spa_misc.c revision 307279
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
50#include <sys/dsl_scan.h>
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
53#include <sys/arc.h>
54#include <sys/ddt.h>
55#include "zfs_prop.h"
56#include <sys/zfeature.h>
57
58/*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 *	This lock must be acquired to do any of the following:
66 *
67 *		- Lookup a spa_t by name
68 *		- Add or remove a spa_t from the namespace
69 *		- Increase spa_refcount from non-zero
70 *		- Check if spa_refcount is zero
71 *		- Rename a spa_t
72 *		- add/remove/attach/detach devices
73 *		- Held for the duration of create/destroy/import/export
74 *
75 *	It does not need to handle recursion.  A create or destroy may
76 *	reference objects (files or zvols) in other pools, but by
77 *	definition they must have an existing reference, and will never need
78 *	to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 *	This reference count keep track of any active users of the spa_t.  The
83 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84 *	the refcount is never really 'zero' - opening a pool implicitly keeps
85 *	some references in the DMU.  Internally we check against spa_minref, but
86 *	present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 *	This protects the spa_t from config changes, and must be held in
91 *	the following circumstances:
92 *
93 *		- RW_READER to perform I/O to the spa
94 *		- RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 *		spa_namespace_lock	->	spa_refcount
99 *
100 *	The namespace lock must be acquired to increase the refcount from 0
101 *	or to check if it is zero.
102 *
103 *		spa_refcount		->	spa_config_lock[]
104 *
105 *	There must be at least one valid reference on the spa_t to acquire
106 *	the config lock.
107 *
108 *		spa_namespace_lock	->	spa_config_lock[]
109 *
110 *	The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 *	spa_lookup()		Lookup a spa_t by name.
119 *
120 *	spa_add()		Create a new spa_t in the namespace.
121 *
122 *	spa_remove()		Remove a spa_t from the namespace.  This also
123 *				frees up any memory associated with the spa_t.
124 *
125 *	spa_next()		Returns the next spa_t in the system, or the
126 *				first if NULL is passed.
127 *
128 *	spa_evict_all()		Shutdown and remove all spa_t structures in
129 *				the system.
130 *
131 *	spa_guid_exists()	Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136 *				called with spa_namespace_lock held if the
137 *				refcount is currently zero.
138 *
139 *	spa_close()		Remove a reference from the spa_t.  This will
140 *				not free the spa_t or remove it from the
141 *				namespace.  No locking is required.
142 *
143 *	spa_refcount_zero()	Returns true if the refcount is currently
144 *				zero.  Must be called with spa_namespace_lock
145 *				held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer.  To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership.  For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 *	Protects changes to the vdev tree topology, such as vdev
171 *	add/remove/attach/detach.  Protects the dirty config list
172 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 *	Protects changes to pool state and vdev state, such as vdev
176 *	online/offline/fault/degrade/clear.  Protects the dirty state list
177 *	(spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 *	Protects changes to metaslab groups and classes.
181 *	Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 *	Held by bp-level zios (those which have no io_vd upon entry)
185 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 *	Protects changes to metaslab groups and classes.
190 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 *	blocks in zio_done() while another i/o that holds either
193 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 *	Held as reader to prevent changes to the vdev tree during trivial
197 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198 *	other locks, and lower than all of them, to ensure that it's safe
199 *	to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204 *	The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 *	or zio_write_phys() -- the caller must ensure that the config cannot
209 *	cannot change in the interim, and that the vdev cannot be reopened.
210 *	SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215 *				for writing.
216 *
217 *	spa_vdev_exit()		Release the config lock, wait for all I/O
218 *				to complete, sync the updated configs to the
219 *				cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229static avl_tree_t spa_namespace_avl;
230kmutex_t spa_namespace_lock;
231static kcondvar_t spa_namespace_cv;
232static int spa_active_count;
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
241int spa_mode_global;
242
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249SYSCTL_DECL(_debug);
250TUNABLE_INT("debug.zfs_flags", &zfs_flags);
251SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
252    "ZFS debug flags.");
253
254/*
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption.  When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
260 */
261boolean_t zfs_recover = B_FALSE;
262SYSCTL_DECL(_vfs_zfs);
263TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
264SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
265    "Try to recover from otherwise-fatal errors.");
266
267static int
268sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
269{
270	int err, val;
271
272	val = zfs_flags;
273	err = sysctl_handle_int(oidp, &val, 0, req);
274	if (err != 0 || req->newptr == NULL)
275		return (err);
276
277	/*
278	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
279	 * arc buffers in the system have the necessary additional
280	 * checksum data.  However, it is safe to disable at any
281	 * time.
282	 */
283	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
284		val &= ~ZFS_DEBUG_MODIFY;
285	zfs_flags = val;
286
287	return (0);
288}
289TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
290SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
291    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
292    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
293
294/*
295 * If destroy encounters an EIO while reading metadata (e.g. indirect
296 * blocks), space referenced by the missing metadata can not be freed.
297 * Normally this causes the background destroy to become "stalled", as
298 * it is unable to make forward progress.  While in this stalled state,
299 * all remaining space to free from the error-encountering filesystem is
300 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
301 * permanently leak the space from indirect blocks that can not be read,
302 * and continue to free everything else that it can.
303 *
304 * The default, "stalling" behavior is useful if the storage partially
305 * fails (i.e. some but not all i/os fail), and then later recovers.  In
306 * this case, we will be able to continue pool operations while it is
307 * partially failed, and when it recovers, we can continue to free the
308 * space, with no leaks.  However, note that this case is actually
309 * fairly rare.
310 *
311 * Typically pools either (a) fail completely (but perhaps temporarily,
312 * e.g. a top-level vdev going offline), or (b) have localized,
313 * permanent errors (e.g. disk returns the wrong data due to bit flip or
314 * firmware bug).  In case (a), this setting does not matter because the
315 * pool will be suspended and the sync thread will not be able to make
316 * forward progress regardless.  In case (b), because the error is
317 * permanent, the best we can do is leak the minimum amount of space,
318 * which is what setting this flag will do.  Therefore, it is reasonable
319 * for this flag to normally be set, but we chose the more conservative
320 * approach of not setting it, so that there is no possibility of
321 * leaking space in the "partial temporary" failure case.
322 */
323boolean_t zfs_free_leak_on_eio = B_FALSE;
324
325/*
326 * Expiration time in milliseconds. This value has two meanings. First it is
327 * used to determine when the spa_deadman() logic should fire. By default the
328 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
329 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
330 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
331 * in a system panic.
332 */
333uint64_t zfs_deadman_synctime_ms = 1000000ULL;
334TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
335SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
336    &zfs_deadman_synctime_ms, 0,
337    "Stalled ZFS I/O expiration time in milliseconds");
338
339/*
340 * Check time in milliseconds. This defines the frequency at which we check
341 * for hung I/O.
342 */
343uint64_t zfs_deadman_checktime_ms = 5000ULL;
344TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
346    &zfs_deadman_checktime_ms, 0,
347    "Period of checks for stalled ZFS I/O in milliseconds");
348
349/*
350 * Default value of -1 for zfs_deadman_enabled is resolved in
351 * zfs_deadman_init()
352 */
353int zfs_deadman_enabled = -1;
354TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
355SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
356    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
357
358/*
359 * The worst case is single-sector max-parity RAID-Z blocks, in which
360 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
361 * times the size; so just assume that.  Add to this the fact that
362 * we can have up to 3 DVAs per bp, and one more factor of 2 because
363 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
364 * the worst case is:
365 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
366 */
367int spa_asize_inflation = 24;
368TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
369SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
370    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
371
372#ifndef illumos
373#ifdef _KERNEL
374static void
375zfs_deadman_init()
376{
377	/*
378	 * If we are not i386 or amd64 or in a virtual machine,
379	 * disable ZFS deadman thread by default
380	 */
381	if (zfs_deadman_enabled == -1) {
382#if defined(__amd64__) || defined(__i386__)
383		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
384#else
385		zfs_deadman_enabled = 0;
386#endif
387	}
388}
389#endif	/* _KERNEL */
390#endif	/* !illumos */
391
392/*
393 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
394 * the pool to be consumed.  This ensures that we don't run the pool
395 * completely out of space, due to unaccounted changes (e.g. to the MOS).
396 * It also limits the worst-case time to allocate space.  If we have
397 * less than this amount of free space, most ZPL operations (e.g. write,
398 * create) will return ENOSPC.
399 *
400 * Certain operations (e.g. file removal, most administrative actions) can
401 * use half the slop space.  They will only return ENOSPC if less than half
402 * the slop space is free.  Typically, once the pool has less than the slop
403 * space free, the user will use these operations to free up space in the pool.
404 * These are the operations that call dsl_pool_adjustedsize() with the netfree
405 * argument set to TRUE.
406 *
407 * A very restricted set of operations are always permitted, regardless of
408 * the amount of free space.  These are the operations that call
409 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
410 * operations result in a net increase in the amount of space used,
411 * it is possible to run the pool completely out of space, causing it to
412 * be permanently read-only.
413 *
414 * Note that on very small pools, the slop space will be larger than
415 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
416 * but we never allow it to be more than half the pool size.
417 *
418 * See also the comments in zfs_space_check_t.
419 */
420int spa_slop_shift = 5;
421SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
422    &spa_slop_shift, 0,
423    "Shift value of reserved space (1/(2^spa_slop_shift)).");
424uint64_t spa_min_slop = 128 * 1024 * 1024;
425SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
426    &spa_min_slop, 0,
427    "Minimal value of reserved space");
428
429/*
430 * ==========================================================================
431 * SPA config locking
432 * ==========================================================================
433 */
434static void
435spa_config_lock_init(spa_t *spa)
436{
437	for (int i = 0; i < SCL_LOCKS; i++) {
438		spa_config_lock_t *scl = &spa->spa_config_lock[i];
439		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
440		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
441		refcount_create_untracked(&scl->scl_count);
442		scl->scl_writer = NULL;
443		scl->scl_write_wanted = 0;
444	}
445}
446
447static void
448spa_config_lock_destroy(spa_t *spa)
449{
450	for (int i = 0; i < SCL_LOCKS; i++) {
451		spa_config_lock_t *scl = &spa->spa_config_lock[i];
452		mutex_destroy(&scl->scl_lock);
453		cv_destroy(&scl->scl_cv);
454		refcount_destroy(&scl->scl_count);
455		ASSERT(scl->scl_writer == NULL);
456		ASSERT(scl->scl_write_wanted == 0);
457	}
458}
459
460int
461spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
462{
463	for (int i = 0; i < SCL_LOCKS; i++) {
464		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465		if (!(locks & (1 << i)))
466			continue;
467		mutex_enter(&scl->scl_lock);
468		if (rw == RW_READER) {
469			if (scl->scl_writer || scl->scl_write_wanted) {
470				mutex_exit(&scl->scl_lock);
471				spa_config_exit(spa, locks & ((1 << i) - 1),
472				    tag);
473				return (0);
474			}
475		} else {
476			ASSERT(scl->scl_writer != curthread);
477			if (!refcount_is_zero(&scl->scl_count)) {
478				mutex_exit(&scl->scl_lock);
479				spa_config_exit(spa, locks & ((1 << i) - 1),
480				    tag);
481				return (0);
482			}
483			scl->scl_writer = curthread;
484		}
485		(void) refcount_add(&scl->scl_count, tag);
486		mutex_exit(&scl->scl_lock);
487	}
488	return (1);
489}
490
491void
492spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
493{
494	int wlocks_held = 0;
495
496	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
497
498	for (int i = 0; i < SCL_LOCKS; i++) {
499		spa_config_lock_t *scl = &spa->spa_config_lock[i];
500		if (scl->scl_writer == curthread)
501			wlocks_held |= (1 << i);
502		if (!(locks & (1 << i)))
503			continue;
504		mutex_enter(&scl->scl_lock);
505		if (rw == RW_READER) {
506			while (scl->scl_writer || scl->scl_write_wanted) {
507				cv_wait(&scl->scl_cv, &scl->scl_lock);
508			}
509		} else {
510			ASSERT(scl->scl_writer != curthread);
511			while (!refcount_is_zero(&scl->scl_count)) {
512				scl->scl_write_wanted++;
513				cv_wait(&scl->scl_cv, &scl->scl_lock);
514				scl->scl_write_wanted--;
515			}
516			scl->scl_writer = curthread;
517		}
518		(void) refcount_add(&scl->scl_count, tag);
519		mutex_exit(&scl->scl_lock);
520	}
521	ASSERT(wlocks_held <= locks);
522}
523
524void
525spa_config_exit(spa_t *spa, int locks, void *tag)
526{
527	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
528		spa_config_lock_t *scl = &spa->spa_config_lock[i];
529		if (!(locks & (1 << i)))
530			continue;
531		mutex_enter(&scl->scl_lock);
532		ASSERT(!refcount_is_zero(&scl->scl_count));
533		if (refcount_remove(&scl->scl_count, tag) == 0) {
534			ASSERT(scl->scl_writer == NULL ||
535			    scl->scl_writer == curthread);
536			scl->scl_writer = NULL;	/* OK in either case */
537			cv_broadcast(&scl->scl_cv);
538		}
539		mutex_exit(&scl->scl_lock);
540	}
541}
542
543int
544spa_config_held(spa_t *spa, int locks, krw_t rw)
545{
546	int locks_held = 0;
547
548	for (int i = 0; i < SCL_LOCKS; i++) {
549		spa_config_lock_t *scl = &spa->spa_config_lock[i];
550		if (!(locks & (1 << i)))
551			continue;
552		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
553		    (rw == RW_WRITER && scl->scl_writer == curthread))
554			locks_held |= 1 << i;
555	}
556
557	return (locks_held);
558}
559
560/*
561 * ==========================================================================
562 * SPA namespace functions
563 * ==========================================================================
564 */
565
566/*
567 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
568 * Returns NULL if no matching spa_t is found.
569 */
570spa_t *
571spa_lookup(const char *name)
572{
573	static spa_t search;	/* spa_t is large; don't allocate on stack */
574	spa_t *spa;
575	avl_index_t where;
576	char *cp;
577
578	ASSERT(MUTEX_HELD(&spa_namespace_lock));
579
580	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
581
582	/*
583	 * If it's a full dataset name, figure out the pool name and
584	 * just use that.
585	 */
586	cp = strpbrk(search.spa_name, "/@#");
587	if (cp != NULL)
588		*cp = '\0';
589
590	spa = avl_find(&spa_namespace_avl, &search, &where);
591
592	return (spa);
593}
594
595/*
596 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
597 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
598 * looking for potentially hung I/Os.
599 */
600void
601spa_deadman(void *arg)
602{
603	spa_t *spa = arg;
604
605	/*
606	 * Disable the deadman timer if the pool is suspended.
607	 */
608	if (spa_suspended(spa)) {
609#ifdef illumos
610		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
611#else
612		/* Nothing.  just don't schedule any future callouts. */
613#endif
614		return;
615	}
616
617	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
618	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
619	    ++spa->spa_deadman_calls);
620	if (zfs_deadman_enabled)
621		vdev_deadman(spa->spa_root_vdev);
622#ifdef __FreeBSD__
623#ifdef _KERNEL
624	callout_schedule(&spa->spa_deadman_cycid,
625	    hz * zfs_deadman_checktime_ms / MILLISEC);
626#endif
627#endif
628}
629
630/*
631 * Create an uninitialized spa_t with the given name.  Requires
632 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
633 * exist by calling spa_lookup() first.
634 */
635spa_t *
636spa_add(const char *name, nvlist_t *config, const char *altroot)
637{
638	spa_t *spa;
639	spa_config_dirent_t *dp;
640#ifdef illumos
641	cyc_handler_t hdlr;
642	cyc_time_t when;
643#endif
644
645	ASSERT(MUTEX_HELD(&spa_namespace_lock));
646
647	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
648
649	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
650	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
651	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
652	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
653	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
654	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
655	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
656	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
657	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
658	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
659	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
660	mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
661
662	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
663	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
664	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
665	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
666	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
667
668	for (int t = 0; t < TXG_SIZE; t++)
669		bplist_create(&spa->spa_free_bplist[t]);
670
671	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
672	spa->spa_state = POOL_STATE_UNINITIALIZED;
673	spa->spa_freeze_txg = UINT64_MAX;
674	spa->spa_final_txg = UINT64_MAX;
675	spa->spa_load_max_txg = UINT64_MAX;
676	spa->spa_proc = &p0;
677	spa->spa_proc_state = SPA_PROC_NONE;
678
679#ifdef illumos
680	hdlr.cyh_func = spa_deadman;
681	hdlr.cyh_arg = spa;
682	hdlr.cyh_level = CY_LOW_LEVEL;
683#endif
684
685	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
686
687#ifdef illumos
688	/*
689	 * This determines how often we need to check for hung I/Os after
690	 * the cyclic has already fired. Since checking for hung I/Os is
691	 * an expensive operation we don't want to check too frequently.
692	 * Instead wait for 5 seconds before checking again.
693	 */
694	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
695	when.cyt_when = CY_INFINITY;
696	mutex_enter(&cpu_lock);
697	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
698	mutex_exit(&cpu_lock);
699#else	/* !illumos */
700#ifdef _KERNEL
701	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
702#endif
703#endif
704	refcount_create(&spa->spa_refcount);
705	spa_config_lock_init(spa);
706
707	avl_add(&spa_namespace_avl, spa);
708
709	/*
710	 * Set the alternate root, if there is one.
711	 */
712	if (altroot) {
713		spa->spa_root = spa_strdup(altroot);
714		spa_active_count++;
715	}
716
717	avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
718	    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
719
720	/*
721	 * Every pool starts with the default cachefile
722	 */
723	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
724	    offsetof(spa_config_dirent_t, scd_link));
725
726	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
727	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
728	list_insert_head(&spa->spa_config_list, dp);
729
730	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
731	    KM_SLEEP) == 0);
732
733	if (config != NULL) {
734		nvlist_t *features;
735
736		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
737		    &features) == 0) {
738			VERIFY(nvlist_dup(features, &spa->spa_label_features,
739			    0) == 0);
740		}
741
742		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
743	}
744
745	if (spa->spa_label_features == NULL) {
746		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
747		    KM_SLEEP) == 0);
748	}
749
750	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
751
752	spa->spa_min_ashift = INT_MAX;
753	spa->spa_max_ashift = 0;
754
755	/*
756	 * As a pool is being created, treat all features as disabled by
757	 * setting SPA_FEATURE_DISABLED for all entries in the feature
758	 * refcount cache.
759	 */
760	for (int i = 0; i < SPA_FEATURES; i++) {
761		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
762	}
763
764	return (spa);
765}
766
767/*
768 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
769 * spa_namespace_lock.  This is called only after the spa_t has been closed and
770 * deactivated.
771 */
772void
773spa_remove(spa_t *spa)
774{
775	spa_config_dirent_t *dp;
776
777	ASSERT(MUTEX_HELD(&spa_namespace_lock));
778	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
779	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
780
781	nvlist_free(spa->spa_config_splitting);
782
783	avl_remove(&spa_namespace_avl, spa);
784	cv_broadcast(&spa_namespace_cv);
785
786	if (spa->spa_root) {
787		spa_strfree(spa->spa_root);
788		spa_active_count--;
789	}
790
791	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
792		list_remove(&spa->spa_config_list, dp);
793		if (dp->scd_path != NULL)
794			spa_strfree(dp->scd_path);
795		kmem_free(dp, sizeof (spa_config_dirent_t));
796	}
797
798	avl_destroy(&spa->spa_alloc_tree);
799	list_destroy(&spa->spa_config_list);
800
801	nvlist_free(spa->spa_label_features);
802	nvlist_free(spa->spa_load_info);
803	spa_config_set(spa, NULL);
804
805#ifdef illumos
806	mutex_enter(&cpu_lock);
807	if (spa->spa_deadman_cycid != CYCLIC_NONE)
808		cyclic_remove(spa->spa_deadman_cycid);
809	mutex_exit(&cpu_lock);
810	spa->spa_deadman_cycid = CYCLIC_NONE;
811#else	/* !illumos */
812#ifdef _KERNEL
813	callout_drain(&spa->spa_deadman_cycid);
814#endif
815#endif
816
817	refcount_destroy(&spa->spa_refcount);
818
819	spa_config_lock_destroy(spa);
820
821	for (int t = 0; t < TXG_SIZE; t++)
822		bplist_destroy(&spa->spa_free_bplist[t]);
823
824	zio_checksum_templates_free(spa);
825
826	cv_destroy(&spa->spa_async_cv);
827	cv_destroy(&spa->spa_evicting_os_cv);
828	cv_destroy(&spa->spa_proc_cv);
829	cv_destroy(&spa->spa_scrub_io_cv);
830	cv_destroy(&spa->spa_suspend_cv);
831
832	mutex_destroy(&spa->spa_alloc_lock);
833	mutex_destroy(&spa->spa_async_lock);
834	mutex_destroy(&spa->spa_errlist_lock);
835	mutex_destroy(&spa->spa_errlog_lock);
836	mutex_destroy(&spa->spa_evicting_os_lock);
837	mutex_destroy(&spa->spa_history_lock);
838	mutex_destroy(&spa->spa_proc_lock);
839	mutex_destroy(&spa->spa_props_lock);
840	mutex_destroy(&spa->spa_cksum_tmpls_lock);
841	mutex_destroy(&spa->spa_scrub_lock);
842	mutex_destroy(&spa->spa_suspend_lock);
843	mutex_destroy(&spa->spa_vdev_top_lock);
844
845	kmem_free(spa, sizeof (spa_t));
846}
847
848/*
849 * Given a pool, return the next pool in the namespace, or NULL if there is
850 * none.  If 'prev' is NULL, return the first pool.
851 */
852spa_t *
853spa_next(spa_t *prev)
854{
855	ASSERT(MUTEX_HELD(&spa_namespace_lock));
856
857	if (prev)
858		return (AVL_NEXT(&spa_namespace_avl, prev));
859	else
860		return (avl_first(&spa_namespace_avl));
861}
862
863/*
864 * ==========================================================================
865 * SPA refcount functions
866 * ==========================================================================
867 */
868
869/*
870 * Add a reference to the given spa_t.  Must have at least one reference, or
871 * have the namespace lock held.
872 */
873void
874spa_open_ref(spa_t *spa, void *tag)
875{
876	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
877	    MUTEX_HELD(&spa_namespace_lock));
878	(void) refcount_add(&spa->spa_refcount, tag);
879}
880
881/*
882 * Remove a reference to the given spa_t.  Must have at least one reference, or
883 * have the namespace lock held.
884 */
885void
886spa_close(spa_t *spa, void *tag)
887{
888	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
889	    MUTEX_HELD(&spa_namespace_lock));
890	(void) refcount_remove(&spa->spa_refcount, tag);
891}
892
893/*
894 * Remove a reference to the given spa_t held by a dsl dir that is
895 * being asynchronously released.  Async releases occur from a taskq
896 * performing eviction of dsl datasets and dirs.  The namespace lock
897 * isn't held and the hold by the object being evicted may contribute to
898 * spa_minref (e.g. dataset or directory released during pool export),
899 * so the asserts in spa_close() do not apply.
900 */
901void
902spa_async_close(spa_t *spa, void *tag)
903{
904	(void) refcount_remove(&spa->spa_refcount, tag);
905}
906
907/*
908 * Check to see if the spa refcount is zero.  Must be called with
909 * spa_namespace_lock held.  We really compare against spa_minref, which is the
910 * number of references acquired when opening a pool
911 */
912boolean_t
913spa_refcount_zero(spa_t *spa)
914{
915	ASSERT(MUTEX_HELD(&spa_namespace_lock));
916
917	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
918}
919
920/*
921 * ==========================================================================
922 * SPA spare and l2cache tracking
923 * ==========================================================================
924 */
925
926/*
927 * Hot spares and cache devices are tracked using the same code below,
928 * for 'auxiliary' devices.
929 */
930
931typedef struct spa_aux {
932	uint64_t	aux_guid;
933	uint64_t	aux_pool;
934	avl_node_t	aux_avl;
935	int		aux_count;
936} spa_aux_t;
937
938static int
939spa_aux_compare(const void *a, const void *b)
940{
941	const spa_aux_t *sa = a;
942	const spa_aux_t *sb = b;
943
944	if (sa->aux_guid < sb->aux_guid)
945		return (-1);
946	else if (sa->aux_guid > sb->aux_guid)
947		return (1);
948	else
949		return (0);
950}
951
952void
953spa_aux_add(vdev_t *vd, avl_tree_t *avl)
954{
955	avl_index_t where;
956	spa_aux_t search;
957	spa_aux_t *aux;
958
959	search.aux_guid = vd->vdev_guid;
960	if ((aux = avl_find(avl, &search, &where)) != NULL) {
961		aux->aux_count++;
962	} else {
963		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
964		aux->aux_guid = vd->vdev_guid;
965		aux->aux_count = 1;
966		avl_insert(avl, aux, where);
967	}
968}
969
970void
971spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
972{
973	spa_aux_t search;
974	spa_aux_t *aux;
975	avl_index_t where;
976
977	search.aux_guid = vd->vdev_guid;
978	aux = avl_find(avl, &search, &where);
979
980	ASSERT(aux != NULL);
981
982	if (--aux->aux_count == 0) {
983		avl_remove(avl, aux);
984		kmem_free(aux, sizeof (spa_aux_t));
985	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
986		aux->aux_pool = 0ULL;
987	}
988}
989
990boolean_t
991spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
992{
993	spa_aux_t search, *found;
994
995	search.aux_guid = guid;
996	found = avl_find(avl, &search, NULL);
997
998	if (pool) {
999		if (found)
1000			*pool = found->aux_pool;
1001		else
1002			*pool = 0ULL;
1003	}
1004
1005	if (refcnt) {
1006		if (found)
1007			*refcnt = found->aux_count;
1008		else
1009			*refcnt = 0;
1010	}
1011
1012	return (found != NULL);
1013}
1014
1015void
1016spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1017{
1018	spa_aux_t search, *found;
1019	avl_index_t where;
1020
1021	search.aux_guid = vd->vdev_guid;
1022	found = avl_find(avl, &search, &where);
1023	ASSERT(found != NULL);
1024	ASSERT(found->aux_pool == 0ULL);
1025
1026	found->aux_pool = spa_guid(vd->vdev_spa);
1027}
1028
1029/*
1030 * Spares are tracked globally due to the following constraints:
1031 *
1032 * 	- A spare may be part of multiple pools.
1033 * 	- A spare may be added to a pool even if it's actively in use within
1034 *	  another pool.
1035 * 	- A spare in use in any pool can only be the source of a replacement if
1036 *	  the target is a spare in the same pool.
1037 *
1038 * We keep track of all spares on the system through the use of a reference
1039 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1040 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1041 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1042 * inactive).  When a spare is made active (used to replace a device in the
1043 * pool), we also keep track of which pool its been made a part of.
1044 *
1045 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1046 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1047 * separate spare lock exists for the status query path, which does not need to
1048 * be completely consistent with respect to other vdev configuration changes.
1049 */
1050
1051static int
1052spa_spare_compare(const void *a, const void *b)
1053{
1054	return (spa_aux_compare(a, b));
1055}
1056
1057void
1058spa_spare_add(vdev_t *vd)
1059{
1060	mutex_enter(&spa_spare_lock);
1061	ASSERT(!vd->vdev_isspare);
1062	spa_aux_add(vd, &spa_spare_avl);
1063	vd->vdev_isspare = B_TRUE;
1064	mutex_exit(&spa_spare_lock);
1065}
1066
1067void
1068spa_spare_remove(vdev_t *vd)
1069{
1070	mutex_enter(&spa_spare_lock);
1071	ASSERT(vd->vdev_isspare);
1072	spa_aux_remove(vd, &spa_spare_avl);
1073	vd->vdev_isspare = B_FALSE;
1074	mutex_exit(&spa_spare_lock);
1075}
1076
1077boolean_t
1078spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1079{
1080	boolean_t found;
1081
1082	mutex_enter(&spa_spare_lock);
1083	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1084	mutex_exit(&spa_spare_lock);
1085
1086	return (found);
1087}
1088
1089void
1090spa_spare_activate(vdev_t *vd)
1091{
1092	mutex_enter(&spa_spare_lock);
1093	ASSERT(vd->vdev_isspare);
1094	spa_aux_activate(vd, &spa_spare_avl);
1095	mutex_exit(&spa_spare_lock);
1096}
1097
1098/*
1099 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1100 * Cache devices currently only support one pool per cache device, and so
1101 * for these devices the aux reference count is currently unused beyond 1.
1102 */
1103
1104static int
1105spa_l2cache_compare(const void *a, const void *b)
1106{
1107	return (spa_aux_compare(a, b));
1108}
1109
1110void
1111spa_l2cache_add(vdev_t *vd)
1112{
1113	mutex_enter(&spa_l2cache_lock);
1114	ASSERT(!vd->vdev_isl2cache);
1115	spa_aux_add(vd, &spa_l2cache_avl);
1116	vd->vdev_isl2cache = B_TRUE;
1117	mutex_exit(&spa_l2cache_lock);
1118}
1119
1120void
1121spa_l2cache_remove(vdev_t *vd)
1122{
1123	mutex_enter(&spa_l2cache_lock);
1124	ASSERT(vd->vdev_isl2cache);
1125	spa_aux_remove(vd, &spa_l2cache_avl);
1126	vd->vdev_isl2cache = B_FALSE;
1127	mutex_exit(&spa_l2cache_lock);
1128}
1129
1130boolean_t
1131spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1132{
1133	boolean_t found;
1134
1135	mutex_enter(&spa_l2cache_lock);
1136	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1137	mutex_exit(&spa_l2cache_lock);
1138
1139	return (found);
1140}
1141
1142void
1143spa_l2cache_activate(vdev_t *vd)
1144{
1145	mutex_enter(&spa_l2cache_lock);
1146	ASSERT(vd->vdev_isl2cache);
1147	spa_aux_activate(vd, &spa_l2cache_avl);
1148	mutex_exit(&spa_l2cache_lock);
1149}
1150
1151/*
1152 * ==========================================================================
1153 * SPA vdev locking
1154 * ==========================================================================
1155 */
1156
1157/*
1158 * Lock the given spa_t for the purpose of adding or removing a vdev.
1159 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1160 * It returns the next transaction group for the spa_t.
1161 */
1162uint64_t
1163spa_vdev_enter(spa_t *spa)
1164{
1165	mutex_enter(&spa->spa_vdev_top_lock);
1166	mutex_enter(&spa_namespace_lock);
1167	return (spa_vdev_config_enter(spa));
1168}
1169
1170/*
1171 * Internal implementation for spa_vdev_enter().  Used when a vdev
1172 * operation requires multiple syncs (i.e. removing a device) while
1173 * keeping the spa_namespace_lock held.
1174 */
1175uint64_t
1176spa_vdev_config_enter(spa_t *spa)
1177{
1178	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1179
1180	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1181
1182	return (spa_last_synced_txg(spa) + 1);
1183}
1184
1185/*
1186 * Used in combination with spa_vdev_config_enter() to allow the syncing
1187 * of multiple transactions without releasing the spa_namespace_lock.
1188 */
1189void
1190spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1191{
1192	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1193
1194	int config_changed = B_FALSE;
1195
1196	ASSERT(txg > spa_last_synced_txg(spa));
1197
1198	spa->spa_pending_vdev = NULL;
1199
1200	/*
1201	 * Reassess the DTLs.
1202	 */
1203	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1204
1205	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1206		config_changed = B_TRUE;
1207		spa->spa_config_generation++;
1208	}
1209
1210	/*
1211	 * Verify the metaslab classes.
1212	 */
1213	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1214	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1215
1216	spa_config_exit(spa, SCL_ALL, spa);
1217
1218	/*
1219	 * Panic the system if the specified tag requires it.  This
1220	 * is useful for ensuring that configurations are updated
1221	 * transactionally.
1222	 */
1223	if (zio_injection_enabled)
1224		zio_handle_panic_injection(spa, tag, 0);
1225
1226	/*
1227	 * Note: this txg_wait_synced() is important because it ensures
1228	 * that there won't be more than one config change per txg.
1229	 * This allows us to use the txg as the generation number.
1230	 */
1231	if (error == 0)
1232		txg_wait_synced(spa->spa_dsl_pool, txg);
1233
1234	if (vd != NULL) {
1235		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1236		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1237		vdev_free(vd);
1238		spa_config_exit(spa, SCL_ALL, spa);
1239	}
1240
1241	/*
1242	 * If the config changed, update the config cache.
1243	 */
1244	if (config_changed)
1245		spa_config_sync(spa, B_FALSE, B_TRUE);
1246}
1247
1248/*
1249 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1250 * locking of spa_vdev_enter(), we also want make sure the transactions have
1251 * synced to disk, and then update the global configuration cache with the new
1252 * information.
1253 */
1254int
1255spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1256{
1257	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1258	mutex_exit(&spa_namespace_lock);
1259	mutex_exit(&spa->spa_vdev_top_lock);
1260
1261	return (error);
1262}
1263
1264/*
1265 * Lock the given spa_t for the purpose of changing vdev state.
1266 */
1267void
1268spa_vdev_state_enter(spa_t *spa, int oplocks)
1269{
1270	int locks = SCL_STATE_ALL | oplocks;
1271
1272	/*
1273	 * Root pools may need to read of the underlying devfs filesystem
1274	 * when opening up a vdev.  Unfortunately if we're holding the
1275	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1276	 * the read from the root filesystem.  Instead we "prefetch"
1277	 * the associated vnodes that we need prior to opening the
1278	 * underlying devices and cache them so that we can prevent
1279	 * any I/O when we are doing the actual open.
1280	 */
1281	if (spa_is_root(spa)) {
1282		int low = locks & ~(SCL_ZIO - 1);
1283		int high = locks & ~low;
1284
1285		spa_config_enter(spa, high, spa, RW_WRITER);
1286		vdev_hold(spa->spa_root_vdev);
1287		spa_config_enter(spa, low, spa, RW_WRITER);
1288	} else {
1289		spa_config_enter(spa, locks, spa, RW_WRITER);
1290	}
1291	spa->spa_vdev_locks = locks;
1292}
1293
1294int
1295spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1296{
1297	boolean_t config_changed = B_FALSE;
1298
1299	if (vd != NULL || error == 0)
1300		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1301		    0, 0, B_FALSE);
1302
1303	if (vd != NULL) {
1304		vdev_state_dirty(vd->vdev_top);
1305		config_changed = B_TRUE;
1306		spa->spa_config_generation++;
1307	}
1308
1309	if (spa_is_root(spa))
1310		vdev_rele(spa->spa_root_vdev);
1311
1312	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1313	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1314
1315	/*
1316	 * If anything changed, wait for it to sync.  This ensures that,
1317	 * from the system administrator's perspective, zpool(1M) commands
1318	 * are synchronous.  This is important for things like zpool offline:
1319	 * when the command completes, you expect no further I/O from ZFS.
1320	 */
1321	if (vd != NULL)
1322		txg_wait_synced(spa->spa_dsl_pool, 0);
1323
1324	/*
1325	 * If the config changed, update the config cache.
1326	 */
1327	if (config_changed) {
1328		mutex_enter(&spa_namespace_lock);
1329		spa_config_sync(spa, B_FALSE, B_TRUE);
1330		mutex_exit(&spa_namespace_lock);
1331	}
1332
1333	return (error);
1334}
1335
1336/*
1337 * ==========================================================================
1338 * Miscellaneous functions
1339 * ==========================================================================
1340 */
1341
1342void
1343spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1344{
1345	if (!nvlist_exists(spa->spa_label_features, feature)) {
1346		fnvlist_add_boolean(spa->spa_label_features, feature);
1347		/*
1348		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1349		 * dirty the vdev config because lock SCL_CONFIG is not held.
1350		 * Thankfully, in this case we don't need to dirty the config
1351		 * because it will be written out anyway when we finish
1352		 * creating the pool.
1353		 */
1354		if (tx->tx_txg != TXG_INITIAL)
1355			vdev_config_dirty(spa->spa_root_vdev);
1356	}
1357}
1358
1359void
1360spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1361{
1362	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1363		vdev_config_dirty(spa->spa_root_vdev);
1364}
1365
1366/*
1367 * Rename a spa_t.
1368 */
1369int
1370spa_rename(const char *name, const char *newname)
1371{
1372	spa_t *spa;
1373	int err;
1374
1375	/*
1376	 * Lookup the spa_t and grab the config lock for writing.  We need to
1377	 * actually open the pool so that we can sync out the necessary labels.
1378	 * It's OK to call spa_open() with the namespace lock held because we
1379	 * allow recursive calls for other reasons.
1380	 */
1381	mutex_enter(&spa_namespace_lock);
1382	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1383		mutex_exit(&spa_namespace_lock);
1384		return (err);
1385	}
1386
1387	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1388
1389	avl_remove(&spa_namespace_avl, spa);
1390	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1391	avl_add(&spa_namespace_avl, spa);
1392
1393	/*
1394	 * Sync all labels to disk with the new names by marking the root vdev
1395	 * dirty and waiting for it to sync.  It will pick up the new pool name
1396	 * during the sync.
1397	 */
1398	vdev_config_dirty(spa->spa_root_vdev);
1399
1400	spa_config_exit(spa, SCL_ALL, FTAG);
1401
1402	txg_wait_synced(spa->spa_dsl_pool, 0);
1403
1404	/*
1405	 * Sync the updated config cache.
1406	 */
1407	spa_config_sync(spa, B_FALSE, B_TRUE);
1408
1409	spa_close(spa, FTAG);
1410
1411	mutex_exit(&spa_namespace_lock);
1412
1413	return (0);
1414}
1415
1416/*
1417 * Return the spa_t associated with given pool_guid, if it exists.  If
1418 * device_guid is non-zero, determine whether the pool exists *and* contains
1419 * a device with the specified device_guid.
1420 */
1421spa_t *
1422spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1423{
1424	spa_t *spa;
1425	avl_tree_t *t = &spa_namespace_avl;
1426
1427	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1428
1429	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1430		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1431			continue;
1432		if (spa->spa_root_vdev == NULL)
1433			continue;
1434		if (spa_guid(spa) == pool_guid) {
1435			if (device_guid == 0)
1436				break;
1437
1438			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1439			    device_guid) != NULL)
1440				break;
1441
1442			/*
1443			 * Check any devices we may be in the process of adding.
1444			 */
1445			if (spa->spa_pending_vdev) {
1446				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1447				    device_guid) != NULL)
1448					break;
1449			}
1450		}
1451	}
1452
1453	return (spa);
1454}
1455
1456/*
1457 * Determine whether a pool with the given pool_guid exists.
1458 */
1459boolean_t
1460spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1461{
1462	return (spa_by_guid(pool_guid, device_guid) != NULL);
1463}
1464
1465char *
1466spa_strdup(const char *s)
1467{
1468	size_t len;
1469	char *new;
1470
1471	len = strlen(s);
1472	new = kmem_alloc(len + 1, KM_SLEEP);
1473	bcopy(s, new, len);
1474	new[len] = '\0';
1475
1476	return (new);
1477}
1478
1479void
1480spa_strfree(char *s)
1481{
1482	kmem_free(s, strlen(s) + 1);
1483}
1484
1485uint64_t
1486spa_get_random(uint64_t range)
1487{
1488	uint64_t r;
1489
1490	ASSERT(range != 0);
1491
1492	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1493
1494	return (r % range);
1495}
1496
1497uint64_t
1498spa_generate_guid(spa_t *spa)
1499{
1500	uint64_t guid = spa_get_random(-1ULL);
1501
1502	if (spa != NULL) {
1503		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1504			guid = spa_get_random(-1ULL);
1505	} else {
1506		while (guid == 0 || spa_guid_exists(guid, 0))
1507			guid = spa_get_random(-1ULL);
1508	}
1509
1510	return (guid);
1511}
1512
1513void
1514snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1515{
1516	char type[256];
1517	char *checksum = NULL;
1518	char *compress = NULL;
1519
1520	if (bp != NULL) {
1521		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1522			dmu_object_byteswap_t bswap =
1523			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1524			(void) snprintf(type, sizeof (type), "bswap %s %s",
1525			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1526			    "metadata" : "data",
1527			    dmu_ot_byteswap[bswap].ob_name);
1528		} else {
1529			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1530			    sizeof (type));
1531		}
1532		if (!BP_IS_EMBEDDED(bp)) {
1533			checksum =
1534			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1535		}
1536		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1537	}
1538
1539	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1540	    compress);
1541}
1542
1543void
1544spa_freeze(spa_t *spa)
1545{
1546	uint64_t freeze_txg = 0;
1547
1548	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1549	if (spa->spa_freeze_txg == UINT64_MAX) {
1550		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1551		spa->spa_freeze_txg = freeze_txg;
1552	}
1553	spa_config_exit(spa, SCL_ALL, FTAG);
1554	if (freeze_txg != 0)
1555		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1556}
1557
1558void
1559zfs_panic_recover(const char *fmt, ...)
1560{
1561	va_list adx;
1562
1563	va_start(adx, fmt);
1564	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1565	va_end(adx);
1566}
1567
1568/*
1569 * This is a stripped-down version of strtoull, suitable only for converting
1570 * lowercase hexadecimal numbers that don't overflow.
1571 */
1572uint64_t
1573zfs_strtonum(const char *str, char **nptr)
1574{
1575	uint64_t val = 0;
1576	char c;
1577	int digit;
1578
1579	while ((c = *str) != '\0') {
1580		if (c >= '0' && c <= '9')
1581			digit = c - '0';
1582		else if (c >= 'a' && c <= 'f')
1583			digit = 10 + c - 'a';
1584		else
1585			break;
1586
1587		val *= 16;
1588		val += digit;
1589
1590		str++;
1591	}
1592
1593	if (nptr)
1594		*nptr = (char *)str;
1595
1596	return (val);
1597}
1598
1599/*
1600 * ==========================================================================
1601 * Accessor functions
1602 * ==========================================================================
1603 */
1604
1605boolean_t
1606spa_shutting_down(spa_t *spa)
1607{
1608	return (spa->spa_async_suspended);
1609}
1610
1611dsl_pool_t *
1612spa_get_dsl(spa_t *spa)
1613{
1614	return (spa->spa_dsl_pool);
1615}
1616
1617boolean_t
1618spa_is_initializing(spa_t *spa)
1619{
1620	return (spa->spa_is_initializing);
1621}
1622
1623blkptr_t *
1624spa_get_rootblkptr(spa_t *spa)
1625{
1626	return (&spa->spa_ubsync.ub_rootbp);
1627}
1628
1629void
1630spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1631{
1632	spa->spa_uberblock.ub_rootbp = *bp;
1633}
1634
1635void
1636spa_altroot(spa_t *spa, char *buf, size_t buflen)
1637{
1638	if (spa->spa_root == NULL)
1639		buf[0] = '\0';
1640	else
1641		(void) strncpy(buf, spa->spa_root, buflen);
1642}
1643
1644int
1645spa_sync_pass(spa_t *spa)
1646{
1647	return (spa->spa_sync_pass);
1648}
1649
1650char *
1651spa_name(spa_t *spa)
1652{
1653	return (spa->spa_name);
1654}
1655
1656uint64_t
1657spa_guid(spa_t *spa)
1658{
1659	dsl_pool_t *dp = spa_get_dsl(spa);
1660	uint64_t guid;
1661
1662	/*
1663	 * If we fail to parse the config during spa_load(), we can go through
1664	 * the error path (which posts an ereport) and end up here with no root
1665	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1666	 * this case.
1667	 */
1668	if (spa->spa_root_vdev == NULL)
1669		return (spa->spa_config_guid);
1670
1671	guid = spa->spa_last_synced_guid != 0 ?
1672	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1673
1674	/*
1675	 * Return the most recently synced out guid unless we're
1676	 * in syncing context.
1677	 */
1678	if (dp && dsl_pool_sync_context(dp))
1679		return (spa->spa_root_vdev->vdev_guid);
1680	else
1681		return (guid);
1682}
1683
1684uint64_t
1685spa_load_guid(spa_t *spa)
1686{
1687	/*
1688	 * This is a GUID that exists solely as a reference for the
1689	 * purposes of the arc.  It is generated at load time, and
1690	 * is never written to persistent storage.
1691	 */
1692	return (spa->spa_load_guid);
1693}
1694
1695uint64_t
1696spa_last_synced_txg(spa_t *spa)
1697{
1698	return (spa->spa_ubsync.ub_txg);
1699}
1700
1701uint64_t
1702spa_first_txg(spa_t *spa)
1703{
1704	return (spa->spa_first_txg);
1705}
1706
1707uint64_t
1708spa_syncing_txg(spa_t *spa)
1709{
1710	return (spa->spa_syncing_txg);
1711}
1712
1713pool_state_t
1714spa_state(spa_t *spa)
1715{
1716	return (spa->spa_state);
1717}
1718
1719spa_load_state_t
1720spa_load_state(spa_t *spa)
1721{
1722	return (spa->spa_load_state);
1723}
1724
1725uint64_t
1726spa_freeze_txg(spa_t *spa)
1727{
1728	return (spa->spa_freeze_txg);
1729}
1730
1731/* ARGSUSED */
1732uint64_t
1733spa_get_asize(spa_t *spa, uint64_t lsize)
1734{
1735	return (lsize * spa_asize_inflation);
1736}
1737
1738/*
1739 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1740 * or at least 128MB, unless that would cause it to be more than half the
1741 * pool size.
1742 *
1743 * See the comment above spa_slop_shift for details.
1744 */
1745uint64_t
1746spa_get_slop_space(spa_t *spa)
1747{
1748	uint64_t space = spa_get_dspace(spa);
1749	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1750}
1751
1752uint64_t
1753spa_get_dspace(spa_t *spa)
1754{
1755	return (spa->spa_dspace);
1756}
1757
1758void
1759spa_update_dspace(spa_t *spa)
1760{
1761	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1762	    ddt_get_dedup_dspace(spa);
1763}
1764
1765/*
1766 * Return the failure mode that has been set to this pool. The default
1767 * behavior will be to block all I/Os when a complete failure occurs.
1768 */
1769uint8_t
1770spa_get_failmode(spa_t *spa)
1771{
1772	return (spa->spa_failmode);
1773}
1774
1775boolean_t
1776spa_suspended(spa_t *spa)
1777{
1778	return (spa->spa_suspended);
1779}
1780
1781uint64_t
1782spa_version(spa_t *spa)
1783{
1784	return (spa->spa_ubsync.ub_version);
1785}
1786
1787boolean_t
1788spa_deflate(spa_t *spa)
1789{
1790	return (spa->spa_deflate);
1791}
1792
1793metaslab_class_t *
1794spa_normal_class(spa_t *spa)
1795{
1796	return (spa->spa_normal_class);
1797}
1798
1799metaslab_class_t *
1800spa_log_class(spa_t *spa)
1801{
1802	return (spa->spa_log_class);
1803}
1804
1805void
1806spa_evicting_os_register(spa_t *spa, objset_t *os)
1807{
1808	mutex_enter(&spa->spa_evicting_os_lock);
1809	list_insert_head(&spa->spa_evicting_os_list, os);
1810	mutex_exit(&spa->spa_evicting_os_lock);
1811}
1812
1813void
1814spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1815{
1816	mutex_enter(&spa->spa_evicting_os_lock);
1817	list_remove(&spa->spa_evicting_os_list, os);
1818	cv_broadcast(&spa->spa_evicting_os_cv);
1819	mutex_exit(&spa->spa_evicting_os_lock);
1820}
1821
1822void
1823spa_evicting_os_wait(spa_t *spa)
1824{
1825	mutex_enter(&spa->spa_evicting_os_lock);
1826	while (!list_is_empty(&spa->spa_evicting_os_list))
1827		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1828	mutex_exit(&spa->spa_evicting_os_lock);
1829
1830	dmu_buf_user_evict_wait();
1831}
1832
1833int
1834spa_max_replication(spa_t *spa)
1835{
1836	/*
1837	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1838	 * handle BPs with more than one DVA allocated.  Set our max
1839	 * replication level accordingly.
1840	 */
1841	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1842		return (1);
1843	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1844}
1845
1846int
1847spa_prev_software_version(spa_t *spa)
1848{
1849	return (spa->spa_prev_software_version);
1850}
1851
1852uint64_t
1853spa_deadman_synctime(spa_t *spa)
1854{
1855	return (spa->spa_deadman_synctime);
1856}
1857
1858uint64_t
1859dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1860{
1861	uint64_t asize = DVA_GET_ASIZE(dva);
1862	uint64_t dsize = asize;
1863
1864	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1865
1866	if (asize != 0 && spa->spa_deflate) {
1867		uint64_t vdev = DVA_GET_VDEV(dva);
1868		vdev_t *vd = vdev_lookup_top(spa, vdev);
1869		if (vd == NULL) {
1870			panic(
1871			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1872			    (u_longlong_t)vdev, (u_longlong_t)asize);
1873		}
1874		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1875	}
1876
1877	return (dsize);
1878}
1879
1880uint64_t
1881bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1882{
1883	uint64_t dsize = 0;
1884
1885	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1886		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1887
1888	return (dsize);
1889}
1890
1891uint64_t
1892bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1893{
1894	uint64_t dsize = 0;
1895
1896	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1897
1898	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1899		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1900
1901	spa_config_exit(spa, SCL_VDEV, FTAG);
1902
1903	return (dsize);
1904}
1905
1906/*
1907 * ==========================================================================
1908 * Initialization and Termination
1909 * ==========================================================================
1910 */
1911
1912static int
1913spa_name_compare(const void *a1, const void *a2)
1914{
1915	const spa_t *s1 = a1;
1916	const spa_t *s2 = a2;
1917	int s;
1918
1919	s = strcmp(s1->spa_name, s2->spa_name);
1920	if (s > 0)
1921		return (1);
1922	if (s < 0)
1923		return (-1);
1924	return (0);
1925}
1926
1927int
1928spa_busy(void)
1929{
1930	return (spa_active_count);
1931}
1932
1933void
1934spa_boot_init()
1935{
1936	spa_config_load();
1937}
1938
1939#ifdef _KERNEL
1940EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1941#endif
1942
1943void
1944spa_init(int mode)
1945{
1946	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1947	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1948	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1949	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1950
1951	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1952	    offsetof(spa_t, spa_avl));
1953
1954	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1955	    offsetof(spa_aux_t, aux_avl));
1956
1957	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1958	    offsetof(spa_aux_t, aux_avl));
1959
1960	spa_mode_global = mode;
1961
1962#ifdef illumos
1963#ifdef _KERNEL
1964	spa_arch_init();
1965#else
1966	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1967		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1968		if (arc_procfd == -1) {
1969			perror("could not enable watchpoints: "
1970			    "opening /proc/self/ctl failed: ");
1971		} else {
1972			arc_watch = B_TRUE;
1973		}
1974	}
1975#endif
1976#endif /* illumos */
1977	refcount_sysinit();
1978	unique_init();
1979	range_tree_init();
1980	zio_init();
1981	lz4_init();
1982	dmu_init();
1983	zil_init();
1984	vdev_cache_stat_init();
1985	zfs_prop_init();
1986	zpool_prop_init();
1987	zpool_feature_init();
1988	spa_config_load();
1989	l2arc_start();
1990#ifndef illumos
1991#ifdef _KERNEL
1992	zfs_deadman_init();
1993#endif
1994#endif	/* !illumos */
1995}
1996
1997void
1998spa_fini(void)
1999{
2000	l2arc_stop();
2001
2002	spa_evict_all();
2003
2004	vdev_cache_stat_fini();
2005	zil_fini();
2006	dmu_fini();
2007	lz4_fini();
2008	zio_fini();
2009	range_tree_fini();
2010	unique_fini();
2011	refcount_fini();
2012
2013	avl_destroy(&spa_namespace_avl);
2014	avl_destroy(&spa_spare_avl);
2015	avl_destroy(&spa_l2cache_avl);
2016
2017	cv_destroy(&spa_namespace_cv);
2018	mutex_destroy(&spa_namespace_lock);
2019	mutex_destroy(&spa_spare_lock);
2020	mutex_destroy(&spa_l2cache_lock);
2021}
2022
2023/*
2024 * Return whether this pool has slogs. No locking needed.
2025 * It's not a problem if the wrong answer is returned as it's only for
2026 * performance and not correctness
2027 */
2028boolean_t
2029spa_has_slogs(spa_t *spa)
2030{
2031	return (spa->spa_log_class->mc_rotor != NULL);
2032}
2033
2034spa_log_state_t
2035spa_get_log_state(spa_t *spa)
2036{
2037	return (spa->spa_log_state);
2038}
2039
2040void
2041spa_set_log_state(spa_t *spa, spa_log_state_t state)
2042{
2043	spa->spa_log_state = state;
2044}
2045
2046boolean_t
2047spa_is_root(spa_t *spa)
2048{
2049	return (spa->spa_is_root);
2050}
2051
2052boolean_t
2053spa_writeable(spa_t *spa)
2054{
2055	return (!!(spa->spa_mode & FWRITE));
2056}
2057
2058/*
2059 * Returns true if there is a pending sync task in any of the current
2060 * syncing txg, the current quiescing txg, or the current open txg.
2061 */
2062boolean_t
2063spa_has_pending_synctask(spa_t *spa)
2064{
2065	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2066}
2067
2068int
2069spa_mode(spa_t *spa)
2070{
2071	return (spa->spa_mode);
2072}
2073
2074uint64_t
2075spa_bootfs(spa_t *spa)
2076{
2077	return (spa->spa_bootfs);
2078}
2079
2080uint64_t
2081spa_delegation(spa_t *spa)
2082{
2083	return (spa->spa_delegation);
2084}
2085
2086objset_t *
2087spa_meta_objset(spa_t *spa)
2088{
2089	return (spa->spa_meta_objset);
2090}
2091
2092enum zio_checksum
2093spa_dedup_checksum(spa_t *spa)
2094{
2095	return (spa->spa_dedup_checksum);
2096}
2097
2098/*
2099 * Reset pool scan stat per scan pass (or reboot).
2100 */
2101void
2102spa_scan_stat_init(spa_t *spa)
2103{
2104	/* data not stored on disk */
2105	spa->spa_scan_pass_start = gethrestime_sec();
2106	spa->spa_scan_pass_exam = 0;
2107	vdev_scan_stat_init(spa->spa_root_vdev);
2108}
2109
2110/*
2111 * Get scan stats for zpool status reports
2112 */
2113int
2114spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2115{
2116	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2117
2118	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2119		return (SET_ERROR(ENOENT));
2120	bzero(ps, sizeof (pool_scan_stat_t));
2121
2122	/* data stored on disk */
2123	ps->pss_func = scn->scn_phys.scn_func;
2124	ps->pss_start_time = scn->scn_phys.scn_start_time;
2125	ps->pss_end_time = scn->scn_phys.scn_end_time;
2126	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2127	ps->pss_examined = scn->scn_phys.scn_examined;
2128	ps->pss_to_process = scn->scn_phys.scn_to_process;
2129	ps->pss_processed = scn->scn_phys.scn_processed;
2130	ps->pss_errors = scn->scn_phys.scn_errors;
2131	ps->pss_state = scn->scn_phys.scn_state;
2132
2133	/* data not stored on disk */
2134	ps->pss_pass_start = spa->spa_scan_pass_start;
2135	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2136
2137	return (0);
2138}
2139
2140boolean_t
2141spa_debug_enabled(spa_t *spa)
2142{
2143	return (spa->spa_debug);
2144}
2145
2146int
2147spa_maxblocksize(spa_t *spa)
2148{
2149	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2150		return (SPA_MAXBLOCKSIZE);
2151	else
2152		return (SPA_OLD_MAXBLOCKSIZE);
2153}
2154