dmu.h revision 307292
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2014 Integros [integros.com]
32 */
33
34/* Portions Copyright 2010 Robert Milkowski */
35
36#ifndef	_SYS_DMU_H
37#define	_SYS_DMU_H
38
39/*
40 * This file describes the interface that the DMU provides for its
41 * consumers.
42 *
43 * The DMU also interacts with the SPA.  That interface is described in
44 * dmu_spa.h.
45 */
46
47#include <sys/zfs_context.h>
48#include <sys/cred.h>
49#include <sys/fs/zfs.h>
50#include <sys/zio_priority.h>
51
52#ifdef	__cplusplus
53extern "C" {
54#endif
55
56struct uio;
57struct xuio;
58struct page;
59struct vnode;
60struct spa;
61struct zilog;
62struct zio;
63struct blkptr;
64struct zap_cursor;
65struct dsl_dataset;
66struct dsl_pool;
67struct dnode;
68struct drr_begin;
69struct drr_end;
70struct zbookmark_phys;
71struct spa;
72struct nvlist;
73struct arc_buf;
74struct zio_prop;
75struct sa_handle;
76struct file;
77
78typedef struct objset objset_t;
79typedef struct dmu_tx dmu_tx_t;
80typedef struct dsl_dir dsl_dir_t;
81typedef struct dnode dnode_t;
82
83typedef enum dmu_object_byteswap {
84	DMU_BSWAP_UINT8,
85	DMU_BSWAP_UINT16,
86	DMU_BSWAP_UINT32,
87	DMU_BSWAP_UINT64,
88	DMU_BSWAP_ZAP,
89	DMU_BSWAP_DNODE,
90	DMU_BSWAP_OBJSET,
91	DMU_BSWAP_ZNODE,
92	DMU_BSWAP_OLDACL,
93	DMU_BSWAP_ACL,
94	/*
95	 * Allocating a new byteswap type number makes the on-disk format
96	 * incompatible with any other format that uses the same number.
97	 *
98	 * Data can usually be structured to work with one of the
99	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
100	 */
101	DMU_BSWAP_NUMFUNCS
102} dmu_object_byteswap_t;
103
104#define	DMU_OT_NEWTYPE 0x80
105#define	DMU_OT_METADATA 0x40
106#define	DMU_OT_BYTESWAP_MASK 0x3f
107
108/*
109 * Defines a uint8_t object type. Object types specify if the data
110 * in the object is metadata (boolean) and how to byteswap the data
111 * (dmu_object_byteswap_t).
112 */
113#define	DMU_OT(byteswap, metadata) \
114	(DMU_OT_NEWTYPE | \
115	((metadata) ? DMU_OT_METADATA : 0) | \
116	((byteswap) & DMU_OT_BYTESWAP_MASK))
117
118#define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
119	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
120	(ot) < DMU_OT_NUMTYPES)
121
122#define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
123	((ot) & DMU_OT_METADATA) : \
124	dmu_ot[(ot)].ot_metadata)
125
126/*
127 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
128 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
129 * is repurposed for embedded BPs.
130 */
131#define	DMU_OT_HAS_FILL(ot) \
132	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
133
134#define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
135	((ot) & DMU_OT_BYTESWAP_MASK) : \
136	dmu_ot[(ot)].ot_byteswap)
137
138typedef enum dmu_object_type {
139	DMU_OT_NONE,
140	/* general: */
141	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
142	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
143	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
144	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
145	DMU_OT_BPOBJ,			/* UINT64 */
146	DMU_OT_BPOBJ_HDR,		/* UINT64 */
147	/* spa: */
148	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
149	DMU_OT_SPACE_MAP,		/* UINT64 */
150	/* zil: */
151	DMU_OT_INTENT_LOG,		/* UINT64 */
152	/* dmu: */
153	DMU_OT_DNODE,			/* DNODE */
154	DMU_OT_OBJSET,			/* OBJSET */
155	/* dsl: */
156	DMU_OT_DSL_DIR,			/* UINT64 */
157	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
158	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
159	DMU_OT_DSL_PROPS,		/* ZAP */
160	DMU_OT_DSL_DATASET,		/* UINT64 */
161	/* zpl: */
162	DMU_OT_ZNODE,			/* ZNODE */
163	DMU_OT_OLDACL,			/* Old ACL */
164	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
165	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
166	DMU_OT_MASTER_NODE,		/* ZAP */
167	DMU_OT_UNLINKED_SET,		/* ZAP */
168	/* zvol: */
169	DMU_OT_ZVOL,			/* UINT8 */
170	DMU_OT_ZVOL_PROP,		/* ZAP */
171	/* other; for testing only! */
172	DMU_OT_PLAIN_OTHER,		/* UINT8 */
173	DMU_OT_UINT64_OTHER,		/* UINT64 */
174	DMU_OT_ZAP_OTHER,		/* ZAP */
175	/* new object types: */
176	DMU_OT_ERROR_LOG,		/* ZAP */
177	DMU_OT_SPA_HISTORY,		/* UINT8 */
178	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
179	DMU_OT_POOL_PROPS,		/* ZAP */
180	DMU_OT_DSL_PERMS,		/* ZAP */
181	DMU_OT_ACL,			/* ACL */
182	DMU_OT_SYSACL,			/* SYSACL */
183	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
184	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
185	DMU_OT_NEXT_CLONES,		/* ZAP */
186	DMU_OT_SCAN_QUEUE,		/* ZAP */
187	DMU_OT_USERGROUP_USED,		/* ZAP */
188	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
189	DMU_OT_USERREFS,		/* ZAP */
190	DMU_OT_DDT_ZAP,			/* ZAP */
191	DMU_OT_DDT_STATS,		/* ZAP */
192	DMU_OT_SA,			/* System attr */
193	DMU_OT_SA_MASTER_NODE,		/* ZAP */
194	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
195	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
196	DMU_OT_SCAN_XLATE,		/* ZAP */
197	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
198	DMU_OT_DEADLIST,		/* ZAP */
199	DMU_OT_DEADLIST_HDR,		/* UINT64 */
200	DMU_OT_DSL_CLONES,		/* ZAP */
201	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
202	/*
203	 * Do not allocate new object types here. Doing so makes the on-disk
204	 * format incompatible with any other format that uses the same object
205	 * type number.
206	 *
207	 * When creating an object which does not have one of the above types
208	 * use the DMU_OTN_* type with the correct byteswap and metadata
209	 * values.
210	 *
211	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
212	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
213	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
214	 * and DMU_OTN_* types).
215	 */
216	DMU_OT_NUMTYPES,
217
218	/*
219	 * Names for valid types declared with DMU_OT().
220	 */
221	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
222	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
223	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
224	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
225	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
226	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
227	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
228	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
229	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
230	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
231} dmu_object_type_t;
232
233typedef enum txg_how {
234	TXG_WAIT = 1,
235	TXG_NOWAIT,
236	TXG_WAITED,
237} txg_how_t;
238
239void byteswap_uint64_array(void *buf, size_t size);
240void byteswap_uint32_array(void *buf, size_t size);
241void byteswap_uint16_array(void *buf, size_t size);
242void byteswap_uint8_array(void *buf, size_t size);
243void zap_byteswap(void *buf, size_t size);
244void zfs_oldacl_byteswap(void *buf, size_t size);
245void zfs_acl_byteswap(void *buf, size_t size);
246void zfs_znode_byteswap(void *buf, size_t size);
247
248#define	DS_FIND_SNAPSHOTS	(1<<0)
249#define	DS_FIND_CHILDREN	(1<<1)
250#define	DS_FIND_SERIALIZE	(1<<2)
251
252/*
253 * The maximum number of bytes that can be accessed as part of one
254 * operation, including metadata.
255 */
256#define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
257#define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
258
259#define	DMU_USERUSED_OBJECT	(-1ULL)
260#define	DMU_GROUPUSED_OBJECT	(-2ULL)
261
262/*
263 * artificial blkids for bonus buffer and spill blocks
264 */
265#define	DMU_BONUS_BLKID		(-1ULL)
266#define	DMU_SPILL_BLKID		(-2ULL)
267/*
268 * Public routines to create, destroy, open, and close objsets.
269 */
270int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
271int dmu_objset_own(const char *name, dmu_objset_type_t type,
272    boolean_t readonly, void *tag, objset_t **osp);
273void dmu_objset_rele(objset_t *os, void *tag);
274void dmu_objset_disown(objset_t *os, void *tag);
275int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
276
277void dmu_objset_evict_dbufs(objset_t *os);
278int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
279    void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
280int dmu_get_recursive_snaps_nvl(char *fsname, const char *snapname,
281    struct nvlist *snaps);
282int dmu_objset_clone(const char *name, const char *origin);
283int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
284    struct nvlist *errlist);
285int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
286int dmu_objset_snapshot_tmp(const char *, const char *, int);
287int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
288    int flags);
289void dmu_objset_byteswap(void *buf, size_t size);
290int dsl_dataset_rename_snapshot(const char *fsname,
291    const char *oldsnapname, const char *newsnapname, boolean_t recursive);
292
293typedef struct dmu_buf {
294	uint64_t db_object;		/* object that this buffer is part of */
295	uint64_t db_offset;		/* byte offset in this object */
296	uint64_t db_size;		/* size of buffer in bytes */
297	void *db_data;			/* data in buffer */
298} dmu_buf_t;
299
300/*
301 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
302 */
303#define	DMU_POOL_DIRECTORY_OBJECT	1
304#define	DMU_POOL_CONFIG			"config"
305#define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
306#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
307#define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
308#define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
309#define	DMU_POOL_ROOT_DATASET		"root_dataset"
310#define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
311#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
312#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
313#define	DMU_POOL_SPARES			"spares"
314#define	DMU_POOL_DEFLATE		"deflate"
315#define	DMU_POOL_HISTORY		"history"
316#define	DMU_POOL_PROPS			"pool_props"
317#define	DMU_POOL_L2CACHE		"l2cache"
318#define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
319#define	DMU_POOL_DDT			"DDT-%s-%s-%s"
320#define	DMU_POOL_DDT_STATS		"DDT-statistics"
321#define	DMU_POOL_CREATION_VERSION	"creation_version"
322#define	DMU_POOL_SCAN			"scan"
323#define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
324#define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
325#define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
326#define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
327
328/*
329 * Allocate an object from this objset.  The range of object numbers
330 * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
331 *
332 * The transaction must be assigned to a txg.  The newly allocated
333 * object will be "held" in the transaction (ie. you can modify the
334 * newly allocated object in this transaction).
335 *
336 * dmu_object_alloc() chooses an object and returns it in *objectp.
337 *
338 * dmu_object_claim() allocates a specific object number.  If that
339 * number is already allocated, it fails and returns EEXIST.
340 *
341 * Return 0 on success, or ENOSPC or EEXIST as specified above.
342 */
343uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
344    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
345int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
346    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
347int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
348    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
349
350/*
351 * Free an object from this objset.
352 *
353 * The object's data will be freed as well (ie. you don't need to call
354 * dmu_free(object, 0, -1, tx)).
355 *
356 * The object need not be held in the transaction.
357 *
358 * If there are any holds on this object's buffers (via dmu_buf_hold()),
359 * or tx holds on the object (via dmu_tx_hold_object()), you can not
360 * free it; it fails and returns EBUSY.
361 *
362 * If the object is not allocated, it fails and returns ENOENT.
363 *
364 * Return 0 on success, or EBUSY or ENOENT as specified above.
365 */
366int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
367
368/*
369 * Find the next allocated or free object.
370 *
371 * The objectp parameter is in-out.  It will be updated to be the next
372 * object which is allocated.  Ignore objects which have not been
373 * modified since txg.
374 *
375 * XXX Can only be called on a objset with no dirty data.
376 *
377 * Returns 0 on success, or ENOENT if there are no more objects.
378 */
379int dmu_object_next(objset_t *os, uint64_t *objectp,
380    boolean_t hole, uint64_t txg);
381
382/*
383 * Set the data blocksize for an object.
384 *
385 * The object cannot have any blocks allcated beyond the first.  If
386 * the first block is allocated already, the new size must be greater
387 * than the current block size.  If these conditions are not met,
388 * ENOTSUP will be returned.
389 *
390 * Returns 0 on success, or EBUSY if there are any holds on the object
391 * contents, or ENOTSUP as described above.
392 */
393int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
394    int ibs, dmu_tx_t *tx);
395
396/*
397 * Set the checksum property on a dnode.  The new checksum algorithm will
398 * apply to all newly written blocks; existing blocks will not be affected.
399 */
400void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
401    dmu_tx_t *tx);
402
403/*
404 * Set the compress property on a dnode.  The new compression algorithm will
405 * apply to all newly written blocks; existing blocks will not be affected.
406 */
407void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
408    dmu_tx_t *tx);
409
410void
411dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
412    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
413    int compressed_size, int byteorder, dmu_tx_t *tx);
414
415/*
416 * Decide how to write a block: checksum, compression, number of copies, etc.
417 */
418#define	WP_NOFILL	0x1
419#define	WP_DMU_SYNC	0x2
420#define	WP_SPILL	0x4
421
422void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
423    struct zio_prop *zp);
424/*
425 * The bonus data is accessed more or less like a regular buffer.
426 * You must dmu_bonus_hold() to get the buffer, which will give you a
427 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
428 * data.  As with any normal buffer, you must call dmu_buf_read() to
429 * read db_data, dmu_buf_will_dirty() before modifying it, and the
430 * object must be held in an assigned transaction before calling
431 * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
432 * buffer as well.  You must release your hold with dmu_buf_rele().
433 *
434 * Returns ENOENT, EIO, or 0.
435 */
436int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
437int dmu_bonus_max(void);
438int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
439int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
440dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
441int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
442
443/*
444 * Special spill buffer support used by "SA" framework
445 */
446
447int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
448int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
449    void *tag, dmu_buf_t **dbp);
450int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
451
452/*
453 * Obtain the DMU buffer from the specified object which contains the
454 * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
455 * that it will remain in memory.  You must release the hold with
456 * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
457 * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
458 *
459 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
460 * on the returned buffer before reading or writing the buffer's
461 * db_data.  The comments for those routines describe what particular
462 * operations are valid after calling them.
463 *
464 * The object number must be a valid, allocated object number.
465 */
466int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
467    void *tag, dmu_buf_t **, int flags);
468int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
469    void *tag, dmu_buf_t **dbp, int flags);
470
471/*
472 * Add a reference to a dmu buffer that has already been held via
473 * dmu_buf_hold() in the current context.
474 */
475void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
476
477/*
478 * Attempt to add a reference to a dmu buffer that is in an unknown state,
479 * using a pointer that may have been invalidated by eviction processing.
480 * The request will succeed if the passed in dbuf still represents the
481 * same os/object/blkid, is ineligible for eviction, and has at least
482 * one hold by a user other than the syncer.
483 */
484boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
485    uint64_t blkid, void *tag);
486
487void dmu_buf_rele(dmu_buf_t *db, void *tag);
488uint64_t dmu_buf_refcount(dmu_buf_t *db);
489
490/*
491 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
492 * range of an object.  A pointer to an array of dmu_buf_t*'s is
493 * returned (in *dbpp).
494 *
495 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
496 * frees the array.  The hold on the array of buffers MUST be released
497 * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
498 * individually with dmu_buf_rele.
499 */
500int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
501    uint64_t length, boolean_t read, void *tag,
502    int *numbufsp, dmu_buf_t ***dbpp);
503void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
504
505typedef void dmu_buf_evict_func_t(void *user_ptr);
506
507/*
508 * A DMU buffer user object may be associated with a dbuf for the
509 * duration of its lifetime.  This allows the user of a dbuf (client)
510 * to attach private data to a dbuf (e.g. in-core only data such as a
511 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
512 * when that dbuf has been evicted.  Clients typically respond to the
513 * eviction notification by freeing their private data, thus ensuring
514 * the same lifetime for both dbuf and private data.
515 *
516 * The mapping from a dmu_buf_user_t to any client private data is the
517 * client's responsibility.  All current consumers of the API with private
518 * data embed a dmu_buf_user_t as the first member of the structure for
519 * their private data.  This allows conversions between the two types
520 * with a simple cast.  Since the DMU buf user API never needs access
521 * to the private data, other strategies can be employed if necessary
522 * or convenient for the client (e.g. using container_of() to do the
523 * conversion for private data that cannot have the dmu_buf_user_t as
524 * its first member).
525 *
526 * Eviction callbacks are executed without the dbuf mutex held or any
527 * other type of mechanism to guarantee that the dbuf is still available.
528 * For this reason, users must assume the dbuf has already been freed
529 * and not reference the dbuf from the callback context.
530 *
531 * Users requesting "immediate eviction" are notified as soon as the dbuf
532 * is only referenced by dirty records (dirties == holds).  Otherwise the
533 * notification occurs after eviction processing for the dbuf begins.
534 */
535typedef struct dmu_buf_user {
536	/*
537	 * Asynchronous user eviction callback state.
538	 */
539	taskq_ent_t	dbu_tqent;
540
541	/* This instance's eviction function pointer. */
542	dmu_buf_evict_func_t *dbu_evict_func;
543#ifdef ZFS_DEBUG
544	/*
545	 * Pointer to user's dbuf pointer.  NULL for clients that do
546	 * not associate a dbuf with their user data.
547	 *
548	 * The dbuf pointer is cleared upon eviction so as to catch
549	 * use-after-evict bugs in clients.
550	 */
551	dmu_buf_t **dbu_clear_on_evict_dbufp;
552#endif
553} dmu_buf_user_t;
554
555/*
556 * Initialize the given dmu_buf_user_t instance with the eviction function
557 * evict_func, to be called when the user is evicted.
558 *
559 * NOTE: This function should only be called once on a given dmu_buf_user_t.
560 *       To allow enforcement of this, dbu must already be zeroed on entry.
561 */
562#ifdef __lint
563/* Very ugly, but it beats issuing suppression directives in many Makefiles. */
564extern void
565dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
566    dmu_buf_t **clear_on_evict_dbufp);
567#else /* __lint */
568static inline void
569dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
570    dmu_buf_t **clear_on_evict_dbufp)
571{
572	ASSERT(dbu->dbu_evict_func == NULL);
573	ASSERT(evict_func != NULL);
574	dbu->dbu_evict_func = evict_func;
575#ifdef ZFS_DEBUG
576	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
577#endif
578}
579#endif /* __lint */
580
581/*
582 * Attach user data to a dbuf and mark it for normal (when the dbuf's
583 * data is cleared or its reference count goes to zero) eviction processing.
584 *
585 * Returns NULL on success, or the existing user if another user currently
586 * owns the buffer.
587 */
588void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
589
590/*
591 * Attach user data to a dbuf and mark it for immediate (its dirty and
592 * reference counts are equal) eviction processing.
593 *
594 * Returns NULL on success, or the existing user if another user currently
595 * owns the buffer.
596 */
597void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
598
599/*
600 * Replace the current user of a dbuf.
601 *
602 * If given the current user of a dbuf, replaces the dbuf's user with
603 * "new_user" and returns the user data pointer that was replaced.
604 * Otherwise returns the current, and unmodified, dbuf user pointer.
605 */
606void *dmu_buf_replace_user(dmu_buf_t *db,
607    dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
608
609/*
610 * Remove the specified user data for a DMU buffer.
611 *
612 * Returns the user that was removed on success, or the current user if
613 * another user currently owns the buffer.
614 */
615void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
616
617/*
618 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
619 */
620void *dmu_buf_get_user(dmu_buf_t *db);
621
622objset_t *dmu_buf_get_objset(dmu_buf_t *db);
623dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
624void dmu_buf_dnode_exit(dmu_buf_t *db);
625
626/* Block until any in-progress dmu buf user evictions complete. */
627void dmu_buf_user_evict_wait(void);
628
629/*
630 * Returns the blkptr associated with this dbuf, or NULL if not set.
631 */
632struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
633
634/*
635 * Indicate that you are going to modify the buffer's data (db_data).
636 *
637 * The transaction (tx) must be assigned to a txg (ie. you've called
638 * dmu_tx_assign()).  The buffer's object must be held in the tx
639 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
640 */
641void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
642
643/*
644 * Tells if the given dbuf is freeable.
645 */
646boolean_t dmu_buf_freeable(dmu_buf_t *);
647
648/*
649 * You must create a transaction, then hold the objects which you will
650 * (or might) modify as part of this transaction.  Then you must assign
651 * the transaction to a transaction group.  Once the transaction has
652 * been assigned, you can modify buffers which belong to held objects as
653 * part of this transaction.  You can't modify buffers before the
654 * transaction has been assigned; you can't modify buffers which don't
655 * belong to objects which this transaction holds; you can't hold
656 * objects once the transaction has been assigned.  You may hold an
657 * object which you are going to free (with dmu_object_free()), but you
658 * don't have to.
659 *
660 * You can abort the transaction before it has been assigned.
661 *
662 * Note that you may hold buffers (with dmu_buf_hold) at any time,
663 * regardless of transaction state.
664 */
665
666#define	DMU_NEW_OBJECT	(-1ULL)
667#define	DMU_OBJECT_END	(-1ULL)
668
669dmu_tx_t *dmu_tx_create(objset_t *os);
670void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
671void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
672    uint64_t len);
673void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
674void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
675void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
676void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
677void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
678void dmu_tx_abort(dmu_tx_t *tx);
679int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
680void dmu_tx_wait(dmu_tx_t *tx);
681void dmu_tx_commit(dmu_tx_t *tx);
682void dmu_tx_mark_netfree(dmu_tx_t *tx);
683
684/*
685 * To register a commit callback, dmu_tx_callback_register() must be called.
686 *
687 * dcb_data is a pointer to caller private data that is passed on as a
688 * callback parameter. The caller is responsible for properly allocating and
689 * freeing it.
690 *
691 * When registering a callback, the transaction must be already created, but
692 * it cannot be committed or aborted. It can be assigned to a txg or not.
693 *
694 * The callback will be called after the transaction has been safely written
695 * to stable storage and will also be called if the dmu_tx is aborted.
696 * If there is any error which prevents the transaction from being committed to
697 * disk, the callback will be called with a value of error != 0.
698 */
699typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
700
701void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
702    void *dcb_data);
703
704/*
705 * Free up the data blocks for a defined range of a file.  If size is
706 * -1, the range from offset to end-of-file is freed.
707 */
708int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
709	uint64_t size, dmu_tx_t *tx);
710int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
711	uint64_t size);
712int dmu_free_long_object(objset_t *os, uint64_t object);
713
714/*
715 * Convenience functions.
716 *
717 * Canfail routines will return 0 on success, or an errno if there is a
718 * nonrecoverable I/O error.
719 */
720#define	DMU_READ_PREFETCH	0 /* prefetch */
721#define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
722int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
723	void *buf, uint32_t flags);
724void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
725	const void *buf, dmu_tx_t *tx);
726void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
727	dmu_tx_t *tx);
728int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
729int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
730int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
731    dmu_tx_t *tx);
732int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
733    dmu_tx_t *tx);
734#ifdef _KERNEL
735#ifdef illumos
736int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
737    uint64_t size, struct page *pp, dmu_tx_t *tx);
738#else
739int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
740    uint64_t size, struct vm_page **ppa, dmu_tx_t *tx);
741#endif
742#endif
743struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
744void dmu_return_arcbuf(struct arc_buf *buf);
745void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
746    dmu_tx_t *tx);
747int dmu_xuio_init(struct xuio *uio, int niov);
748void dmu_xuio_fini(struct xuio *uio);
749int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
750    size_t n);
751int dmu_xuio_cnt(struct xuio *uio);
752struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
753void dmu_xuio_clear(struct xuio *uio, int i);
754void xuio_stat_wbuf_copied();
755void xuio_stat_wbuf_nocopy();
756
757extern boolean_t zfs_prefetch_disable;
758extern int zfs_max_recordsize;
759
760/*
761 * Asynchronously try to read in the data.
762 */
763void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
764    uint64_t len, enum zio_priority pri);
765
766typedef struct dmu_object_info {
767	/* All sizes are in bytes unless otherwise indicated. */
768	uint32_t doi_data_block_size;
769	uint32_t doi_metadata_block_size;
770	dmu_object_type_t doi_type;
771	dmu_object_type_t doi_bonus_type;
772	uint64_t doi_bonus_size;
773	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
774	uint8_t doi_checksum;
775	uint8_t doi_compress;
776	uint8_t doi_nblkptr;
777	uint8_t doi_pad[4];
778	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
779	uint64_t doi_max_offset;
780	uint64_t doi_fill_count;		/* number of non-empty blocks */
781} dmu_object_info_t;
782
783typedef void arc_byteswap_func_t(void *buf, size_t size);
784
785typedef struct dmu_object_type_info {
786	dmu_object_byteswap_t	ot_byteswap;
787	boolean_t		ot_metadata;
788	char			*ot_name;
789} dmu_object_type_info_t;
790
791typedef struct dmu_object_byteswap_info {
792	arc_byteswap_func_t	*ob_func;
793	char			*ob_name;
794} dmu_object_byteswap_info_t;
795
796extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
797extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
798
799/*
800 * Get information on a DMU object.
801 *
802 * Return 0 on success or ENOENT if object is not allocated.
803 *
804 * If doi is NULL, just indicates whether the object exists.
805 */
806int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
807/* Like dmu_object_info, but faster if you have a held dnode in hand. */
808void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
809/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
810void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
811/*
812 * Like dmu_object_info_from_db, but faster still when you only care about
813 * the size.  This is specifically optimized for zfs_getattr().
814 */
815void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
816    u_longlong_t *nblk512);
817
818typedef struct dmu_objset_stats {
819	uint64_t dds_num_clones; /* number of clones of this */
820	uint64_t dds_creation_txg;
821	uint64_t dds_guid;
822	dmu_objset_type_t dds_type;
823	uint8_t dds_is_snapshot;
824	uint8_t dds_inconsistent;
825	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
826} dmu_objset_stats_t;
827
828/*
829 * Get stats on a dataset.
830 */
831void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
832
833/*
834 * Add entries to the nvlist for all the objset's properties.  See
835 * zfs_prop_table[] and zfs(1m) for details on the properties.
836 */
837void dmu_objset_stats(objset_t *os, struct nvlist *nv);
838
839/*
840 * Get the space usage statistics for statvfs().
841 *
842 * refdbytes is the amount of space "referenced" by this objset.
843 * availbytes is the amount of space available to this objset, taking
844 * into account quotas & reservations, assuming that no other objsets
845 * use the space first.  These values correspond to the 'referenced' and
846 * 'available' properties, described in the zfs(1m) manpage.
847 *
848 * usedobjs and availobjs are the number of objects currently allocated,
849 * and available.
850 */
851void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
852    uint64_t *usedobjsp, uint64_t *availobjsp);
853
854/*
855 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
856 * (Contrast with the ds_guid which is a 64-bit ID that will never
857 * change, so there is a small probability that it will collide.)
858 */
859uint64_t dmu_objset_fsid_guid(objset_t *os);
860
861/*
862 * Get the [cm]time for an objset's snapshot dir
863 */
864timestruc_t dmu_objset_snap_cmtime(objset_t *os);
865
866int dmu_objset_is_snapshot(objset_t *os);
867
868extern struct spa *dmu_objset_spa(objset_t *os);
869extern struct zilog *dmu_objset_zil(objset_t *os);
870extern struct dsl_pool *dmu_objset_pool(objset_t *os);
871extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
872extern void dmu_objset_name(objset_t *os, char *buf);
873extern dmu_objset_type_t dmu_objset_type(objset_t *os);
874extern uint64_t dmu_objset_id(objset_t *os);
875extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
876extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
877extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
878    uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
879extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
880    int maxlen, boolean_t *conflict);
881extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
882    uint64_t *idp, uint64_t *offp);
883
884typedef int objset_used_cb_t(dmu_object_type_t bonustype,
885    void *bonus, uint64_t *userp, uint64_t *groupp);
886extern void dmu_objset_register_type(dmu_objset_type_t ost,
887    objset_used_cb_t *cb);
888extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
889extern void *dmu_objset_get_user(objset_t *os);
890
891/*
892 * Return the txg number for the given assigned transaction.
893 */
894uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
895
896/*
897 * Synchronous write.
898 * If a parent zio is provided this function initiates a write on the
899 * provided buffer as a child of the parent zio.
900 * In the absence of a parent zio, the write is completed synchronously.
901 * At write completion, blk is filled with the bp of the written block.
902 * Note that while the data covered by this function will be on stable
903 * storage when the write completes this new data does not become a
904 * permanent part of the file until the associated transaction commits.
905 */
906
907/*
908 * {zfs,zvol,ztest}_get_done() args
909 */
910typedef struct zgd {
911	struct zilog	*zgd_zilog;
912	struct blkptr	*zgd_bp;
913	dmu_buf_t	*zgd_db;
914	struct rl	*zgd_rl;
915	void		*zgd_private;
916} zgd_t;
917
918typedef void dmu_sync_cb_t(zgd_t *arg, int error);
919int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
920
921/*
922 * Find the next hole or data block in file starting at *off
923 * Return found offset in *off. Return ESRCH for end of file.
924 */
925int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
926    uint64_t *off);
927
928/*
929 * Check if a DMU object has any dirty blocks. If so, sync out
930 * all pending transaction groups. Otherwise, this function
931 * does not alter DMU state. This could be improved to only sync
932 * out the necessary transaction groups for this particular
933 * object.
934 */
935int dmu_object_wait_synced(objset_t *os, uint64_t object);
936
937/*
938 * Initial setup and final teardown.
939 */
940extern void dmu_init(void);
941extern void dmu_fini(void);
942
943typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
944    uint64_t object, uint64_t offset, int len);
945void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
946    dmu_traverse_cb_t cb, void *arg);
947int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
948    struct file *fp, offset_t *offp);
949
950/* CRC64 table */
951#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
952extern uint64_t zfs_crc64_table[256];
953
954extern int zfs_mdcomp_disable;
955
956#ifdef	__cplusplus
957}
958#endif
959
960#endif	/* _SYS_DMU_H */
961