spa_misc.c revision 318786
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
50#include <sys/dsl_scan.h>
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
53#include <sys/arc.h>
54#include <sys/ddt.h>
55#include "zfs_prop.h"
56#include <sys/zfeature.h>
57
58/*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 *	This lock must be acquired to do any of the following:
66 *
67 *		- Lookup a spa_t by name
68 *		- Add or remove a spa_t from the namespace
69 *		- Increase spa_refcount from non-zero
70 *		- Check if spa_refcount is zero
71 *		- Rename a spa_t
72 *		- add/remove/attach/detach devices
73 *		- Held for the duration of create/destroy/import/export
74 *
75 *	It does not need to handle recursion.  A create or destroy may
76 *	reference objects (files or zvols) in other pools, but by
77 *	definition they must have an existing reference, and will never need
78 *	to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 *	This reference count keep track of any active users of the spa_t.  The
83 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84 *	the refcount is never really 'zero' - opening a pool implicitly keeps
85 *	some references in the DMU.  Internally we check against spa_minref, but
86 *	present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 *	This protects the spa_t from config changes, and must be held in
91 *	the following circumstances:
92 *
93 *		- RW_READER to perform I/O to the spa
94 *		- RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 *		spa_namespace_lock	->	spa_refcount
99 *
100 *	The namespace lock must be acquired to increase the refcount from 0
101 *	or to check if it is zero.
102 *
103 *		spa_refcount		->	spa_config_lock[]
104 *
105 *	There must be at least one valid reference on the spa_t to acquire
106 *	the config lock.
107 *
108 *		spa_namespace_lock	->	spa_config_lock[]
109 *
110 *	The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 *	spa_lookup()		Lookup a spa_t by name.
119 *
120 *	spa_add()		Create a new spa_t in the namespace.
121 *
122 *	spa_remove()		Remove a spa_t from the namespace.  This also
123 *				frees up any memory associated with the spa_t.
124 *
125 *	spa_next()		Returns the next spa_t in the system, or the
126 *				first if NULL is passed.
127 *
128 *	spa_evict_all()		Shutdown and remove all spa_t structures in
129 *				the system.
130 *
131 *	spa_guid_exists()	Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136 *				called with spa_namespace_lock held if the
137 *				refcount is currently zero.
138 *
139 *	spa_close()		Remove a reference from the spa_t.  This will
140 *				not free the spa_t or remove it from the
141 *				namespace.  No locking is required.
142 *
143 *	spa_refcount_zero()	Returns true if the refcount is currently
144 *				zero.  Must be called with spa_namespace_lock
145 *				held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer.  To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership.  For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 *	Protects changes to the vdev tree topology, such as vdev
171 *	add/remove/attach/detach.  Protects the dirty config list
172 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 *	Protects changes to pool state and vdev state, such as vdev
176 *	online/offline/fault/degrade/clear.  Protects the dirty state list
177 *	(spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 *	Protects changes to metaslab groups and classes.
181 *	Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 *	Held by bp-level zios (those which have no io_vd upon entry)
185 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 *	Protects changes to metaslab groups and classes.
190 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 *	blocks in zio_done() while another i/o that holds either
193 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 *	Held as reader to prevent changes to the vdev tree during trivial
197 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198 *	other locks, and lower than all of them, to ensure that it's safe
199 *	to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204 *	The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 *	or zio_write_phys() -- the caller must ensure that the config cannot
209 *	cannot change in the interim, and that the vdev cannot be reopened.
210 *	SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215 *				for writing.
216 *
217 *	spa_vdev_exit()		Release the config lock, wait for all I/O
218 *				to complete, sync the updated configs to the
219 *				cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229static avl_tree_t spa_namespace_avl;
230kmutex_t spa_namespace_lock;
231static kcondvar_t spa_namespace_cv;
232static int spa_active_count;
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
241int spa_mode_global;
242
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249SYSCTL_DECL(_debug);
250TUNABLE_INT("debug.zfs_flags", &zfs_flags);
251SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
252    "ZFS debug flags.");
253
254/*
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption.  When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
260 */
261boolean_t zfs_recover = B_FALSE;
262SYSCTL_DECL(_vfs_zfs);
263TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
264SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
265    "Try to recover from otherwise-fatal errors.");
266
267static int
268sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
269{
270	int err, val;
271
272	val = zfs_flags;
273	err = sysctl_handle_int(oidp, &val, 0, req);
274	if (err != 0 || req->newptr == NULL)
275		return (err);
276
277	/*
278	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
279	 * arc buffers in the system have the necessary additional
280	 * checksum data.  However, it is safe to disable at any
281	 * time.
282	 */
283	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
284		val &= ~ZFS_DEBUG_MODIFY;
285	zfs_flags = val;
286
287	return (0);
288}
289TUNABLE_INT("vfs.zfs.debugflags", &zfs_flags);
290SYSCTL_PROC(_vfs_zfs, OID_AUTO, debugflags,
291    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
292    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
293SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
294    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
295    sysctl_vfs_zfs_debug_flags, "IU",
296    "Debug flags for ZFS testing (deprecated, see vfs.zfs.debugflags).");
297
298/*
299 * If destroy encounters an EIO while reading metadata (e.g. indirect
300 * blocks), space referenced by the missing metadata can not be freed.
301 * Normally this causes the background destroy to become "stalled", as
302 * it is unable to make forward progress.  While in this stalled state,
303 * all remaining space to free from the error-encountering filesystem is
304 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
305 * permanently leak the space from indirect blocks that can not be read,
306 * and continue to free everything else that it can.
307 *
308 * The default, "stalling" behavior is useful if the storage partially
309 * fails (i.e. some but not all i/os fail), and then later recovers.  In
310 * this case, we will be able to continue pool operations while it is
311 * partially failed, and when it recovers, we can continue to free the
312 * space, with no leaks.  However, note that this case is actually
313 * fairly rare.
314 *
315 * Typically pools either (a) fail completely (but perhaps temporarily,
316 * e.g. a top-level vdev going offline), or (b) have localized,
317 * permanent errors (e.g. disk returns the wrong data due to bit flip or
318 * firmware bug).  In case (a), this setting does not matter because the
319 * pool will be suspended and the sync thread will not be able to make
320 * forward progress regardless.  In case (b), because the error is
321 * permanent, the best we can do is leak the minimum amount of space,
322 * which is what setting this flag will do.  Therefore, it is reasonable
323 * for this flag to normally be set, but we chose the more conservative
324 * approach of not setting it, so that there is no possibility of
325 * leaking space in the "partial temporary" failure case.
326 */
327boolean_t zfs_free_leak_on_eio = B_FALSE;
328
329/*
330 * Expiration time in milliseconds. This value has two meanings. First it is
331 * used to determine when the spa_deadman() logic should fire. By default the
332 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
333 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
334 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
335 * in a system panic.
336 */
337uint64_t zfs_deadman_synctime_ms = 1000000ULL;
338TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
339SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
340    &zfs_deadman_synctime_ms, 0,
341    "Stalled ZFS I/O expiration time in milliseconds");
342
343/*
344 * Check time in milliseconds. This defines the frequency at which we check
345 * for hung I/O.
346 */
347uint64_t zfs_deadman_checktime_ms = 5000ULL;
348TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
349SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
350    &zfs_deadman_checktime_ms, 0,
351    "Period of checks for stalled ZFS I/O in milliseconds");
352
353/*
354 * Default value of -1 for zfs_deadman_enabled is resolved in
355 * zfs_deadman_init()
356 */
357int zfs_deadman_enabled = -1;
358TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
359SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
360    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
361
362/*
363 * The worst case is single-sector max-parity RAID-Z blocks, in which
364 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
365 * times the size; so just assume that.  Add to this the fact that
366 * we can have up to 3 DVAs per bp, and one more factor of 2 because
367 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
368 * the worst case is:
369 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
370 */
371int spa_asize_inflation = 24;
372TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
373SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
374    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
375
376#ifndef illumos
377#ifdef _KERNEL
378static void
379zfs_deadman_init()
380{
381	/*
382	 * If we are not i386 or amd64 or in a virtual machine,
383	 * disable ZFS deadman thread by default
384	 */
385	if (zfs_deadman_enabled == -1) {
386#if defined(__amd64__) || defined(__i386__)
387		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
388#else
389		zfs_deadman_enabled = 0;
390#endif
391	}
392}
393#endif	/* _KERNEL */
394#endif	/* !illumos */
395
396/*
397 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
398 * the pool to be consumed.  This ensures that we don't run the pool
399 * completely out of space, due to unaccounted changes (e.g. to the MOS).
400 * It also limits the worst-case time to allocate space.  If we have
401 * less than this amount of free space, most ZPL operations (e.g. write,
402 * create) will return ENOSPC.
403 *
404 * Certain operations (e.g. file removal, most administrative actions) can
405 * use half the slop space.  They will only return ENOSPC if less than half
406 * the slop space is free.  Typically, once the pool has less than the slop
407 * space free, the user will use these operations to free up space in the pool.
408 * These are the operations that call dsl_pool_adjustedsize() with the netfree
409 * argument set to TRUE.
410 *
411 * A very restricted set of operations are always permitted, regardless of
412 * the amount of free space.  These are the operations that call
413 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
414 * operations result in a net increase in the amount of space used,
415 * it is possible to run the pool completely out of space, causing it to
416 * be permanently read-only.
417 *
418 * Note that on very small pools, the slop space will be larger than
419 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
420 * but we never allow it to be more than half the pool size.
421 *
422 * See also the comments in zfs_space_check_t.
423 */
424int spa_slop_shift = 5;
425SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
426    &spa_slop_shift, 0,
427    "Shift value of reserved space (1/(2^spa_slop_shift)).");
428uint64_t spa_min_slop = 128 * 1024 * 1024;
429SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
430    &spa_min_slop, 0,
431    "Minimal value of reserved space");
432
433/*
434 * ==========================================================================
435 * SPA config locking
436 * ==========================================================================
437 */
438static void
439spa_config_lock_init(spa_t *spa)
440{
441	for (int i = 0; i < SCL_LOCKS; i++) {
442		spa_config_lock_t *scl = &spa->spa_config_lock[i];
443		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
444		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
445		refcount_create_untracked(&scl->scl_count);
446		scl->scl_writer = NULL;
447		scl->scl_write_wanted = 0;
448	}
449}
450
451static void
452spa_config_lock_destroy(spa_t *spa)
453{
454	for (int i = 0; i < SCL_LOCKS; i++) {
455		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456		mutex_destroy(&scl->scl_lock);
457		cv_destroy(&scl->scl_cv);
458		refcount_destroy(&scl->scl_count);
459		ASSERT(scl->scl_writer == NULL);
460		ASSERT(scl->scl_write_wanted == 0);
461	}
462}
463
464int
465spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
466{
467	for (int i = 0; i < SCL_LOCKS; i++) {
468		spa_config_lock_t *scl = &spa->spa_config_lock[i];
469		if (!(locks & (1 << i)))
470			continue;
471		mutex_enter(&scl->scl_lock);
472		if (rw == RW_READER) {
473			if (scl->scl_writer || scl->scl_write_wanted) {
474				mutex_exit(&scl->scl_lock);
475				spa_config_exit(spa, locks & ((1 << i) - 1),
476				    tag);
477				return (0);
478			}
479		} else {
480			ASSERT(scl->scl_writer != curthread);
481			if (!refcount_is_zero(&scl->scl_count)) {
482				mutex_exit(&scl->scl_lock);
483				spa_config_exit(spa, locks & ((1 << i) - 1),
484				    tag);
485				return (0);
486			}
487			scl->scl_writer = curthread;
488		}
489		(void) refcount_add(&scl->scl_count, tag);
490		mutex_exit(&scl->scl_lock);
491	}
492	return (1);
493}
494
495void
496spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
497{
498	int wlocks_held = 0;
499
500	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
501
502	for (int i = 0; i < SCL_LOCKS; i++) {
503		spa_config_lock_t *scl = &spa->spa_config_lock[i];
504		if (scl->scl_writer == curthread)
505			wlocks_held |= (1 << i);
506		if (!(locks & (1 << i)))
507			continue;
508		mutex_enter(&scl->scl_lock);
509		if (rw == RW_READER) {
510			while (scl->scl_writer || scl->scl_write_wanted) {
511				cv_wait(&scl->scl_cv, &scl->scl_lock);
512			}
513		} else {
514			ASSERT(scl->scl_writer != curthread);
515			while (!refcount_is_zero(&scl->scl_count)) {
516				scl->scl_write_wanted++;
517				cv_wait(&scl->scl_cv, &scl->scl_lock);
518				scl->scl_write_wanted--;
519			}
520			scl->scl_writer = curthread;
521		}
522		(void) refcount_add(&scl->scl_count, tag);
523		mutex_exit(&scl->scl_lock);
524	}
525	ASSERT(wlocks_held <= locks);
526}
527
528void
529spa_config_exit(spa_t *spa, int locks, void *tag)
530{
531	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
532		spa_config_lock_t *scl = &spa->spa_config_lock[i];
533		if (!(locks & (1 << i)))
534			continue;
535		mutex_enter(&scl->scl_lock);
536		ASSERT(!refcount_is_zero(&scl->scl_count));
537		if (refcount_remove(&scl->scl_count, tag) == 0) {
538			ASSERT(scl->scl_writer == NULL ||
539			    scl->scl_writer == curthread);
540			scl->scl_writer = NULL;	/* OK in either case */
541			cv_broadcast(&scl->scl_cv);
542		}
543		mutex_exit(&scl->scl_lock);
544	}
545}
546
547int
548spa_config_held(spa_t *spa, int locks, krw_t rw)
549{
550	int locks_held = 0;
551
552	for (int i = 0; i < SCL_LOCKS; i++) {
553		spa_config_lock_t *scl = &spa->spa_config_lock[i];
554		if (!(locks & (1 << i)))
555			continue;
556		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
557		    (rw == RW_WRITER && scl->scl_writer == curthread))
558			locks_held |= 1 << i;
559	}
560
561	return (locks_held);
562}
563
564/*
565 * ==========================================================================
566 * SPA namespace functions
567 * ==========================================================================
568 */
569
570/*
571 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
572 * Returns NULL if no matching spa_t is found.
573 */
574spa_t *
575spa_lookup(const char *name)
576{
577	static spa_t search;	/* spa_t is large; don't allocate on stack */
578	spa_t *spa;
579	avl_index_t where;
580	char *cp;
581
582	ASSERT(MUTEX_HELD(&spa_namespace_lock));
583
584	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
585
586	/*
587	 * If it's a full dataset name, figure out the pool name and
588	 * just use that.
589	 */
590	cp = strpbrk(search.spa_name, "/@#");
591	if (cp != NULL)
592		*cp = '\0';
593
594	spa = avl_find(&spa_namespace_avl, &search, &where);
595
596	return (spa);
597}
598
599/*
600 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
601 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
602 * looking for potentially hung I/Os.
603 */
604static void
605spa_deadman(void *arg, int pending)
606{
607	spa_t *spa = arg;
608
609	/*
610	 * Disable the deadman timer if the pool is suspended.
611	 */
612	if (spa_suspended(spa)) {
613#ifdef illumos
614		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
615#else
616		/* Nothing.  just don't schedule any future callouts. */
617#endif
618		return;
619	}
620
621	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
622	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
623	    ++spa->spa_deadman_calls);
624	if (zfs_deadman_enabled)
625		vdev_deadman(spa->spa_root_vdev);
626#ifdef __FreeBSD__
627#ifdef _KERNEL
628	callout_schedule(&spa->spa_deadman_cycid,
629	    hz * zfs_deadman_checktime_ms / MILLISEC);
630#endif
631#endif
632}
633
634#if defined(__FreeBSD__) && defined(_KERNEL)
635static void
636spa_deadman_timeout(void *arg)
637{
638	spa_t *spa = arg;
639
640	taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
641}
642#endif
643
644/*
645 * Create an uninitialized spa_t with the given name.  Requires
646 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
647 * exist by calling spa_lookup() first.
648 */
649spa_t *
650spa_add(const char *name, nvlist_t *config, const char *altroot)
651{
652	spa_t *spa;
653	spa_config_dirent_t *dp;
654#ifdef illumos
655	cyc_handler_t hdlr;
656	cyc_time_t when;
657#endif
658
659	ASSERT(MUTEX_HELD(&spa_namespace_lock));
660
661	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
662
663	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
664	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
665	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
666	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
667	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
668	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
669	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
670	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
671	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
672	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
673	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
674	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
675
676	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
677	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
678	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
679	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
680	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
681
682	for (int t = 0; t < TXG_SIZE; t++)
683		bplist_create(&spa->spa_free_bplist[t]);
684
685	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
686	spa->spa_state = POOL_STATE_UNINITIALIZED;
687	spa->spa_freeze_txg = UINT64_MAX;
688	spa->spa_final_txg = UINT64_MAX;
689	spa->spa_load_max_txg = UINT64_MAX;
690	spa->spa_proc = &p0;
691	spa->spa_proc_state = SPA_PROC_NONE;
692
693#ifdef illumos
694	hdlr.cyh_func = spa_deadman;
695	hdlr.cyh_arg = spa;
696	hdlr.cyh_level = CY_LOW_LEVEL;
697#endif
698
699	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
700
701#ifdef illumos
702	/*
703	 * This determines how often we need to check for hung I/Os after
704	 * the cyclic has already fired. Since checking for hung I/Os is
705	 * an expensive operation we don't want to check too frequently.
706	 * Instead wait for 5 seconds before checking again.
707	 */
708	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
709	when.cyt_when = CY_INFINITY;
710	mutex_enter(&cpu_lock);
711	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
712	mutex_exit(&cpu_lock);
713#else	/* !illumos */
714#ifdef _KERNEL
715	/*
716	 * callout(9) does not provide a way to initialize a callout with
717	 * a function and an argument, so we use callout_reset() to schedule
718	 * the callout in the very distant future.  Even if that event ever
719	 * fires, it should be okayas we won't have any active zio-s.
720	 * But normally spa_sync() will reschedule the callout with a proper
721	 * timeout.
722	 * callout(9) does not allow the callback function to sleep but
723	 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
724	 * emulated using sx(9).  For this reason spa_deadman_timeout()
725	 * will schedule spa_deadman() as task on a taskqueue that allows
726	 * sleeping.
727	 */
728	TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
729	callout_init(&spa->spa_deadman_cycid, 1);
730	callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
731	    spa_deadman_timeout, spa, 0);
732#endif
733#endif
734	refcount_create(&spa->spa_refcount);
735	spa_config_lock_init(spa);
736
737	avl_add(&spa_namespace_avl, spa);
738
739	/*
740	 * Set the alternate root, if there is one.
741	 */
742	if (altroot) {
743		spa->spa_root = spa_strdup(altroot);
744		spa_active_count++;
745	}
746
747	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
748	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
749
750	/*
751	 * Every pool starts with the default cachefile
752	 */
753	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
754	    offsetof(spa_config_dirent_t, scd_link));
755
756	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
757	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
758	list_insert_head(&spa->spa_config_list, dp);
759
760	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
761	    KM_SLEEP) == 0);
762
763	if (config != NULL) {
764		nvlist_t *features;
765
766		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
767		    &features) == 0) {
768			VERIFY(nvlist_dup(features, &spa->spa_label_features,
769			    0) == 0);
770		}
771
772		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
773	}
774
775	if (spa->spa_label_features == NULL) {
776		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
777		    KM_SLEEP) == 0);
778	}
779
780	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
781
782	spa->spa_min_ashift = INT_MAX;
783	spa->spa_max_ashift = 0;
784
785	/*
786	 * As a pool is being created, treat all features as disabled by
787	 * setting SPA_FEATURE_DISABLED for all entries in the feature
788	 * refcount cache.
789	 */
790	for (int i = 0; i < SPA_FEATURES; i++) {
791		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
792	}
793
794	return (spa);
795}
796
797/*
798 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
799 * spa_namespace_lock.  This is called only after the spa_t has been closed and
800 * deactivated.
801 */
802void
803spa_remove(spa_t *spa)
804{
805	spa_config_dirent_t *dp;
806
807	ASSERT(MUTEX_HELD(&spa_namespace_lock));
808	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
809	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
810
811	nvlist_free(spa->spa_config_splitting);
812
813	avl_remove(&spa_namespace_avl, spa);
814	cv_broadcast(&spa_namespace_cv);
815
816	if (spa->spa_root) {
817		spa_strfree(spa->spa_root);
818		spa_active_count--;
819	}
820
821	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
822		list_remove(&spa->spa_config_list, dp);
823		if (dp->scd_path != NULL)
824			spa_strfree(dp->scd_path);
825		kmem_free(dp, sizeof (spa_config_dirent_t));
826	}
827
828	avl_destroy(&spa->spa_alloc_tree);
829	list_destroy(&spa->spa_config_list);
830
831	nvlist_free(spa->spa_label_features);
832	nvlist_free(spa->spa_load_info);
833	spa_config_set(spa, NULL);
834
835#ifdef illumos
836	mutex_enter(&cpu_lock);
837	if (spa->spa_deadman_cycid != CYCLIC_NONE)
838		cyclic_remove(spa->spa_deadman_cycid);
839	mutex_exit(&cpu_lock);
840	spa->spa_deadman_cycid = CYCLIC_NONE;
841#else	/* !illumos */
842#ifdef _KERNEL
843	callout_drain(&spa->spa_deadman_cycid);
844	taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
845#endif
846#endif
847
848	refcount_destroy(&spa->spa_refcount);
849
850	spa_config_lock_destroy(spa);
851
852	for (int t = 0; t < TXG_SIZE; t++)
853		bplist_destroy(&spa->spa_free_bplist[t]);
854
855	zio_checksum_templates_free(spa);
856
857	cv_destroy(&spa->spa_async_cv);
858	cv_destroy(&spa->spa_evicting_os_cv);
859	cv_destroy(&spa->spa_proc_cv);
860	cv_destroy(&spa->spa_scrub_io_cv);
861	cv_destroy(&spa->spa_suspend_cv);
862
863	mutex_destroy(&spa->spa_alloc_lock);
864	mutex_destroy(&spa->spa_async_lock);
865	mutex_destroy(&spa->spa_errlist_lock);
866	mutex_destroy(&spa->spa_errlog_lock);
867	mutex_destroy(&spa->spa_evicting_os_lock);
868	mutex_destroy(&spa->spa_history_lock);
869	mutex_destroy(&spa->spa_proc_lock);
870	mutex_destroy(&spa->spa_props_lock);
871	mutex_destroy(&spa->spa_cksum_tmpls_lock);
872	mutex_destroy(&spa->spa_scrub_lock);
873	mutex_destroy(&spa->spa_suspend_lock);
874	mutex_destroy(&spa->spa_vdev_top_lock);
875
876	kmem_free(spa, sizeof (spa_t));
877}
878
879/*
880 * Given a pool, return the next pool in the namespace, or NULL if there is
881 * none.  If 'prev' is NULL, return the first pool.
882 */
883spa_t *
884spa_next(spa_t *prev)
885{
886	ASSERT(MUTEX_HELD(&spa_namespace_lock));
887
888	if (prev)
889		return (AVL_NEXT(&spa_namespace_avl, prev));
890	else
891		return (avl_first(&spa_namespace_avl));
892}
893
894/*
895 * ==========================================================================
896 * SPA refcount functions
897 * ==========================================================================
898 */
899
900/*
901 * Add a reference to the given spa_t.  Must have at least one reference, or
902 * have the namespace lock held.
903 */
904void
905spa_open_ref(spa_t *spa, void *tag)
906{
907	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
908	    MUTEX_HELD(&spa_namespace_lock));
909	(void) refcount_add(&spa->spa_refcount, tag);
910}
911
912/*
913 * Remove a reference to the given spa_t.  Must have at least one reference, or
914 * have the namespace lock held.
915 */
916void
917spa_close(spa_t *spa, void *tag)
918{
919	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
920	    MUTEX_HELD(&spa_namespace_lock));
921	(void) refcount_remove(&spa->spa_refcount, tag);
922}
923
924/*
925 * Remove a reference to the given spa_t held by a dsl dir that is
926 * being asynchronously released.  Async releases occur from a taskq
927 * performing eviction of dsl datasets and dirs.  The namespace lock
928 * isn't held and the hold by the object being evicted may contribute to
929 * spa_minref (e.g. dataset or directory released during pool export),
930 * so the asserts in spa_close() do not apply.
931 */
932void
933spa_async_close(spa_t *spa, void *tag)
934{
935	(void) refcount_remove(&spa->spa_refcount, tag);
936}
937
938/*
939 * Check to see if the spa refcount is zero.  Must be called with
940 * spa_namespace_lock held.  We really compare against spa_minref, which is the
941 * number of references acquired when opening a pool
942 */
943boolean_t
944spa_refcount_zero(spa_t *spa)
945{
946	ASSERT(MUTEX_HELD(&spa_namespace_lock));
947
948	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
949}
950
951/*
952 * ==========================================================================
953 * SPA spare and l2cache tracking
954 * ==========================================================================
955 */
956
957/*
958 * Hot spares and cache devices are tracked using the same code below,
959 * for 'auxiliary' devices.
960 */
961
962typedef struct spa_aux {
963	uint64_t	aux_guid;
964	uint64_t	aux_pool;
965	avl_node_t	aux_avl;
966	int		aux_count;
967} spa_aux_t;
968
969static int
970spa_aux_compare(const void *a, const void *b)
971{
972	const spa_aux_t *sa = a;
973	const spa_aux_t *sb = b;
974
975	if (sa->aux_guid < sb->aux_guid)
976		return (-1);
977	else if (sa->aux_guid > sb->aux_guid)
978		return (1);
979	else
980		return (0);
981}
982
983void
984spa_aux_add(vdev_t *vd, avl_tree_t *avl)
985{
986	avl_index_t where;
987	spa_aux_t search;
988	spa_aux_t *aux;
989
990	search.aux_guid = vd->vdev_guid;
991	if ((aux = avl_find(avl, &search, &where)) != NULL) {
992		aux->aux_count++;
993	} else {
994		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
995		aux->aux_guid = vd->vdev_guid;
996		aux->aux_count = 1;
997		avl_insert(avl, aux, where);
998	}
999}
1000
1001void
1002spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1003{
1004	spa_aux_t search;
1005	spa_aux_t *aux;
1006	avl_index_t where;
1007
1008	search.aux_guid = vd->vdev_guid;
1009	aux = avl_find(avl, &search, &where);
1010
1011	ASSERT(aux != NULL);
1012
1013	if (--aux->aux_count == 0) {
1014		avl_remove(avl, aux);
1015		kmem_free(aux, sizeof (spa_aux_t));
1016	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1017		aux->aux_pool = 0ULL;
1018	}
1019}
1020
1021boolean_t
1022spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1023{
1024	spa_aux_t search, *found;
1025
1026	search.aux_guid = guid;
1027	found = avl_find(avl, &search, NULL);
1028
1029	if (pool) {
1030		if (found)
1031			*pool = found->aux_pool;
1032		else
1033			*pool = 0ULL;
1034	}
1035
1036	if (refcnt) {
1037		if (found)
1038			*refcnt = found->aux_count;
1039		else
1040			*refcnt = 0;
1041	}
1042
1043	return (found != NULL);
1044}
1045
1046void
1047spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1048{
1049	spa_aux_t search, *found;
1050	avl_index_t where;
1051
1052	search.aux_guid = vd->vdev_guid;
1053	found = avl_find(avl, &search, &where);
1054	ASSERT(found != NULL);
1055	ASSERT(found->aux_pool == 0ULL);
1056
1057	found->aux_pool = spa_guid(vd->vdev_spa);
1058}
1059
1060/*
1061 * Spares are tracked globally due to the following constraints:
1062 *
1063 * 	- A spare may be part of multiple pools.
1064 * 	- A spare may be added to a pool even if it's actively in use within
1065 *	  another pool.
1066 * 	- A spare in use in any pool can only be the source of a replacement if
1067 *	  the target is a spare in the same pool.
1068 *
1069 * We keep track of all spares on the system through the use of a reference
1070 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1071 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1072 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1073 * inactive).  When a spare is made active (used to replace a device in the
1074 * pool), we also keep track of which pool its been made a part of.
1075 *
1076 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1077 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1078 * separate spare lock exists for the status query path, which does not need to
1079 * be completely consistent with respect to other vdev configuration changes.
1080 */
1081
1082static int
1083spa_spare_compare(const void *a, const void *b)
1084{
1085	return (spa_aux_compare(a, b));
1086}
1087
1088void
1089spa_spare_add(vdev_t *vd)
1090{
1091	mutex_enter(&spa_spare_lock);
1092	ASSERT(!vd->vdev_isspare);
1093	spa_aux_add(vd, &spa_spare_avl);
1094	vd->vdev_isspare = B_TRUE;
1095	mutex_exit(&spa_spare_lock);
1096}
1097
1098void
1099spa_spare_remove(vdev_t *vd)
1100{
1101	mutex_enter(&spa_spare_lock);
1102	ASSERT(vd->vdev_isspare);
1103	spa_aux_remove(vd, &spa_spare_avl);
1104	vd->vdev_isspare = B_FALSE;
1105	mutex_exit(&spa_spare_lock);
1106}
1107
1108boolean_t
1109spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1110{
1111	boolean_t found;
1112
1113	mutex_enter(&spa_spare_lock);
1114	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1115	mutex_exit(&spa_spare_lock);
1116
1117	return (found);
1118}
1119
1120void
1121spa_spare_activate(vdev_t *vd)
1122{
1123	mutex_enter(&spa_spare_lock);
1124	ASSERT(vd->vdev_isspare);
1125	spa_aux_activate(vd, &spa_spare_avl);
1126	mutex_exit(&spa_spare_lock);
1127}
1128
1129/*
1130 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1131 * Cache devices currently only support one pool per cache device, and so
1132 * for these devices the aux reference count is currently unused beyond 1.
1133 */
1134
1135static int
1136spa_l2cache_compare(const void *a, const void *b)
1137{
1138	return (spa_aux_compare(a, b));
1139}
1140
1141void
1142spa_l2cache_add(vdev_t *vd)
1143{
1144	mutex_enter(&spa_l2cache_lock);
1145	ASSERT(!vd->vdev_isl2cache);
1146	spa_aux_add(vd, &spa_l2cache_avl);
1147	vd->vdev_isl2cache = B_TRUE;
1148	mutex_exit(&spa_l2cache_lock);
1149}
1150
1151void
1152spa_l2cache_remove(vdev_t *vd)
1153{
1154	mutex_enter(&spa_l2cache_lock);
1155	ASSERT(vd->vdev_isl2cache);
1156	spa_aux_remove(vd, &spa_l2cache_avl);
1157	vd->vdev_isl2cache = B_FALSE;
1158	mutex_exit(&spa_l2cache_lock);
1159}
1160
1161boolean_t
1162spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1163{
1164	boolean_t found;
1165
1166	mutex_enter(&spa_l2cache_lock);
1167	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1168	mutex_exit(&spa_l2cache_lock);
1169
1170	return (found);
1171}
1172
1173void
1174spa_l2cache_activate(vdev_t *vd)
1175{
1176	mutex_enter(&spa_l2cache_lock);
1177	ASSERT(vd->vdev_isl2cache);
1178	spa_aux_activate(vd, &spa_l2cache_avl);
1179	mutex_exit(&spa_l2cache_lock);
1180}
1181
1182/*
1183 * ==========================================================================
1184 * SPA vdev locking
1185 * ==========================================================================
1186 */
1187
1188/*
1189 * Lock the given spa_t for the purpose of adding or removing a vdev.
1190 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1191 * It returns the next transaction group for the spa_t.
1192 */
1193uint64_t
1194spa_vdev_enter(spa_t *spa)
1195{
1196	mutex_enter(&spa->spa_vdev_top_lock);
1197	mutex_enter(&spa_namespace_lock);
1198	return (spa_vdev_config_enter(spa));
1199}
1200
1201/*
1202 * Internal implementation for spa_vdev_enter().  Used when a vdev
1203 * operation requires multiple syncs (i.e. removing a device) while
1204 * keeping the spa_namespace_lock held.
1205 */
1206uint64_t
1207spa_vdev_config_enter(spa_t *spa)
1208{
1209	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1210
1211	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1212
1213	return (spa_last_synced_txg(spa) + 1);
1214}
1215
1216/*
1217 * Used in combination with spa_vdev_config_enter() to allow the syncing
1218 * of multiple transactions without releasing the spa_namespace_lock.
1219 */
1220void
1221spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1222{
1223	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1224
1225	int config_changed = B_FALSE;
1226
1227	ASSERT(txg > spa_last_synced_txg(spa));
1228
1229	spa->spa_pending_vdev = NULL;
1230
1231	/*
1232	 * Reassess the DTLs.
1233	 */
1234	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1235
1236	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1237		config_changed = B_TRUE;
1238		spa->spa_config_generation++;
1239	}
1240
1241	/*
1242	 * Verify the metaslab classes.
1243	 */
1244	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1245	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1246
1247	spa_config_exit(spa, SCL_ALL, spa);
1248
1249	/*
1250	 * Panic the system if the specified tag requires it.  This
1251	 * is useful for ensuring that configurations are updated
1252	 * transactionally.
1253	 */
1254	if (zio_injection_enabled)
1255		zio_handle_panic_injection(spa, tag, 0);
1256
1257	/*
1258	 * Note: this txg_wait_synced() is important because it ensures
1259	 * that there won't be more than one config change per txg.
1260	 * This allows us to use the txg as the generation number.
1261	 */
1262	if (error == 0)
1263		txg_wait_synced(spa->spa_dsl_pool, txg);
1264
1265	if (vd != NULL) {
1266		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1267		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1268		vdev_free(vd);
1269		spa_config_exit(spa, SCL_ALL, spa);
1270	}
1271
1272	/*
1273	 * If the config changed, update the config cache.
1274	 */
1275	if (config_changed)
1276		spa_config_sync(spa, B_FALSE, B_TRUE);
1277}
1278
1279/*
1280 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1281 * locking of spa_vdev_enter(), we also want make sure the transactions have
1282 * synced to disk, and then update the global configuration cache with the new
1283 * information.
1284 */
1285int
1286spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1287{
1288	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1289	mutex_exit(&spa_namespace_lock);
1290	mutex_exit(&spa->spa_vdev_top_lock);
1291
1292	return (error);
1293}
1294
1295/*
1296 * Lock the given spa_t for the purpose of changing vdev state.
1297 */
1298void
1299spa_vdev_state_enter(spa_t *spa, int oplocks)
1300{
1301	int locks = SCL_STATE_ALL | oplocks;
1302
1303	/*
1304	 * Root pools may need to read of the underlying devfs filesystem
1305	 * when opening up a vdev.  Unfortunately if we're holding the
1306	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1307	 * the read from the root filesystem.  Instead we "prefetch"
1308	 * the associated vnodes that we need prior to opening the
1309	 * underlying devices and cache them so that we can prevent
1310	 * any I/O when we are doing the actual open.
1311	 */
1312	if (spa_is_root(spa)) {
1313		int low = locks & ~(SCL_ZIO - 1);
1314		int high = locks & ~low;
1315
1316		spa_config_enter(spa, high, spa, RW_WRITER);
1317		vdev_hold(spa->spa_root_vdev);
1318		spa_config_enter(spa, low, spa, RW_WRITER);
1319	} else {
1320		spa_config_enter(spa, locks, spa, RW_WRITER);
1321	}
1322	spa->spa_vdev_locks = locks;
1323}
1324
1325int
1326spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1327{
1328	boolean_t config_changed = B_FALSE;
1329
1330	if (vd != NULL || error == 0)
1331		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1332		    0, 0, B_FALSE);
1333
1334	if (vd != NULL) {
1335		vdev_state_dirty(vd->vdev_top);
1336		config_changed = B_TRUE;
1337		spa->spa_config_generation++;
1338	}
1339
1340	if (spa_is_root(spa))
1341		vdev_rele(spa->spa_root_vdev);
1342
1343	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1344	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1345
1346	/*
1347	 * If anything changed, wait for it to sync.  This ensures that,
1348	 * from the system administrator's perspective, zpool(1M) commands
1349	 * are synchronous.  This is important for things like zpool offline:
1350	 * when the command completes, you expect no further I/O from ZFS.
1351	 */
1352	if (vd != NULL)
1353		txg_wait_synced(spa->spa_dsl_pool, 0);
1354
1355	/*
1356	 * If the config changed, update the config cache.
1357	 */
1358	if (config_changed) {
1359		mutex_enter(&spa_namespace_lock);
1360		spa_config_sync(spa, B_FALSE, B_TRUE);
1361		mutex_exit(&spa_namespace_lock);
1362	}
1363
1364	return (error);
1365}
1366
1367/*
1368 * ==========================================================================
1369 * Miscellaneous functions
1370 * ==========================================================================
1371 */
1372
1373void
1374spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1375{
1376	if (!nvlist_exists(spa->spa_label_features, feature)) {
1377		fnvlist_add_boolean(spa->spa_label_features, feature);
1378		/*
1379		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1380		 * dirty the vdev config because lock SCL_CONFIG is not held.
1381		 * Thankfully, in this case we don't need to dirty the config
1382		 * because it will be written out anyway when we finish
1383		 * creating the pool.
1384		 */
1385		if (tx->tx_txg != TXG_INITIAL)
1386			vdev_config_dirty(spa->spa_root_vdev);
1387	}
1388}
1389
1390void
1391spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1392{
1393	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1394		vdev_config_dirty(spa->spa_root_vdev);
1395}
1396
1397/*
1398 * Rename a spa_t.
1399 */
1400int
1401spa_rename(const char *name, const char *newname)
1402{
1403	spa_t *spa;
1404	int err;
1405
1406	/*
1407	 * Lookup the spa_t and grab the config lock for writing.  We need to
1408	 * actually open the pool so that we can sync out the necessary labels.
1409	 * It's OK to call spa_open() with the namespace lock held because we
1410	 * allow recursive calls for other reasons.
1411	 */
1412	mutex_enter(&spa_namespace_lock);
1413	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1414		mutex_exit(&spa_namespace_lock);
1415		return (err);
1416	}
1417
1418	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1419
1420	avl_remove(&spa_namespace_avl, spa);
1421	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1422	avl_add(&spa_namespace_avl, spa);
1423
1424	/*
1425	 * Sync all labels to disk with the new names by marking the root vdev
1426	 * dirty and waiting for it to sync.  It will pick up the new pool name
1427	 * during the sync.
1428	 */
1429	vdev_config_dirty(spa->spa_root_vdev);
1430
1431	spa_config_exit(spa, SCL_ALL, FTAG);
1432
1433	txg_wait_synced(spa->spa_dsl_pool, 0);
1434
1435	/*
1436	 * Sync the updated config cache.
1437	 */
1438	spa_config_sync(spa, B_FALSE, B_TRUE);
1439
1440	spa_close(spa, FTAG);
1441
1442	mutex_exit(&spa_namespace_lock);
1443
1444	return (0);
1445}
1446
1447/*
1448 * Return the spa_t associated with given pool_guid, if it exists.  If
1449 * device_guid is non-zero, determine whether the pool exists *and* contains
1450 * a device with the specified device_guid.
1451 */
1452spa_t *
1453spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1454{
1455	spa_t *spa;
1456	avl_tree_t *t = &spa_namespace_avl;
1457
1458	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1459
1460	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1461		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1462			continue;
1463		if (spa->spa_root_vdev == NULL)
1464			continue;
1465		if (spa_guid(spa) == pool_guid) {
1466			if (device_guid == 0)
1467				break;
1468
1469			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1470			    device_guid) != NULL)
1471				break;
1472
1473			/*
1474			 * Check any devices we may be in the process of adding.
1475			 */
1476			if (spa->spa_pending_vdev) {
1477				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1478				    device_guid) != NULL)
1479					break;
1480			}
1481		}
1482	}
1483
1484	return (spa);
1485}
1486
1487/*
1488 * Determine whether a pool with the given pool_guid exists.
1489 */
1490boolean_t
1491spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1492{
1493	return (spa_by_guid(pool_guid, device_guid) != NULL);
1494}
1495
1496char *
1497spa_strdup(const char *s)
1498{
1499	size_t len;
1500	char *new;
1501
1502	len = strlen(s);
1503	new = kmem_alloc(len + 1, KM_SLEEP);
1504	bcopy(s, new, len);
1505	new[len] = '\0';
1506
1507	return (new);
1508}
1509
1510void
1511spa_strfree(char *s)
1512{
1513	kmem_free(s, strlen(s) + 1);
1514}
1515
1516uint64_t
1517spa_get_random(uint64_t range)
1518{
1519	uint64_t r;
1520
1521	ASSERT(range != 0);
1522
1523	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1524
1525	return (r % range);
1526}
1527
1528uint64_t
1529spa_generate_guid(spa_t *spa)
1530{
1531	uint64_t guid = spa_get_random(-1ULL);
1532
1533	if (spa != NULL) {
1534		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1535			guid = spa_get_random(-1ULL);
1536	} else {
1537		while (guid == 0 || spa_guid_exists(guid, 0))
1538			guid = spa_get_random(-1ULL);
1539	}
1540
1541	return (guid);
1542}
1543
1544void
1545snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1546{
1547	char type[256];
1548	char *checksum = NULL;
1549	char *compress = NULL;
1550
1551	if (bp != NULL) {
1552		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1553			dmu_object_byteswap_t bswap =
1554			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1555			(void) snprintf(type, sizeof (type), "bswap %s %s",
1556			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1557			    "metadata" : "data",
1558			    dmu_ot_byteswap[bswap].ob_name);
1559		} else {
1560			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1561			    sizeof (type));
1562		}
1563		if (!BP_IS_EMBEDDED(bp)) {
1564			checksum =
1565			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1566		}
1567		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1568	}
1569
1570	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1571	    compress);
1572}
1573
1574void
1575spa_freeze(spa_t *spa)
1576{
1577	uint64_t freeze_txg = 0;
1578
1579	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1580	if (spa->spa_freeze_txg == UINT64_MAX) {
1581		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1582		spa->spa_freeze_txg = freeze_txg;
1583	}
1584	spa_config_exit(spa, SCL_ALL, FTAG);
1585	if (freeze_txg != 0)
1586		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1587}
1588
1589void
1590zfs_panic_recover(const char *fmt, ...)
1591{
1592	va_list adx;
1593
1594	va_start(adx, fmt);
1595	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1596	va_end(adx);
1597}
1598
1599/*
1600 * This is a stripped-down version of strtoull, suitable only for converting
1601 * lowercase hexadecimal numbers that don't overflow.
1602 */
1603uint64_t
1604zfs_strtonum(const char *str, char **nptr)
1605{
1606	uint64_t val = 0;
1607	char c;
1608	int digit;
1609
1610	while ((c = *str) != '\0') {
1611		if (c >= '0' && c <= '9')
1612			digit = c - '0';
1613		else if (c >= 'a' && c <= 'f')
1614			digit = 10 + c - 'a';
1615		else
1616			break;
1617
1618		val *= 16;
1619		val += digit;
1620
1621		str++;
1622	}
1623
1624	if (nptr)
1625		*nptr = (char *)str;
1626
1627	return (val);
1628}
1629
1630/*
1631 * ==========================================================================
1632 * Accessor functions
1633 * ==========================================================================
1634 */
1635
1636boolean_t
1637spa_shutting_down(spa_t *spa)
1638{
1639	return (spa->spa_async_suspended);
1640}
1641
1642dsl_pool_t *
1643spa_get_dsl(spa_t *spa)
1644{
1645	return (spa->spa_dsl_pool);
1646}
1647
1648boolean_t
1649spa_is_initializing(spa_t *spa)
1650{
1651	return (spa->spa_is_initializing);
1652}
1653
1654blkptr_t *
1655spa_get_rootblkptr(spa_t *spa)
1656{
1657	return (&spa->spa_ubsync.ub_rootbp);
1658}
1659
1660void
1661spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1662{
1663	spa->spa_uberblock.ub_rootbp = *bp;
1664}
1665
1666void
1667spa_altroot(spa_t *spa, char *buf, size_t buflen)
1668{
1669	if (spa->spa_root == NULL)
1670		buf[0] = '\0';
1671	else
1672		(void) strncpy(buf, spa->spa_root, buflen);
1673}
1674
1675int
1676spa_sync_pass(spa_t *spa)
1677{
1678	return (spa->spa_sync_pass);
1679}
1680
1681char *
1682spa_name(spa_t *spa)
1683{
1684	return (spa->spa_name);
1685}
1686
1687uint64_t
1688spa_guid(spa_t *spa)
1689{
1690	dsl_pool_t *dp = spa_get_dsl(spa);
1691	uint64_t guid;
1692
1693	/*
1694	 * If we fail to parse the config during spa_load(), we can go through
1695	 * the error path (which posts an ereport) and end up here with no root
1696	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1697	 * this case.
1698	 */
1699	if (spa->spa_root_vdev == NULL)
1700		return (spa->spa_config_guid);
1701
1702	guid = spa->spa_last_synced_guid != 0 ?
1703	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1704
1705	/*
1706	 * Return the most recently synced out guid unless we're
1707	 * in syncing context.
1708	 */
1709	if (dp && dsl_pool_sync_context(dp))
1710		return (spa->spa_root_vdev->vdev_guid);
1711	else
1712		return (guid);
1713}
1714
1715uint64_t
1716spa_load_guid(spa_t *spa)
1717{
1718	/*
1719	 * This is a GUID that exists solely as a reference for the
1720	 * purposes of the arc.  It is generated at load time, and
1721	 * is never written to persistent storage.
1722	 */
1723	return (spa->spa_load_guid);
1724}
1725
1726uint64_t
1727spa_last_synced_txg(spa_t *spa)
1728{
1729	return (spa->spa_ubsync.ub_txg);
1730}
1731
1732uint64_t
1733spa_first_txg(spa_t *spa)
1734{
1735	return (spa->spa_first_txg);
1736}
1737
1738uint64_t
1739spa_syncing_txg(spa_t *spa)
1740{
1741	return (spa->spa_syncing_txg);
1742}
1743
1744pool_state_t
1745spa_state(spa_t *spa)
1746{
1747	return (spa->spa_state);
1748}
1749
1750spa_load_state_t
1751spa_load_state(spa_t *spa)
1752{
1753	return (spa->spa_load_state);
1754}
1755
1756uint64_t
1757spa_freeze_txg(spa_t *spa)
1758{
1759	return (spa->spa_freeze_txg);
1760}
1761
1762/* ARGSUSED */
1763uint64_t
1764spa_get_asize(spa_t *spa, uint64_t lsize)
1765{
1766	return (lsize * spa_asize_inflation);
1767}
1768
1769/*
1770 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1771 * or at least 128MB, unless that would cause it to be more than half the
1772 * pool size.
1773 *
1774 * See the comment above spa_slop_shift for details.
1775 */
1776uint64_t
1777spa_get_slop_space(spa_t *spa)
1778{
1779	uint64_t space = spa_get_dspace(spa);
1780	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1781}
1782
1783uint64_t
1784spa_get_dspace(spa_t *spa)
1785{
1786	return (spa->spa_dspace);
1787}
1788
1789void
1790spa_update_dspace(spa_t *spa)
1791{
1792	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1793	    ddt_get_dedup_dspace(spa);
1794}
1795
1796/*
1797 * Return the failure mode that has been set to this pool. The default
1798 * behavior will be to block all I/Os when a complete failure occurs.
1799 */
1800uint8_t
1801spa_get_failmode(spa_t *spa)
1802{
1803	return (spa->spa_failmode);
1804}
1805
1806boolean_t
1807spa_suspended(spa_t *spa)
1808{
1809	return (spa->spa_suspended);
1810}
1811
1812uint64_t
1813spa_version(spa_t *spa)
1814{
1815	return (spa->spa_ubsync.ub_version);
1816}
1817
1818boolean_t
1819spa_deflate(spa_t *spa)
1820{
1821	return (spa->spa_deflate);
1822}
1823
1824metaslab_class_t *
1825spa_normal_class(spa_t *spa)
1826{
1827	return (spa->spa_normal_class);
1828}
1829
1830metaslab_class_t *
1831spa_log_class(spa_t *spa)
1832{
1833	return (spa->spa_log_class);
1834}
1835
1836void
1837spa_evicting_os_register(spa_t *spa, objset_t *os)
1838{
1839	mutex_enter(&spa->spa_evicting_os_lock);
1840	list_insert_head(&spa->spa_evicting_os_list, os);
1841	mutex_exit(&spa->spa_evicting_os_lock);
1842}
1843
1844void
1845spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1846{
1847	mutex_enter(&spa->spa_evicting_os_lock);
1848	list_remove(&spa->spa_evicting_os_list, os);
1849	cv_broadcast(&spa->spa_evicting_os_cv);
1850	mutex_exit(&spa->spa_evicting_os_lock);
1851}
1852
1853void
1854spa_evicting_os_wait(spa_t *spa)
1855{
1856	mutex_enter(&spa->spa_evicting_os_lock);
1857	while (!list_is_empty(&spa->spa_evicting_os_list))
1858		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1859	mutex_exit(&spa->spa_evicting_os_lock);
1860
1861	dmu_buf_user_evict_wait();
1862}
1863
1864int
1865spa_max_replication(spa_t *spa)
1866{
1867	/*
1868	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1869	 * handle BPs with more than one DVA allocated.  Set our max
1870	 * replication level accordingly.
1871	 */
1872	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1873		return (1);
1874	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1875}
1876
1877int
1878spa_prev_software_version(spa_t *spa)
1879{
1880	return (spa->spa_prev_software_version);
1881}
1882
1883uint64_t
1884spa_deadman_synctime(spa_t *spa)
1885{
1886	return (spa->spa_deadman_synctime);
1887}
1888
1889uint64_t
1890dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1891{
1892	uint64_t asize = DVA_GET_ASIZE(dva);
1893	uint64_t dsize = asize;
1894
1895	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1896
1897	if (asize != 0 && spa->spa_deflate) {
1898		uint64_t vdev = DVA_GET_VDEV(dva);
1899		vdev_t *vd = vdev_lookup_top(spa, vdev);
1900		if (vd == NULL) {
1901			panic(
1902			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1903			    (u_longlong_t)vdev, (u_longlong_t)asize);
1904		}
1905		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1906	}
1907
1908	return (dsize);
1909}
1910
1911uint64_t
1912bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1913{
1914	uint64_t dsize = 0;
1915
1916	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1917		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1918
1919	return (dsize);
1920}
1921
1922uint64_t
1923bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1924{
1925	uint64_t dsize = 0;
1926
1927	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1928
1929	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1930		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1931
1932	spa_config_exit(spa, SCL_VDEV, FTAG);
1933
1934	return (dsize);
1935}
1936
1937/*
1938 * ==========================================================================
1939 * Initialization and Termination
1940 * ==========================================================================
1941 */
1942
1943static int
1944spa_name_compare(const void *a1, const void *a2)
1945{
1946	const spa_t *s1 = a1;
1947	const spa_t *s2 = a2;
1948	int s;
1949
1950	s = strcmp(s1->spa_name, s2->spa_name);
1951	if (s > 0)
1952		return (1);
1953	if (s < 0)
1954		return (-1);
1955	return (0);
1956}
1957
1958int
1959spa_busy(void)
1960{
1961	return (spa_active_count);
1962}
1963
1964void
1965spa_boot_init()
1966{
1967	spa_config_load();
1968}
1969
1970#ifdef _KERNEL
1971EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1972#endif
1973
1974void
1975spa_init(int mode)
1976{
1977	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1978	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1979	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1980	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1981
1982	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1983	    offsetof(spa_t, spa_avl));
1984
1985	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1986	    offsetof(spa_aux_t, aux_avl));
1987
1988	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1989	    offsetof(spa_aux_t, aux_avl));
1990
1991	spa_mode_global = mode;
1992
1993#ifdef illumos
1994#ifdef _KERNEL
1995	spa_arch_init();
1996#else
1997	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1998		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1999		if (arc_procfd == -1) {
2000			perror("could not enable watchpoints: "
2001			    "opening /proc/self/ctl failed: ");
2002		} else {
2003			arc_watch = B_TRUE;
2004		}
2005	}
2006#endif
2007#endif /* illumos */
2008	refcount_sysinit();
2009	unique_init();
2010	range_tree_init();
2011	zio_init();
2012	lz4_init();
2013	dmu_init();
2014	zil_init();
2015	vdev_cache_stat_init();
2016	zfs_prop_init();
2017	zpool_prop_init();
2018	zpool_feature_init();
2019	spa_config_load();
2020	l2arc_start();
2021#ifndef illumos
2022#ifdef _KERNEL
2023	zfs_deadman_init();
2024#endif
2025#endif	/* !illumos */
2026}
2027
2028void
2029spa_fini(void)
2030{
2031	l2arc_stop();
2032
2033	spa_evict_all();
2034
2035	vdev_cache_stat_fini();
2036	zil_fini();
2037	dmu_fini();
2038	lz4_fini();
2039	zio_fini();
2040	range_tree_fini();
2041	unique_fini();
2042	refcount_fini();
2043
2044	avl_destroy(&spa_namespace_avl);
2045	avl_destroy(&spa_spare_avl);
2046	avl_destroy(&spa_l2cache_avl);
2047
2048	cv_destroy(&spa_namespace_cv);
2049	mutex_destroy(&spa_namespace_lock);
2050	mutex_destroy(&spa_spare_lock);
2051	mutex_destroy(&spa_l2cache_lock);
2052}
2053
2054/*
2055 * Return whether this pool has slogs. No locking needed.
2056 * It's not a problem if the wrong answer is returned as it's only for
2057 * performance and not correctness
2058 */
2059boolean_t
2060spa_has_slogs(spa_t *spa)
2061{
2062	return (spa->spa_log_class->mc_rotor != NULL);
2063}
2064
2065spa_log_state_t
2066spa_get_log_state(spa_t *spa)
2067{
2068	return (spa->spa_log_state);
2069}
2070
2071void
2072spa_set_log_state(spa_t *spa, spa_log_state_t state)
2073{
2074	spa->spa_log_state = state;
2075}
2076
2077boolean_t
2078spa_is_root(spa_t *spa)
2079{
2080	return (spa->spa_is_root);
2081}
2082
2083boolean_t
2084spa_writeable(spa_t *spa)
2085{
2086	return (!!(spa->spa_mode & FWRITE));
2087}
2088
2089/*
2090 * Returns true if there is a pending sync task in any of the current
2091 * syncing txg, the current quiescing txg, or the current open txg.
2092 */
2093boolean_t
2094spa_has_pending_synctask(spa_t *spa)
2095{
2096	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2097}
2098
2099int
2100spa_mode(spa_t *spa)
2101{
2102	return (spa->spa_mode);
2103}
2104
2105uint64_t
2106spa_bootfs(spa_t *spa)
2107{
2108	return (spa->spa_bootfs);
2109}
2110
2111uint64_t
2112spa_delegation(spa_t *spa)
2113{
2114	return (spa->spa_delegation);
2115}
2116
2117objset_t *
2118spa_meta_objset(spa_t *spa)
2119{
2120	return (spa->spa_meta_objset);
2121}
2122
2123enum zio_checksum
2124spa_dedup_checksum(spa_t *spa)
2125{
2126	return (spa->spa_dedup_checksum);
2127}
2128
2129/*
2130 * Reset pool scan stat per scan pass (or reboot).
2131 */
2132void
2133spa_scan_stat_init(spa_t *spa)
2134{
2135	/* data not stored on disk */
2136	spa->spa_scan_pass_start = gethrestime_sec();
2137	spa->spa_scan_pass_exam = 0;
2138	vdev_scan_stat_init(spa->spa_root_vdev);
2139}
2140
2141/*
2142 * Get scan stats for zpool status reports
2143 */
2144int
2145spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2146{
2147	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2148
2149	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2150		return (SET_ERROR(ENOENT));
2151	bzero(ps, sizeof (pool_scan_stat_t));
2152
2153	/* data stored on disk */
2154	ps->pss_func = scn->scn_phys.scn_func;
2155	ps->pss_start_time = scn->scn_phys.scn_start_time;
2156	ps->pss_end_time = scn->scn_phys.scn_end_time;
2157	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2158	ps->pss_examined = scn->scn_phys.scn_examined;
2159	ps->pss_to_process = scn->scn_phys.scn_to_process;
2160	ps->pss_processed = scn->scn_phys.scn_processed;
2161	ps->pss_errors = scn->scn_phys.scn_errors;
2162	ps->pss_state = scn->scn_phys.scn_state;
2163
2164	/* data not stored on disk */
2165	ps->pss_pass_start = spa->spa_scan_pass_start;
2166	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2167
2168	return (0);
2169}
2170
2171boolean_t
2172spa_debug_enabled(spa_t *spa)
2173{
2174	return (spa->spa_debug);
2175}
2176
2177int
2178spa_maxblocksize(spa_t *spa)
2179{
2180	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2181		return (SPA_MAXBLOCKSIZE);
2182	else
2183		return (SPA_OLD_MAXBLOCKSIZE);
2184}
2185