spa_misc.c revision 323745
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/vdev_file.h>
43#include <sys/metaslab.h>
44#include <sys/uberblock_impl.h>
45#include <sys/txg.h>
46#include <sys/avl.h>
47#include <sys/unique.h>
48#include <sys/dsl_pool.h>
49#include <sys/dsl_dir.h>
50#include <sys/dsl_prop.h>
51#include <sys/dsl_scan.h>
52#include <sys/fs/zfs.h>
53#include <sys/metaslab_impl.h>
54#include <sys/arc.h>
55#include <sys/ddt.h>
56#include "zfs_prop.h"
57#include <sys/zfeature.h>
58
59/*
60 * SPA locking
61 *
62 * There are four basic locks for managing spa_t structures:
63 *
64 * spa_namespace_lock (global mutex)
65 *
66 *	This lock must be acquired to do any of the following:
67 *
68 *		- Lookup a spa_t by name
69 *		- Add or remove a spa_t from the namespace
70 *		- Increase spa_refcount from non-zero
71 *		- Check if spa_refcount is zero
72 *		- Rename a spa_t
73 *		- add/remove/attach/detach devices
74 *		- Held for the duration of create/destroy/import/export
75 *
76 *	It does not need to handle recursion.  A create or destroy may
77 *	reference objects (files or zvols) in other pools, but by
78 *	definition they must have an existing reference, and will never need
79 *	to lookup a spa_t by name.
80 *
81 * spa_refcount (per-spa refcount_t protected by mutex)
82 *
83 *	This reference count keep track of any active users of the spa_t.  The
84 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
85 *	the refcount is never really 'zero' - opening a pool implicitly keeps
86 *	some references in the DMU.  Internally we check against spa_minref, but
87 *	present the image of a zero/non-zero value to consumers.
88 *
89 * spa_config_lock[] (per-spa array of rwlocks)
90 *
91 *	This protects the spa_t from config changes, and must be held in
92 *	the following circumstances:
93 *
94 *		- RW_READER to perform I/O to the spa
95 *		- RW_WRITER to change the vdev config
96 *
97 * The locking order is fairly straightforward:
98 *
99 *		spa_namespace_lock	->	spa_refcount
100 *
101 *	The namespace lock must be acquired to increase the refcount from 0
102 *	or to check if it is zero.
103 *
104 *		spa_refcount		->	spa_config_lock[]
105 *
106 *	There must be at least one valid reference on the spa_t to acquire
107 *	the config lock.
108 *
109 *		spa_namespace_lock	->	spa_config_lock[]
110 *
111 *	The namespace lock must always be taken before the config lock.
112 *
113 *
114 * The spa_namespace_lock can be acquired directly and is globally visible.
115 *
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
118 *
119 *	spa_lookup()		Lookup a spa_t by name.
120 *
121 *	spa_add()		Create a new spa_t in the namespace.
122 *
123 *	spa_remove()		Remove a spa_t from the namespace.  This also
124 *				frees up any memory associated with the spa_t.
125 *
126 *	spa_next()		Returns the next spa_t in the system, or the
127 *				first if NULL is passed.
128 *
129 *	spa_evict_all()		Shutdown and remove all spa_t structures in
130 *				the system.
131 *
132 *	spa_guid_exists()	Determine whether a pool/device guid exists.
133 *
134 * The spa_refcount is manipulated using the following functions:
135 *
136 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
137 *				called with spa_namespace_lock held if the
138 *				refcount is currently zero.
139 *
140 *	spa_close()		Remove a reference from the spa_t.  This will
141 *				not free the spa_t or remove it from the
142 *				namespace.  No locking is required.
143 *
144 *	spa_refcount_zero()	Returns true if the refcount is currently
145 *				zero.  Must be called with spa_namespace_lock
146 *				held.
147 *
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 *
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer.  To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
156 *
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 *
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership.  For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
167 *
168 * The lock acquisition rules are as follows:
169 *
170 * SCL_CONFIG
171 *	Protects changes to the vdev tree topology, such as vdev
172 *	add/remove/attach/detach.  Protects the dirty config list
173 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
174 *
175 * SCL_STATE
176 *	Protects changes to pool state and vdev state, such as vdev
177 *	online/offline/fault/degrade/clear.  Protects the dirty state list
178 *	(spa_state_dirty_list) and global pool state (spa_state).
179 *
180 * SCL_ALLOC
181 *	Protects changes to metaslab groups and classes.
182 *	Held as reader by metaslab_alloc() and metaslab_claim().
183 *
184 * SCL_ZIO
185 *	Held by bp-level zios (those which have no io_vd upon entry)
186 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
187 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
188 *
189 * SCL_FREE
190 *	Protects changes to metaslab groups and classes.
191 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
192 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 *	blocks in zio_done() while another i/o that holds either
194 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 *
196 * SCL_VDEV
197 *	Held as reader to prevent changes to the vdev tree during trivial
198 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
199 *	other locks, and lower than all of them, to ensure that it's safe
200 *	to acquire regardless of caller context.
201 *
202 * In addition, the following rules apply:
203 *
204 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
205 *	The lock ordering is SCL_CONFIG > spa_props_lock.
206 *
207 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
208 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 *	or zio_write_phys() -- the caller must ensure that the config cannot
210 *	cannot change in the interim, and that the vdev cannot be reopened.
211 *	SCL_STATE as reader suffices for both.
212 *
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 *
215 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
216 *				for writing.
217 *
218 *	spa_vdev_exit()		Release the config lock, wait for all I/O
219 *				to complete, sync the updated configs to the
220 *				cache, and release the namespace lock.
221 *
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 *
226 * spa_rename() is also implemented within this file since it requires
227 * manipulation of the namespace.
228 */
229
230static avl_tree_t spa_namespace_avl;
231kmutex_t spa_namespace_lock;
232static kcondvar_t spa_namespace_cv;
233static int spa_active_count;
234int spa_max_replication_override = SPA_DVAS_PER_BP;
235
236static kmutex_t spa_spare_lock;
237static avl_tree_t spa_spare_avl;
238static kmutex_t spa_l2cache_lock;
239static avl_tree_t spa_l2cache_avl;
240
241kmem_cache_t *spa_buffer_pool;
242int spa_mode_global;
243
244#ifdef ZFS_DEBUG
245/* Everything except dprintf and spa is on by default in debug builds */
246int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
247#else
248int zfs_flags = 0;
249#endif
250SYSCTL_DECL(_debug);
251TUNABLE_INT("debug.zfs_flags", &zfs_flags);
252SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
253    "ZFS debug flags.");
254
255/*
256 * zfs_recover can be set to nonzero to attempt to recover from
257 * otherwise-fatal errors, typically caused by on-disk corruption.  When
258 * set, calls to zfs_panic_recover() will turn into warning messages.
259 * This should only be used as a last resort, as it typically results
260 * in leaked space, or worse.
261 */
262boolean_t zfs_recover = B_FALSE;
263SYSCTL_DECL(_vfs_zfs);
264TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
265SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
266    "Try to recover from otherwise-fatal errors.");
267
268static int
269sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
270{
271	int err, val;
272
273	val = zfs_flags;
274	err = sysctl_handle_int(oidp, &val, 0, req);
275	if (err != 0 || req->newptr == NULL)
276		return (err);
277
278	/*
279	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
280	 * arc buffers in the system have the necessary additional
281	 * checksum data.  However, it is safe to disable at any
282	 * time.
283	 */
284	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
285		val &= ~ZFS_DEBUG_MODIFY;
286	zfs_flags = val;
287
288	return (0);
289}
290TUNABLE_INT("vfs.zfs.debugflags", &zfs_flags);
291SYSCTL_PROC(_vfs_zfs, OID_AUTO, debugflags,
292    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
293    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
294SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
295    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
296    sysctl_vfs_zfs_debug_flags, "IU",
297    "Debug flags for ZFS testing (deprecated, see vfs.zfs.debugflags).");
298
299/*
300 * If destroy encounters an EIO while reading metadata (e.g. indirect
301 * blocks), space referenced by the missing metadata can not be freed.
302 * Normally this causes the background destroy to become "stalled", as
303 * it is unable to make forward progress.  While in this stalled state,
304 * all remaining space to free from the error-encountering filesystem is
305 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
306 * permanently leak the space from indirect blocks that can not be read,
307 * and continue to free everything else that it can.
308 *
309 * The default, "stalling" behavior is useful if the storage partially
310 * fails (i.e. some but not all i/os fail), and then later recovers.  In
311 * this case, we will be able to continue pool operations while it is
312 * partially failed, and when it recovers, we can continue to free the
313 * space, with no leaks.  However, note that this case is actually
314 * fairly rare.
315 *
316 * Typically pools either (a) fail completely (but perhaps temporarily,
317 * e.g. a top-level vdev going offline), or (b) have localized,
318 * permanent errors (e.g. disk returns the wrong data due to bit flip or
319 * firmware bug).  In case (a), this setting does not matter because the
320 * pool will be suspended and the sync thread will not be able to make
321 * forward progress regardless.  In case (b), because the error is
322 * permanent, the best we can do is leak the minimum amount of space,
323 * which is what setting this flag will do.  Therefore, it is reasonable
324 * for this flag to normally be set, but we chose the more conservative
325 * approach of not setting it, so that there is no possibility of
326 * leaking space in the "partial temporary" failure case.
327 */
328boolean_t zfs_free_leak_on_eio = B_FALSE;
329
330/*
331 * Expiration time in milliseconds. This value has two meanings. First it is
332 * used to determine when the spa_deadman() logic should fire. By default the
333 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
334 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
335 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
336 * in a system panic.
337 */
338uint64_t zfs_deadman_synctime_ms = 1000000ULL;
339TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
340SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
341    &zfs_deadman_synctime_ms, 0,
342    "Stalled ZFS I/O expiration time in milliseconds");
343
344/*
345 * Check time in milliseconds. This defines the frequency at which we check
346 * for hung I/O.
347 */
348uint64_t zfs_deadman_checktime_ms = 5000ULL;
349TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
350SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
351    &zfs_deadman_checktime_ms, 0,
352    "Period of checks for stalled ZFS I/O in milliseconds");
353
354/*
355 * Default value of -1 for zfs_deadman_enabled is resolved in
356 * zfs_deadman_init()
357 */
358int zfs_deadman_enabled = -1;
359TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
360SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
361    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
362
363/*
364 * The worst case is single-sector max-parity RAID-Z blocks, in which
365 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
366 * times the size; so just assume that.  Add to this the fact that
367 * we can have up to 3 DVAs per bp, and one more factor of 2 because
368 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
369 * the worst case is:
370 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
371 */
372int spa_asize_inflation = 24;
373TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
374SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
375    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
376
377#ifndef illumos
378#ifdef _KERNEL
379static void
380zfs_deadman_init()
381{
382	/*
383	 * If we are not i386 or amd64 or in a virtual machine,
384	 * disable ZFS deadman thread by default
385	 */
386	if (zfs_deadman_enabled == -1) {
387#if defined(__amd64__) || defined(__i386__)
388		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
389#else
390		zfs_deadman_enabled = 0;
391#endif
392	}
393}
394#endif	/* _KERNEL */
395#endif	/* !illumos */
396
397/*
398 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
399 * the pool to be consumed.  This ensures that we don't run the pool
400 * completely out of space, due to unaccounted changes (e.g. to the MOS).
401 * It also limits the worst-case time to allocate space.  If we have
402 * less than this amount of free space, most ZPL operations (e.g. write,
403 * create) will return ENOSPC.
404 *
405 * Certain operations (e.g. file removal, most administrative actions) can
406 * use half the slop space.  They will only return ENOSPC if less than half
407 * the slop space is free.  Typically, once the pool has less than the slop
408 * space free, the user will use these operations to free up space in the pool.
409 * These are the operations that call dsl_pool_adjustedsize() with the netfree
410 * argument set to TRUE.
411 *
412 * A very restricted set of operations are always permitted, regardless of
413 * the amount of free space.  These are the operations that call
414 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
415 * operations result in a net increase in the amount of space used,
416 * it is possible to run the pool completely out of space, causing it to
417 * be permanently read-only.
418 *
419 * Note that on very small pools, the slop space will be larger than
420 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
421 * but we never allow it to be more than half the pool size.
422 *
423 * See also the comments in zfs_space_check_t.
424 */
425int spa_slop_shift = 5;
426SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
427    &spa_slop_shift, 0,
428    "Shift value of reserved space (1/(2^spa_slop_shift)).");
429uint64_t spa_min_slop = 128 * 1024 * 1024;
430SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
431    &spa_min_slop, 0,
432    "Minimal value of reserved space");
433
434/*
435 * ==========================================================================
436 * SPA config locking
437 * ==========================================================================
438 */
439static void
440spa_config_lock_init(spa_t *spa)
441{
442	for (int i = 0; i < SCL_LOCKS; i++) {
443		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
445		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
446		refcount_create_untracked(&scl->scl_count);
447		scl->scl_writer = NULL;
448		scl->scl_write_wanted = 0;
449	}
450}
451
452static void
453spa_config_lock_destroy(spa_t *spa)
454{
455	for (int i = 0; i < SCL_LOCKS; i++) {
456		spa_config_lock_t *scl = &spa->spa_config_lock[i];
457		mutex_destroy(&scl->scl_lock);
458		cv_destroy(&scl->scl_cv);
459		refcount_destroy(&scl->scl_count);
460		ASSERT(scl->scl_writer == NULL);
461		ASSERT(scl->scl_write_wanted == 0);
462	}
463}
464
465int
466spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
467{
468	for (int i = 0; i < SCL_LOCKS; i++) {
469		spa_config_lock_t *scl = &spa->spa_config_lock[i];
470		if (!(locks & (1 << i)))
471			continue;
472		mutex_enter(&scl->scl_lock);
473		if (rw == RW_READER) {
474			if (scl->scl_writer || scl->scl_write_wanted) {
475				mutex_exit(&scl->scl_lock);
476				spa_config_exit(spa, locks & ((1 << i) - 1),
477				    tag);
478				return (0);
479			}
480		} else {
481			ASSERT(scl->scl_writer != curthread);
482			if (!refcount_is_zero(&scl->scl_count)) {
483				mutex_exit(&scl->scl_lock);
484				spa_config_exit(spa, locks & ((1 << i) - 1),
485				    tag);
486				return (0);
487			}
488			scl->scl_writer = curthread;
489		}
490		(void) refcount_add(&scl->scl_count, tag);
491		mutex_exit(&scl->scl_lock);
492	}
493	return (1);
494}
495
496void
497spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
498{
499	int wlocks_held = 0;
500
501	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
502
503	for (int i = 0; i < SCL_LOCKS; i++) {
504		spa_config_lock_t *scl = &spa->spa_config_lock[i];
505		if (scl->scl_writer == curthread)
506			wlocks_held |= (1 << i);
507		if (!(locks & (1 << i)))
508			continue;
509		mutex_enter(&scl->scl_lock);
510		if (rw == RW_READER) {
511			while (scl->scl_writer || scl->scl_write_wanted) {
512				cv_wait(&scl->scl_cv, &scl->scl_lock);
513			}
514		} else {
515			ASSERT(scl->scl_writer != curthread);
516			while (!refcount_is_zero(&scl->scl_count)) {
517				scl->scl_write_wanted++;
518				cv_wait(&scl->scl_cv, &scl->scl_lock);
519				scl->scl_write_wanted--;
520			}
521			scl->scl_writer = curthread;
522		}
523		(void) refcount_add(&scl->scl_count, tag);
524		mutex_exit(&scl->scl_lock);
525	}
526	ASSERT(wlocks_held <= locks);
527}
528
529void
530spa_config_exit(spa_t *spa, int locks, void *tag)
531{
532	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
533		spa_config_lock_t *scl = &spa->spa_config_lock[i];
534		if (!(locks & (1 << i)))
535			continue;
536		mutex_enter(&scl->scl_lock);
537		ASSERT(!refcount_is_zero(&scl->scl_count));
538		if (refcount_remove(&scl->scl_count, tag) == 0) {
539			ASSERT(scl->scl_writer == NULL ||
540			    scl->scl_writer == curthread);
541			scl->scl_writer = NULL;	/* OK in either case */
542			cv_broadcast(&scl->scl_cv);
543		}
544		mutex_exit(&scl->scl_lock);
545	}
546}
547
548int
549spa_config_held(spa_t *spa, int locks, krw_t rw)
550{
551	int locks_held = 0;
552
553	for (int i = 0; i < SCL_LOCKS; i++) {
554		spa_config_lock_t *scl = &spa->spa_config_lock[i];
555		if (!(locks & (1 << i)))
556			continue;
557		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
558		    (rw == RW_WRITER && scl->scl_writer == curthread))
559			locks_held |= 1 << i;
560	}
561
562	return (locks_held);
563}
564
565/*
566 * ==========================================================================
567 * SPA namespace functions
568 * ==========================================================================
569 */
570
571/*
572 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
573 * Returns NULL if no matching spa_t is found.
574 */
575spa_t *
576spa_lookup(const char *name)
577{
578	static spa_t search;	/* spa_t is large; don't allocate on stack */
579	spa_t *spa;
580	avl_index_t where;
581	char *cp;
582
583	ASSERT(MUTEX_HELD(&spa_namespace_lock));
584
585	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
586
587	/*
588	 * If it's a full dataset name, figure out the pool name and
589	 * just use that.
590	 */
591	cp = strpbrk(search.spa_name, "/@#");
592	if (cp != NULL)
593		*cp = '\0';
594
595	spa = avl_find(&spa_namespace_avl, &search, &where);
596
597	return (spa);
598}
599
600/*
601 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
602 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
603 * looking for potentially hung I/Os.
604 */
605static void
606spa_deadman(void *arg, int pending)
607{
608	spa_t *spa = arg;
609
610	/*
611	 * Disable the deadman timer if the pool is suspended.
612	 */
613	if (spa_suspended(spa)) {
614#ifdef illumos
615		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
616#else
617		/* Nothing.  just don't schedule any future callouts. */
618#endif
619		return;
620	}
621
622	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
623	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
624	    ++spa->spa_deadman_calls);
625	if (zfs_deadman_enabled)
626		vdev_deadman(spa->spa_root_vdev);
627#ifdef __FreeBSD__
628#ifdef _KERNEL
629	callout_schedule(&spa->spa_deadman_cycid,
630	    hz * zfs_deadman_checktime_ms / MILLISEC);
631#endif
632#endif
633}
634
635#if defined(__FreeBSD__) && defined(_KERNEL)
636static void
637spa_deadman_timeout(void *arg)
638{
639	spa_t *spa = arg;
640
641	taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
642}
643#endif
644
645/*
646 * Create an uninitialized spa_t with the given name.  Requires
647 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
648 * exist by calling spa_lookup() first.
649 */
650spa_t *
651spa_add(const char *name, nvlist_t *config, const char *altroot)
652{
653	spa_t *spa;
654	spa_config_dirent_t *dp;
655#ifdef illumos
656	cyc_handler_t hdlr;
657	cyc_time_t when;
658#endif
659
660	ASSERT(MUTEX_HELD(&spa_namespace_lock));
661
662	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
663
664	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
665	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
666	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
667	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
668	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
669	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
670	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
671	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
672	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
673	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
674	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
675	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
676
677	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
678	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
679	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
680	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
681	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
682
683	for (int t = 0; t < TXG_SIZE; t++)
684		bplist_create(&spa->spa_free_bplist[t]);
685
686	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
687	spa->spa_state = POOL_STATE_UNINITIALIZED;
688	spa->spa_freeze_txg = UINT64_MAX;
689	spa->spa_final_txg = UINT64_MAX;
690	spa->spa_load_max_txg = UINT64_MAX;
691	spa->spa_proc = &p0;
692	spa->spa_proc_state = SPA_PROC_NONE;
693
694#ifdef illumos
695	hdlr.cyh_func = spa_deadman;
696	hdlr.cyh_arg = spa;
697	hdlr.cyh_level = CY_LOW_LEVEL;
698#endif
699
700	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
701
702#ifdef illumos
703	/*
704	 * This determines how often we need to check for hung I/Os after
705	 * the cyclic has already fired. Since checking for hung I/Os is
706	 * an expensive operation we don't want to check too frequently.
707	 * Instead wait for 5 seconds before checking again.
708	 */
709	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
710	when.cyt_when = CY_INFINITY;
711	mutex_enter(&cpu_lock);
712	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
713	mutex_exit(&cpu_lock);
714#else	/* !illumos */
715#ifdef _KERNEL
716	/*
717	 * callout(9) does not provide a way to initialize a callout with
718	 * a function and an argument, so we use callout_reset() to schedule
719	 * the callout in the very distant future.  Even if that event ever
720	 * fires, it should be okayas we won't have any active zio-s.
721	 * But normally spa_sync() will reschedule the callout with a proper
722	 * timeout.
723	 * callout(9) does not allow the callback function to sleep but
724	 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
725	 * emulated using sx(9).  For this reason spa_deadman_timeout()
726	 * will schedule spa_deadman() as task on a taskqueue that allows
727	 * sleeping.
728	 */
729	TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
730	callout_init(&spa->spa_deadman_cycid, 1);
731	callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
732	    spa_deadman_timeout, spa, 0);
733#endif
734#endif
735	refcount_create(&spa->spa_refcount);
736	spa_config_lock_init(spa);
737
738	avl_add(&spa_namespace_avl, spa);
739
740	/*
741	 * Set the alternate root, if there is one.
742	 */
743	if (altroot) {
744		spa->spa_root = spa_strdup(altroot);
745		spa_active_count++;
746	}
747
748	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
749	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
750
751	/*
752	 * Every pool starts with the default cachefile
753	 */
754	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
755	    offsetof(spa_config_dirent_t, scd_link));
756
757	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
758	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
759	list_insert_head(&spa->spa_config_list, dp);
760
761	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
762	    KM_SLEEP) == 0);
763
764	if (config != NULL) {
765		nvlist_t *features;
766
767		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
768		    &features) == 0) {
769			VERIFY(nvlist_dup(features, &spa->spa_label_features,
770			    0) == 0);
771		}
772
773		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
774	}
775
776	if (spa->spa_label_features == NULL) {
777		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
778		    KM_SLEEP) == 0);
779	}
780
781	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
782
783	spa->spa_min_ashift = INT_MAX;
784	spa->spa_max_ashift = 0;
785
786	/*
787	 * As a pool is being created, treat all features as disabled by
788	 * setting SPA_FEATURE_DISABLED for all entries in the feature
789	 * refcount cache.
790	 */
791	for (int i = 0; i < SPA_FEATURES; i++) {
792		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
793	}
794
795	return (spa);
796}
797
798/*
799 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
800 * spa_namespace_lock.  This is called only after the spa_t has been closed and
801 * deactivated.
802 */
803void
804spa_remove(spa_t *spa)
805{
806	spa_config_dirent_t *dp;
807
808	ASSERT(MUTEX_HELD(&spa_namespace_lock));
809	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
810	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
811
812	nvlist_free(spa->spa_config_splitting);
813
814	avl_remove(&spa_namespace_avl, spa);
815	cv_broadcast(&spa_namespace_cv);
816
817	if (spa->spa_root) {
818		spa_strfree(spa->spa_root);
819		spa_active_count--;
820	}
821
822	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
823		list_remove(&spa->spa_config_list, dp);
824		if (dp->scd_path != NULL)
825			spa_strfree(dp->scd_path);
826		kmem_free(dp, sizeof (spa_config_dirent_t));
827	}
828
829	avl_destroy(&spa->spa_alloc_tree);
830	list_destroy(&spa->spa_config_list);
831
832	nvlist_free(spa->spa_label_features);
833	nvlist_free(spa->spa_load_info);
834	spa_config_set(spa, NULL);
835
836#ifdef illumos
837	mutex_enter(&cpu_lock);
838	if (spa->spa_deadman_cycid != CYCLIC_NONE)
839		cyclic_remove(spa->spa_deadman_cycid);
840	mutex_exit(&cpu_lock);
841	spa->spa_deadman_cycid = CYCLIC_NONE;
842#else	/* !illumos */
843#ifdef _KERNEL
844	callout_drain(&spa->spa_deadman_cycid);
845	taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
846#endif
847#endif
848
849	refcount_destroy(&spa->spa_refcount);
850
851	spa_config_lock_destroy(spa);
852
853	for (int t = 0; t < TXG_SIZE; t++)
854		bplist_destroy(&spa->spa_free_bplist[t]);
855
856	zio_checksum_templates_free(spa);
857
858	cv_destroy(&spa->spa_async_cv);
859	cv_destroy(&spa->spa_evicting_os_cv);
860	cv_destroy(&spa->spa_proc_cv);
861	cv_destroy(&spa->spa_scrub_io_cv);
862	cv_destroy(&spa->spa_suspend_cv);
863
864	mutex_destroy(&spa->spa_alloc_lock);
865	mutex_destroy(&spa->spa_async_lock);
866	mutex_destroy(&spa->spa_errlist_lock);
867	mutex_destroy(&spa->spa_errlog_lock);
868	mutex_destroy(&spa->spa_evicting_os_lock);
869	mutex_destroy(&spa->spa_history_lock);
870	mutex_destroy(&spa->spa_proc_lock);
871	mutex_destroy(&spa->spa_props_lock);
872	mutex_destroy(&spa->spa_cksum_tmpls_lock);
873	mutex_destroy(&spa->spa_scrub_lock);
874	mutex_destroy(&spa->spa_suspend_lock);
875	mutex_destroy(&spa->spa_vdev_top_lock);
876
877	kmem_free(spa, sizeof (spa_t));
878}
879
880/*
881 * Given a pool, return the next pool in the namespace, or NULL if there is
882 * none.  If 'prev' is NULL, return the first pool.
883 */
884spa_t *
885spa_next(spa_t *prev)
886{
887	ASSERT(MUTEX_HELD(&spa_namespace_lock));
888
889	if (prev)
890		return (AVL_NEXT(&spa_namespace_avl, prev));
891	else
892		return (avl_first(&spa_namespace_avl));
893}
894
895/*
896 * ==========================================================================
897 * SPA refcount functions
898 * ==========================================================================
899 */
900
901/*
902 * Add a reference to the given spa_t.  Must have at least one reference, or
903 * have the namespace lock held.
904 */
905void
906spa_open_ref(spa_t *spa, void *tag)
907{
908	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
909	    MUTEX_HELD(&spa_namespace_lock));
910	(void) refcount_add(&spa->spa_refcount, tag);
911}
912
913/*
914 * Remove a reference to the given spa_t.  Must have at least one reference, or
915 * have the namespace lock held.
916 */
917void
918spa_close(spa_t *spa, void *tag)
919{
920	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
921	    MUTEX_HELD(&spa_namespace_lock));
922	(void) refcount_remove(&spa->spa_refcount, tag);
923}
924
925/*
926 * Remove a reference to the given spa_t held by a dsl dir that is
927 * being asynchronously released.  Async releases occur from a taskq
928 * performing eviction of dsl datasets and dirs.  The namespace lock
929 * isn't held and the hold by the object being evicted may contribute to
930 * spa_minref (e.g. dataset or directory released during pool export),
931 * so the asserts in spa_close() do not apply.
932 */
933void
934spa_async_close(spa_t *spa, void *tag)
935{
936	(void) refcount_remove(&spa->spa_refcount, tag);
937}
938
939/*
940 * Check to see if the spa refcount is zero.  Must be called with
941 * spa_namespace_lock held.  We really compare against spa_minref, which is the
942 * number of references acquired when opening a pool
943 */
944boolean_t
945spa_refcount_zero(spa_t *spa)
946{
947	ASSERT(MUTEX_HELD(&spa_namespace_lock));
948
949	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
950}
951
952/*
953 * ==========================================================================
954 * SPA spare and l2cache tracking
955 * ==========================================================================
956 */
957
958/*
959 * Hot spares and cache devices are tracked using the same code below,
960 * for 'auxiliary' devices.
961 */
962
963typedef struct spa_aux {
964	uint64_t	aux_guid;
965	uint64_t	aux_pool;
966	avl_node_t	aux_avl;
967	int		aux_count;
968} spa_aux_t;
969
970static int
971spa_aux_compare(const void *a, const void *b)
972{
973	const spa_aux_t *sa = a;
974	const spa_aux_t *sb = b;
975
976	if (sa->aux_guid < sb->aux_guid)
977		return (-1);
978	else if (sa->aux_guid > sb->aux_guid)
979		return (1);
980	else
981		return (0);
982}
983
984void
985spa_aux_add(vdev_t *vd, avl_tree_t *avl)
986{
987	avl_index_t where;
988	spa_aux_t search;
989	spa_aux_t *aux;
990
991	search.aux_guid = vd->vdev_guid;
992	if ((aux = avl_find(avl, &search, &where)) != NULL) {
993		aux->aux_count++;
994	} else {
995		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
996		aux->aux_guid = vd->vdev_guid;
997		aux->aux_count = 1;
998		avl_insert(avl, aux, where);
999	}
1000}
1001
1002void
1003spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1004{
1005	spa_aux_t search;
1006	spa_aux_t *aux;
1007	avl_index_t where;
1008
1009	search.aux_guid = vd->vdev_guid;
1010	aux = avl_find(avl, &search, &where);
1011
1012	ASSERT(aux != NULL);
1013
1014	if (--aux->aux_count == 0) {
1015		avl_remove(avl, aux);
1016		kmem_free(aux, sizeof (spa_aux_t));
1017	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1018		aux->aux_pool = 0ULL;
1019	}
1020}
1021
1022boolean_t
1023spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1024{
1025	spa_aux_t search, *found;
1026
1027	search.aux_guid = guid;
1028	found = avl_find(avl, &search, NULL);
1029
1030	if (pool) {
1031		if (found)
1032			*pool = found->aux_pool;
1033		else
1034			*pool = 0ULL;
1035	}
1036
1037	if (refcnt) {
1038		if (found)
1039			*refcnt = found->aux_count;
1040		else
1041			*refcnt = 0;
1042	}
1043
1044	return (found != NULL);
1045}
1046
1047void
1048spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1049{
1050	spa_aux_t search, *found;
1051	avl_index_t where;
1052
1053	search.aux_guid = vd->vdev_guid;
1054	found = avl_find(avl, &search, &where);
1055	ASSERT(found != NULL);
1056	ASSERT(found->aux_pool == 0ULL);
1057
1058	found->aux_pool = spa_guid(vd->vdev_spa);
1059}
1060
1061/*
1062 * Spares are tracked globally due to the following constraints:
1063 *
1064 * 	- A spare may be part of multiple pools.
1065 * 	- A spare may be added to a pool even if it's actively in use within
1066 *	  another pool.
1067 * 	- A spare in use in any pool can only be the source of a replacement if
1068 *	  the target is a spare in the same pool.
1069 *
1070 * We keep track of all spares on the system through the use of a reference
1071 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1072 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1073 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1074 * inactive).  When a spare is made active (used to replace a device in the
1075 * pool), we also keep track of which pool its been made a part of.
1076 *
1077 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1078 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1079 * separate spare lock exists for the status query path, which does not need to
1080 * be completely consistent with respect to other vdev configuration changes.
1081 */
1082
1083static int
1084spa_spare_compare(const void *a, const void *b)
1085{
1086	return (spa_aux_compare(a, b));
1087}
1088
1089void
1090spa_spare_add(vdev_t *vd)
1091{
1092	mutex_enter(&spa_spare_lock);
1093	ASSERT(!vd->vdev_isspare);
1094	spa_aux_add(vd, &spa_spare_avl);
1095	vd->vdev_isspare = B_TRUE;
1096	mutex_exit(&spa_spare_lock);
1097}
1098
1099void
1100spa_spare_remove(vdev_t *vd)
1101{
1102	mutex_enter(&spa_spare_lock);
1103	ASSERT(vd->vdev_isspare);
1104	spa_aux_remove(vd, &spa_spare_avl);
1105	vd->vdev_isspare = B_FALSE;
1106	mutex_exit(&spa_spare_lock);
1107}
1108
1109boolean_t
1110spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1111{
1112	boolean_t found;
1113
1114	mutex_enter(&spa_spare_lock);
1115	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1116	mutex_exit(&spa_spare_lock);
1117
1118	return (found);
1119}
1120
1121void
1122spa_spare_activate(vdev_t *vd)
1123{
1124	mutex_enter(&spa_spare_lock);
1125	ASSERT(vd->vdev_isspare);
1126	spa_aux_activate(vd, &spa_spare_avl);
1127	mutex_exit(&spa_spare_lock);
1128}
1129
1130/*
1131 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1132 * Cache devices currently only support one pool per cache device, and so
1133 * for these devices the aux reference count is currently unused beyond 1.
1134 */
1135
1136static int
1137spa_l2cache_compare(const void *a, const void *b)
1138{
1139	return (spa_aux_compare(a, b));
1140}
1141
1142void
1143spa_l2cache_add(vdev_t *vd)
1144{
1145	mutex_enter(&spa_l2cache_lock);
1146	ASSERT(!vd->vdev_isl2cache);
1147	spa_aux_add(vd, &spa_l2cache_avl);
1148	vd->vdev_isl2cache = B_TRUE;
1149	mutex_exit(&spa_l2cache_lock);
1150}
1151
1152void
1153spa_l2cache_remove(vdev_t *vd)
1154{
1155	mutex_enter(&spa_l2cache_lock);
1156	ASSERT(vd->vdev_isl2cache);
1157	spa_aux_remove(vd, &spa_l2cache_avl);
1158	vd->vdev_isl2cache = B_FALSE;
1159	mutex_exit(&spa_l2cache_lock);
1160}
1161
1162boolean_t
1163spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1164{
1165	boolean_t found;
1166
1167	mutex_enter(&spa_l2cache_lock);
1168	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1169	mutex_exit(&spa_l2cache_lock);
1170
1171	return (found);
1172}
1173
1174void
1175spa_l2cache_activate(vdev_t *vd)
1176{
1177	mutex_enter(&spa_l2cache_lock);
1178	ASSERT(vd->vdev_isl2cache);
1179	spa_aux_activate(vd, &spa_l2cache_avl);
1180	mutex_exit(&spa_l2cache_lock);
1181}
1182
1183/*
1184 * ==========================================================================
1185 * SPA vdev locking
1186 * ==========================================================================
1187 */
1188
1189/*
1190 * Lock the given spa_t for the purpose of adding or removing a vdev.
1191 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1192 * It returns the next transaction group for the spa_t.
1193 */
1194uint64_t
1195spa_vdev_enter(spa_t *spa)
1196{
1197	mutex_enter(&spa->spa_vdev_top_lock);
1198	mutex_enter(&spa_namespace_lock);
1199	return (spa_vdev_config_enter(spa));
1200}
1201
1202/*
1203 * Internal implementation for spa_vdev_enter().  Used when a vdev
1204 * operation requires multiple syncs (i.e. removing a device) while
1205 * keeping the spa_namespace_lock held.
1206 */
1207uint64_t
1208spa_vdev_config_enter(spa_t *spa)
1209{
1210	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1211
1212	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1213
1214	return (spa_last_synced_txg(spa) + 1);
1215}
1216
1217/*
1218 * Used in combination with spa_vdev_config_enter() to allow the syncing
1219 * of multiple transactions without releasing the spa_namespace_lock.
1220 */
1221void
1222spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1223{
1224	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1225
1226	int config_changed = B_FALSE;
1227
1228	ASSERT(txg > spa_last_synced_txg(spa));
1229
1230	spa->spa_pending_vdev = NULL;
1231
1232	/*
1233	 * Reassess the DTLs.
1234	 */
1235	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1236
1237	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1238		config_changed = B_TRUE;
1239		spa->spa_config_generation++;
1240	}
1241
1242	/*
1243	 * Verify the metaslab classes.
1244	 */
1245	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1246	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1247
1248	spa_config_exit(spa, SCL_ALL, spa);
1249
1250	/*
1251	 * Panic the system if the specified tag requires it.  This
1252	 * is useful for ensuring that configurations are updated
1253	 * transactionally.
1254	 */
1255	if (zio_injection_enabled)
1256		zio_handle_panic_injection(spa, tag, 0);
1257
1258	/*
1259	 * Note: this txg_wait_synced() is important because it ensures
1260	 * that there won't be more than one config change per txg.
1261	 * This allows us to use the txg as the generation number.
1262	 */
1263	if (error == 0)
1264		txg_wait_synced(spa->spa_dsl_pool, txg);
1265
1266	if (vd != NULL) {
1267		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1268		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1269		vdev_free(vd);
1270		spa_config_exit(spa, SCL_ALL, spa);
1271	}
1272
1273	/*
1274	 * If the config changed, update the config cache.
1275	 */
1276	if (config_changed)
1277		spa_config_sync(spa, B_FALSE, B_TRUE);
1278}
1279
1280/*
1281 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1282 * locking of spa_vdev_enter(), we also want make sure the transactions have
1283 * synced to disk, and then update the global configuration cache with the new
1284 * information.
1285 */
1286int
1287spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1288{
1289	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1290	mutex_exit(&spa_namespace_lock);
1291	mutex_exit(&spa->spa_vdev_top_lock);
1292
1293	return (error);
1294}
1295
1296/*
1297 * Lock the given spa_t for the purpose of changing vdev state.
1298 */
1299void
1300spa_vdev_state_enter(spa_t *spa, int oplocks)
1301{
1302	int locks = SCL_STATE_ALL | oplocks;
1303
1304	/*
1305	 * Root pools may need to read of the underlying devfs filesystem
1306	 * when opening up a vdev.  Unfortunately if we're holding the
1307	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1308	 * the read from the root filesystem.  Instead we "prefetch"
1309	 * the associated vnodes that we need prior to opening the
1310	 * underlying devices and cache them so that we can prevent
1311	 * any I/O when we are doing the actual open.
1312	 */
1313	if (spa_is_root(spa)) {
1314		int low = locks & ~(SCL_ZIO - 1);
1315		int high = locks & ~low;
1316
1317		spa_config_enter(spa, high, spa, RW_WRITER);
1318		vdev_hold(spa->spa_root_vdev);
1319		spa_config_enter(spa, low, spa, RW_WRITER);
1320	} else {
1321		spa_config_enter(spa, locks, spa, RW_WRITER);
1322	}
1323	spa->spa_vdev_locks = locks;
1324}
1325
1326int
1327spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1328{
1329	boolean_t config_changed = B_FALSE;
1330
1331	if (vd != NULL || error == 0)
1332		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1333		    0, 0, B_FALSE);
1334
1335	if (vd != NULL) {
1336		vdev_state_dirty(vd->vdev_top);
1337		config_changed = B_TRUE;
1338		spa->spa_config_generation++;
1339	}
1340
1341	if (spa_is_root(spa))
1342		vdev_rele(spa->spa_root_vdev);
1343
1344	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1345	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1346
1347	/*
1348	 * If anything changed, wait for it to sync.  This ensures that,
1349	 * from the system administrator's perspective, zpool(1M) commands
1350	 * are synchronous.  This is important for things like zpool offline:
1351	 * when the command completes, you expect no further I/O from ZFS.
1352	 */
1353	if (vd != NULL)
1354		txg_wait_synced(spa->spa_dsl_pool, 0);
1355
1356	/*
1357	 * If the config changed, update the config cache.
1358	 */
1359	if (config_changed) {
1360		mutex_enter(&spa_namespace_lock);
1361		spa_config_sync(spa, B_FALSE, B_TRUE);
1362		mutex_exit(&spa_namespace_lock);
1363	}
1364
1365	return (error);
1366}
1367
1368/*
1369 * ==========================================================================
1370 * Miscellaneous functions
1371 * ==========================================================================
1372 */
1373
1374void
1375spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1376{
1377	if (!nvlist_exists(spa->spa_label_features, feature)) {
1378		fnvlist_add_boolean(spa->spa_label_features, feature);
1379		/*
1380		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1381		 * dirty the vdev config because lock SCL_CONFIG is not held.
1382		 * Thankfully, in this case we don't need to dirty the config
1383		 * because it will be written out anyway when we finish
1384		 * creating the pool.
1385		 */
1386		if (tx->tx_txg != TXG_INITIAL)
1387			vdev_config_dirty(spa->spa_root_vdev);
1388	}
1389}
1390
1391void
1392spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1393{
1394	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1395		vdev_config_dirty(spa->spa_root_vdev);
1396}
1397
1398/*
1399 * Rename a spa_t.
1400 */
1401int
1402spa_rename(const char *name, const char *newname)
1403{
1404	spa_t *spa;
1405	int err;
1406
1407	/*
1408	 * Lookup the spa_t and grab the config lock for writing.  We need to
1409	 * actually open the pool so that we can sync out the necessary labels.
1410	 * It's OK to call spa_open() with the namespace lock held because we
1411	 * allow recursive calls for other reasons.
1412	 */
1413	mutex_enter(&spa_namespace_lock);
1414	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1415		mutex_exit(&spa_namespace_lock);
1416		return (err);
1417	}
1418
1419	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1420
1421	avl_remove(&spa_namespace_avl, spa);
1422	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1423	avl_add(&spa_namespace_avl, spa);
1424
1425	/*
1426	 * Sync all labels to disk with the new names by marking the root vdev
1427	 * dirty and waiting for it to sync.  It will pick up the new pool name
1428	 * during the sync.
1429	 */
1430	vdev_config_dirty(spa->spa_root_vdev);
1431
1432	spa_config_exit(spa, SCL_ALL, FTAG);
1433
1434	txg_wait_synced(spa->spa_dsl_pool, 0);
1435
1436	/*
1437	 * Sync the updated config cache.
1438	 */
1439	spa_config_sync(spa, B_FALSE, B_TRUE);
1440
1441	spa_close(spa, FTAG);
1442
1443	mutex_exit(&spa_namespace_lock);
1444
1445	return (0);
1446}
1447
1448/*
1449 * Return the spa_t associated with given pool_guid, if it exists.  If
1450 * device_guid is non-zero, determine whether the pool exists *and* contains
1451 * a device with the specified device_guid.
1452 */
1453spa_t *
1454spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1455{
1456	spa_t *spa;
1457	avl_tree_t *t = &spa_namespace_avl;
1458
1459	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1460
1461	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1462		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1463			continue;
1464		if (spa->spa_root_vdev == NULL)
1465			continue;
1466		if (spa_guid(spa) == pool_guid) {
1467			if (device_guid == 0)
1468				break;
1469
1470			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1471			    device_guid) != NULL)
1472				break;
1473
1474			/*
1475			 * Check any devices we may be in the process of adding.
1476			 */
1477			if (spa->spa_pending_vdev) {
1478				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1479				    device_guid) != NULL)
1480					break;
1481			}
1482		}
1483	}
1484
1485	return (spa);
1486}
1487
1488/*
1489 * Determine whether a pool with the given pool_guid exists.
1490 */
1491boolean_t
1492spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1493{
1494	return (spa_by_guid(pool_guid, device_guid) != NULL);
1495}
1496
1497char *
1498spa_strdup(const char *s)
1499{
1500	size_t len;
1501	char *new;
1502
1503	len = strlen(s);
1504	new = kmem_alloc(len + 1, KM_SLEEP);
1505	bcopy(s, new, len);
1506	new[len] = '\0';
1507
1508	return (new);
1509}
1510
1511void
1512spa_strfree(char *s)
1513{
1514	kmem_free(s, strlen(s) + 1);
1515}
1516
1517uint64_t
1518spa_get_random(uint64_t range)
1519{
1520	uint64_t r;
1521
1522	ASSERT(range != 0);
1523
1524	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1525
1526	return (r % range);
1527}
1528
1529uint64_t
1530spa_generate_guid(spa_t *spa)
1531{
1532	uint64_t guid = spa_get_random(-1ULL);
1533
1534	if (spa != NULL) {
1535		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1536			guid = spa_get_random(-1ULL);
1537	} else {
1538		while (guid == 0 || spa_guid_exists(guid, 0))
1539			guid = spa_get_random(-1ULL);
1540	}
1541
1542	return (guid);
1543}
1544
1545void
1546snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1547{
1548	char type[256];
1549	char *checksum = NULL;
1550	char *compress = NULL;
1551
1552	if (bp != NULL) {
1553		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1554			dmu_object_byteswap_t bswap =
1555			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1556			(void) snprintf(type, sizeof (type), "bswap %s %s",
1557			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1558			    "metadata" : "data",
1559			    dmu_ot_byteswap[bswap].ob_name);
1560		} else {
1561			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1562			    sizeof (type));
1563		}
1564		if (!BP_IS_EMBEDDED(bp)) {
1565			checksum =
1566			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1567		}
1568		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1569	}
1570
1571	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1572	    compress);
1573}
1574
1575void
1576spa_freeze(spa_t *spa)
1577{
1578	uint64_t freeze_txg = 0;
1579
1580	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1581	if (spa->spa_freeze_txg == UINT64_MAX) {
1582		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1583		spa->spa_freeze_txg = freeze_txg;
1584	}
1585	spa_config_exit(spa, SCL_ALL, FTAG);
1586	if (freeze_txg != 0)
1587		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1588}
1589
1590void
1591zfs_panic_recover(const char *fmt, ...)
1592{
1593	va_list adx;
1594
1595	va_start(adx, fmt);
1596	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1597	va_end(adx);
1598}
1599
1600/*
1601 * This is a stripped-down version of strtoull, suitable only for converting
1602 * lowercase hexadecimal numbers that don't overflow.
1603 */
1604uint64_t
1605zfs_strtonum(const char *str, char **nptr)
1606{
1607	uint64_t val = 0;
1608	char c;
1609	int digit;
1610
1611	while ((c = *str) != '\0') {
1612		if (c >= '0' && c <= '9')
1613			digit = c - '0';
1614		else if (c >= 'a' && c <= 'f')
1615			digit = 10 + c - 'a';
1616		else
1617			break;
1618
1619		val *= 16;
1620		val += digit;
1621
1622		str++;
1623	}
1624
1625	if (nptr)
1626		*nptr = (char *)str;
1627
1628	return (val);
1629}
1630
1631/*
1632 * ==========================================================================
1633 * Accessor functions
1634 * ==========================================================================
1635 */
1636
1637boolean_t
1638spa_shutting_down(spa_t *spa)
1639{
1640	return (spa->spa_async_suspended);
1641}
1642
1643dsl_pool_t *
1644spa_get_dsl(spa_t *spa)
1645{
1646	return (spa->spa_dsl_pool);
1647}
1648
1649boolean_t
1650spa_is_initializing(spa_t *spa)
1651{
1652	return (spa->spa_is_initializing);
1653}
1654
1655blkptr_t *
1656spa_get_rootblkptr(spa_t *spa)
1657{
1658	return (&spa->spa_ubsync.ub_rootbp);
1659}
1660
1661void
1662spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1663{
1664	spa->spa_uberblock.ub_rootbp = *bp;
1665}
1666
1667void
1668spa_altroot(spa_t *spa, char *buf, size_t buflen)
1669{
1670	if (spa->spa_root == NULL)
1671		buf[0] = '\0';
1672	else
1673		(void) strncpy(buf, spa->spa_root, buflen);
1674}
1675
1676int
1677spa_sync_pass(spa_t *spa)
1678{
1679	return (spa->spa_sync_pass);
1680}
1681
1682char *
1683spa_name(spa_t *spa)
1684{
1685	return (spa->spa_name);
1686}
1687
1688uint64_t
1689spa_guid(spa_t *spa)
1690{
1691	dsl_pool_t *dp = spa_get_dsl(spa);
1692	uint64_t guid;
1693
1694	/*
1695	 * If we fail to parse the config during spa_load(), we can go through
1696	 * the error path (which posts an ereport) and end up here with no root
1697	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1698	 * this case.
1699	 */
1700	if (spa->spa_root_vdev == NULL)
1701		return (spa->spa_config_guid);
1702
1703	guid = spa->spa_last_synced_guid != 0 ?
1704	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1705
1706	/*
1707	 * Return the most recently synced out guid unless we're
1708	 * in syncing context.
1709	 */
1710	if (dp && dsl_pool_sync_context(dp))
1711		return (spa->spa_root_vdev->vdev_guid);
1712	else
1713		return (guid);
1714}
1715
1716uint64_t
1717spa_load_guid(spa_t *spa)
1718{
1719	/*
1720	 * This is a GUID that exists solely as a reference for the
1721	 * purposes of the arc.  It is generated at load time, and
1722	 * is never written to persistent storage.
1723	 */
1724	return (spa->spa_load_guid);
1725}
1726
1727uint64_t
1728spa_last_synced_txg(spa_t *spa)
1729{
1730	return (spa->spa_ubsync.ub_txg);
1731}
1732
1733uint64_t
1734spa_first_txg(spa_t *spa)
1735{
1736	return (spa->spa_first_txg);
1737}
1738
1739uint64_t
1740spa_syncing_txg(spa_t *spa)
1741{
1742	return (spa->spa_syncing_txg);
1743}
1744
1745pool_state_t
1746spa_state(spa_t *spa)
1747{
1748	return (spa->spa_state);
1749}
1750
1751spa_load_state_t
1752spa_load_state(spa_t *spa)
1753{
1754	return (spa->spa_load_state);
1755}
1756
1757uint64_t
1758spa_freeze_txg(spa_t *spa)
1759{
1760	return (spa->spa_freeze_txg);
1761}
1762
1763/* ARGSUSED */
1764uint64_t
1765spa_get_asize(spa_t *spa, uint64_t lsize)
1766{
1767	return (lsize * spa_asize_inflation);
1768}
1769
1770/*
1771 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1772 * or at least 128MB, unless that would cause it to be more than half the
1773 * pool size.
1774 *
1775 * See the comment above spa_slop_shift for details.
1776 */
1777uint64_t
1778spa_get_slop_space(spa_t *spa)
1779{
1780	uint64_t space = spa_get_dspace(spa);
1781	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1782}
1783
1784uint64_t
1785spa_get_dspace(spa_t *spa)
1786{
1787	return (spa->spa_dspace);
1788}
1789
1790void
1791spa_update_dspace(spa_t *spa)
1792{
1793	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1794	    ddt_get_dedup_dspace(spa);
1795}
1796
1797/*
1798 * Return the failure mode that has been set to this pool. The default
1799 * behavior will be to block all I/Os when a complete failure occurs.
1800 */
1801uint8_t
1802spa_get_failmode(spa_t *spa)
1803{
1804	return (spa->spa_failmode);
1805}
1806
1807boolean_t
1808spa_suspended(spa_t *spa)
1809{
1810	return (spa->spa_suspended);
1811}
1812
1813uint64_t
1814spa_version(spa_t *spa)
1815{
1816	return (spa->spa_ubsync.ub_version);
1817}
1818
1819boolean_t
1820spa_deflate(spa_t *spa)
1821{
1822	return (spa->spa_deflate);
1823}
1824
1825metaslab_class_t *
1826spa_normal_class(spa_t *spa)
1827{
1828	return (spa->spa_normal_class);
1829}
1830
1831metaslab_class_t *
1832spa_log_class(spa_t *spa)
1833{
1834	return (spa->spa_log_class);
1835}
1836
1837void
1838spa_evicting_os_register(spa_t *spa, objset_t *os)
1839{
1840	mutex_enter(&spa->spa_evicting_os_lock);
1841	list_insert_head(&spa->spa_evicting_os_list, os);
1842	mutex_exit(&spa->spa_evicting_os_lock);
1843}
1844
1845void
1846spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1847{
1848	mutex_enter(&spa->spa_evicting_os_lock);
1849	list_remove(&spa->spa_evicting_os_list, os);
1850	cv_broadcast(&spa->spa_evicting_os_cv);
1851	mutex_exit(&spa->spa_evicting_os_lock);
1852}
1853
1854void
1855spa_evicting_os_wait(spa_t *spa)
1856{
1857	mutex_enter(&spa->spa_evicting_os_lock);
1858	while (!list_is_empty(&spa->spa_evicting_os_list))
1859		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1860	mutex_exit(&spa->spa_evicting_os_lock);
1861
1862	dmu_buf_user_evict_wait();
1863}
1864
1865int
1866spa_max_replication(spa_t *spa)
1867{
1868	/*
1869	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1870	 * handle BPs with more than one DVA allocated.  Set our max
1871	 * replication level accordingly.
1872	 */
1873	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1874		return (1);
1875	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1876}
1877
1878int
1879spa_prev_software_version(spa_t *spa)
1880{
1881	return (spa->spa_prev_software_version);
1882}
1883
1884uint64_t
1885spa_deadman_synctime(spa_t *spa)
1886{
1887	return (spa->spa_deadman_synctime);
1888}
1889
1890uint64_t
1891dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1892{
1893	uint64_t asize = DVA_GET_ASIZE(dva);
1894	uint64_t dsize = asize;
1895
1896	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1897
1898	if (asize != 0 && spa->spa_deflate) {
1899		uint64_t vdev = DVA_GET_VDEV(dva);
1900		vdev_t *vd = vdev_lookup_top(spa, vdev);
1901		if (vd == NULL) {
1902			panic(
1903			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1904			    (u_longlong_t)vdev, (u_longlong_t)asize);
1905		}
1906		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1907	}
1908
1909	return (dsize);
1910}
1911
1912uint64_t
1913bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1914{
1915	uint64_t dsize = 0;
1916
1917	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1918		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1919
1920	return (dsize);
1921}
1922
1923uint64_t
1924bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1925{
1926	uint64_t dsize = 0;
1927
1928	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1929
1930	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1931		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1932
1933	spa_config_exit(spa, SCL_VDEV, FTAG);
1934
1935	return (dsize);
1936}
1937
1938/*
1939 * ==========================================================================
1940 * Initialization and Termination
1941 * ==========================================================================
1942 */
1943
1944static int
1945spa_name_compare(const void *a1, const void *a2)
1946{
1947	const spa_t *s1 = a1;
1948	const spa_t *s2 = a2;
1949	int s;
1950
1951	s = strcmp(s1->spa_name, s2->spa_name);
1952	if (s > 0)
1953		return (1);
1954	if (s < 0)
1955		return (-1);
1956	return (0);
1957}
1958
1959int
1960spa_busy(void)
1961{
1962	return (spa_active_count);
1963}
1964
1965void
1966spa_boot_init()
1967{
1968	spa_config_load();
1969}
1970
1971#ifdef _KERNEL
1972EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1973#endif
1974
1975void
1976spa_init(int mode)
1977{
1978	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1979	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1980	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1981	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1982
1983	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1984	    offsetof(spa_t, spa_avl));
1985
1986	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1987	    offsetof(spa_aux_t, aux_avl));
1988
1989	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1990	    offsetof(spa_aux_t, aux_avl));
1991
1992	spa_mode_global = mode;
1993
1994#ifdef illumos
1995#ifdef _KERNEL
1996	spa_arch_init();
1997#else
1998	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1999		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2000		if (arc_procfd == -1) {
2001			perror("could not enable watchpoints: "
2002			    "opening /proc/self/ctl failed: ");
2003		} else {
2004			arc_watch = B_TRUE;
2005		}
2006	}
2007#endif
2008#endif /* illumos */
2009	refcount_sysinit();
2010	unique_init();
2011	range_tree_init();
2012	zio_init();
2013	lz4_init();
2014	dmu_init();
2015	zil_init();
2016	vdev_cache_stat_init();
2017	vdev_file_init();
2018	zfs_prop_init();
2019	zpool_prop_init();
2020	zpool_feature_init();
2021	spa_config_load();
2022	l2arc_start();
2023#ifndef illumos
2024#ifdef _KERNEL
2025	zfs_deadman_init();
2026#endif
2027#endif	/* !illumos */
2028}
2029
2030void
2031spa_fini(void)
2032{
2033	l2arc_stop();
2034
2035	spa_evict_all();
2036
2037	vdev_file_fini();
2038	vdev_cache_stat_fini();
2039	zil_fini();
2040	dmu_fini();
2041	lz4_fini();
2042	zio_fini();
2043	range_tree_fini();
2044	unique_fini();
2045	refcount_fini();
2046
2047	avl_destroy(&spa_namespace_avl);
2048	avl_destroy(&spa_spare_avl);
2049	avl_destroy(&spa_l2cache_avl);
2050
2051	cv_destroy(&spa_namespace_cv);
2052	mutex_destroy(&spa_namespace_lock);
2053	mutex_destroy(&spa_spare_lock);
2054	mutex_destroy(&spa_l2cache_lock);
2055}
2056
2057/*
2058 * Return whether this pool has slogs. No locking needed.
2059 * It's not a problem if the wrong answer is returned as it's only for
2060 * performance and not correctness
2061 */
2062boolean_t
2063spa_has_slogs(spa_t *spa)
2064{
2065	return (spa->spa_log_class->mc_rotor != NULL);
2066}
2067
2068spa_log_state_t
2069spa_get_log_state(spa_t *spa)
2070{
2071	return (spa->spa_log_state);
2072}
2073
2074void
2075spa_set_log_state(spa_t *spa, spa_log_state_t state)
2076{
2077	spa->spa_log_state = state;
2078}
2079
2080boolean_t
2081spa_is_root(spa_t *spa)
2082{
2083	return (spa->spa_is_root);
2084}
2085
2086boolean_t
2087spa_writeable(spa_t *spa)
2088{
2089	return (!!(spa->spa_mode & FWRITE));
2090}
2091
2092/*
2093 * Returns true if there is a pending sync task in any of the current
2094 * syncing txg, the current quiescing txg, or the current open txg.
2095 */
2096boolean_t
2097spa_has_pending_synctask(spa_t *spa)
2098{
2099	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2100}
2101
2102int
2103spa_mode(spa_t *spa)
2104{
2105	return (spa->spa_mode);
2106}
2107
2108uint64_t
2109spa_bootfs(spa_t *spa)
2110{
2111	return (spa->spa_bootfs);
2112}
2113
2114uint64_t
2115spa_delegation(spa_t *spa)
2116{
2117	return (spa->spa_delegation);
2118}
2119
2120objset_t *
2121spa_meta_objset(spa_t *spa)
2122{
2123	return (spa->spa_meta_objset);
2124}
2125
2126enum zio_checksum
2127spa_dedup_checksum(spa_t *spa)
2128{
2129	return (spa->spa_dedup_checksum);
2130}
2131
2132/*
2133 * Reset pool scan stat per scan pass (or reboot).
2134 */
2135void
2136spa_scan_stat_init(spa_t *spa)
2137{
2138	/* data not stored on disk */
2139	spa->spa_scan_pass_start = gethrestime_sec();
2140	spa->spa_scan_pass_exam = 0;
2141	vdev_scan_stat_init(spa->spa_root_vdev);
2142}
2143
2144/*
2145 * Get scan stats for zpool status reports
2146 */
2147int
2148spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2149{
2150	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2151
2152	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2153		return (SET_ERROR(ENOENT));
2154	bzero(ps, sizeof (pool_scan_stat_t));
2155
2156	/* data stored on disk */
2157	ps->pss_func = scn->scn_phys.scn_func;
2158	ps->pss_start_time = scn->scn_phys.scn_start_time;
2159	ps->pss_end_time = scn->scn_phys.scn_end_time;
2160	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2161	ps->pss_examined = scn->scn_phys.scn_examined;
2162	ps->pss_to_process = scn->scn_phys.scn_to_process;
2163	ps->pss_processed = scn->scn_phys.scn_processed;
2164	ps->pss_errors = scn->scn_phys.scn_errors;
2165	ps->pss_state = scn->scn_phys.scn_state;
2166
2167	/* data not stored on disk */
2168	ps->pss_pass_start = spa->spa_scan_pass_start;
2169	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2170
2171	return (0);
2172}
2173
2174boolean_t
2175spa_debug_enabled(spa_t *spa)
2176{
2177	return (spa->spa_debug);
2178}
2179
2180int
2181spa_maxblocksize(spa_t *spa)
2182{
2183	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2184		return (SPA_MAXBLOCKSIZE);
2185	else
2186		return (SPA_OLD_MAXBLOCKSIZE);
2187}
2188