *zc_zap;
330	struct zap_leaf *zc_leaf;
331	uint64_t zc_zapobj;
332	uint64_t zc_serialized;
333	uint64_t zc_hash;
334	uint32_t zc_cd;
335} zap_cursor_t;
336
337typedef struct {
338	int za_integer_length;
339	/*
340	 * za_normalization_conflict will be set if there are additional
341	 * entries with this normalized form (eg, "foo" and "Foo").
342	 */
343	boolean_t za_normalization_conflict;
344	uint64_t za_num_integers;
345	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
346	char za_name[MAXNAMELEN];
347} zap_attribute_t;
348
349/*
350 * The interface for listing all the attributes of a zapobj can be
351 * thought of as cursor moving down a list of the attributes one by
352 * one.  The cookie returned by the zap_cursor_serialize routine is
353 * persistent across system calls (and across reboot, even).
354 */
355
356/*
357 * Initialize a zap cursor, pointing to the "first" attribute of the
358 * zapobj.  You must _fini the cursor when you are done with it.
359 */
360void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
361void zap_cursor_fini(zap_cursor_t *zc);
362
363/*
364 * Get the attribute currently pointed to by the cursor.  Returns
365 * ENOENT if at the end of the attributes.
366 */
367int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
368
369/*
370 * Advance the cursor to the next attribute.
371 */
372void zap_cursor_advance(zap_cursor_t *zc);
373
374/*
375 * Get a persistent cookie pointing to the current position of the zap
376 * cursor.  The low 4 bits in the cookie are always zero, and thus can
377 * be used as to differentiate a serialized cookie from a different type
378 * of value.  The cookie will be less than 2^32 as long as there are
379 * fewer than 2^22 (4.2 million) entries in the zap object.
380 */
381uint64_t zap_cursor_serialize(zap_cursor_t *zc);
382
383/*
384 * Advance the cursor to the attribute having the given key.
385 */
386int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt);
387
388/*
389 * Initialize a zap cursor pointing to the position recorded by
390 * zap_cursor_serialize (in the "serialized" argument).  You can also
391 * use a "serialized" argument of 0 to start at the beginning of the
392 * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
393 * zap_cursor_init(...).)
394 */
395void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
396    uint64_t zapobj, uint64_t serialized);
397
398
399#define	ZAP_HISTOGRAM_SIZE 10
400
401typedef struct zap_stats {
402	/*
403	 * Size of the pointer table (in number of entries).
404	 * This is always a power of 2, or zero if it's a microzap.
405	 * In general, it should be considerably greater than zs_num_leafs.
406	 */
407	uint64_t zs_ptrtbl_len;
408
409	uint64_t zs_blocksize;		/* size of zap blocks */
410
411	/*
412	 * The number of blocks used.  Note that some blocks may be
413	 * wasted because old ptrtbl's and large name/value blocks are
414	 * not reused.  (Although their space is reclaimed, we don't
415	 * reuse those offsets in the object.)
416	 */
417	uint64_t zs_num_blocks;
418
419	/*
420	 * Pointer table values from zap_ptrtbl in the zap_phys_t
421	 */
422	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
423	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
424	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
425	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
426	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
427
428	/*
429	 * Values of the other members of the zap_phys_t
430	 */
431	uint64_t zs_block_type;		/* ZBT_HEADER */
432	uint64_t zs_magic;		/* ZAP_MAGIC */
433	uint64_t zs_num_leafs;		/* The number of leaf blocks */
434	uint64_t zs_num_entries;	/* The number of zap entries */
435	uint64_t zs_salt;		/* salt to stir into hash function */
436
437	/*
438	 * Histograms.  For all histograms, the last index
439	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
440	 * than what can be represented.  For example
441	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
442	 * of leafs with more than 45 entries.
443	 */
444
445	/*
446	 * zs_leafs_with_n_pointers[n] is the number of leafs with
447	 * 2^n pointers to it.
448	 */
449	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
450
451	/*
452	 * zs_leafs_with_n_entries[n] is the number of leafs with
453	 * [n*5, (n+1)*5) entries.  In the current implementation, there
454	 * can be at most 55 entries in any block, but there may be
455	 * fewer if the name or value is large, or the block is not
456	 * completely full.
457	 */
458	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
459
460	/*
461	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
462	 * fullness is in the range [n/10, (n+1)/10).
463	 */
464	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
465
466	/*
467	 * zs_entries_using_n_chunks[n] is the number of entries which
468	 * consume n 24-byte chunks.  (Note, large names/values only use
469	 * one chunk, but contribute to zs_num_blocks_large.)
470	 */
471	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
472
473	/*
474	 * zs_buckets_with_n_entries[n] is the number of buckets (each
475	 * leaf has 64 buckets) with n entries.
476	 * zs_buckets_with_n_entries[1] should be very close to
477	 * zs_num_entries.
478	 */
479	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
480} zap_stats_t;
481
482/*
483 * Get statistics about a ZAP object.  Note: you need to be aware of the
484 * internal implementation of the ZAP to correctly interpret some of the
485 * statistics.  This interface shouldn't be relied on unless you really
486 * know what you're doing.
487 */
488int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
489
490#ifdef	__cplusplus
491}
492#endif
493
494#endif	/* _SYS_ZAP_H */
495