space_map.c revision 288571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/dnode.h>
34#include <sys/dsl_pool.h>
35#include <sys/zio.h>
36#include <sys/space_map.h>
37#include <sys/refcount.h>
38#include <sys/zfeature.h>
39
40SYSCTL_DECL(_vfs_zfs);
41
42/*
43 * The data for a given space map can be kept on blocks of any size.
44 * Larger blocks entail fewer i/o operations, but they also cause the
45 * DMU to keep more data in-core, and also to waste more i/o bandwidth
46 * when only a few blocks have changed since the last transaction group.
47 */
48int space_map_blksz = (1 << 12);
49SYSCTL_INT(_vfs_zfs, OID_AUTO, space_map_blksz, CTLFLAG_RDTUN, &space_map_blksz, 0,
50    "Maximum block size for space map.  Must be power of 2 and greater than 4096.");
51
52/*
53 * Load the space map disk into the specified range tree. Segments of maptype
54 * are added to the range tree, other segment types are removed.
55 *
56 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
57 * The caller must be OK with this.
58 */
59int
60space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
61{
62	uint64_t *entry, *entry_map, *entry_map_end;
63	uint64_t bufsize, size, offset, end, space;
64	int error = 0;
65
66	ASSERT(MUTEX_HELD(sm->sm_lock));
67
68	end = space_map_length(sm);
69	space = space_map_allocated(sm);
70
71	VERIFY0(range_tree_space(rt));
72
73	if (maptype == SM_FREE) {
74		range_tree_add(rt, sm->sm_start, sm->sm_size);
75		space = sm->sm_size - space;
76	}
77
78	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
79	entry_map = zio_buf_alloc(bufsize);
80
81	mutex_exit(sm->sm_lock);
82	if (end > bufsize) {
83		dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
84		    end - bufsize, ZIO_PRIORITY_SYNC_READ);
85	}
86	mutex_enter(sm->sm_lock);
87
88	for (offset = 0; offset < end; offset += bufsize) {
89		size = MIN(end - offset, bufsize);
90		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
91		VERIFY(size != 0);
92		ASSERT3U(sm->sm_blksz, !=, 0);
93
94		dprintf("object=%llu  offset=%llx  size=%llx\n",
95		    space_map_object(sm), offset, size);
96
97		mutex_exit(sm->sm_lock);
98		error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
99		    entry_map, DMU_READ_PREFETCH);
100		mutex_enter(sm->sm_lock);
101		if (error != 0)
102			break;
103
104		entry_map_end = entry_map + (size / sizeof (uint64_t));
105		for (entry = entry_map; entry < entry_map_end; entry++) {
106			uint64_t e = *entry;
107			uint64_t offset, size;
108
109			if (SM_DEBUG_DECODE(e))		/* Skip debug entries */
110				continue;
111
112			offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
113			    sm->sm_start;
114			size = SM_RUN_DECODE(e) << sm->sm_shift;
115
116			VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
117			VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
118			VERIFY3U(offset, >=, sm->sm_start);
119			VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
120			if (SM_TYPE_DECODE(e) == maptype) {
121				VERIFY3U(range_tree_space(rt) + size, <=,
122				    sm->sm_size);
123				range_tree_add(rt, offset, size);
124			} else {
125				range_tree_remove(rt, offset, size);
126			}
127		}
128	}
129
130	if (error == 0)
131		VERIFY3U(range_tree_space(rt), ==, space);
132	else
133		range_tree_vacate(rt, NULL, NULL);
134
135	zio_buf_free(entry_map, bufsize);
136	return (error);
137}
138
139void
140space_map_histogram_clear(space_map_t *sm)
141{
142	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
143		return;
144
145	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
146}
147
148boolean_t
149space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
150{
151	/*
152	 * Verify that the in-core range tree does not have any
153	 * ranges smaller than our sm_shift size.
154	 */
155	for (int i = 0; i < sm->sm_shift; i++) {
156		if (rt->rt_histogram[i] != 0)
157			return (B_FALSE);
158	}
159	return (B_TRUE);
160}
161
162void
163space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
164{
165	int idx = 0;
166
167	ASSERT(MUTEX_HELD(rt->rt_lock));
168	ASSERT(dmu_tx_is_syncing(tx));
169	VERIFY3U(space_map_object(sm), !=, 0);
170
171	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
172		return;
173
174	dmu_buf_will_dirty(sm->sm_dbuf, tx);
175
176	ASSERT(space_map_histogram_verify(sm, rt));
177
178	/*
179	 * Transfer the content of the range tree histogram to the space
180	 * map histogram. The space map histogram contains 32 buckets ranging
181	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
182	 * however, can represent ranges from 2^0 to 2^63. Since the space
183	 * map only cares about allocatable blocks (minimum of sm_shift) we
184	 * can safely ignore all ranges in the range tree smaller than sm_shift.
185	 */
186	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
187
188		/*
189		 * Since the largest histogram bucket in the space map is
190		 * 2^(32+sm_shift-1), we need to normalize the values in
191		 * the range tree for any bucket larger than that size. For
192		 * example given an sm_shift of 9, ranges larger than 2^40
193		 * would get normalized as if they were 1TB ranges. Assume
194		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
195		 * the calculation below would normalize this to 5 * 2^4 (16).
196		 */
197		ASSERT3U(i, >=, idx + sm->sm_shift);
198		sm->sm_phys->smp_histogram[idx] +=
199		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
200
201		/*
202		 * Increment the space map's index as long as we haven't
203		 * reached the maximum bucket size. Accumulate all ranges
204		 * larger than the max bucket size into the last bucket.
205		 */
206		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
207			ASSERT3U(idx + sm->sm_shift, ==, i);
208			idx++;
209			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
210		}
211	}
212}
213
214uint64_t
215space_map_entries(space_map_t *sm, range_tree_t *rt)
216{
217	avl_tree_t *t = &rt->rt_root;
218	range_seg_t *rs;
219	uint64_t size, entries;
220
221	/*
222	 * All space_maps always have a debug entry so account for it here.
223	 */
224	entries = 1;
225
226	/*
227	 * Traverse the range tree and calculate the number of space map
228	 * entries that would be required to write out the range tree.
229	 */
230	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
231		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
232		entries += howmany(size, SM_RUN_MAX);
233	}
234	return (entries);
235}
236
237/*
238 * Note: space_map_write() will drop sm_lock across dmu_write() calls.
239 */
240void
241space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
242    dmu_tx_t *tx)
243{
244	objset_t *os = sm->sm_os;
245	spa_t *spa = dmu_objset_spa(os);
246	avl_tree_t *t = &rt->rt_root;
247	range_seg_t *rs;
248	uint64_t size, total, rt_space, nodes;
249	uint64_t *entry, *entry_map, *entry_map_end;
250	uint64_t expected_entries, actual_entries = 1;
251
252	ASSERT(MUTEX_HELD(rt->rt_lock));
253	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
254	VERIFY3U(space_map_object(sm), !=, 0);
255	dmu_buf_will_dirty(sm->sm_dbuf, tx);
256
257	/*
258	 * This field is no longer necessary since the in-core space map
259	 * now contains the object number but is maintained for backwards
260	 * compatibility.
261	 */
262	sm->sm_phys->smp_object = sm->sm_object;
263
264	if (range_tree_space(rt) == 0) {
265		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
266		return;
267	}
268
269	if (maptype == SM_ALLOC)
270		sm->sm_phys->smp_alloc += range_tree_space(rt);
271	else
272		sm->sm_phys->smp_alloc -= range_tree_space(rt);
273
274	expected_entries = space_map_entries(sm, rt);
275
276	entry_map = zio_buf_alloc(sm->sm_blksz);
277	entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
278	entry = entry_map;
279
280	*entry++ = SM_DEBUG_ENCODE(1) |
281	    SM_DEBUG_ACTION_ENCODE(maptype) |
282	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
283	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
284
285	total = 0;
286	nodes = avl_numnodes(&rt->rt_root);
287	rt_space = range_tree_space(rt);
288	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
289		uint64_t start;
290
291		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
292		start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
293
294		total += size << sm->sm_shift;
295
296		while (size != 0) {
297			uint64_t run_len;
298
299			run_len = MIN(size, SM_RUN_MAX);
300
301			if (entry == entry_map_end) {
302				mutex_exit(rt->rt_lock);
303				dmu_write(os, space_map_object(sm),
304				    sm->sm_phys->smp_objsize, sm->sm_blksz,
305				    entry_map, tx);
306				mutex_enter(rt->rt_lock);
307				sm->sm_phys->smp_objsize += sm->sm_blksz;
308				entry = entry_map;
309			}
310
311			*entry++ = SM_OFFSET_ENCODE(start) |
312			    SM_TYPE_ENCODE(maptype) |
313			    SM_RUN_ENCODE(run_len);
314
315			start += run_len;
316			size -= run_len;
317			actual_entries++;
318		}
319	}
320
321	if (entry != entry_map) {
322		size = (entry - entry_map) * sizeof (uint64_t);
323		mutex_exit(rt->rt_lock);
324		dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
325		    size, entry_map, tx);
326		mutex_enter(rt->rt_lock);
327		sm->sm_phys->smp_objsize += size;
328	}
329	ASSERT3U(expected_entries, ==, actual_entries);
330
331	/*
332	 * Ensure that the space_map's accounting wasn't changed
333	 * while we were in the middle of writing it out.
334	 */
335	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
336	VERIFY3U(range_tree_space(rt), ==, rt_space);
337	VERIFY3U(range_tree_space(rt), ==, total);
338
339	zio_buf_free(entry_map, sm->sm_blksz);
340}
341
342static int
343space_map_open_impl(space_map_t *sm)
344{
345	int error;
346	u_longlong_t blocks;
347
348	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
349	if (error)
350		return (error);
351
352	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
353	sm->sm_phys = sm->sm_dbuf->db_data;
354	return (0);
355}
356
357int
358space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
359    uint64_t start, uint64_t size, uint8_t shift, kmutex_t *lp)
360{
361	space_map_t *sm;
362	int error;
363
364	ASSERT(*smp == NULL);
365	ASSERT(os != NULL);
366	ASSERT(object != 0);
367
368	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
369
370	sm->sm_start = start;
371	sm->sm_size = size;
372	sm->sm_shift = shift;
373	sm->sm_lock = lp;
374	sm->sm_os = os;
375	sm->sm_object = object;
376
377	error = space_map_open_impl(sm);
378	if (error != 0) {
379		space_map_close(sm);
380		return (error);
381	}
382
383	*smp = sm;
384
385	return (0);
386}
387
388void
389space_map_close(space_map_t *sm)
390{
391	if (sm == NULL)
392		return;
393
394	if (sm->sm_dbuf != NULL)
395		dmu_buf_rele(sm->sm_dbuf, sm);
396	sm->sm_dbuf = NULL;
397	sm->sm_phys = NULL;
398
399	kmem_free(sm, sizeof (*sm));
400}
401
402void
403space_map_truncate(space_map_t *sm, dmu_tx_t *tx)
404{
405	objset_t *os = sm->sm_os;
406	spa_t *spa = dmu_objset_spa(os);
407	dmu_object_info_t doi;
408
409	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
410	ASSERT(dmu_tx_is_syncing(tx));
411
412	dmu_object_info_from_db(sm->sm_dbuf, &doi);
413
414	/*
415	 * If the space map has the wrong bonus size (because
416	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
417	 * the wrong block size (because space_map_blksz has changed),
418	 * free and re-allocate its object with the updated sizes.
419	 *
420	 * Otherwise, just truncate the current object.
421	 */
422	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
423	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
424	    doi.doi_data_block_size != space_map_blksz) {
425		zfs_dbgmsg("txg %llu, spa %s, reallocating: "
426		    "old bonus %u, old blocksz %u", dmu_tx_get_txg(tx),
427		    spa_name(spa), doi.doi_bonus_size, doi.doi_data_block_size);
428
429		space_map_free(sm, tx);
430		dmu_buf_rele(sm->sm_dbuf, sm);
431
432		sm->sm_object = space_map_alloc(sm->sm_os, tx);
433		VERIFY0(space_map_open_impl(sm));
434	} else {
435		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
436
437		/*
438		 * If the spacemap is reallocated, its histogram
439		 * will be reset.  Do the same in the common case so that
440		 * bugs related to the uncommon case do not go unnoticed.
441		 */
442		bzero(sm->sm_phys->smp_histogram,
443		    sizeof (sm->sm_phys->smp_histogram));
444	}
445
446	dmu_buf_will_dirty(sm->sm_dbuf, tx);
447	sm->sm_phys->smp_objsize = 0;
448	sm->sm_phys->smp_alloc = 0;
449}
450
451/*
452 * Update the in-core space_map allocation and length values.
453 */
454void
455space_map_update(space_map_t *sm)
456{
457	if (sm == NULL)
458		return;
459
460	ASSERT(MUTEX_HELD(sm->sm_lock));
461
462	sm->sm_alloc = sm->sm_phys->smp_alloc;
463	sm->sm_length = sm->sm_phys->smp_objsize;
464}
465
466uint64_t
467space_map_alloc(objset_t *os, dmu_tx_t *tx)
468{
469	spa_t *spa = dmu_objset_spa(os);
470	uint64_t object;
471	int bonuslen;
472
473	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
474		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
475		bonuslen = sizeof (space_map_phys_t);
476		ASSERT3U(bonuslen, <=, dmu_bonus_max());
477	} else {
478		bonuslen = SPACE_MAP_SIZE_V0;
479	}
480
481	object = dmu_object_alloc(os,
482	    DMU_OT_SPACE_MAP, space_map_blksz,
483	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
484
485	return (object);
486}
487
488void
489space_map_free(space_map_t *sm, dmu_tx_t *tx)
490{
491	spa_t *spa;
492
493	if (sm == NULL)
494		return;
495
496	spa = dmu_objset_spa(sm->sm_os);
497	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
498		dmu_object_info_t doi;
499
500		dmu_object_info_from_db(sm->sm_dbuf, &doi);
501		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
502			VERIFY(spa_feature_is_active(spa,
503			    SPA_FEATURE_SPACEMAP_HISTOGRAM));
504			spa_feature_decr(spa,
505			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
506		}
507	}
508
509	VERIFY3U(dmu_object_free(sm->sm_os, space_map_object(sm), tx), ==, 0);
510	sm->sm_object = 0;
511}
512
513uint64_t
514space_map_object(space_map_t *sm)
515{
516	return (sm != NULL ? sm->sm_object : 0);
517}
518
519/*
520 * Returns the already synced, on-disk allocated space.
521 */
522uint64_t
523space_map_allocated(space_map_t *sm)
524{
525	return (sm != NULL ? sm->sm_alloc : 0);
526}
527
528/*
529 * Returns the already synced, on-disk length;
530 */
531uint64_t
532space_map_length(space_map_t *sm)
533{
534	return (sm != NULL ? sm->sm_length : 0);
535}
536
537/*
538 * Returns the allocated space that is currently syncing.
539 */
540int64_t
541space_map_alloc_delta(space_map_t *sm)
542{
543	if (sm == NULL)
544		return (0);
545	ASSERT(sm->sm_dbuf != NULL);
546	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
547}
548