spa_misc.c revision 314668
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
50#include <sys/dsl_scan.h>
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
53#include <sys/arc.h>
54#include <sys/ddt.h>
55#include "zfs_prop.h"
56#include <sys/zfeature.h>
57
58/*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 *	This lock must be acquired to do any of the following:
66 *
67 *		- Lookup a spa_t by name
68 *		- Add or remove a spa_t from the namespace
69 *		- Increase spa_refcount from non-zero
70 *		- Check if spa_refcount is zero
71 *		- Rename a spa_t
72 *		- add/remove/attach/detach devices
73 *		- Held for the duration of create/destroy/import/export
74 *
75 *	It does not need to handle recursion.  A create or destroy may
76 *	reference objects (files or zvols) in other pools, but by
77 *	definition they must have an existing reference, and will never need
78 *	to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 *	This reference count keep track of any active users of the spa_t.  The
83 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84 *	the refcount is never really 'zero' - opening a pool implicitly keeps
85 *	some references in the DMU.  Internally we check against spa_minref, but
86 *	present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 *	This protects the spa_t from config changes, and must be held in
91 *	the following circumstances:
92 *
93 *		- RW_READER to perform I/O to the spa
94 *		- RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 *		spa_namespace_lock	->	spa_refcount
99 *
100 *	The namespace lock must be acquired to increase the refcount from 0
101 *	or to check if it is zero.
102 *
103 *		spa_refcount		->	spa_config_lock[]
104 *
105 *	There must be at least one valid reference on the spa_t to acquire
106 *	the config lock.
107 *
108 *		spa_namespace_lock	->	spa_config_lock[]
109 *
110 *	The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 *	spa_lookup()		Lookup a spa_t by name.
119 *
120 *	spa_add()		Create a new spa_t in the namespace.
121 *
122 *	spa_remove()		Remove a spa_t from the namespace.  This also
123 *				frees up any memory associated with the spa_t.
124 *
125 *	spa_next()		Returns the next spa_t in the system, or the
126 *				first if NULL is passed.
127 *
128 *	spa_evict_all()		Shutdown and remove all spa_t structures in
129 *				the system.
130 *
131 *	spa_guid_exists()	Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136 *				called with spa_namespace_lock held if the
137 *				refcount is currently zero.
138 *
139 *	spa_close()		Remove a reference from the spa_t.  This will
140 *				not free the spa_t or remove it from the
141 *				namespace.  No locking is required.
142 *
143 *	spa_refcount_zero()	Returns true if the refcount is currently
144 *				zero.  Must be called with spa_namespace_lock
145 *				held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer.  To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership.  For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 *	Protects changes to the vdev tree topology, such as vdev
171 *	add/remove/attach/detach.  Protects the dirty config list
172 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 *	Protects changes to pool state and vdev state, such as vdev
176 *	online/offline/fault/degrade/clear.  Protects the dirty state list
177 *	(spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 *	Protects changes to metaslab groups and classes.
181 *	Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 *	Held by bp-level zios (those which have no io_vd upon entry)
185 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 *	Protects changes to metaslab groups and classes.
190 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 *	blocks in zio_done() while another i/o that holds either
193 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 *	Held as reader to prevent changes to the vdev tree during trivial
197 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198 *	other locks, and lower than all of them, to ensure that it's safe
199 *	to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204 *	The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 *	or zio_write_phys() -- the caller must ensure that the config cannot
209 *	cannot change in the interim, and that the vdev cannot be reopened.
210 *	SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215 *				for writing.
216 *
217 *	spa_vdev_exit()		Release the config lock, wait for all I/O
218 *				to complete, sync the updated configs to the
219 *				cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229static avl_tree_t spa_namespace_avl;
230kmutex_t spa_namespace_lock;
231static kcondvar_t spa_namespace_cv;
232static int spa_active_count;
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
241int spa_mode_global;
242
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249SYSCTL_DECL(_debug);
250TUNABLE_INT("debug.zfs_flags", &zfs_flags);
251SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
252    "ZFS debug flags.");
253
254/*
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption.  When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
260 */
261boolean_t zfs_recover = B_FALSE;
262SYSCTL_DECL(_vfs_zfs);
263TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
264SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
265    "Try to recover from otherwise-fatal errors.");
266
267static int
268sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
269{
270	int err, val;
271
272	val = zfs_flags;
273	err = sysctl_handle_int(oidp, &val, 0, req);
274	if (err != 0 || req->newptr == NULL)
275		return (err);
276
277	/*
278	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
279	 * arc buffers in the system have the necessary additional
280	 * checksum data.  However, it is safe to disable at any
281	 * time.
282	 */
283	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
284		val &= ~ZFS_DEBUG_MODIFY;
285	zfs_flags = val;
286
287	return (0);
288}
289TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
290SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
291    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
292    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
293
294/*
295 * If destroy encounters an EIO while reading metadata (e.g. indirect
296 * blocks), space referenced by the missing metadata can not be freed.
297 * Normally this causes the background destroy to become "stalled", as
298 * it is unable to make forward progress.  While in this stalled state,
299 * all remaining space to free from the error-encountering filesystem is
300 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
301 * permanently leak the space from indirect blocks that can not be read,
302 * and continue to free everything else that it can.
303 *
304 * The default, "stalling" behavior is useful if the storage partially
305 * fails (i.e. some but not all i/os fail), and then later recovers.  In
306 * this case, we will be able to continue pool operations while it is
307 * partially failed, and when it recovers, we can continue to free the
308 * space, with no leaks.  However, note that this case is actually
309 * fairly rare.
310 *
311 * Typically pools either (a) fail completely (but perhaps temporarily,
312 * e.g. a top-level vdev going offline), or (b) have localized,
313 * permanent errors (e.g. disk returns the wrong data due to bit flip or
314 * firmware bug).  In case (a), this setting does not matter because the
315 * pool will be suspended and the sync thread will not be able to make
316 * forward progress regardless.  In case (b), because the error is
317 * permanent, the best we can do is leak the minimum amount of space,
318 * which is what setting this flag will do.  Therefore, it is reasonable
319 * for this flag to normally be set, but we chose the more conservative
320 * approach of not setting it, so that there is no possibility of
321 * leaking space in the "partial temporary" failure case.
322 */
323boolean_t zfs_free_leak_on_eio = B_FALSE;
324
325/*
326 * Expiration time in milliseconds. This value has two meanings. First it is
327 * used to determine when the spa_deadman() logic should fire. By default the
328 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
329 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
330 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
331 * in a system panic.
332 */
333uint64_t zfs_deadman_synctime_ms = 1000000ULL;
334TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
335SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
336    &zfs_deadman_synctime_ms, 0,
337    "Stalled ZFS I/O expiration time in milliseconds");
338
339/*
340 * Check time in milliseconds. This defines the frequency at which we check
341 * for hung I/O.
342 */
343uint64_t zfs_deadman_checktime_ms = 5000ULL;
344TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
346    &zfs_deadman_checktime_ms, 0,
347    "Period of checks for stalled ZFS I/O in milliseconds");
348
349/*
350 * Default value of -1 for zfs_deadman_enabled is resolved in
351 * zfs_deadman_init()
352 */
353int zfs_deadman_enabled = -1;
354TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
355SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
356    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
357
358/*
359 * The worst case is single-sector max-parity RAID-Z blocks, in which
360 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
361 * times the size; so just assume that.  Add to this the fact that
362 * we can have up to 3 DVAs per bp, and one more factor of 2 because
363 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
364 * the worst case is:
365 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
366 */
367int spa_asize_inflation = 24;
368TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
369SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
370    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
371
372#ifndef illumos
373#ifdef _KERNEL
374static void
375zfs_deadman_init()
376{
377	/*
378	 * If we are not i386 or amd64 or in a virtual machine,
379	 * disable ZFS deadman thread by default
380	 */
381	if (zfs_deadman_enabled == -1) {
382#if defined(__amd64__) || defined(__i386__)
383		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
384#else
385		zfs_deadman_enabled = 0;
386#endif
387	}
388}
389#endif	/* _KERNEL */
390#endif	/* !illumos */
391
392/*
393 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
394 * the pool to be consumed.  This ensures that we don't run the pool
395 * completely out of space, due to unaccounted changes (e.g. to the MOS).
396 * It also limits the worst-case time to allocate space.  If we have
397 * less than this amount of free space, most ZPL operations (e.g. write,
398 * create) will return ENOSPC.
399 *
400 * Certain operations (e.g. file removal, most administrative actions) can
401 * use half the slop space.  They will only return ENOSPC if less than half
402 * the slop space is free.  Typically, once the pool has less than the slop
403 * space free, the user will use these operations to free up space in the pool.
404 * These are the operations that call dsl_pool_adjustedsize() with the netfree
405 * argument set to TRUE.
406 *
407 * A very restricted set of operations are always permitted, regardless of
408 * the amount of free space.  These are the operations that call
409 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
410 * operations result in a net increase in the amount of space used,
411 * it is possible to run the pool completely out of space, causing it to
412 * be permanently read-only.
413 *
414 * Note that on very small pools, the slop space will be larger than
415 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
416 * but we never allow it to be more than half the pool size.
417 *
418 * See also the comments in zfs_space_check_t.
419 */
420int spa_slop_shift = 5;
421SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
422    &spa_slop_shift, 0,
423    "Shift value of reserved space (1/(2^spa_slop_shift)).");
424uint64_t spa_min_slop = 128 * 1024 * 1024;
425SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
426    &spa_min_slop, 0,
427    "Minimal value of reserved space");
428
429/*
430 * ==========================================================================
431 * SPA config locking
432 * ==========================================================================
433 */
434static void
435spa_config_lock_init(spa_t *spa)
436{
437	for (int i = 0; i < SCL_LOCKS; i++) {
438		spa_config_lock_t *scl = &spa->spa_config_lock[i];
439		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
440		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
441		refcount_create_untracked(&scl->scl_count);
442		scl->scl_writer = NULL;
443		scl->scl_write_wanted = 0;
444	}
445}
446
447static void
448spa_config_lock_destroy(spa_t *spa)
449{
450	for (int i = 0; i < SCL_LOCKS; i++) {
451		spa_config_lock_t *scl = &spa->spa_config_lock[i];
452		mutex_destroy(&scl->scl_lock);
453		cv_destroy(&scl->scl_cv);
454		refcount_destroy(&scl->scl_count);
455		ASSERT(scl->scl_writer == NULL);
456		ASSERT(scl->scl_write_wanted == 0);
457	}
458}
459
460int
461spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
462{
463	for (int i = 0; i < SCL_LOCKS; i++) {
464		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465		if (!(locks & (1 << i)))
466			continue;
467		mutex_enter(&scl->scl_lock);
468		if (rw == RW_READER) {
469			if (scl->scl_writer || scl->scl_write_wanted) {
470				mutex_exit(&scl->scl_lock);
471				spa_config_exit(spa, locks & ((1 << i) - 1),
472				    tag);
473				return (0);
474			}
475		} else {
476			ASSERT(scl->scl_writer != curthread);
477			if (!refcount_is_zero(&scl->scl_count)) {
478				mutex_exit(&scl->scl_lock);
479				spa_config_exit(spa, locks & ((1 << i) - 1),
480				    tag);
481				return (0);
482			}
483			scl->scl_writer = curthread;
484		}
485		(void) refcount_add(&scl->scl_count, tag);
486		mutex_exit(&scl->scl_lock);
487	}
488	return (1);
489}
490
491void
492spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
493{
494	int wlocks_held = 0;
495
496	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
497
498	for (int i = 0; i < SCL_LOCKS; i++) {
499		spa_config_lock_t *scl = &spa->spa_config_lock[i];
500		if (scl->scl_writer == curthread)
501			wlocks_held |= (1 << i);
502		if (!(locks & (1 << i)))
503			continue;
504		mutex_enter(&scl->scl_lock);
505		if (rw == RW_READER) {
506			while (scl->scl_writer || scl->scl_write_wanted) {
507				cv_wait(&scl->scl_cv, &scl->scl_lock);
508			}
509		} else {
510			ASSERT(scl->scl_writer != curthread);
511			while (!refcount_is_zero(&scl->scl_count)) {
512				scl->scl_write_wanted++;
513				cv_wait(&scl->scl_cv, &scl->scl_lock);
514				scl->scl_write_wanted--;
515			}
516			scl->scl_writer = curthread;
517		}
518		(void) refcount_add(&scl->scl_count, tag);
519		mutex_exit(&scl->scl_lock);
520	}
521	ASSERT(wlocks_held <= locks);
522}
523
524void
525spa_config_exit(spa_t *spa, int locks, void *tag)
526{
527	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
528		spa_config_lock_t *scl = &spa->spa_config_lock[i];
529		if (!(locks & (1 << i)))
530			continue;
531		mutex_enter(&scl->scl_lock);
532		ASSERT(!refcount_is_zero(&scl->scl_count));
533		if (refcount_remove(&scl->scl_count, tag) == 0) {
534			ASSERT(scl->scl_writer == NULL ||
535			    scl->scl_writer == curthread);
536			scl->scl_writer = NULL;	/* OK in either case */
537			cv_broadcast(&scl->scl_cv);
538		}
539		mutex_exit(&scl->scl_lock);
540	}
541}
542
543int
544spa_config_held(spa_t *spa, int locks, krw_t rw)
545{
546	int locks_held = 0;
547
548	for (int i = 0; i < SCL_LOCKS; i++) {
549		spa_config_lock_t *scl = &spa->spa_config_lock[i];
550		if (!(locks & (1 << i)))
551			continue;
552		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
553		    (rw == RW_WRITER && scl->scl_writer == curthread))
554			locks_held |= 1 << i;
555	}
556
557	return (locks_held);
558}
559
560/*
561 * ==========================================================================
562 * SPA namespace functions
563 * ==========================================================================
564 */
565
566/*
567 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
568 * Returns NULL if no matching spa_t is found.
569 */
570spa_t *
571spa_lookup(const char *name)
572{
573	static spa_t search;	/* spa_t is large; don't allocate on stack */
574	spa_t *spa;
575	avl_index_t where;
576	char *cp;
577
578	ASSERT(MUTEX_HELD(&spa_namespace_lock));
579
580	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
581
582	/*
583	 * If it's a full dataset name, figure out the pool name and
584	 * just use that.
585	 */
586	cp = strpbrk(search.spa_name, "/@#");
587	if (cp != NULL)
588		*cp = '\0';
589
590	spa = avl_find(&spa_namespace_avl, &search, &where);
591
592	return (spa);
593}
594
595/*
596 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
597 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
598 * looking for potentially hung I/Os.
599 */
600static void
601spa_deadman(void *arg, int pending)
602{
603	spa_t *spa = arg;
604
605	/*
606	 * Disable the deadman timer if the pool is suspended.
607	 */
608	if (spa_suspended(spa)) {
609#ifdef illumos
610		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
611#else
612		/* Nothing.  just don't schedule any future callouts. */
613#endif
614		return;
615	}
616
617	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
618	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
619	    ++spa->spa_deadman_calls);
620	if (zfs_deadman_enabled)
621		vdev_deadman(spa->spa_root_vdev);
622#ifdef __FreeBSD__
623#ifdef _KERNEL
624	callout_schedule(&spa->spa_deadman_cycid,
625	    hz * zfs_deadman_checktime_ms / MILLISEC);
626#endif
627#endif
628}
629
630#if defined(__FreeBSD__) && defined(_KERNEL)
631static void
632spa_deadman_timeout(void *arg)
633{
634	spa_t *spa = arg;
635
636	taskqueue_enqueue(taskqueue_thread, &spa->spa_deadman_task);
637}
638#endif
639
640/*
641 * Create an uninitialized spa_t with the given name.  Requires
642 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
643 * exist by calling spa_lookup() first.
644 */
645spa_t *
646spa_add(const char *name, nvlist_t *config, const char *altroot)
647{
648	spa_t *spa;
649	spa_config_dirent_t *dp;
650#ifdef illumos
651	cyc_handler_t hdlr;
652	cyc_time_t when;
653#endif
654
655	ASSERT(MUTEX_HELD(&spa_namespace_lock));
656
657	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
658
659	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
660	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
661	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
662	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
663	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
664	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
665	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
666	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
667	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
668	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
669	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
670	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
671
672	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
673	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
674	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
675	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
676	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
677
678	for (int t = 0; t < TXG_SIZE; t++)
679		bplist_create(&spa->spa_free_bplist[t]);
680
681	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
682	spa->spa_state = POOL_STATE_UNINITIALIZED;
683	spa->spa_freeze_txg = UINT64_MAX;
684	spa->spa_final_txg = UINT64_MAX;
685	spa->spa_load_max_txg = UINT64_MAX;
686	spa->spa_proc = &p0;
687	spa->spa_proc_state = SPA_PROC_NONE;
688
689#ifdef illumos
690	hdlr.cyh_func = spa_deadman;
691	hdlr.cyh_arg = spa;
692	hdlr.cyh_level = CY_LOW_LEVEL;
693#endif
694
695	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
696
697#ifdef illumos
698	/*
699	 * This determines how often we need to check for hung I/Os after
700	 * the cyclic has already fired. Since checking for hung I/Os is
701	 * an expensive operation we don't want to check too frequently.
702	 * Instead wait for 5 seconds before checking again.
703	 */
704	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
705	when.cyt_when = CY_INFINITY;
706	mutex_enter(&cpu_lock);
707	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
708	mutex_exit(&cpu_lock);
709#else	/* !illumos */
710#ifdef _KERNEL
711	/*
712	 * callout(9) does not provide a way to initialize a callout with
713	 * a function and an argument, so we use callout_reset() to schedule
714	 * the callout in the very distant future.  Even if that event ever
715	 * fires, it should be okayas we won't have any active zio-s.
716	 * But normally spa_sync() will reschedule the callout with a proper
717	 * timeout.
718	 * callout(9) does not allow the callback function to sleep but
719	 * vdev_deadman() needs to acquire vq_lock and illumos mutexes are
720	 * emulated using sx(9).  For this reason spa_deadman_timeout()
721	 * will schedule spa_deadman() as task on a taskqueue that allows
722	 * sleeping.
723	 */
724	TASK_INIT(&spa->spa_deadman_task, 0, spa_deadman, spa);
725	callout_init(&spa->spa_deadman_cycid, 1);
726	callout_reset_sbt(&spa->spa_deadman_cycid, SBT_MAX, 0,
727	    spa_deadman_timeout, spa, 0);
728#endif
729#endif
730	refcount_create(&spa->spa_refcount);
731	spa_config_lock_init(spa);
732
733	avl_add(&spa_namespace_avl, spa);
734
735	/*
736	 * Set the alternate root, if there is one.
737	 */
738	if (altroot) {
739		spa->spa_root = spa_strdup(altroot);
740		spa_active_count++;
741	}
742
743	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
744	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
745
746	/*
747	 * Every pool starts with the default cachefile
748	 */
749	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
750	    offsetof(spa_config_dirent_t, scd_link));
751
752	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
753	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
754	list_insert_head(&spa->spa_config_list, dp);
755
756	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
757	    KM_SLEEP) == 0);
758
759	if (config != NULL) {
760		nvlist_t *features;
761
762		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
763		    &features) == 0) {
764			VERIFY(nvlist_dup(features, &spa->spa_label_features,
765			    0) == 0);
766		}
767
768		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
769	}
770
771	if (spa->spa_label_features == NULL) {
772		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
773		    KM_SLEEP) == 0);
774	}
775
776	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
777
778	spa->spa_min_ashift = INT_MAX;
779	spa->spa_max_ashift = 0;
780
781	/*
782	 * As a pool is being created, treat all features as disabled by
783	 * setting SPA_FEATURE_DISABLED for all entries in the feature
784	 * refcount cache.
785	 */
786	for (int i = 0; i < SPA_FEATURES; i++) {
787		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
788	}
789
790	return (spa);
791}
792
793/*
794 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
795 * spa_namespace_lock.  This is called only after the spa_t has been closed and
796 * deactivated.
797 */
798void
799spa_remove(spa_t *spa)
800{
801	spa_config_dirent_t *dp;
802
803	ASSERT(MUTEX_HELD(&spa_namespace_lock));
804	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
805	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
806
807	nvlist_free(spa->spa_config_splitting);
808
809	avl_remove(&spa_namespace_avl, spa);
810	cv_broadcast(&spa_namespace_cv);
811
812	if (spa->spa_root) {
813		spa_strfree(spa->spa_root);
814		spa_active_count--;
815	}
816
817	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
818		list_remove(&spa->spa_config_list, dp);
819		if (dp->scd_path != NULL)
820			spa_strfree(dp->scd_path);
821		kmem_free(dp, sizeof (spa_config_dirent_t));
822	}
823
824	avl_destroy(&spa->spa_alloc_tree);
825	list_destroy(&spa->spa_config_list);
826
827	nvlist_free(spa->spa_label_features);
828	nvlist_free(spa->spa_load_info);
829	spa_config_set(spa, NULL);
830
831#ifdef illumos
832	mutex_enter(&cpu_lock);
833	if (spa->spa_deadman_cycid != CYCLIC_NONE)
834		cyclic_remove(spa->spa_deadman_cycid);
835	mutex_exit(&cpu_lock);
836	spa->spa_deadman_cycid = CYCLIC_NONE;
837#else	/* !illumos */
838#ifdef _KERNEL
839	callout_drain(&spa->spa_deadman_cycid);
840	taskqueue_drain(taskqueue_thread, &spa->spa_deadman_task);
841#endif
842#endif
843
844	refcount_destroy(&spa->spa_refcount);
845
846	spa_config_lock_destroy(spa);
847
848	for (int t = 0; t < TXG_SIZE; t++)
849		bplist_destroy(&spa->spa_free_bplist[t]);
850
851	zio_checksum_templates_free(spa);
852
853	cv_destroy(&spa->spa_async_cv);
854	cv_destroy(&spa->spa_evicting_os_cv);
855	cv_destroy(&spa->spa_proc_cv);
856	cv_destroy(&spa->spa_scrub_io_cv);
857	cv_destroy(&spa->spa_suspend_cv);
858
859	mutex_destroy(&spa->spa_alloc_lock);
860	mutex_destroy(&spa->spa_async_lock);
861	mutex_destroy(&spa->spa_errlist_lock);
862	mutex_destroy(&spa->spa_errlog_lock);
863	mutex_destroy(&spa->spa_evicting_os_lock);
864	mutex_destroy(&spa->spa_history_lock);
865	mutex_destroy(&spa->spa_proc_lock);
866	mutex_destroy(&spa->spa_props_lock);
867	mutex_destroy(&spa->spa_cksum_tmpls_lock);
868	mutex_destroy(&spa->spa_scrub_lock);
869	mutex_destroy(&spa->spa_suspend_lock);
870	mutex_destroy(&spa->spa_vdev_top_lock);
871
872	kmem_free(spa, sizeof (spa_t));
873}
874
875/*
876 * Given a pool, return the next pool in the namespace, or NULL if there is
877 * none.  If 'prev' is NULL, return the first pool.
878 */
879spa_t *
880spa_next(spa_t *prev)
881{
882	ASSERT(MUTEX_HELD(&spa_namespace_lock));
883
884	if (prev)
885		return (AVL_NEXT(&spa_namespace_avl, prev));
886	else
887		return (avl_first(&spa_namespace_avl));
888}
889
890/*
891 * ==========================================================================
892 * SPA refcount functions
893 * ==========================================================================
894 */
895
896/*
897 * Add a reference to the given spa_t.  Must have at least one reference, or
898 * have the namespace lock held.
899 */
900void
901spa_open_ref(spa_t *spa, void *tag)
902{
903	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
904	    MUTEX_HELD(&spa_namespace_lock));
905	(void) refcount_add(&spa->spa_refcount, tag);
906}
907
908/*
909 * Remove a reference to the given spa_t.  Must have at least one reference, or
910 * have the namespace lock held.
911 */
912void
913spa_close(spa_t *spa, void *tag)
914{
915	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
916	    MUTEX_HELD(&spa_namespace_lock));
917	(void) refcount_remove(&spa->spa_refcount, tag);
918}
919
920/*
921 * Remove a reference to the given spa_t held by a dsl dir that is
922 * being asynchronously released.  Async releases occur from a taskq
923 * performing eviction of dsl datasets and dirs.  The namespace lock
924 * isn't held and the hold by the object being evicted may contribute to
925 * spa_minref (e.g. dataset or directory released during pool export),
926 * so the asserts in spa_close() do not apply.
927 */
928void
929spa_async_close(spa_t *spa, void *tag)
930{
931	(void) refcount_remove(&spa->spa_refcount, tag);
932}
933
934/*
935 * Check to see if the spa refcount is zero.  Must be called with
936 * spa_namespace_lock held.  We really compare against spa_minref, which is the
937 * number of references acquired when opening a pool
938 */
939boolean_t
940spa_refcount_zero(spa_t *spa)
941{
942	ASSERT(MUTEX_HELD(&spa_namespace_lock));
943
944	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
945}
946
947/*
948 * ==========================================================================
949 * SPA spare and l2cache tracking
950 * ==========================================================================
951 */
952
953/*
954 * Hot spares and cache devices are tracked using the same code below,
955 * for 'auxiliary' devices.
956 */
957
958typedef struct spa_aux {
959	uint64_t	aux_guid;
960	uint64_t	aux_pool;
961	avl_node_t	aux_avl;
962	int		aux_count;
963} spa_aux_t;
964
965static int
966spa_aux_compare(const void *a, const void *b)
967{
968	const spa_aux_t *sa = a;
969	const spa_aux_t *sb = b;
970
971	if (sa->aux_guid < sb->aux_guid)
972		return (-1);
973	else if (sa->aux_guid > sb->aux_guid)
974		return (1);
975	else
976		return (0);
977}
978
979void
980spa_aux_add(vdev_t *vd, avl_tree_t *avl)
981{
982	avl_index_t where;
983	spa_aux_t search;
984	spa_aux_t *aux;
985
986	search.aux_guid = vd->vdev_guid;
987	if ((aux = avl_find(avl, &search, &where)) != NULL) {
988		aux->aux_count++;
989	} else {
990		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
991		aux->aux_guid = vd->vdev_guid;
992		aux->aux_count = 1;
993		avl_insert(avl, aux, where);
994	}
995}
996
997void
998spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
999{
1000	spa_aux_t search;
1001	spa_aux_t *aux;
1002	avl_index_t where;
1003
1004	search.aux_guid = vd->vdev_guid;
1005	aux = avl_find(avl, &search, &where);
1006
1007	ASSERT(aux != NULL);
1008
1009	if (--aux->aux_count == 0) {
1010		avl_remove(avl, aux);
1011		kmem_free(aux, sizeof (spa_aux_t));
1012	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1013		aux->aux_pool = 0ULL;
1014	}
1015}
1016
1017boolean_t
1018spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1019{
1020	spa_aux_t search, *found;
1021
1022	search.aux_guid = guid;
1023	found = avl_find(avl, &search, NULL);
1024
1025	if (pool) {
1026		if (found)
1027			*pool = found->aux_pool;
1028		else
1029			*pool = 0ULL;
1030	}
1031
1032	if (refcnt) {
1033		if (found)
1034			*refcnt = found->aux_count;
1035		else
1036			*refcnt = 0;
1037	}
1038
1039	return (found != NULL);
1040}
1041
1042void
1043spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1044{
1045	spa_aux_t search, *found;
1046	avl_index_t where;
1047
1048	search.aux_guid = vd->vdev_guid;
1049	found = avl_find(avl, &search, &where);
1050	ASSERT(found != NULL);
1051	ASSERT(found->aux_pool == 0ULL);
1052
1053	found->aux_pool = spa_guid(vd->vdev_spa);
1054}
1055
1056/*
1057 * Spares are tracked globally due to the following constraints:
1058 *
1059 * 	- A spare may be part of multiple pools.
1060 * 	- A spare may be added to a pool even if it's actively in use within
1061 *	  another pool.
1062 * 	- A spare in use in any pool can only be the source of a replacement if
1063 *	  the target is a spare in the same pool.
1064 *
1065 * We keep track of all spares on the system through the use of a reference
1066 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1067 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1068 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1069 * inactive).  When a spare is made active (used to replace a device in the
1070 * pool), we also keep track of which pool its been made a part of.
1071 *
1072 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1073 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1074 * separate spare lock exists for the status query path, which does not need to
1075 * be completely consistent with respect to other vdev configuration changes.
1076 */
1077
1078static int
1079spa_spare_compare(const void *a, const void *b)
1080{
1081	return (spa_aux_compare(a, b));
1082}
1083
1084void
1085spa_spare_add(vdev_t *vd)
1086{
1087	mutex_enter(&spa_spare_lock);
1088	ASSERT(!vd->vdev_isspare);
1089	spa_aux_add(vd, &spa_spare_avl);
1090	vd->vdev_isspare = B_TRUE;
1091	mutex_exit(&spa_spare_lock);
1092}
1093
1094void
1095spa_spare_remove(vdev_t *vd)
1096{
1097	mutex_enter(&spa_spare_lock);
1098	ASSERT(vd->vdev_isspare);
1099	spa_aux_remove(vd, &spa_spare_avl);
1100	vd->vdev_isspare = B_FALSE;
1101	mutex_exit(&spa_spare_lock);
1102}
1103
1104boolean_t
1105spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1106{
1107	boolean_t found;
1108
1109	mutex_enter(&spa_spare_lock);
1110	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1111	mutex_exit(&spa_spare_lock);
1112
1113	return (found);
1114}
1115
1116void
1117spa_spare_activate(vdev_t *vd)
1118{
1119	mutex_enter(&spa_spare_lock);
1120	ASSERT(vd->vdev_isspare);
1121	spa_aux_activate(vd, &spa_spare_avl);
1122	mutex_exit(&spa_spare_lock);
1123}
1124
1125/*
1126 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1127 * Cache devices currently only support one pool per cache device, and so
1128 * for these devices the aux reference count is currently unused beyond 1.
1129 */
1130
1131static int
1132spa_l2cache_compare(const void *a, const void *b)
1133{
1134	return (spa_aux_compare(a, b));
1135}
1136
1137void
1138spa_l2cache_add(vdev_t *vd)
1139{
1140	mutex_enter(&spa_l2cache_lock);
1141	ASSERT(!vd->vdev_isl2cache);
1142	spa_aux_add(vd, &spa_l2cache_avl);
1143	vd->vdev_isl2cache = B_TRUE;
1144	mutex_exit(&spa_l2cache_lock);
1145}
1146
1147void
1148spa_l2cache_remove(vdev_t *vd)
1149{
1150	mutex_enter(&spa_l2cache_lock);
1151	ASSERT(vd->vdev_isl2cache);
1152	spa_aux_remove(vd, &spa_l2cache_avl);
1153	vd->vdev_isl2cache = B_FALSE;
1154	mutex_exit(&spa_l2cache_lock);
1155}
1156
1157boolean_t
1158spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1159{
1160	boolean_t found;
1161
1162	mutex_enter(&spa_l2cache_lock);
1163	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1164	mutex_exit(&spa_l2cache_lock);
1165
1166	return (found);
1167}
1168
1169void
1170spa_l2cache_activate(vdev_t *vd)
1171{
1172	mutex_enter(&spa_l2cache_lock);
1173	ASSERT(vd->vdev_isl2cache);
1174	spa_aux_activate(vd, &spa_l2cache_avl);
1175	mutex_exit(&spa_l2cache_lock);
1176}
1177
1178/*
1179 * ==========================================================================
1180 * SPA vdev locking
1181 * ==========================================================================
1182 */
1183
1184/*
1185 * Lock the given spa_t for the purpose of adding or removing a vdev.
1186 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1187 * It returns the next transaction group for the spa_t.
1188 */
1189uint64_t
1190spa_vdev_enter(spa_t *spa)
1191{
1192	mutex_enter(&spa->spa_vdev_top_lock);
1193	mutex_enter(&spa_namespace_lock);
1194	return (spa_vdev_config_enter(spa));
1195}
1196
1197/*
1198 * Internal implementation for spa_vdev_enter().  Used when a vdev
1199 * operation requires multiple syncs (i.e. removing a device) while
1200 * keeping the spa_namespace_lock held.
1201 */
1202uint64_t
1203spa_vdev_config_enter(spa_t *spa)
1204{
1205	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206
1207	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1208
1209	return (spa_last_synced_txg(spa) + 1);
1210}
1211
1212/*
1213 * Used in combination with spa_vdev_config_enter() to allow the syncing
1214 * of multiple transactions without releasing the spa_namespace_lock.
1215 */
1216void
1217spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1218{
1219	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1220
1221	int config_changed = B_FALSE;
1222
1223	ASSERT(txg > spa_last_synced_txg(spa));
1224
1225	spa->spa_pending_vdev = NULL;
1226
1227	/*
1228	 * Reassess the DTLs.
1229	 */
1230	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1231
1232	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1233		config_changed = B_TRUE;
1234		spa->spa_config_generation++;
1235	}
1236
1237	/*
1238	 * Verify the metaslab classes.
1239	 */
1240	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1241	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1242
1243	spa_config_exit(spa, SCL_ALL, spa);
1244
1245	/*
1246	 * Panic the system if the specified tag requires it.  This
1247	 * is useful for ensuring that configurations are updated
1248	 * transactionally.
1249	 */
1250	if (zio_injection_enabled)
1251		zio_handle_panic_injection(spa, tag, 0);
1252
1253	/*
1254	 * Note: this txg_wait_synced() is important because it ensures
1255	 * that there won't be more than one config change per txg.
1256	 * This allows us to use the txg as the generation number.
1257	 */
1258	if (error == 0)
1259		txg_wait_synced(spa->spa_dsl_pool, txg);
1260
1261	if (vd != NULL) {
1262		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1263		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1264		vdev_free(vd);
1265		spa_config_exit(spa, SCL_ALL, spa);
1266	}
1267
1268	/*
1269	 * If the config changed, update the config cache.
1270	 */
1271	if (config_changed)
1272		spa_config_sync(spa, B_FALSE, B_TRUE);
1273}
1274
1275/*
1276 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1277 * locking of spa_vdev_enter(), we also want make sure the transactions have
1278 * synced to disk, and then update the global configuration cache with the new
1279 * information.
1280 */
1281int
1282spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1283{
1284	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1285	mutex_exit(&spa_namespace_lock);
1286	mutex_exit(&spa->spa_vdev_top_lock);
1287
1288	return (error);
1289}
1290
1291/*
1292 * Lock the given spa_t for the purpose of changing vdev state.
1293 */
1294void
1295spa_vdev_state_enter(spa_t *spa, int oplocks)
1296{
1297	int locks = SCL_STATE_ALL | oplocks;
1298
1299	/*
1300	 * Root pools may need to read of the underlying devfs filesystem
1301	 * when opening up a vdev.  Unfortunately if we're holding the
1302	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1303	 * the read from the root filesystem.  Instead we "prefetch"
1304	 * the associated vnodes that we need prior to opening the
1305	 * underlying devices and cache them so that we can prevent
1306	 * any I/O when we are doing the actual open.
1307	 */
1308	if (spa_is_root(spa)) {
1309		int low = locks & ~(SCL_ZIO - 1);
1310		int high = locks & ~low;
1311
1312		spa_config_enter(spa, high, spa, RW_WRITER);
1313		vdev_hold(spa->spa_root_vdev);
1314		spa_config_enter(spa, low, spa, RW_WRITER);
1315	} else {
1316		spa_config_enter(spa, locks, spa, RW_WRITER);
1317	}
1318	spa->spa_vdev_locks = locks;
1319}
1320
1321int
1322spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1323{
1324	boolean_t config_changed = B_FALSE;
1325
1326	if (vd != NULL || error == 0)
1327		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1328		    0, 0, B_FALSE);
1329
1330	if (vd != NULL) {
1331		vdev_state_dirty(vd->vdev_top);
1332		config_changed = B_TRUE;
1333		spa->spa_config_generation++;
1334	}
1335
1336	if (spa_is_root(spa))
1337		vdev_rele(spa->spa_root_vdev);
1338
1339	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1340	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1341
1342	/*
1343	 * If anything changed, wait for it to sync.  This ensures that,
1344	 * from the system administrator's perspective, zpool(1M) commands
1345	 * are synchronous.  This is important for things like zpool offline:
1346	 * when the command completes, you expect no further I/O from ZFS.
1347	 */
1348	if (vd != NULL)
1349		txg_wait_synced(spa->spa_dsl_pool, 0);
1350
1351	/*
1352	 * If the config changed, update the config cache.
1353	 */
1354	if (config_changed) {
1355		mutex_enter(&spa_namespace_lock);
1356		spa_config_sync(spa, B_FALSE, B_TRUE);
1357		mutex_exit(&spa_namespace_lock);
1358	}
1359
1360	return (error);
1361}
1362
1363/*
1364 * ==========================================================================
1365 * Miscellaneous functions
1366 * ==========================================================================
1367 */
1368
1369void
1370spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1371{
1372	if (!nvlist_exists(spa->spa_label_features, feature)) {
1373		fnvlist_add_boolean(spa->spa_label_features, feature);
1374		/*
1375		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1376		 * dirty the vdev config because lock SCL_CONFIG is not held.
1377		 * Thankfully, in this case we don't need to dirty the config
1378		 * because it will be written out anyway when we finish
1379		 * creating the pool.
1380		 */
1381		if (tx->tx_txg != TXG_INITIAL)
1382			vdev_config_dirty(spa->spa_root_vdev);
1383	}
1384}
1385
1386void
1387spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1388{
1389	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1390		vdev_config_dirty(spa->spa_root_vdev);
1391}
1392
1393/*
1394 * Rename a spa_t.
1395 */
1396int
1397spa_rename(const char *name, const char *newname)
1398{
1399	spa_t *spa;
1400	int err;
1401
1402	/*
1403	 * Lookup the spa_t and grab the config lock for writing.  We need to
1404	 * actually open the pool so that we can sync out the necessary labels.
1405	 * It's OK to call spa_open() with the namespace lock held because we
1406	 * allow recursive calls for other reasons.
1407	 */
1408	mutex_enter(&spa_namespace_lock);
1409	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1410		mutex_exit(&spa_namespace_lock);
1411		return (err);
1412	}
1413
1414	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1415
1416	avl_remove(&spa_namespace_avl, spa);
1417	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1418	avl_add(&spa_namespace_avl, spa);
1419
1420	/*
1421	 * Sync all labels to disk with the new names by marking the root vdev
1422	 * dirty and waiting for it to sync.  It will pick up the new pool name
1423	 * during the sync.
1424	 */
1425	vdev_config_dirty(spa->spa_root_vdev);
1426
1427	spa_config_exit(spa, SCL_ALL, FTAG);
1428
1429	txg_wait_synced(spa->spa_dsl_pool, 0);
1430
1431	/*
1432	 * Sync the updated config cache.
1433	 */
1434	spa_config_sync(spa, B_FALSE, B_TRUE);
1435
1436	spa_close(spa, FTAG);
1437
1438	mutex_exit(&spa_namespace_lock);
1439
1440	return (0);
1441}
1442
1443/*
1444 * Return the spa_t associated with given pool_guid, if it exists.  If
1445 * device_guid is non-zero, determine whether the pool exists *and* contains
1446 * a device with the specified device_guid.
1447 */
1448spa_t *
1449spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1450{
1451	spa_t *spa;
1452	avl_tree_t *t = &spa_namespace_avl;
1453
1454	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1455
1456	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1457		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1458			continue;
1459		if (spa->spa_root_vdev == NULL)
1460			continue;
1461		if (spa_guid(spa) == pool_guid) {
1462			if (device_guid == 0)
1463				break;
1464
1465			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1466			    device_guid) != NULL)
1467				break;
1468
1469			/*
1470			 * Check any devices we may be in the process of adding.
1471			 */
1472			if (spa->spa_pending_vdev) {
1473				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1474				    device_guid) != NULL)
1475					break;
1476			}
1477		}
1478	}
1479
1480	return (spa);
1481}
1482
1483/*
1484 * Determine whether a pool with the given pool_guid exists.
1485 */
1486boolean_t
1487spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1488{
1489	return (spa_by_guid(pool_guid, device_guid) != NULL);
1490}
1491
1492char *
1493spa_strdup(const char *s)
1494{
1495	size_t len;
1496	char *new;
1497
1498	len = strlen(s);
1499	new = kmem_alloc(len + 1, KM_SLEEP);
1500	bcopy(s, new, len);
1501	new[len] = '\0';
1502
1503	return (new);
1504}
1505
1506void
1507spa_strfree(char *s)
1508{
1509	kmem_free(s, strlen(s) + 1);
1510}
1511
1512uint64_t
1513spa_get_random(uint64_t range)
1514{
1515	uint64_t r;
1516
1517	ASSERT(range != 0);
1518
1519	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1520
1521	return (r % range);
1522}
1523
1524uint64_t
1525spa_generate_guid(spa_t *spa)
1526{
1527	uint64_t guid = spa_get_random(-1ULL);
1528
1529	if (spa != NULL) {
1530		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1531			guid = spa_get_random(-1ULL);
1532	} else {
1533		while (guid == 0 || spa_guid_exists(guid, 0))
1534			guid = spa_get_random(-1ULL);
1535	}
1536
1537	return (guid);
1538}
1539
1540void
1541snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1542{
1543	char type[256];
1544	char *checksum = NULL;
1545	char *compress = NULL;
1546
1547	if (bp != NULL) {
1548		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1549			dmu_object_byteswap_t bswap =
1550			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1551			(void) snprintf(type, sizeof (type), "bswap %s %s",
1552			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1553			    "metadata" : "data",
1554			    dmu_ot_byteswap[bswap].ob_name);
1555		} else {
1556			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1557			    sizeof (type));
1558		}
1559		if (!BP_IS_EMBEDDED(bp)) {
1560			checksum =
1561			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1562		}
1563		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1564	}
1565
1566	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1567	    compress);
1568}
1569
1570void
1571spa_freeze(spa_t *spa)
1572{
1573	uint64_t freeze_txg = 0;
1574
1575	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1576	if (spa->spa_freeze_txg == UINT64_MAX) {
1577		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1578		spa->spa_freeze_txg = freeze_txg;
1579	}
1580	spa_config_exit(spa, SCL_ALL, FTAG);
1581	if (freeze_txg != 0)
1582		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1583}
1584
1585void
1586zfs_panic_recover(const char *fmt, ...)
1587{
1588	va_list adx;
1589
1590	va_start(adx, fmt);
1591	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1592	va_end(adx);
1593}
1594
1595/*
1596 * This is a stripped-down version of strtoull, suitable only for converting
1597 * lowercase hexadecimal numbers that don't overflow.
1598 */
1599uint64_t
1600zfs_strtonum(const char *str, char **nptr)
1601{
1602	uint64_t val = 0;
1603	char c;
1604	int digit;
1605
1606	while ((c = *str) != '\0') {
1607		if (c >= '0' && c <= '9')
1608			digit = c - '0';
1609		else if (c >= 'a' && c <= 'f')
1610			digit = 10 + c - 'a';
1611		else
1612			break;
1613
1614		val *= 16;
1615		val += digit;
1616
1617		str++;
1618	}
1619
1620	if (nptr)
1621		*nptr = (char *)str;
1622
1623	return (val);
1624}
1625
1626/*
1627 * ==========================================================================
1628 * Accessor functions
1629 * ==========================================================================
1630 */
1631
1632boolean_t
1633spa_shutting_down(spa_t *spa)
1634{
1635	return (spa->spa_async_suspended);
1636}
1637
1638dsl_pool_t *
1639spa_get_dsl(spa_t *spa)
1640{
1641	return (spa->spa_dsl_pool);
1642}
1643
1644boolean_t
1645spa_is_initializing(spa_t *spa)
1646{
1647	return (spa->spa_is_initializing);
1648}
1649
1650blkptr_t *
1651spa_get_rootblkptr(spa_t *spa)
1652{
1653	return (&spa->spa_ubsync.ub_rootbp);
1654}
1655
1656void
1657spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1658{
1659	spa->spa_uberblock.ub_rootbp = *bp;
1660}
1661
1662void
1663spa_altroot(spa_t *spa, char *buf, size_t buflen)
1664{
1665	if (spa->spa_root == NULL)
1666		buf[0] = '\0';
1667	else
1668		(void) strncpy(buf, spa->spa_root, buflen);
1669}
1670
1671int
1672spa_sync_pass(spa_t *spa)
1673{
1674	return (spa->spa_sync_pass);
1675}
1676
1677char *
1678spa_name(spa_t *spa)
1679{
1680	return (spa->spa_name);
1681}
1682
1683uint64_t
1684spa_guid(spa_t *spa)
1685{
1686	dsl_pool_t *dp = spa_get_dsl(spa);
1687	uint64_t guid;
1688
1689	/*
1690	 * If we fail to parse the config during spa_load(), we can go through
1691	 * the error path (which posts an ereport) and end up here with no root
1692	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1693	 * this case.
1694	 */
1695	if (spa->spa_root_vdev == NULL)
1696		return (spa->spa_config_guid);
1697
1698	guid = spa->spa_last_synced_guid != 0 ?
1699	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1700
1701	/*
1702	 * Return the most recently synced out guid unless we're
1703	 * in syncing context.
1704	 */
1705	if (dp && dsl_pool_sync_context(dp))
1706		return (spa->spa_root_vdev->vdev_guid);
1707	else
1708		return (guid);
1709}
1710
1711uint64_t
1712spa_load_guid(spa_t *spa)
1713{
1714	/*
1715	 * This is a GUID that exists solely as a reference for the
1716	 * purposes of the arc.  It is generated at load time, and
1717	 * is never written to persistent storage.
1718	 */
1719	return (spa->spa_load_guid);
1720}
1721
1722uint64_t
1723spa_last_synced_txg(spa_t *spa)
1724{
1725	return (spa->spa_ubsync.ub_txg);
1726}
1727
1728uint64_t
1729spa_first_txg(spa_t *spa)
1730{
1731	return (spa->spa_first_txg);
1732}
1733
1734uint64_t
1735spa_syncing_txg(spa_t *spa)
1736{
1737	return (spa->spa_syncing_txg);
1738}
1739
1740pool_state_t
1741spa_state(spa_t *spa)
1742{
1743	return (spa->spa_state);
1744}
1745
1746spa_load_state_t
1747spa_load_state(spa_t *spa)
1748{
1749	return (spa->spa_load_state);
1750}
1751
1752uint64_t
1753spa_freeze_txg(spa_t *spa)
1754{
1755	return (spa->spa_freeze_txg);
1756}
1757
1758/* ARGSUSED */
1759uint64_t
1760spa_get_asize(spa_t *spa, uint64_t lsize)
1761{
1762	return (lsize * spa_asize_inflation);
1763}
1764
1765/*
1766 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1767 * or at least 128MB, unless that would cause it to be more than half the
1768 * pool size.
1769 *
1770 * See the comment above spa_slop_shift for details.
1771 */
1772uint64_t
1773spa_get_slop_space(spa_t *spa)
1774{
1775	uint64_t space = spa_get_dspace(spa);
1776	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1777}
1778
1779uint64_t
1780spa_get_dspace(spa_t *spa)
1781{
1782	return (spa->spa_dspace);
1783}
1784
1785void
1786spa_update_dspace(spa_t *spa)
1787{
1788	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1789	    ddt_get_dedup_dspace(spa);
1790}
1791
1792/*
1793 * Return the failure mode that has been set to this pool. The default
1794 * behavior will be to block all I/Os when a complete failure occurs.
1795 */
1796uint8_t
1797spa_get_failmode(spa_t *spa)
1798{
1799	return (spa->spa_failmode);
1800}
1801
1802boolean_t
1803spa_suspended(spa_t *spa)
1804{
1805	return (spa->spa_suspended);
1806}
1807
1808uint64_t
1809spa_version(spa_t *spa)
1810{
1811	return (spa->spa_ubsync.ub_version);
1812}
1813
1814boolean_t
1815spa_deflate(spa_t *spa)
1816{
1817	return (spa->spa_deflate);
1818}
1819
1820metaslab_class_t *
1821spa_normal_class(spa_t *spa)
1822{
1823	return (spa->spa_normal_class);
1824}
1825
1826metaslab_class_t *
1827spa_log_class(spa_t *spa)
1828{
1829	return (spa->spa_log_class);
1830}
1831
1832void
1833spa_evicting_os_register(spa_t *spa, objset_t *os)
1834{
1835	mutex_enter(&spa->spa_evicting_os_lock);
1836	list_insert_head(&spa->spa_evicting_os_list, os);
1837	mutex_exit(&spa->spa_evicting_os_lock);
1838}
1839
1840void
1841spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1842{
1843	mutex_enter(&spa->spa_evicting_os_lock);
1844	list_remove(&spa->spa_evicting_os_list, os);
1845	cv_broadcast(&spa->spa_evicting_os_cv);
1846	mutex_exit(&spa->spa_evicting_os_lock);
1847}
1848
1849void
1850spa_evicting_os_wait(spa_t *spa)
1851{
1852	mutex_enter(&spa->spa_evicting_os_lock);
1853	while (!list_is_empty(&spa->spa_evicting_os_list))
1854		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1855	mutex_exit(&spa->spa_evicting_os_lock);
1856
1857	dmu_buf_user_evict_wait();
1858}
1859
1860int
1861spa_max_replication(spa_t *spa)
1862{
1863	/*
1864	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1865	 * handle BPs with more than one DVA allocated.  Set our max
1866	 * replication level accordingly.
1867	 */
1868	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1869		return (1);
1870	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1871}
1872
1873int
1874spa_prev_software_version(spa_t *spa)
1875{
1876	return (spa->spa_prev_software_version);
1877}
1878
1879uint64_t
1880spa_deadman_synctime(spa_t *spa)
1881{
1882	return (spa->spa_deadman_synctime);
1883}
1884
1885uint64_t
1886dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1887{
1888	uint64_t asize = DVA_GET_ASIZE(dva);
1889	uint64_t dsize = asize;
1890
1891	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1892
1893	if (asize != 0 && spa->spa_deflate) {
1894		uint64_t vdev = DVA_GET_VDEV(dva);
1895		vdev_t *vd = vdev_lookup_top(spa, vdev);
1896		if (vd == NULL) {
1897			panic(
1898			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1899			    (u_longlong_t)vdev, (u_longlong_t)asize);
1900		}
1901		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1902	}
1903
1904	return (dsize);
1905}
1906
1907uint64_t
1908bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1909{
1910	uint64_t dsize = 0;
1911
1912	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1913		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1914
1915	return (dsize);
1916}
1917
1918uint64_t
1919bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1920{
1921	uint64_t dsize = 0;
1922
1923	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1924
1925	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1926		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1927
1928	spa_config_exit(spa, SCL_VDEV, FTAG);
1929
1930	return (dsize);
1931}
1932
1933/*
1934 * ==========================================================================
1935 * Initialization and Termination
1936 * ==========================================================================
1937 */
1938
1939static int
1940spa_name_compare(const void *a1, const void *a2)
1941{
1942	const spa_t *s1 = a1;
1943	const spa_t *s2 = a2;
1944	int s;
1945
1946	s = strcmp(s1->spa_name, s2->spa_name);
1947	if (s > 0)
1948		return (1);
1949	if (s < 0)
1950		return (-1);
1951	return (0);
1952}
1953
1954int
1955spa_busy(void)
1956{
1957	return (spa_active_count);
1958}
1959
1960void
1961spa_boot_init()
1962{
1963	spa_config_load();
1964}
1965
1966#ifdef _KERNEL
1967EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1968#endif
1969
1970void
1971spa_init(int mode)
1972{
1973	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1974	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1975	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1976	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1977
1978	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1979	    offsetof(spa_t, spa_avl));
1980
1981	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1982	    offsetof(spa_aux_t, aux_avl));
1983
1984	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1985	    offsetof(spa_aux_t, aux_avl));
1986
1987	spa_mode_global = mode;
1988
1989#ifdef illumos
1990#ifdef _KERNEL
1991	spa_arch_init();
1992#else
1993	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1994		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1995		if (arc_procfd == -1) {
1996			perror("could not enable watchpoints: "
1997			    "opening /proc/self/ctl failed: ");
1998		} else {
1999			arc_watch = B_TRUE;
2000		}
2001	}
2002#endif
2003#endif /* illumos */
2004	refcount_sysinit();
2005	unique_init();
2006	range_tree_init();
2007	zio_init();
2008	lz4_init();
2009	dmu_init();
2010	zil_init();
2011	vdev_cache_stat_init();
2012	zfs_prop_init();
2013	zpool_prop_init();
2014	zpool_feature_init();
2015	spa_config_load();
2016	l2arc_start();
2017#ifndef illumos
2018#ifdef _KERNEL
2019	zfs_deadman_init();
2020#endif
2021#endif	/* !illumos */
2022}
2023
2024void
2025spa_fini(void)
2026{
2027	l2arc_stop();
2028
2029	spa_evict_all();
2030
2031	vdev_cache_stat_fini();
2032	zil_fini();
2033	dmu_fini();
2034	lz4_fini();
2035	zio_fini();
2036	range_tree_fini();
2037	unique_fini();
2038	refcount_fini();
2039
2040	avl_destroy(&spa_namespace_avl);
2041	avl_destroy(&spa_spare_avl);
2042	avl_destroy(&spa_l2cache_avl);
2043
2044	cv_destroy(&spa_namespace_cv);
2045	mutex_destroy(&spa_namespace_lock);
2046	mutex_destroy(&spa_spare_lock);
2047	mutex_destroy(&spa_l2cache_lock);
2048}
2049
2050/*
2051 * Return whether this pool has slogs. No locking needed.
2052 * It's not a problem if the wrong answer is returned as it's only for
2053 * performance and not correctness
2054 */
2055boolean_t
2056spa_has_slogs(spa_t *spa)
2057{
2058	return (spa->spa_log_class->mc_rotor != NULL);
2059}
2060
2061spa_log_state_t
2062spa_get_log_state(spa_t *spa)
2063{
2064	return (spa->spa_log_state);
2065}
2066
2067void
2068spa_set_log_state(spa_t *spa, spa_log_state_t state)
2069{
2070	spa->spa_log_state = state;
2071}
2072
2073boolean_t
2074spa_is_root(spa_t *spa)
2075{
2076	return (spa->spa_is_root);
2077}
2078
2079boolean_t
2080spa_writeable(spa_t *spa)
2081{
2082	return (!!(spa->spa_mode & FWRITE));
2083}
2084
2085/*
2086 * Returns true if there is a pending sync task in any of the current
2087 * syncing txg, the current quiescing txg, or the current open txg.
2088 */
2089boolean_t
2090spa_has_pending_synctask(spa_t *spa)
2091{
2092	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2093}
2094
2095int
2096spa_mode(spa_t *spa)
2097{
2098	return (spa->spa_mode);
2099}
2100
2101uint64_t
2102spa_bootfs(spa_t *spa)
2103{
2104	return (spa->spa_bootfs);
2105}
2106
2107uint64_t
2108spa_delegation(spa_t *spa)
2109{
2110	return (spa->spa_delegation);
2111}
2112
2113objset_t *
2114spa_meta_objset(spa_t *spa)
2115{
2116	return (spa->spa_meta_objset);
2117}
2118
2119enum zio_checksum
2120spa_dedup_checksum(spa_t *spa)
2121{
2122	return (spa->spa_dedup_checksum);
2123}
2124
2125/*
2126 * Reset pool scan stat per scan pass (or reboot).
2127 */
2128void
2129spa_scan_stat_init(spa_t *spa)
2130{
2131	/* data not stored on disk */
2132	spa->spa_scan_pass_start = gethrestime_sec();
2133	spa->spa_scan_pass_exam = 0;
2134	vdev_scan_stat_init(spa->spa_root_vdev);
2135}
2136
2137/*
2138 * Get scan stats for zpool status reports
2139 */
2140int
2141spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2142{
2143	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2144
2145	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2146		return (SET_ERROR(ENOENT));
2147	bzero(ps, sizeof (pool_scan_stat_t));
2148
2149	/* data stored on disk */
2150	ps->pss_func = scn->scn_phys.scn_func;
2151	ps->pss_start_time = scn->scn_phys.scn_start_time;
2152	ps->pss_end_time = scn->scn_phys.scn_end_time;
2153	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2154	ps->pss_examined = scn->scn_phys.scn_examined;
2155	ps->pss_to_process = scn->scn_phys.scn_to_process;
2156	ps->pss_processed = scn->scn_phys.scn_processed;
2157	ps->pss_errors = scn->scn_phys.scn_errors;
2158	ps->pss_state = scn->scn_phys.scn_state;
2159
2160	/* data not stored on disk */
2161	ps->pss_pass_start = spa->spa_scan_pass_start;
2162	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2163
2164	return (0);
2165}
2166
2167boolean_t
2168spa_debug_enabled(spa_t *spa)
2169{
2170	return (spa->spa_debug);
2171}
2172
2173int
2174spa_maxblocksize(spa_t *spa)
2175{
2176	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2177		return (SPA_MAXBLOCKSIZE);
2178	else
2179		return (SPA_OLD_MAXBLOCKSIZE);
2180}
2181