dmu.h revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2014 Integros [integros.com]
32 */
33
34/* Portions Copyright 2010 Robert Milkowski */
35
36#ifndef	_SYS_DMU_H
37#define	_SYS_DMU_H
38
39/*
40 * This file describes the interface that the DMU provides for its
41 * consumers.
42 *
43 * The DMU also interacts with the SPA.  That interface is described in
44 * dmu_spa.h.
45 */
46
47#include <sys/zfs_context.h>
48#include <sys/cred.h>
49#include <sys/fs/zfs.h>
50#include <sys/zio_priority.h>
51
52#ifdef	__cplusplus
53extern "C" {
54#endif
55
56struct uio;
57struct xuio;
58struct page;
59struct vnode;
60struct spa;
61struct zilog;
62struct zio;
63struct blkptr;
64struct zap_cursor;
65struct dsl_dataset;
66struct dsl_pool;
67struct dnode;
68struct drr_begin;
69struct drr_end;
70struct zbookmark_phys;
71struct spa;
72struct nvlist;
73struct arc_buf;
74struct zio_prop;
75struct sa_handle;
76struct file;
77
78typedef struct objset objset_t;
79typedef struct dmu_tx dmu_tx_t;
80typedef struct dsl_dir dsl_dir_t;
81
82typedef enum dmu_object_byteswap {
83	DMU_BSWAP_UINT8,
84	DMU_BSWAP_UINT16,
85	DMU_BSWAP_UINT32,
86	DMU_BSWAP_UINT64,
87	DMU_BSWAP_ZAP,
88	DMU_BSWAP_DNODE,
89	DMU_BSWAP_OBJSET,
90	DMU_BSWAP_ZNODE,
91	DMU_BSWAP_OLDACL,
92	DMU_BSWAP_ACL,
93	/*
94	 * Allocating a new byteswap type number makes the on-disk format
95	 * incompatible with any other format that uses the same number.
96	 *
97	 * Data can usually be structured to work with one of the
98	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
99	 */
100	DMU_BSWAP_NUMFUNCS
101} dmu_object_byteswap_t;
102
103#define	DMU_OT_NEWTYPE 0x80
104#define	DMU_OT_METADATA 0x40
105#define	DMU_OT_BYTESWAP_MASK 0x3f
106
107/*
108 * Defines a uint8_t object type. Object types specify if the data
109 * in the object is metadata (boolean) and how to byteswap the data
110 * (dmu_object_byteswap_t).
111 */
112#define	DMU_OT(byteswap, metadata) \
113	(DMU_OT_NEWTYPE | \
114	((metadata) ? DMU_OT_METADATA : 0) | \
115	((byteswap) & DMU_OT_BYTESWAP_MASK))
116
117#define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
118	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
119	(ot) < DMU_OT_NUMTYPES)
120
121#define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
122	((ot) & DMU_OT_METADATA) : \
123	dmu_ot[(ot)].ot_metadata)
124
125/*
126 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
127 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
128 * is repurposed for embedded BPs.
129 */
130#define	DMU_OT_HAS_FILL(ot) \
131	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
132
133#define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
134	((ot) & DMU_OT_BYTESWAP_MASK) : \
135	dmu_ot[(ot)].ot_byteswap)
136
137typedef enum dmu_object_type {
138	DMU_OT_NONE,
139	/* general: */
140	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
141	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
142	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
143	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
144	DMU_OT_BPOBJ,			/* UINT64 */
145	DMU_OT_BPOBJ_HDR,		/* UINT64 */
146	/* spa: */
147	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
148	DMU_OT_SPACE_MAP,		/* UINT64 */
149	/* zil: */
150	DMU_OT_INTENT_LOG,		/* UINT64 */
151	/* dmu: */
152	DMU_OT_DNODE,			/* DNODE */
153	DMU_OT_OBJSET,			/* OBJSET */
154	/* dsl: */
155	DMU_OT_DSL_DIR,			/* UINT64 */
156	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
157	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
158	DMU_OT_DSL_PROPS,		/* ZAP */
159	DMU_OT_DSL_DATASET,		/* UINT64 */
160	/* zpl: */
161	DMU_OT_ZNODE,			/* ZNODE */
162	DMU_OT_OLDACL,			/* Old ACL */
163	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
164	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
165	DMU_OT_MASTER_NODE,		/* ZAP */
166	DMU_OT_UNLINKED_SET,		/* ZAP */
167	/* zvol: */
168	DMU_OT_ZVOL,			/* UINT8 */
169	DMU_OT_ZVOL_PROP,		/* ZAP */
170	/* other; for testing only! */
171	DMU_OT_PLAIN_OTHER,		/* UINT8 */
172	DMU_OT_UINT64_OTHER,		/* UINT64 */
173	DMU_OT_ZAP_OTHER,		/* ZAP */
174	/* new object types: */
175	DMU_OT_ERROR_LOG,		/* ZAP */
176	DMU_OT_SPA_HISTORY,		/* UINT8 */
177	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
178	DMU_OT_POOL_PROPS,		/* ZAP */
179	DMU_OT_DSL_PERMS,		/* ZAP */
180	DMU_OT_ACL,			/* ACL */
181	DMU_OT_SYSACL,			/* SYSACL */
182	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
183	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
184	DMU_OT_NEXT_CLONES,		/* ZAP */
185	DMU_OT_SCAN_QUEUE,		/* ZAP */
186	DMU_OT_USERGROUP_USED,		/* ZAP */
187	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
188	DMU_OT_USERREFS,		/* ZAP */
189	DMU_OT_DDT_ZAP,			/* ZAP */
190	DMU_OT_DDT_STATS,		/* ZAP */
191	DMU_OT_SA,			/* System attr */
192	DMU_OT_SA_MASTER_NODE,		/* ZAP */
193	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
194	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
195	DMU_OT_SCAN_XLATE,		/* ZAP */
196	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
197	DMU_OT_DEADLIST,		/* ZAP */
198	DMU_OT_DEADLIST_HDR,		/* UINT64 */
199	DMU_OT_DSL_CLONES,		/* ZAP */
200	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
201	/*
202	 * Do not allocate new object types here. Doing so makes the on-disk
203	 * format incompatible with any other format that uses the same object
204	 * type number.
205	 *
206	 * When creating an object which does not have one of the above types
207	 * use the DMU_OTN_* type with the correct byteswap and metadata
208	 * values.
209	 *
210	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
211	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
212	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
213	 * and DMU_OTN_* types).
214	 */
215	DMU_OT_NUMTYPES,
216
217	/*
218	 * Names for valid types declared with DMU_OT().
219	 */
220	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
221	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
222	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
223	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
224	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
225	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
226	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
227	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
228	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
229	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
230} dmu_object_type_t;
231
232typedef enum txg_how {
233	TXG_WAIT = 1,
234	TXG_NOWAIT,
235	TXG_WAITED,
236} txg_how_t;
237
238void byteswap_uint64_array(void *buf, size_t size);
239void byteswap_uint32_array(void *buf, size_t size);
240void byteswap_uint16_array(void *buf, size_t size);
241void byteswap_uint8_array(void *buf, size_t size);
242void zap_byteswap(void *buf, size_t size);
243void zfs_oldacl_byteswap(void *buf, size_t size);
244void zfs_acl_byteswap(void *buf, size_t size);
245void zfs_znode_byteswap(void *buf, size_t size);
246
247#define	DS_FIND_SNAPSHOTS	(1<<0)
248#define	DS_FIND_CHILDREN	(1<<1)
249#define	DS_FIND_SERIALIZE	(1<<2)
250
251/*
252 * The maximum number of bytes that can be accessed as part of one
253 * operation, including metadata.
254 */
255#define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
256#define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
257
258#define	DMU_USERUSED_OBJECT	(-1ULL)
259#define	DMU_GROUPUSED_OBJECT	(-2ULL)
260
261/*
262 * artificial blkids for bonus buffer and spill blocks
263 */
264#define	DMU_BONUS_BLKID		(-1ULL)
265#define	DMU_SPILL_BLKID		(-2ULL)
266/*
267 * Public routines to create, destroy, open, and close objsets.
268 */
269int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
270int dmu_objset_own(const char *name, dmu_objset_type_t type,
271    boolean_t readonly, void *tag, objset_t **osp);
272void dmu_objset_rele(objset_t *os, void *tag);
273void dmu_objset_disown(objset_t *os, void *tag);
274int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
275
276void dmu_objset_evict_dbufs(objset_t *os);
277int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
278    void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
279int dmu_get_recursive_snaps_nvl(char *fsname, const char *snapname,
280    struct nvlist *snaps);
281int dmu_objset_clone(const char *name, const char *origin);
282int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
283    struct nvlist *errlist);
284int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
285int dmu_objset_snapshot_tmp(const char *, const char *, int);
286int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
287    int flags);
288void dmu_objset_byteswap(void *buf, size_t size);
289int dsl_dataset_rename_snapshot(const char *fsname,
290    const char *oldsnapname, const char *newsnapname, boolean_t recursive);
291
292typedef struct dmu_buf {
293	uint64_t db_object;		/* object that this buffer is part of */
294	uint64_t db_offset;		/* byte offset in this object */
295	uint64_t db_size;		/* size of buffer in bytes */
296	void *db_data;			/* data in buffer */
297} dmu_buf_t;
298
299/*
300 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
301 */
302#define	DMU_POOL_DIRECTORY_OBJECT	1
303#define	DMU_POOL_CONFIG			"config"
304#define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
305#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
306#define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
307#define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
308#define	DMU_POOL_ROOT_DATASET		"root_dataset"
309#define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
310#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
311#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
312#define	DMU_POOL_SPARES			"spares"
313#define	DMU_POOL_DEFLATE		"deflate"
314#define	DMU_POOL_HISTORY		"history"
315#define	DMU_POOL_PROPS			"pool_props"
316#define	DMU_POOL_L2CACHE		"l2cache"
317#define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
318#define	DMU_POOL_DDT			"DDT-%s-%s-%s"
319#define	DMU_POOL_DDT_STATS		"DDT-statistics"
320#define	DMU_POOL_CREATION_VERSION	"creation_version"
321#define	DMU_POOL_SCAN			"scan"
322#define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
323#define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
324#define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
325#define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
326
327/*
328 * Allocate an object from this objset.  The range of object numbers
329 * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
330 *
331 * The transaction must be assigned to a txg.  The newly allocated
332 * object will be "held" in the transaction (ie. you can modify the
333 * newly allocated object in this transaction).
334 *
335 * dmu_object_alloc() chooses an object and returns it in *objectp.
336 *
337 * dmu_object_claim() allocates a specific object number.  If that
338 * number is already allocated, it fails and returns EEXIST.
339 *
340 * Return 0 on success, or ENOSPC or EEXIST as specified above.
341 */
342uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
343    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
344int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
345    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
346int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
347    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
348
349/*
350 * Free an object from this objset.
351 *
352 * The object's data will be freed as well (ie. you don't need to call
353 * dmu_free(object, 0, -1, tx)).
354 *
355 * The object need not be held in the transaction.
356 *
357 * If there are any holds on this object's buffers (via dmu_buf_hold()),
358 * or tx holds on the object (via dmu_tx_hold_object()), you can not
359 * free it; it fails and returns EBUSY.
360 *
361 * If the object is not allocated, it fails and returns ENOENT.
362 *
363 * Return 0 on success, or EBUSY or ENOENT as specified above.
364 */
365int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
366
367/*
368 * Find the next allocated or free object.
369 *
370 * The objectp parameter is in-out.  It will be updated to be the next
371 * object which is allocated.  Ignore objects which have not been
372 * modified since txg.
373 *
374 * XXX Can only be called on a objset with no dirty data.
375 *
376 * Returns 0 on success, or ENOENT if there are no more objects.
377 */
378int dmu_object_next(objset_t *os, uint64_t *objectp,
379    boolean_t hole, uint64_t txg);
380
381/*
382 * Set the data blocksize for an object.
383 *
384 * The object cannot have any blocks allcated beyond the first.  If
385 * the first block is allocated already, the new size must be greater
386 * than the current block size.  If these conditions are not met,
387 * ENOTSUP will be returned.
388 *
389 * Returns 0 on success, or EBUSY if there are any holds on the object
390 * contents, or ENOTSUP as described above.
391 */
392int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
393    int ibs, dmu_tx_t *tx);
394
395/*
396 * Set the checksum property on a dnode.  The new checksum algorithm will
397 * apply to all newly written blocks; existing blocks will not be affected.
398 */
399void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
400    dmu_tx_t *tx);
401
402/*
403 * Set the compress property on a dnode.  The new compression algorithm will
404 * apply to all newly written blocks; existing blocks will not be affected.
405 */
406void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
407    dmu_tx_t *tx);
408
409void
410dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
411    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
412    int compressed_size, int byteorder, dmu_tx_t *tx);
413
414/*
415 * Decide how to write a block: checksum, compression, number of copies, etc.
416 */
417#define	WP_NOFILL	0x1
418#define	WP_DMU_SYNC	0x2
419#define	WP_SPILL	0x4
420
421void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
422    struct zio_prop *zp);
423/*
424 * The bonus data is accessed more or less like a regular buffer.
425 * You must dmu_bonus_hold() to get the buffer, which will give you a
426 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
427 * data.  As with any normal buffer, you must call dmu_buf_read() to
428 * read db_data, dmu_buf_will_dirty() before modifying it, and the
429 * object must be held in an assigned transaction before calling
430 * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
431 * buffer as well.  You must release your hold with dmu_buf_rele().
432 *
433 * Returns ENOENT, EIO, or 0.
434 */
435int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
436int dmu_bonus_max(void);
437int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
438int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
439dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
440int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
441
442/*
443 * Special spill buffer support used by "SA" framework
444 */
445
446int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
447int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
448    void *tag, dmu_buf_t **dbp);
449int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
450
451/*
452 * Obtain the DMU buffer from the specified object which contains the
453 * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
454 * that it will remain in memory.  You must release the hold with
455 * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
456 * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
457 *
458 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
459 * on the returned buffer before reading or writing the buffer's
460 * db_data.  The comments for those routines describe what particular
461 * operations are valid after calling them.
462 *
463 * The object number must be a valid, allocated object number.
464 */
465int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
466    void *tag, dmu_buf_t **, int flags);
467
468/*
469 * Add a reference to a dmu buffer that has already been held via
470 * dmu_buf_hold() in the current context.
471 */
472void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
473
474/*
475 * Attempt to add a reference to a dmu buffer that is in an unknown state,
476 * using a pointer that may have been invalidated by eviction processing.
477 * The request will succeed if the passed in dbuf still represents the
478 * same os/object/blkid, is ineligible for eviction, and has at least
479 * one hold by a user other than the syncer.
480 */
481boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
482    uint64_t blkid, void *tag);
483
484void dmu_buf_rele(dmu_buf_t *db, void *tag);
485uint64_t dmu_buf_refcount(dmu_buf_t *db);
486
487/*
488 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
489 * range of an object.  A pointer to an array of dmu_buf_t*'s is
490 * returned (in *dbpp).
491 *
492 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
493 * frees the array.  The hold on the array of buffers MUST be released
494 * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
495 * individually with dmu_buf_rele.
496 */
497int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
498    uint64_t length, boolean_t read, void *tag,
499    int *numbufsp, dmu_buf_t ***dbpp);
500void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
501
502typedef void dmu_buf_evict_func_t(void *user_ptr);
503
504/*
505 * A DMU buffer user object may be associated with a dbuf for the
506 * duration of its lifetime.  This allows the user of a dbuf (client)
507 * to attach private data to a dbuf (e.g. in-core only data such as a
508 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
509 * when that dbuf has been evicted.  Clients typically respond to the
510 * eviction notification by freeing their private data, thus ensuring
511 * the same lifetime for both dbuf and private data.
512 *
513 * The mapping from a dmu_buf_user_t to any client private data is the
514 * client's responsibility.  All current consumers of the API with private
515 * data embed a dmu_buf_user_t as the first member of the structure for
516 * their private data.  This allows conversions between the two types
517 * with a simple cast.  Since the DMU buf user API never needs access
518 * to the private data, other strategies can be employed if necessary
519 * or convenient for the client (e.g. using container_of() to do the
520 * conversion for private data that cannot have the dmu_buf_user_t as
521 * its first member).
522 *
523 * Eviction callbacks are executed without the dbuf mutex held or any
524 * other type of mechanism to guarantee that the dbuf is still available.
525 * For this reason, users must assume the dbuf has already been freed
526 * and not reference the dbuf from the callback context.
527 *
528 * Users requesting "immediate eviction" are notified as soon as the dbuf
529 * is only referenced by dirty records (dirties == holds).  Otherwise the
530 * notification occurs after eviction processing for the dbuf begins.
531 */
532typedef struct dmu_buf_user {
533	/*
534	 * Asynchronous user eviction callback state.
535	 */
536	taskq_ent_t	dbu_tqent;
537
538	/* This instance's eviction function pointer. */
539	dmu_buf_evict_func_t *dbu_evict_func;
540#ifdef ZFS_DEBUG
541	/*
542	 * Pointer to user's dbuf pointer.  NULL for clients that do
543	 * not associate a dbuf with their user data.
544	 *
545	 * The dbuf pointer is cleared upon eviction so as to catch
546	 * use-after-evict bugs in clients.
547	 */
548	dmu_buf_t **dbu_clear_on_evict_dbufp;
549#endif
550} dmu_buf_user_t;
551
552/*
553 * Initialize the given dmu_buf_user_t instance with the eviction function
554 * evict_func, to be called when the user is evicted.
555 *
556 * NOTE: This function should only be called once on a given dmu_buf_user_t.
557 *       To allow enforcement of this, dbu must already be zeroed on entry.
558 */
559#ifdef __lint
560/* Very ugly, but it beats issuing suppression directives in many Makefiles. */
561extern void
562dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
563    dmu_buf_t **clear_on_evict_dbufp);
564#else /* __lint */
565static inline void
566dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
567    dmu_buf_t **clear_on_evict_dbufp)
568{
569	ASSERT(dbu->dbu_evict_func == NULL);
570	ASSERT(evict_func != NULL);
571	dbu->dbu_evict_func = evict_func;
572#ifdef ZFS_DEBUG
573	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
574#endif
575}
576#endif /* __lint */
577
578/*
579 * Attach user data to a dbuf and mark it for normal (when the dbuf's
580 * data is cleared or its reference count goes to zero) eviction processing.
581 *
582 * Returns NULL on success, or the existing user if another user currently
583 * owns the buffer.
584 */
585void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
586
587/*
588 * Attach user data to a dbuf and mark it for immediate (its dirty and
589 * reference counts are equal) eviction processing.
590 *
591 * Returns NULL on success, or the existing user if another user currently
592 * owns the buffer.
593 */
594void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
595
596/*
597 * Replace the current user of a dbuf.
598 *
599 * If given the current user of a dbuf, replaces the dbuf's user with
600 * "new_user" and returns the user data pointer that was replaced.
601 * Otherwise returns the current, and unmodified, dbuf user pointer.
602 */
603void *dmu_buf_replace_user(dmu_buf_t *db,
604    dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
605
606/*
607 * Remove the specified user data for a DMU buffer.
608 *
609 * Returns the user that was removed on success, or the current user if
610 * another user currently owns the buffer.
611 */
612void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
613
614/*
615 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
616 */
617void *dmu_buf_get_user(dmu_buf_t *db);
618
619/* Block until any in-progress dmu buf user evictions complete. */
620void dmu_buf_user_evict_wait(void);
621
622/*
623 * Returns the blkptr associated with this dbuf, or NULL if not set.
624 */
625struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
626
627/*
628 * Indicate that you are going to modify the buffer's data (db_data).
629 *
630 * The transaction (tx) must be assigned to a txg (ie. you've called
631 * dmu_tx_assign()).  The buffer's object must be held in the tx
632 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
633 */
634void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
635
636/*
637 * Tells if the given dbuf is freeable.
638 */
639boolean_t dmu_buf_freeable(dmu_buf_t *);
640
641/*
642 * You must create a transaction, then hold the objects which you will
643 * (or might) modify as part of this transaction.  Then you must assign
644 * the transaction to a transaction group.  Once the transaction has
645 * been assigned, you can modify buffers which belong to held objects as
646 * part of this transaction.  You can't modify buffers before the
647 * transaction has been assigned; you can't modify buffers which don't
648 * belong to objects which this transaction holds; you can't hold
649 * objects once the transaction has been assigned.  You may hold an
650 * object which you are going to free (with dmu_object_free()), but you
651 * don't have to.
652 *
653 * You can abort the transaction before it has been assigned.
654 *
655 * Note that you may hold buffers (with dmu_buf_hold) at any time,
656 * regardless of transaction state.
657 */
658
659#define	DMU_NEW_OBJECT	(-1ULL)
660#define	DMU_OBJECT_END	(-1ULL)
661
662dmu_tx_t *dmu_tx_create(objset_t *os);
663void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
664void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
665    uint64_t len);
666void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
667void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
668void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
669void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
670void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
671void dmu_tx_abort(dmu_tx_t *tx);
672int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
673void dmu_tx_wait(dmu_tx_t *tx);
674void dmu_tx_commit(dmu_tx_t *tx);
675void dmu_tx_mark_netfree(dmu_tx_t *tx);
676
677/*
678 * To register a commit callback, dmu_tx_callback_register() must be called.
679 *
680 * dcb_data is a pointer to caller private data that is passed on as a
681 * callback parameter. The caller is responsible for properly allocating and
682 * freeing it.
683 *
684 * When registering a callback, the transaction must be already created, but
685 * it cannot be committed or aborted. It can be assigned to a txg or not.
686 *
687 * The callback will be called after the transaction has been safely written
688 * to stable storage and will also be called if the dmu_tx is aborted.
689 * If there is any error which prevents the transaction from being committed to
690 * disk, the callback will be called with a value of error != 0.
691 */
692typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
693
694void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
695    void *dcb_data);
696
697/*
698 * Free up the data blocks for a defined range of a file.  If size is
699 * -1, the range from offset to end-of-file is freed.
700 */
701int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
702	uint64_t size, dmu_tx_t *tx);
703int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
704	uint64_t size);
705int dmu_free_long_object(objset_t *os, uint64_t object);
706
707/*
708 * Convenience functions.
709 *
710 * Canfail routines will return 0 on success, or an errno if there is a
711 * nonrecoverable I/O error.
712 */
713#define	DMU_READ_PREFETCH	0 /* prefetch */
714#define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
715int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
716	void *buf, uint32_t flags);
717void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
718	const void *buf, dmu_tx_t *tx);
719void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
720	dmu_tx_t *tx);
721int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
722int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
723int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
724    dmu_tx_t *tx);
725int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
726    dmu_tx_t *tx);
727#ifdef _KERNEL
728#ifdef illumos
729int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
730    uint64_t size, struct page *pp, dmu_tx_t *tx);
731#else
732int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
733    uint64_t size, struct vm_page **ppa, dmu_tx_t *tx);
734#endif
735#endif
736struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
737void dmu_return_arcbuf(struct arc_buf *buf);
738void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
739    dmu_tx_t *tx);
740int dmu_xuio_init(struct xuio *uio, int niov);
741void dmu_xuio_fini(struct xuio *uio);
742int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
743    size_t n);
744int dmu_xuio_cnt(struct xuio *uio);
745struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
746void dmu_xuio_clear(struct xuio *uio, int i);
747void xuio_stat_wbuf_copied();
748void xuio_stat_wbuf_nocopy();
749
750extern boolean_t zfs_prefetch_disable;
751extern int zfs_max_recordsize;
752
753/*
754 * Asynchronously try to read in the data.
755 */
756void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
757    uint64_t len, enum zio_priority pri);
758
759typedef struct dmu_object_info {
760	/* All sizes are in bytes unless otherwise indicated. */
761	uint32_t doi_data_block_size;
762	uint32_t doi_metadata_block_size;
763	dmu_object_type_t doi_type;
764	dmu_object_type_t doi_bonus_type;
765	uint64_t doi_bonus_size;
766	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
767	uint8_t doi_checksum;
768	uint8_t doi_compress;
769	uint8_t doi_nblkptr;
770	uint8_t doi_pad[4];
771	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
772	uint64_t doi_max_offset;
773	uint64_t doi_fill_count;		/* number of non-empty blocks */
774} dmu_object_info_t;
775
776typedef void arc_byteswap_func_t(void *buf, size_t size);
777
778typedef struct dmu_object_type_info {
779	dmu_object_byteswap_t	ot_byteswap;
780	boolean_t		ot_metadata;
781	char			*ot_name;
782} dmu_object_type_info_t;
783
784typedef struct dmu_object_byteswap_info {
785	arc_byteswap_func_t	*ob_func;
786	char			*ob_name;
787} dmu_object_byteswap_info_t;
788
789extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
790extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
791
792/*
793 * Get information on a DMU object.
794 *
795 * Return 0 on success or ENOENT if object is not allocated.
796 *
797 * If doi is NULL, just indicates whether the object exists.
798 */
799int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
800/* Like dmu_object_info, but faster if you have a held dnode in hand. */
801void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
802/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
803void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
804/*
805 * Like dmu_object_info_from_db, but faster still when you only care about
806 * the size.  This is specifically optimized for zfs_getattr().
807 */
808void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
809    u_longlong_t *nblk512);
810
811typedef struct dmu_objset_stats {
812	uint64_t dds_num_clones; /* number of clones of this */
813	uint64_t dds_creation_txg;
814	uint64_t dds_guid;
815	dmu_objset_type_t dds_type;
816	uint8_t dds_is_snapshot;
817	uint8_t dds_inconsistent;
818	char dds_origin[MAXNAMELEN];
819} dmu_objset_stats_t;
820
821/*
822 * Get stats on a dataset.
823 */
824void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
825
826/*
827 * Add entries to the nvlist for all the objset's properties.  See
828 * zfs_prop_table[] and zfs(1m) for details on the properties.
829 */
830void dmu_objset_stats(objset_t *os, struct nvlist *nv);
831
832/*
833 * Get the space usage statistics for statvfs().
834 *
835 * refdbytes is the amount of space "referenced" by this objset.
836 * availbytes is the amount of space available to this objset, taking
837 * into account quotas & reservations, assuming that no other objsets
838 * use the space first.  These values correspond to the 'referenced' and
839 * 'available' properties, described in the zfs(1m) manpage.
840 *
841 * usedobjs and availobjs are the number of objects currently allocated,
842 * and available.
843 */
844void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
845    uint64_t *usedobjsp, uint64_t *availobjsp);
846
847/*
848 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
849 * (Contrast with the ds_guid which is a 64-bit ID that will never
850 * change, so there is a small probability that it will collide.)
851 */
852uint64_t dmu_objset_fsid_guid(objset_t *os);
853
854/*
855 * Get the [cm]time for an objset's snapshot dir
856 */
857timestruc_t dmu_objset_snap_cmtime(objset_t *os);
858
859int dmu_objset_is_snapshot(objset_t *os);
860
861extern struct spa *dmu_objset_spa(objset_t *os);
862extern struct zilog *dmu_objset_zil(objset_t *os);
863extern struct dsl_pool *dmu_objset_pool(objset_t *os);
864extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
865extern void dmu_objset_name(objset_t *os, char *buf);
866extern dmu_objset_type_t dmu_objset_type(objset_t *os);
867extern uint64_t dmu_objset_id(objset_t *os);
868extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
869extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
870extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
871    uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
872extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
873    int maxlen, boolean_t *conflict);
874extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
875    uint64_t *idp, uint64_t *offp);
876
877typedef int objset_used_cb_t(dmu_object_type_t bonustype,
878    void *bonus, uint64_t *userp, uint64_t *groupp);
879extern void dmu_objset_register_type(dmu_objset_type_t ost,
880    objset_used_cb_t *cb);
881extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
882extern void *dmu_objset_get_user(objset_t *os);
883
884/*
885 * Return the txg number for the given assigned transaction.
886 */
887uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
888
889/*
890 * Synchronous write.
891 * If a parent zio is provided this function initiates a write on the
892 * provided buffer as a child of the parent zio.
893 * In the absence of a parent zio, the write is completed synchronously.
894 * At write completion, blk is filled with the bp of the written block.
895 * Note that while the data covered by this function will be on stable
896 * storage when the write completes this new data does not become a
897 * permanent part of the file until the associated transaction commits.
898 */
899
900/*
901 * {zfs,zvol,ztest}_get_done() args
902 */
903typedef struct zgd {
904	struct zilog	*zgd_zilog;
905	struct blkptr	*zgd_bp;
906	dmu_buf_t	*zgd_db;
907	struct rl	*zgd_rl;
908	void		*zgd_private;
909} zgd_t;
910
911typedef void dmu_sync_cb_t(zgd_t *arg, int error);
912int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
913
914/*
915 * Find the next hole or data block in file starting at *off
916 * Return found offset in *off. Return ESRCH for end of file.
917 */
918int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
919    uint64_t *off);
920
921/*
922 * Check if a DMU object has any dirty blocks. If so, sync out
923 * all pending transaction groups. Otherwise, this function
924 * does not alter DMU state. This could be improved to only sync
925 * out the necessary transaction groups for this particular
926 * object.
927 */
928int dmu_object_wait_synced(objset_t *os, uint64_t object);
929
930/*
931 * Initial setup and final teardown.
932 */
933extern void dmu_init(void);
934extern void dmu_fini(void);
935
936typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
937    uint64_t object, uint64_t offset, int len);
938void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
939    dmu_traverse_cb_t cb, void *arg);
940int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
941    struct file *fp, offset_t *offp);
942
943/* CRC64 table */
944#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
945extern uint64_t zfs_crc64_table[256];
946
947extern int zfs_mdcomp_disable;
948
949#ifdef	__cplusplus
950}
951#endif
952
953#endif	/* _SYS_DMU_H */
954