dmu.h revision 297077
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 */
32
33/* Portions Copyright 2010 Robert Milkowski */
34
35#ifndef	_SYS_DMU_H
36#define	_SYS_DMU_H
37
38/*
39 * This file describes the interface that the DMU provides for its
40 * consumers.
41 *
42 * The DMU also interacts with the SPA.  That interface is described in
43 * dmu_spa.h.
44 */
45
46#include <sys/zfs_context.h>
47#include <sys/cred.h>
48#include <sys/fs/zfs.h>
49#include <sys/zio_priority.h>
50
51#ifdef	__cplusplus
52extern "C" {
53#endif
54
55struct uio;
56struct xuio;
57struct page;
58struct vnode;
59struct spa;
60struct zilog;
61struct zio;
62struct blkptr;
63struct zap_cursor;
64struct dsl_dataset;
65struct dsl_pool;
66struct dnode;
67struct drr_begin;
68struct drr_end;
69struct zbookmark_phys;
70struct spa;
71struct nvlist;
72struct arc_buf;
73struct zio_prop;
74struct sa_handle;
75struct file;
76
77typedef struct objset objset_t;
78typedef struct dmu_tx dmu_tx_t;
79typedef struct dsl_dir dsl_dir_t;
80
81typedef enum dmu_object_byteswap {
82	DMU_BSWAP_UINT8,
83	DMU_BSWAP_UINT16,
84	DMU_BSWAP_UINT32,
85	DMU_BSWAP_UINT64,
86	DMU_BSWAP_ZAP,
87	DMU_BSWAP_DNODE,
88	DMU_BSWAP_OBJSET,
89	DMU_BSWAP_ZNODE,
90	DMU_BSWAP_OLDACL,
91	DMU_BSWAP_ACL,
92	/*
93	 * Allocating a new byteswap type number makes the on-disk format
94	 * incompatible with any other format that uses the same number.
95	 *
96	 * Data can usually be structured to work with one of the
97	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
98	 */
99	DMU_BSWAP_NUMFUNCS
100} dmu_object_byteswap_t;
101
102#define	DMU_OT_NEWTYPE 0x80
103#define	DMU_OT_METADATA 0x40
104#define	DMU_OT_BYTESWAP_MASK 0x3f
105
106/*
107 * Defines a uint8_t object type. Object types specify if the data
108 * in the object is metadata (boolean) and how to byteswap the data
109 * (dmu_object_byteswap_t).
110 */
111#define	DMU_OT(byteswap, metadata) \
112	(DMU_OT_NEWTYPE | \
113	((metadata) ? DMU_OT_METADATA : 0) | \
114	((byteswap) & DMU_OT_BYTESWAP_MASK))
115
116#define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
117	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
118	(ot) < DMU_OT_NUMTYPES)
119
120#define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
121	((ot) & DMU_OT_METADATA) : \
122	dmu_ot[(ot)].ot_metadata)
123
124/*
125 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
126 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
127 * is repurposed for embedded BPs.
128 */
129#define	DMU_OT_HAS_FILL(ot) \
130	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
131
132#define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
133	((ot) & DMU_OT_BYTESWAP_MASK) : \
134	dmu_ot[(ot)].ot_byteswap)
135
136typedef enum dmu_object_type {
137	DMU_OT_NONE,
138	/* general: */
139	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
140	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
141	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
142	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
143	DMU_OT_BPOBJ,			/* UINT64 */
144	DMU_OT_BPOBJ_HDR,		/* UINT64 */
145	/* spa: */
146	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
147	DMU_OT_SPACE_MAP,		/* UINT64 */
148	/* zil: */
149	DMU_OT_INTENT_LOG,		/* UINT64 */
150	/* dmu: */
151	DMU_OT_DNODE,			/* DNODE */
152	DMU_OT_OBJSET,			/* OBJSET */
153	/* dsl: */
154	DMU_OT_DSL_DIR,			/* UINT64 */
155	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
156	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
157	DMU_OT_DSL_PROPS,		/* ZAP */
158	DMU_OT_DSL_DATASET,		/* UINT64 */
159	/* zpl: */
160	DMU_OT_ZNODE,			/* ZNODE */
161	DMU_OT_OLDACL,			/* Old ACL */
162	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
163	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
164	DMU_OT_MASTER_NODE,		/* ZAP */
165	DMU_OT_UNLINKED_SET,		/* ZAP */
166	/* zvol: */
167	DMU_OT_ZVOL,			/* UINT8 */
168	DMU_OT_ZVOL_PROP,		/* ZAP */
169	/* other; for testing only! */
170	DMU_OT_PLAIN_OTHER,		/* UINT8 */
171	DMU_OT_UINT64_OTHER,		/* UINT64 */
172	DMU_OT_ZAP_OTHER,		/* ZAP */
173	/* new object types: */
174	DMU_OT_ERROR_LOG,		/* ZAP */
175	DMU_OT_SPA_HISTORY,		/* UINT8 */
176	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
177	DMU_OT_POOL_PROPS,		/* ZAP */
178	DMU_OT_DSL_PERMS,		/* ZAP */
179	DMU_OT_ACL,			/* ACL */
180	DMU_OT_SYSACL,			/* SYSACL */
181	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
182	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
183	DMU_OT_NEXT_CLONES,		/* ZAP */
184	DMU_OT_SCAN_QUEUE,		/* ZAP */
185	DMU_OT_USERGROUP_USED,		/* ZAP */
186	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
187	DMU_OT_USERREFS,		/* ZAP */
188	DMU_OT_DDT_ZAP,			/* ZAP */
189	DMU_OT_DDT_STATS,		/* ZAP */
190	DMU_OT_SA,			/* System attr */
191	DMU_OT_SA_MASTER_NODE,		/* ZAP */
192	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
193	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
194	DMU_OT_SCAN_XLATE,		/* ZAP */
195	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
196	DMU_OT_DEADLIST,		/* ZAP */
197	DMU_OT_DEADLIST_HDR,		/* UINT64 */
198	DMU_OT_DSL_CLONES,		/* ZAP */
199	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
200	/*
201	 * Do not allocate new object types here. Doing so makes the on-disk
202	 * format incompatible with any other format that uses the same object
203	 * type number.
204	 *
205	 * When creating an object which does not have one of the above types
206	 * use the DMU_OTN_* type with the correct byteswap and metadata
207	 * values.
208	 *
209	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
210	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
211	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
212	 * and DMU_OTN_* types).
213	 */
214	DMU_OT_NUMTYPES,
215
216	/*
217	 * Names for valid types declared with DMU_OT().
218	 */
219	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
220	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
221	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
222	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
223	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
224	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
225	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
226	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
227	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
228	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
229} dmu_object_type_t;
230
231typedef enum txg_how {
232	TXG_WAIT = 1,
233	TXG_NOWAIT,
234	TXG_WAITED,
235} txg_how_t;
236
237void byteswap_uint64_array(void *buf, size_t size);
238void byteswap_uint32_array(void *buf, size_t size);
239void byteswap_uint16_array(void *buf, size_t size);
240void byteswap_uint8_array(void *buf, size_t size);
241void zap_byteswap(void *buf, size_t size);
242void zfs_oldacl_byteswap(void *buf, size_t size);
243void zfs_acl_byteswap(void *buf, size_t size);
244void zfs_znode_byteswap(void *buf, size_t size);
245
246#define	DS_FIND_SNAPSHOTS	(1<<0)
247#define	DS_FIND_CHILDREN	(1<<1)
248#define	DS_FIND_SERIALIZE	(1<<2)
249
250/*
251 * The maximum number of bytes that can be accessed as part of one
252 * operation, including metadata.
253 */
254#define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
255#define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
256
257#define	DMU_USERUSED_OBJECT	(-1ULL)
258#define	DMU_GROUPUSED_OBJECT	(-2ULL)
259
260/*
261 * artificial blkids for bonus buffer and spill blocks
262 */
263#define	DMU_BONUS_BLKID		(-1ULL)
264#define	DMU_SPILL_BLKID		(-2ULL)
265/*
266 * Public routines to create, destroy, open, and close objsets.
267 */
268int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
269int dmu_objset_own(const char *name, dmu_objset_type_t type,
270    boolean_t readonly, void *tag, objset_t **osp);
271void dmu_objset_rele(objset_t *os, void *tag);
272void dmu_objset_disown(objset_t *os, void *tag);
273int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
274
275void dmu_objset_evict_dbufs(objset_t *os);
276int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
277    void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
278int dmu_get_recursive_snaps_nvl(char *fsname, const char *snapname,
279    struct nvlist *snaps);
280int dmu_objset_clone(const char *name, const char *origin);
281int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
282    struct nvlist *errlist);
283int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
284int dmu_objset_snapshot_tmp(const char *, const char *, int);
285int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
286    int flags);
287void dmu_objset_byteswap(void *buf, size_t size);
288int dsl_dataset_rename_snapshot(const char *fsname,
289    const char *oldsnapname, const char *newsnapname, boolean_t recursive);
290
291typedef struct dmu_buf {
292	uint64_t db_object;		/* object that this buffer is part of */
293	uint64_t db_offset;		/* byte offset in this object */
294	uint64_t db_size;		/* size of buffer in bytes */
295	void *db_data;			/* data in buffer */
296} dmu_buf_t;
297
298/*
299 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
300 */
301#define	DMU_POOL_DIRECTORY_OBJECT	1
302#define	DMU_POOL_CONFIG			"config"
303#define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
304#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
305#define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
306#define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
307#define	DMU_POOL_ROOT_DATASET		"root_dataset"
308#define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
309#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
310#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
311#define	DMU_POOL_SPARES			"spares"
312#define	DMU_POOL_DEFLATE		"deflate"
313#define	DMU_POOL_HISTORY		"history"
314#define	DMU_POOL_PROPS			"pool_props"
315#define	DMU_POOL_L2CACHE		"l2cache"
316#define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
317#define	DMU_POOL_DDT			"DDT-%s-%s-%s"
318#define	DMU_POOL_DDT_STATS		"DDT-statistics"
319#define	DMU_POOL_CREATION_VERSION	"creation_version"
320#define	DMU_POOL_SCAN			"scan"
321#define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
322#define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
323#define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
324#define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
325
326/*
327 * Allocate an object from this objset.  The range of object numbers
328 * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
329 *
330 * The transaction must be assigned to a txg.  The newly allocated
331 * object will be "held" in the transaction (ie. you can modify the
332 * newly allocated object in this transaction).
333 *
334 * dmu_object_alloc() chooses an object and returns it in *objectp.
335 *
336 * dmu_object_claim() allocates a specific object number.  If that
337 * number is already allocated, it fails and returns EEXIST.
338 *
339 * Return 0 on success, or ENOSPC or EEXIST as specified above.
340 */
341uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
342    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
343int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
344    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
345int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
346    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
347
348/*
349 * Free an object from this objset.
350 *
351 * The object's data will be freed as well (ie. you don't need to call
352 * dmu_free(object, 0, -1, tx)).
353 *
354 * The object need not be held in the transaction.
355 *
356 * If there are any holds on this object's buffers (via dmu_buf_hold()),
357 * or tx holds on the object (via dmu_tx_hold_object()), you can not
358 * free it; it fails and returns EBUSY.
359 *
360 * If the object is not allocated, it fails and returns ENOENT.
361 *
362 * Return 0 on success, or EBUSY or ENOENT as specified above.
363 */
364int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
365
366/*
367 * Find the next allocated or free object.
368 *
369 * The objectp parameter is in-out.  It will be updated to be the next
370 * object which is allocated.  Ignore objects which have not been
371 * modified since txg.
372 *
373 * XXX Can only be called on a objset with no dirty data.
374 *
375 * Returns 0 on success, or ENOENT if there are no more objects.
376 */
377int dmu_object_next(objset_t *os, uint64_t *objectp,
378    boolean_t hole, uint64_t txg);
379
380/*
381 * Set the data blocksize for an object.
382 *
383 * The object cannot have any blocks allcated beyond the first.  If
384 * the first block is allocated already, the new size must be greater
385 * than the current block size.  If these conditions are not met,
386 * ENOTSUP will be returned.
387 *
388 * Returns 0 on success, or EBUSY if there are any holds on the object
389 * contents, or ENOTSUP as described above.
390 */
391int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
392    int ibs, dmu_tx_t *tx);
393
394/*
395 * Set the checksum property on a dnode.  The new checksum algorithm will
396 * apply to all newly written blocks; existing blocks will not be affected.
397 */
398void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
399    dmu_tx_t *tx);
400
401/*
402 * Set the compress property on a dnode.  The new compression algorithm will
403 * apply to all newly written blocks; existing blocks will not be affected.
404 */
405void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
406    dmu_tx_t *tx);
407
408void
409dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
410    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
411    int compressed_size, int byteorder, dmu_tx_t *tx);
412
413/*
414 * Decide how to write a block: checksum, compression, number of copies, etc.
415 */
416#define	WP_NOFILL	0x1
417#define	WP_DMU_SYNC	0x2
418#define	WP_SPILL	0x4
419
420void dmu_write_policy(objset_t *os, struct dnode *dn, int level, int wp,
421    struct zio_prop *zp);
422/*
423 * The bonus data is accessed more or less like a regular buffer.
424 * You must dmu_bonus_hold() to get the buffer, which will give you a
425 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
426 * data.  As with any normal buffer, you must call dmu_buf_read() to
427 * read db_data, dmu_buf_will_dirty() before modifying it, and the
428 * object must be held in an assigned transaction before calling
429 * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
430 * buffer as well.  You must release your hold with dmu_buf_rele().
431 *
432 * Returns ENOENT, EIO, or 0.
433 */
434int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
435int dmu_bonus_max(void);
436int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
437int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
438dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
439int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
440
441/*
442 * Special spill buffer support used by "SA" framework
443 */
444
445int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
446int dmu_spill_hold_by_dnode(struct dnode *dn, uint32_t flags,
447    void *tag, dmu_buf_t **dbp);
448int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
449
450/*
451 * Obtain the DMU buffer from the specified object which contains the
452 * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
453 * that it will remain in memory.  You must release the hold with
454 * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
455 * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
456 *
457 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
458 * on the returned buffer before reading or writing the buffer's
459 * db_data.  The comments for those routines describe what particular
460 * operations are valid after calling them.
461 *
462 * The object number must be a valid, allocated object number.
463 */
464int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
465    void *tag, dmu_buf_t **, int flags);
466
467/*
468 * Add a reference to a dmu buffer that has already been held via
469 * dmu_buf_hold() in the current context.
470 */
471void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
472
473/*
474 * Attempt to add a reference to a dmu buffer that is in an unknown state,
475 * using a pointer that may have been invalidated by eviction processing.
476 * The request will succeed if the passed in dbuf still represents the
477 * same os/object/blkid, is ineligible for eviction, and has at least
478 * one hold by a user other than the syncer.
479 */
480boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
481    uint64_t blkid, void *tag);
482
483void dmu_buf_rele(dmu_buf_t *db, void *tag);
484uint64_t dmu_buf_refcount(dmu_buf_t *db);
485
486/*
487 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
488 * range of an object.  A pointer to an array of dmu_buf_t*'s is
489 * returned (in *dbpp).
490 *
491 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
492 * frees the array.  The hold on the array of buffers MUST be released
493 * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
494 * individually with dmu_buf_rele.
495 */
496int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
497    uint64_t length, boolean_t read, void *tag,
498    int *numbufsp, dmu_buf_t ***dbpp);
499void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
500
501typedef void dmu_buf_evict_func_t(void *user_ptr);
502
503/*
504 * A DMU buffer user object may be associated with a dbuf for the
505 * duration of its lifetime.  This allows the user of a dbuf (client)
506 * to attach private data to a dbuf (e.g. in-core only data such as a
507 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
508 * when that dbuf has been evicted.  Clients typically respond to the
509 * eviction notification by freeing their private data, thus ensuring
510 * the same lifetime for both dbuf and private data.
511 *
512 * The mapping from a dmu_buf_user_t to any client private data is the
513 * client's responsibility.  All current consumers of the API with private
514 * data embed a dmu_buf_user_t as the first member of the structure for
515 * their private data.  This allows conversions between the two types
516 * with a simple cast.  Since the DMU buf user API never needs access
517 * to the private data, other strategies can be employed if necessary
518 * or convenient for the client (e.g. using container_of() to do the
519 * conversion for private data that cannot have the dmu_buf_user_t as
520 * its first member).
521 *
522 * Eviction callbacks are executed without the dbuf mutex held or any
523 * other type of mechanism to guarantee that the dbuf is still available.
524 * For this reason, users must assume the dbuf has already been freed
525 * and not reference the dbuf from the callback context.
526 *
527 * Users requesting "immediate eviction" are notified as soon as the dbuf
528 * is only referenced by dirty records (dirties == holds).  Otherwise the
529 * notification occurs after eviction processing for the dbuf begins.
530 */
531typedef struct dmu_buf_user {
532	/*
533	 * Asynchronous user eviction callback state.
534	 */
535	taskq_ent_t	dbu_tqent;
536
537	/* This instance's eviction function pointer. */
538	dmu_buf_evict_func_t *dbu_evict_func;
539#ifdef ZFS_DEBUG
540	/*
541	 * Pointer to user's dbuf pointer.  NULL for clients that do
542	 * not associate a dbuf with their user data.
543	 *
544	 * The dbuf pointer is cleared upon eviction so as to catch
545	 * use-after-evict bugs in clients.
546	 */
547	dmu_buf_t **dbu_clear_on_evict_dbufp;
548#endif
549} dmu_buf_user_t;
550
551/*
552 * Initialize the given dmu_buf_user_t instance with the eviction function
553 * evict_func, to be called when the user is evicted.
554 *
555 * NOTE: This function should only be called once on a given dmu_buf_user_t.
556 *       To allow enforcement of this, dbu must already be zeroed on entry.
557 */
558#ifdef __lint
559/* Very ugly, but it beats issuing suppression directives in many Makefiles. */
560extern void
561dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
562    dmu_buf_t **clear_on_evict_dbufp);
563#else /* __lint */
564static inline void
565dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func,
566    dmu_buf_t **clear_on_evict_dbufp)
567{
568	ASSERT(dbu->dbu_evict_func == NULL);
569	ASSERT(evict_func != NULL);
570	dbu->dbu_evict_func = evict_func;
571#ifdef ZFS_DEBUG
572	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
573#endif
574}
575#endif /* __lint */
576
577/*
578 * Attach user data to a dbuf and mark it for normal (when the dbuf's
579 * data is cleared or its reference count goes to zero) eviction processing.
580 *
581 * Returns NULL on success, or the existing user if another user currently
582 * owns the buffer.
583 */
584void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
585
586/*
587 * Attach user data to a dbuf and mark it for immediate (its dirty and
588 * reference counts are equal) eviction processing.
589 *
590 * Returns NULL on success, or the existing user if another user currently
591 * owns the buffer.
592 */
593void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
594
595/*
596 * Replace the current user of a dbuf.
597 *
598 * If given the current user of a dbuf, replaces the dbuf's user with
599 * "new_user" and returns the user data pointer that was replaced.
600 * Otherwise returns the current, and unmodified, dbuf user pointer.
601 */
602void *dmu_buf_replace_user(dmu_buf_t *db,
603    dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
604
605/*
606 * Remove the specified user data for a DMU buffer.
607 *
608 * Returns the user that was removed on success, or the current user if
609 * another user currently owns the buffer.
610 */
611void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
612
613/*
614 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
615 */
616void *dmu_buf_get_user(dmu_buf_t *db);
617
618/* Block until any in-progress dmu buf user evictions complete. */
619void dmu_buf_user_evict_wait(void);
620
621/*
622 * Returns the blkptr associated with this dbuf, or NULL if not set.
623 */
624struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
625
626/*
627 * Indicate that you are going to modify the buffer's data (db_data).
628 *
629 * The transaction (tx) must be assigned to a txg (ie. you've called
630 * dmu_tx_assign()).  The buffer's object must be held in the tx
631 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
632 */
633void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
634
635/*
636 * Tells if the given dbuf is freeable.
637 */
638boolean_t dmu_buf_freeable(dmu_buf_t *);
639
640/*
641 * You must create a transaction, then hold the objects which you will
642 * (or might) modify as part of this transaction.  Then you must assign
643 * the transaction to a transaction group.  Once the transaction has
644 * been assigned, you can modify buffers which belong to held objects as
645 * part of this transaction.  You can't modify buffers before the
646 * transaction has been assigned; you can't modify buffers which don't
647 * belong to objects which this transaction holds; you can't hold
648 * objects once the transaction has been assigned.  You may hold an
649 * object which you are going to free (with dmu_object_free()), but you
650 * don't have to.
651 *
652 * You can abort the transaction before it has been assigned.
653 *
654 * Note that you may hold buffers (with dmu_buf_hold) at any time,
655 * regardless of transaction state.
656 */
657
658#define	DMU_NEW_OBJECT	(-1ULL)
659#define	DMU_OBJECT_END	(-1ULL)
660
661dmu_tx_t *dmu_tx_create(objset_t *os);
662void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
663void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
664    uint64_t len);
665void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
666void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
667void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
668void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
669void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
670void dmu_tx_abort(dmu_tx_t *tx);
671int dmu_tx_assign(dmu_tx_t *tx, enum txg_how txg_how);
672void dmu_tx_wait(dmu_tx_t *tx);
673void dmu_tx_commit(dmu_tx_t *tx);
674void dmu_tx_mark_netfree(dmu_tx_t *tx);
675
676/*
677 * To register a commit callback, dmu_tx_callback_register() must be called.
678 *
679 * dcb_data is a pointer to caller private data that is passed on as a
680 * callback parameter. The caller is responsible for properly allocating and
681 * freeing it.
682 *
683 * When registering a callback, the transaction must be already created, but
684 * it cannot be committed or aborted. It can be assigned to a txg or not.
685 *
686 * The callback will be called after the transaction has been safely written
687 * to stable storage and will also be called if the dmu_tx is aborted.
688 * If there is any error which prevents the transaction from being committed to
689 * disk, the callback will be called with a value of error != 0.
690 */
691typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
692
693void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
694    void *dcb_data);
695
696/*
697 * Free up the data blocks for a defined range of a file.  If size is
698 * -1, the range from offset to end-of-file is freed.
699 */
700int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
701	uint64_t size, dmu_tx_t *tx);
702int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
703	uint64_t size);
704int dmu_free_long_object(objset_t *os, uint64_t object);
705
706/*
707 * Convenience functions.
708 *
709 * Canfail routines will return 0 on success, or an errno if there is a
710 * nonrecoverable I/O error.
711 */
712#define	DMU_READ_PREFETCH	0 /* prefetch */
713#define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
714int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
715	void *buf, uint32_t flags);
716void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
717	const void *buf, dmu_tx_t *tx);
718void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
719	dmu_tx_t *tx);
720int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
721int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
722int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
723    dmu_tx_t *tx);
724int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
725    dmu_tx_t *tx);
726#ifdef _KERNEL
727#ifdef illumos
728int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
729    uint64_t size, struct page *pp, dmu_tx_t *tx);
730#else
731int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
732    uint64_t size, struct vm_page **ppa, dmu_tx_t *tx);
733#endif
734#endif
735struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
736void dmu_return_arcbuf(struct arc_buf *buf);
737void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
738    dmu_tx_t *tx);
739int dmu_xuio_init(struct xuio *uio, int niov);
740void dmu_xuio_fini(struct xuio *uio);
741int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
742    size_t n);
743int dmu_xuio_cnt(struct xuio *uio);
744struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
745void dmu_xuio_clear(struct xuio *uio, int i);
746void xuio_stat_wbuf_copied();
747void xuio_stat_wbuf_nocopy();
748
749extern boolean_t zfs_prefetch_disable;
750extern int zfs_max_recordsize;
751
752/*
753 * Asynchronously try to read in the data.
754 */
755void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
756    uint64_t len, enum zio_priority pri);
757
758typedef struct dmu_object_info {
759	/* All sizes are in bytes unless otherwise indicated. */
760	uint32_t doi_data_block_size;
761	uint32_t doi_metadata_block_size;
762	dmu_object_type_t doi_type;
763	dmu_object_type_t doi_bonus_type;
764	uint64_t doi_bonus_size;
765	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
766	uint8_t doi_checksum;
767	uint8_t doi_compress;
768	uint8_t doi_nblkptr;
769	uint8_t doi_pad[4];
770	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
771	uint64_t doi_max_offset;
772	uint64_t doi_fill_count;		/* number of non-empty blocks */
773} dmu_object_info_t;
774
775typedef void arc_byteswap_func_t(void *buf, size_t size);
776
777typedef struct dmu_object_type_info {
778	dmu_object_byteswap_t	ot_byteswap;
779	boolean_t		ot_metadata;
780	char			*ot_name;
781} dmu_object_type_info_t;
782
783typedef struct dmu_object_byteswap_info {
784	arc_byteswap_func_t	*ob_func;
785	char			*ob_name;
786} dmu_object_byteswap_info_t;
787
788extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
789extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
790
791/*
792 * Get information on a DMU object.
793 *
794 * Return 0 on success or ENOENT if object is not allocated.
795 *
796 * If doi is NULL, just indicates whether the object exists.
797 */
798int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
799/* Like dmu_object_info, but faster if you have a held dnode in hand. */
800void dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
801/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
802void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
803/*
804 * Like dmu_object_info_from_db, but faster still when you only care about
805 * the size.  This is specifically optimized for zfs_getattr().
806 */
807void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
808    u_longlong_t *nblk512);
809
810typedef struct dmu_objset_stats {
811	uint64_t dds_num_clones; /* number of clones of this */
812	uint64_t dds_creation_txg;
813	uint64_t dds_guid;
814	dmu_objset_type_t dds_type;
815	uint8_t dds_is_snapshot;
816	uint8_t dds_inconsistent;
817	char dds_origin[MAXNAMELEN];
818} dmu_objset_stats_t;
819
820/*
821 * Get stats on a dataset.
822 */
823void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
824
825/*
826 * Add entries to the nvlist for all the objset's properties.  See
827 * zfs_prop_table[] and zfs(1m) for details on the properties.
828 */
829void dmu_objset_stats(objset_t *os, struct nvlist *nv);
830
831/*
832 * Get the space usage statistics for statvfs().
833 *
834 * refdbytes is the amount of space "referenced" by this objset.
835 * availbytes is the amount of space available to this objset, taking
836 * into account quotas & reservations, assuming that no other objsets
837 * use the space first.  These values correspond to the 'referenced' and
838 * 'available' properties, described in the zfs(1m) manpage.
839 *
840 * usedobjs and availobjs are the number of objects currently allocated,
841 * and available.
842 */
843void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
844    uint64_t *usedobjsp, uint64_t *availobjsp);
845
846/*
847 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
848 * (Contrast with the ds_guid which is a 64-bit ID that will never
849 * change, so there is a small probability that it will collide.)
850 */
851uint64_t dmu_objset_fsid_guid(objset_t *os);
852
853/*
854 * Get the [cm]time for an objset's snapshot dir
855 */
856timestruc_t dmu_objset_snap_cmtime(objset_t *os);
857
858int dmu_objset_is_snapshot(objset_t *os);
859
860extern struct spa *dmu_objset_spa(objset_t *os);
861extern struct zilog *dmu_objset_zil(objset_t *os);
862extern struct dsl_pool *dmu_objset_pool(objset_t *os);
863extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
864extern void dmu_objset_name(objset_t *os, char *buf);
865extern dmu_objset_type_t dmu_objset_type(objset_t *os);
866extern uint64_t dmu_objset_id(objset_t *os);
867extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
868extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
869extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
870    uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
871extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
872    int maxlen, boolean_t *conflict);
873extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
874    uint64_t *idp, uint64_t *offp);
875
876typedef int objset_used_cb_t(dmu_object_type_t bonustype,
877    void *bonus, uint64_t *userp, uint64_t *groupp);
878extern void dmu_objset_register_type(dmu_objset_type_t ost,
879    objset_used_cb_t *cb);
880extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
881extern void *dmu_objset_get_user(objset_t *os);
882
883/*
884 * Return the txg number for the given assigned transaction.
885 */
886uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
887
888/*
889 * Synchronous write.
890 * If a parent zio is provided this function initiates a write on the
891 * provided buffer as a child of the parent zio.
892 * In the absence of a parent zio, the write is completed synchronously.
893 * At write completion, blk is filled with the bp of the written block.
894 * Note that while the data covered by this function will be on stable
895 * storage when the write completes this new data does not become a
896 * permanent part of the file until the associated transaction commits.
897 */
898
899/*
900 * {zfs,zvol,ztest}_get_done() args
901 */
902typedef struct zgd {
903	struct zilog	*zgd_zilog;
904	struct blkptr	*zgd_bp;
905	dmu_buf_t	*zgd_db;
906	struct rl	*zgd_rl;
907	void		*zgd_private;
908} zgd_t;
909
910typedef void dmu_sync_cb_t(zgd_t *arg, int error);
911int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
912
913/*
914 * Find the next hole or data block in file starting at *off
915 * Return found offset in *off. Return ESRCH for end of file.
916 */
917int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
918    uint64_t *off);
919
920/*
921 * Check if a DMU object has any dirty blocks. If so, sync out
922 * all pending transaction groups. Otherwise, this function
923 * does not alter DMU state. This could be improved to only sync
924 * out the necessary transaction groups for this particular
925 * object.
926 */
927int dmu_object_wait_synced(objset_t *os, uint64_t object);
928
929/*
930 * Initial setup and final teardown.
931 */
932extern void dmu_init(void);
933extern void dmu_fini(void);
934
935typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
936    uint64_t object, uint64_t offset, int len);
937void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
938    dmu_traverse_cb_t cb, void *arg);
939int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
940    struct file *fp, offset_t *offp);
941
942/* CRC64 table */
943#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
944extern uint64_t zfs_crc64_table[256];
945
946extern int zfs_mdcomp_disable;
947
948#ifdef	__cplusplus
949}
950#endif
951
952#endif	/* _SYS_DMU_H */
953