spa_misc.c revision 307126
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
50#include <sys/dsl_scan.h>
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
53#include <sys/arc.h>
54#include <sys/ddt.h>
55#include "zfs_prop.h"
56#include <sys/zfeature.h>
57
58/*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 *	This lock must be acquired to do any of the following:
66 *
67 *		- Lookup a spa_t by name
68 *		- Add or remove a spa_t from the namespace
69 *		- Increase spa_refcount from non-zero
70 *		- Check if spa_refcount is zero
71 *		- Rename a spa_t
72 *		- add/remove/attach/detach devices
73 *		- Held for the duration of create/destroy/import/export
74 *
75 *	It does not need to handle recursion.  A create or destroy may
76 *	reference objects (files or zvols) in other pools, but by
77 *	definition they must have an existing reference, and will never need
78 *	to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 *	This reference count keep track of any active users of the spa_t.  The
83 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84 *	the refcount is never really 'zero' - opening a pool implicitly keeps
85 *	some references in the DMU.  Internally we check against spa_minref, but
86 *	present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 *	This protects the spa_t from config changes, and must be held in
91 *	the following circumstances:
92 *
93 *		- RW_READER to perform I/O to the spa
94 *		- RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 *		spa_namespace_lock	->	spa_refcount
99 *
100 *	The namespace lock must be acquired to increase the refcount from 0
101 *	or to check if it is zero.
102 *
103 *		spa_refcount		->	spa_config_lock[]
104 *
105 *	There must be at least one valid reference on the spa_t to acquire
106 *	the config lock.
107 *
108 *		spa_namespace_lock	->	spa_config_lock[]
109 *
110 *	The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 *	spa_lookup()		Lookup a spa_t by name.
119 *
120 *	spa_add()		Create a new spa_t in the namespace.
121 *
122 *	spa_remove()		Remove a spa_t from the namespace.  This also
123 *				frees up any memory associated with the spa_t.
124 *
125 *	spa_next()		Returns the next spa_t in the system, or the
126 *				first if NULL is passed.
127 *
128 *	spa_evict_all()		Shutdown and remove all spa_t structures in
129 *				the system.
130 *
131 *	spa_guid_exists()	Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136 *				called with spa_namespace_lock held if the
137 *				refcount is currently zero.
138 *
139 *	spa_close()		Remove a reference from the spa_t.  This will
140 *				not free the spa_t or remove it from the
141 *				namespace.  No locking is required.
142 *
143 *	spa_refcount_zero()	Returns true if the refcount is currently
144 *				zero.  Must be called with spa_namespace_lock
145 *				held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer.  To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership.  For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 *	Protects changes to the vdev tree topology, such as vdev
171 *	add/remove/attach/detach.  Protects the dirty config list
172 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 *	Protects changes to pool state and vdev state, such as vdev
176 *	online/offline/fault/degrade/clear.  Protects the dirty state list
177 *	(spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 *	Protects changes to metaslab groups and classes.
181 *	Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 *	Held by bp-level zios (those which have no io_vd upon entry)
185 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 *	Protects changes to metaslab groups and classes.
190 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 *	blocks in zio_done() while another i/o that holds either
193 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 *	Held as reader to prevent changes to the vdev tree during trivial
197 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198 *	other locks, and lower than all of them, to ensure that it's safe
199 *	to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204 *	The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 *	or zio_write_phys() -- the caller must ensure that the config cannot
209 *	cannot change in the interim, and that the vdev cannot be reopened.
210 *	SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215 *				for writing.
216 *
217 *	spa_vdev_exit()		Release the config lock, wait for all I/O
218 *				to complete, sync the updated configs to the
219 *				cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229static avl_tree_t spa_namespace_avl;
230kmutex_t spa_namespace_lock;
231static kcondvar_t spa_namespace_cv;
232static int spa_active_count;
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
241int spa_mode_global;
242
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249SYSCTL_DECL(_debug);
250TUNABLE_INT("debug.zfs_flags", &zfs_flags);
251SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
252    "ZFS debug flags.");
253
254/*
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption.  When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
260 */
261boolean_t zfs_recover = B_FALSE;
262SYSCTL_DECL(_vfs_zfs);
263TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
264SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
265    "Try to recover from otherwise-fatal errors.");
266
267static int
268sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
269{
270	int err, val;
271
272	val = zfs_flags;
273	err = sysctl_handle_int(oidp, &val, 0, req);
274	if (err != 0 || req->newptr == NULL)
275		return (err);
276
277	/*
278	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
279	 * arc buffers in the system have the necessary additional
280	 * checksum data.  However, it is safe to disable at any
281	 * time.
282	 */
283	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
284		val &= ~ZFS_DEBUG_MODIFY;
285	zfs_flags = val;
286
287	return (0);
288}
289TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
290SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
291    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
292    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
293
294/*
295 * If destroy encounters an EIO while reading metadata (e.g. indirect
296 * blocks), space referenced by the missing metadata can not be freed.
297 * Normally this causes the background destroy to become "stalled", as
298 * it is unable to make forward progress.  While in this stalled state,
299 * all remaining space to free from the error-encountering filesystem is
300 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
301 * permanently leak the space from indirect blocks that can not be read,
302 * and continue to free everything else that it can.
303 *
304 * The default, "stalling" behavior is useful if the storage partially
305 * fails (i.e. some but not all i/os fail), and then later recovers.  In
306 * this case, we will be able to continue pool operations while it is
307 * partially failed, and when it recovers, we can continue to free the
308 * space, with no leaks.  However, note that this case is actually
309 * fairly rare.
310 *
311 * Typically pools either (a) fail completely (but perhaps temporarily,
312 * e.g. a top-level vdev going offline), or (b) have localized,
313 * permanent errors (e.g. disk returns the wrong data due to bit flip or
314 * firmware bug).  In case (a), this setting does not matter because the
315 * pool will be suspended and the sync thread will not be able to make
316 * forward progress regardless.  In case (b), because the error is
317 * permanent, the best we can do is leak the minimum amount of space,
318 * which is what setting this flag will do.  Therefore, it is reasonable
319 * for this flag to normally be set, but we chose the more conservative
320 * approach of not setting it, so that there is no possibility of
321 * leaking space in the "partial temporary" failure case.
322 */
323boolean_t zfs_free_leak_on_eio = B_FALSE;
324
325/*
326 * Expiration time in milliseconds. This value has two meanings. First it is
327 * used to determine when the spa_deadman() logic should fire. By default the
328 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
329 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
330 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
331 * in a system panic.
332 */
333uint64_t zfs_deadman_synctime_ms = 1000000ULL;
334TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
335SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
336    &zfs_deadman_synctime_ms, 0,
337    "Stalled ZFS I/O expiration time in milliseconds");
338
339/*
340 * Check time in milliseconds. This defines the frequency at which we check
341 * for hung I/O.
342 */
343uint64_t zfs_deadman_checktime_ms = 5000ULL;
344TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
346    &zfs_deadman_checktime_ms, 0,
347    "Period of checks for stalled ZFS I/O in milliseconds");
348
349/*
350 * Default value of -1 for zfs_deadman_enabled is resolved in
351 * zfs_deadman_init()
352 */
353int zfs_deadman_enabled = -1;
354TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
355SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
356    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
357
358/*
359 * The worst case is single-sector max-parity RAID-Z blocks, in which
360 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
361 * times the size; so just assume that.  Add to this the fact that
362 * we can have up to 3 DVAs per bp, and one more factor of 2 because
363 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
364 * the worst case is:
365 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
366 */
367int spa_asize_inflation = 24;
368TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
369SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
370    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
371
372#ifndef illumos
373#ifdef _KERNEL
374static void
375zfs_deadman_init()
376{
377	/*
378	 * If we are not i386 or amd64 or in a virtual machine,
379	 * disable ZFS deadman thread by default
380	 */
381	if (zfs_deadman_enabled == -1) {
382#if defined(__amd64__) || defined(__i386__)
383		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
384#else
385		zfs_deadman_enabled = 0;
386#endif
387	}
388}
389#endif	/* _KERNEL */
390#endif	/* !illumos */
391
392/*
393 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
394 * the pool to be consumed.  This ensures that we don't run the pool
395 * completely out of space, due to unaccounted changes (e.g. to the MOS).
396 * It also limits the worst-case time to allocate space.  If we have
397 * less than this amount of free space, most ZPL operations (e.g. write,
398 * create) will return ENOSPC.
399 *
400 * Certain operations (e.g. file removal, most administrative actions) can
401 * use half the slop space.  They will only return ENOSPC if less than half
402 * the slop space is free.  Typically, once the pool has less than the slop
403 * space free, the user will use these operations to free up space in the pool.
404 * These are the operations that call dsl_pool_adjustedsize() with the netfree
405 * argument set to TRUE.
406 *
407 * A very restricted set of operations are always permitted, regardless of
408 * the amount of free space.  These are the operations that call
409 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
410 * operations result in a net increase in the amount of space used,
411 * it is possible to run the pool completely out of space, causing it to
412 * be permanently read-only.
413 *
414 * Note that on very small pools, the slop space will be larger than
415 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
416 * but we never allow it to be more than half the pool size.
417 *
418 * See also the comments in zfs_space_check_t.
419 */
420int spa_slop_shift = 5;
421SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
422    &spa_slop_shift, 0,
423    "Shift value of reserved space (1/(2^spa_slop_shift)).");
424uint64_t spa_min_slop = 128 * 1024 * 1024;
425SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, spa_min_slop, CTLFLAG_RWTUN,
426    &spa_min_slop, 0,
427    "Minimal value of reserved space");
428
429/*
430 * ==========================================================================
431 * SPA config locking
432 * ==========================================================================
433 */
434static void
435spa_config_lock_init(spa_t *spa)
436{
437	for (int i = 0; i < SCL_LOCKS; i++) {
438		spa_config_lock_t *scl = &spa->spa_config_lock[i];
439		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
440		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
441		refcount_create_untracked(&scl->scl_count);
442		scl->scl_writer = NULL;
443		scl->scl_write_wanted = 0;
444	}
445}
446
447static void
448spa_config_lock_destroy(spa_t *spa)
449{
450	for (int i = 0; i < SCL_LOCKS; i++) {
451		spa_config_lock_t *scl = &spa->spa_config_lock[i];
452		mutex_destroy(&scl->scl_lock);
453		cv_destroy(&scl->scl_cv);
454		refcount_destroy(&scl->scl_count);
455		ASSERT(scl->scl_writer == NULL);
456		ASSERT(scl->scl_write_wanted == 0);
457	}
458}
459
460int
461spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
462{
463	for (int i = 0; i < SCL_LOCKS; i++) {
464		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465		if (!(locks & (1 << i)))
466			continue;
467		mutex_enter(&scl->scl_lock);
468		if (rw == RW_READER) {
469			if (scl->scl_writer || scl->scl_write_wanted) {
470				mutex_exit(&scl->scl_lock);
471				spa_config_exit(spa, locks & ((1 << i) - 1),
472				    tag);
473				return (0);
474			}
475		} else {
476			ASSERT(scl->scl_writer != curthread);
477			if (!refcount_is_zero(&scl->scl_count)) {
478				mutex_exit(&scl->scl_lock);
479				spa_config_exit(spa, locks & ((1 << i) - 1),
480				    tag);
481				return (0);
482			}
483			scl->scl_writer = curthread;
484		}
485		(void) refcount_add(&scl->scl_count, tag);
486		mutex_exit(&scl->scl_lock);
487	}
488	return (1);
489}
490
491void
492spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
493{
494	int wlocks_held = 0;
495
496	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
497
498	for (int i = 0; i < SCL_LOCKS; i++) {
499		spa_config_lock_t *scl = &spa->spa_config_lock[i];
500		if (scl->scl_writer == curthread)
501			wlocks_held |= (1 << i);
502		if (!(locks & (1 << i)))
503			continue;
504		mutex_enter(&scl->scl_lock);
505		if (rw == RW_READER) {
506			while (scl->scl_writer || scl->scl_write_wanted) {
507				cv_wait(&scl->scl_cv, &scl->scl_lock);
508			}
509		} else {
510			ASSERT(scl->scl_writer != curthread);
511			while (!refcount_is_zero(&scl->scl_count)) {
512				scl->scl_write_wanted++;
513				cv_wait(&scl->scl_cv, &scl->scl_lock);
514				scl->scl_write_wanted--;
515			}
516			scl->scl_writer = curthread;
517		}
518		(void) refcount_add(&scl->scl_count, tag);
519		mutex_exit(&scl->scl_lock);
520	}
521	ASSERT(wlocks_held <= locks);
522}
523
524void
525spa_config_exit(spa_t *spa, int locks, void *tag)
526{
527	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
528		spa_config_lock_t *scl = &spa->spa_config_lock[i];
529		if (!(locks & (1 << i)))
530			continue;
531		mutex_enter(&scl->scl_lock);
532		ASSERT(!refcount_is_zero(&scl->scl_count));
533		if (refcount_remove(&scl->scl_count, tag) == 0) {
534			ASSERT(scl->scl_writer == NULL ||
535			    scl->scl_writer == curthread);
536			scl->scl_writer = NULL;	/* OK in either case */
537			cv_broadcast(&scl->scl_cv);
538		}
539		mutex_exit(&scl->scl_lock);
540	}
541}
542
543int
544spa_config_held(spa_t *spa, int locks, krw_t rw)
545{
546	int locks_held = 0;
547
548	for (int i = 0; i < SCL_LOCKS; i++) {
549		spa_config_lock_t *scl = &spa->spa_config_lock[i];
550		if (!(locks & (1 << i)))
551			continue;
552		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
553		    (rw == RW_WRITER && scl->scl_writer == curthread))
554			locks_held |= 1 << i;
555	}
556
557	return (locks_held);
558}
559
560/*
561 * ==========================================================================
562 * SPA namespace functions
563 * ==========================================================================
564 */
565
566/*
567 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
568 * Returns NULL if no matching spa_t is found.
569 */
570spa_t *
571spa_lookup(const char *name)
572{
573	static spa_t search;	/* spa_t is large; don't allocate on stack */
574	spa_t *spa;
575	avl_index_t where;
576	char *cp;
577
578	ASSERT(MUTEX_HELD(&spa_namespace_lock));
579
580	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
581
582	/*
583	 * If it's a full dataset name, figure out the pool name and
584	 * just use that.
585	 */
586	cp = strpbrk(search.spa_name, "/@#");
587	if (cp != NULL)
588		*cp = '\0';
589
590	spa = avl_find(&spa_namespace_avl, &search, &where);
591
592	return (spa);
593}
594
595/*
596 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
597 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
598 * looking for potentially hung I/Os.
599 */
600void
601spa_deadman(void *arg)
602{
603	spa_t *spa = arg;
604
605	/*
606	 * Disable the deadman timer if the pool is suspended.
607	 */
608	if (spa_suspended(spa)) {
609#ifdef illumos
610		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
611#else
612		/* Nothing.  just don't schedule any future callouts. */
613#endif
614		return;
615	}
616
617	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
618	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
619	    ++spa->spa_deadman_calls);
620	if (zfs_deadman_enabled)
621		vdev_deadman(spa->spa_root_vdev);
622#ifdef __FreeBSD__
623#ifdef _KERNEL
624	callout_schedule(&spa->spa_deadman_cycid,
625	    hz * zfs_deadman_checktime_ms / MILLISEC);
626#endif
627#endif
628}
629
630/*
631 * Create an uninitialized spa_t with the given name.  Requires
632 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
633 * exist by calling spa_lookup() first.
634 */
635spa_t *
636spa_add(const char *name, nvlist_t *config, const char *altroot)
637{
638	spa_t *spa;
639	spa_config_dirent_t *dp;
640#ifdef illumos
641	cyc_handler_t hdlr;
642	cyc_time_t when;
643#endif
644
645	ASSERT(MUTEX_HELD(&spa_namespace_lock));
646
647	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
648
649	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
650	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
651	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
652	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
653	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
654	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
655	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
656	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
657	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
658	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
659	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
660
661	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
662	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
663	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
664	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
665	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
666
667	for (int t = 0; t < TXG_SIZE; t++)
668		bplist_create(&spa->spa_free_bplist[t]);
669
670	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
671	spa->spa_state = POOL_STATE_UNINITIALIZED;
672	spa->spa_freeze_txg = UINT64_MAX;
673	spa->spa_final_txg = UINT64_MAX;
674	spa->spa_load_max_txg = UINT64_MAX;
675	spa->spa_proc = &p0;
676	spa->spa_proc_state = SPA_PROC_NONE;
677
678#ifdef illumos
679	hdlr.cyh_func = spa_deadman;
680	hdlr.cyh_arg = spa;
681	hdlr.cyh_level = CY_LOW_LEVEL;
682#endif
683
684	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
685
686#ifdef illumos
687	/*
688	 * This determines how often we need to check for hung I/Os after
689	 * the cyclic has already fired. Since checking for hung I/Os is
690	 * an expensive operation we don't want to check too frequently.
691	 * Instead wait for 5 seconds before checking again.
692	 */
693	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
694	when.cyt_when = CY_INFINITY;
695	mutex_enter(&cpu_lock);
696	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
697	mutex_exit(&cpu_lock);
698#else	/* !illumos */
699#ifdef _KERNEL
700	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
701#endif
702#endif
703	refcount_create(&spa->spa_refcount);
704	spa_config_lock_init(spa);
705
706	avl_add(&spa_namespace_avl, spa);
707
708	/*
709	 * Set the alternate root, if there is one.
710	 */
711	if (altroot) {
712		spa->spa_root = spa_strdup(altroot);
713		spa_active_count++;
714	}
715
716	/*
717	 * Every pool starts with the default cachefile
718	 */
719	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
720	    offsetof(spa_config_dirent_t, scd_link));
721
722	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
723	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
724	list_insert_head(&spa->spa_config_list, dp);
725
726	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
727	    KM_SLEEP) == 0);
728
729	if (config != NULL) {
730		nvlist_t *features;
731
732		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
733		    &features) == 0) {
734			VERIFY(nvlist_dup(features, &spa->spa_label_features,
735			    0) == 0);
736		}
737
738		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
739	}
740
741	if (spa->spa_label_features == NULL) {
742		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
743		    KM_SLEEP) == 0);
744	}
745
746	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
747
748	spa->spa_min_ashift = INT_MAX;
749	spa->spa_max_ashift = 0;
750
751	/*
752	 * As a pool is being created, treat all features as disabled by
753	 * setting SPA_FEATURE_DISABLED for all entries in the feature
754	 * refcount cache.
755	 */
756	for (int i = 0; i < SPA_FEATURES; i++) {
757		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
758	}
759
760	return (spa);
761}
762
763/*
764 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
765 * spa_namespace_lock.  This is called only after the spa_t has been closed and
766 * deactivated.
767 */
768void
769spa_remove(spa_t *spa)
770{
771	spa_config_dirent_t *dp;
772
773	ASSERT(MUTEX_HELD(&spa_namespace_lock));
774	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
775	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
776
777	nvlist_free(spa->spa_config_splitting);
778
779	avl_remove(&spa_namespace_avl, spa);
780	cv_broadcast(&spa_namespace_cv);
781
782	if (spa->spa_root) {
783		spa_strfree(spa->spa_root);
784		spa_active_count--;
785	}
786
787	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
788		list_remove(&spa->spa_config_list, dp);
789		if (dp->scd_path != NULL)
790			spa_strfree(dp->scd_path);
791		kmem_free(dp, sizeof (spa_config_dirent_t));
792	}
793
794	list_destroy(&spa->spa_config_list);
795
796	nvlist_free(spa->spa_label_features);
797	nvlist_free(spa->spa_load_info);
798	spa_config_set(spa, NULL);
799
800#ifdef illumos
801	mutex_enter(&cpu_lock);
802	if (spa->spa_deadman_cycid != CYCLIC_NONE)
803		cyclic_remove(spa->spa_deadman_cycid);
804	mutex_exit(&cpu_lock);
805	spa->spa_deadman_cycid = CYCLIC_NONE;
806#else	/* !illumos */
807#ifdef _KERNEL
808	callout_drain(&spa->spa_deadman_cycid);
809#endif
810#endif
811
812	refcount_destroy(&spa->spa_refcount);
813
814	spa_config_lock_destroy(spa);
815
816	for (int t = 0; t < TXG_SIZE; t++)
817		bplist_destroy(&spa->spa_free_bplist[t]);
818
819	zio_checksum_templates_free(spa);
820
821	cv_destroy(&spa->spa_async_cv);
822	cv_destroy(&spa->spa_evicting_os_cv);
823	cv_destroy(&spa->spa_proc_cv);
824	cv_destroy(&spa->spa_scrub_io_cv);
825	cv_destroy(&spa->spa_suspend_cv);
826
827	mutex_destroy(&spa->spa_async_lock);
828	mutex_destroy(&spa->spa_errlist_lock);
829	mutex_destroy(&spa->spa_errlog_lock);
830	mutex_destroy(&spa->spa_evicting_os_lock);
831	mutex_destroy(&spa->spa_history_lock);
832	mutex_destroy(&spa->spa_proc_lock);
833	mutex_destroy(&spa->spa_props_lock);
834	mutex_destroy(&spa->spa_cksum_tmpls_lock);
835	mutex_destroy(&spa->spa_scrub_lock);
836	mutex_destroy(&spa->spa_suspend_lock);
837	mutex_destroy(&spa->spa_vdev_top_lock);
838
839	kmem_free(spa, sizeof (spa_t));
840}
841
842/*
843 * Given a pool, return the next pool in the namespace, or NULL if there is
844 * none.  If 'prev' is NULL, return the first pool.
845 */
846spa_t *
847spa_next(spa_t *prev)
848{
849	ASSERT(MUTEX_HELD(&spa_namespace_lock));
850
851	if (prev)
852		return (AVL_NEXT(&spa_namespace_avl, prev));
853	else
854		return (avl_first(&spa_namespace_avl));
855}
856
857/*
858 * ==========================================================================
859 * SPA refcount functions
860 * ==========================================================================
861 */
862
863/*
864 * Add a reference to the given spa_t.  Must have at least one reference, or
865 * have the namespace lock held.
866 */
867void
868spa_open_ref(spa_t *spa, void *tag)
869{
870	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
871	    MUTEX_HELD(&spa_namespace_lock));
872	(void) refcount_add(&spa->spa_refcount, tag);
873}
874
875/*
876 * Remove a reference to the given spa_t.  Must have at least one reference, or
877 * have the namespace lock held.
878 */
879void
880spa_close(spa_t *spa, void *tag)
881{
882	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
883	    MUTEX_HELD(&spa_namespace_lock));
884	(void) refcount_remove(&spa->spa_refcount, tag);
885}
886
887/*
888 * Remove a reference to the given spa_t held by a dsl dir that is
889 * being asynchronously released.  Async releases occur from a taskq
890 * performing eviction of dsl datasets and dirs.  The namespace lock
891 * isn't held and the hold by the object being evicted may contribute to
892 * spa_minref (e.g. dataset or directory released during pool export),
893 * so the asserts in spa_close() do not apply.
894 */
895void
896spa_async_close(spa_t *spa, void *tag)
897{
898	(void) refcount_remove(&spa->spa_refcount, tag);
899}
900
901/*
902 * Check to see if the spa refcount is zero.  Must be called with
903 * spa_namespace_lock held.  We really compare against spa_minref, which is the
904 * number of references acquired when opening a pool
905 */
906boolean_t
907spa_refcount_zero(spa_t *spa)
908{
909	ASSERT(MUTEX_HELD(&spa_namespace_lock));
910
911	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
912}
913
914/*
915 * ==========================================================================
916 * SPA spare and l2cache tracking
917 * ==========================================================================
918 */
919
920/*
921 * Hot spares and cache devices are tracked using the same code below,
922 * for 'auxiliary' devices.
923 */
924
925typedef struct spa_aux {
926	uint64_t	aux_guid;
927	uint64_t	aux_pool;
928	avl_node_t	aux_avl;
929	int		aux_count;
930} spa_aux_t;
931
932static int
933spa_aux_compare(const void *a, const void *b)
934{
935	const spa_aux_t *sa = a;
936	const spa_aux_t *sb = b;
937
938	if (sa->aux_guid < sb->aux_guid)
939		return (-1);
940	else if (sa->aux_guid > sb->aux_guid)
941		return (1);
942	else
943		return (0);
944}
945
946void
947spa_aux_add(vdev_t *vd, avl_tree_t *avl)
948{
949	avl_index_t where;
950	spa_aux_t search;
951	spa_aux_t *aux;
952
953	search.aux_guid = vd->vdev_guid;
954	if ((aux = avl_find(avl, &search, &where)) != NULL) {
955		aux->aux_count++;
956	} else {
957		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
958		aux->aux_guid = vd->vdev_guid;
959		aux->aux_count = 1;
960		avl_insert(avl, aux, where);
961	}
962}
963
964void
965spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
966{
967	spa_aux_t search;
968	spa_aux_t *aux;
969	avl_index_t where;
970
971	search.aux_guid = vd->vdev_guid;
972	aux = avl_find(avl, &search, &where);
973
974	ASSERT(aux != NULL);
975
976	if (--aux->aux_count == 0) {
977		avl_remove(avl, aux);
978		kmem_free(aux, sizeof (spa_aux_t));
979	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
980		aux->aux_pool = 0ULL;
981	}
982}
983
984boolean_t
985spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
986{
987	spa_aux_t search, *found;
988
989	search.aux_guid = guid;
990	found = avl_find(avl, &search, NULL);
991
992	if (pool) {
993		if (found)
994			*pool = found->aux_pool;
995		else
996			*pool = 0ULL;
997	}
998
999	if (refcnt) {
1000		if (found)
1001			*refcnt = found->aux_count;
1002		else
1003			*refcnt = 0;
1004	}
1005
1006	return (found != NULL);
1007}
1008
1009void
1010spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1011{
1012	spa_aux_t search, *found;
1013	avl_index_t where;
1014
1015	search.aux_guid = vd->vdev_guid;
1016	found = avl_find(avl, &search, &where);
1017	ASSERT(found != NULL);
1018	ASSERT(found->aux_pool == 0ULL);
1019
1020	found->aux_pool = spa_guid(vd->vdev_spa);
1021}
1022
1023/*
1024 * Spares are tracked globally due to the following constraints:
1025 *
1026 * 	- A spare may be part of multiple pools.
1027 * 	- A spare may be added to a pool even if it's actively in use within
1028 *	  another pool.
1029 * 	- A spare in use in any pool can only be the source of a replacement if
1030 *	  the target is a spare in the same pool.
1031 *
1032 * We keep track of all spares on the system through the use of a reference
1033 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1034 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1035 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1036 * inactive).  When a spare is made active (used to replace a device in the
1037 * pool), we also keep track of which pool its been made a part of.
1038 *
1039 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1040 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1041 * separate spare lock exists for the status query path, which does not need to
1042 * be completely consistent with respect to other vdev configuration changes.
1043 */
1044
1045static int
1046spa_spare_compare(const void *a, const void *b)
1047{
1048	return (spa_aux_compare(a, b));
1049}
1050
1051void
1052spa_spare_add(vdev_t *vd)
1053{
1054	mutex_enter(&spa_spare_lock);
1055	ASSERT(!vd->vdev_isspare);
1056	spa_aux_add(vd, &spa_spare_avl);
1057	vd->vdev_isspare = B_TRUE;
1058	mutex_exit(&spa_spare_lock);
1059}
1060
1061void
1062spa_spare_remove(vdev_t *vd)
1063{
1064	mutex_enter(&spa_spare_lock);
1065	ASSERT(vd->vdev_isspare);
1066	spa_aux_remove(vd, &spa_spare_avl);
1067	vd->vdev_isspare = B_FALSE;
1068	mutex_exit(&spa_spare_lock);
1069}
1070
1071boolean_t
1072spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1073{
1074	boolean_t found;
1075
1076	mutex_enter(&spa_spare_lock);
1077	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1078	mutex_exit(&spa_spare_lock);
1079
1080	return (found);
1081}
1082
1083void
1084spa_spare_activate(vdev_t *vd)
1085{
1086	mutex_enter(&spa_spare_lock);
1087	ASSERT(vd->vdev_isspare);
1088	spa_aux_activate(vd, &spa_spare_avl);
1089	mutex_exit(&spa_spare_lock);
1090}
1091
1092/*
1093 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1094 * Cache devices currently only support one pool per cache device, and so
1095 * for these devices the aux reference count is currently unused beyond 1.
1096 */
1097
1098static int
1099spa_l2cache_compare(const void *a, const void *b)
1100{
1101	return (spa_aux_compare(a, b));
1102}
1103
1104void
1105spa_l2cache_add(vdev_t *vd)
1106{
1107	mutex_enter(&spa_l2cache_lock);
1108	ASSERT(!vd->vdev_isl2cache);
1109	spa_aux_add(vd, &spa_l2cache_avl);
1110	vd->vdev_isl2cache = B_TRUE;
1111	mutex_exit(&spa_l2cache_lock);
1112}
1113
1114void
1115spa_l2cache_remove(vdev_t *vd)
1116{
1117	mutex_enter(&spa_l2cache_lock);
1118	ASSERT(vd->vdev_isl2cache);
1119	spa_aux_remove(vd, &spa_l2cache_avl);
1120	vd->vdev_isl2cache = B_FALSE;
1121	mutex_exit(&spa_l2cache_lock);
1122}
1123
1124boolean_t
1125spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1126{
1127	boolean_t found;
1128
1129	mutex_enter(&spa_l2cache_lock);
1130	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1131	mutex_exit(&spa_l2cache_lock);
1132
1133	return (found);
1134}
1135
1136void
1137spa_l2cache_activate(vdev_t *vd)
1138{
1139	mutex_enter(&spa_l2cache_lock);
1140	ASSERT(vd->vdev_isl2cache);
1141	spa_aux_activate(vd, &spa_l2cache_avl);
1142	mutex_exit(&spa_l2cache_lock);
1143}
1144
1145/*
1146 * ==========================================================================
1147 * SPA vdev locking
1148 * ==========================================================================
1149 */
1150
1151/*
1152 * Lock the given spa_t for the purpose of adding or removing a vdev.
1153 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1154 * It returns the next transaction group for the spa_t.
1155 */
1156uint64_t
1157spa_vdev_enter(spa_t *spa)
1158{
1159	mutex_enter(&spa->spa_vdev_top_lock);
1160	mutex_enter(&spa_namespace_lock);
1161	return (spa_vdev_config_enter(spa));
1162}
1163
1164/*
1165 * Internal implementation for spa_vdev_enter().  Used when a vdev
1166 * operation requires multiple syncs (i.e. removing a device) while
1167 * keeping the spa_namespace_lock held.
1168 */
1169uint64_t
1170spa_vdev_config_enter(spa_t *spa)
1171{
1172	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1173
1174	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1175
1176	return (spa_last_synced_txg(spa) + 1);
1177}
1178
1179/*
1180 * Used in combination with spa_vdev_config_enter() to allow the syncing
1181 * of multiple transactions without releasing the spa_namespace_lock.
1182 */
1183void
1184spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1185{
1186	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1187
1188	int config_changed = B_FALSE;
1189
1190	ASSERT(txg > spa_last_synced_txg(spa));
1191
1192	spa->spa_pending_vdev = NULL;
1193
1194	/*
1195	 * Reassess the DTLs.
1196	 */
1197	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1198
1199	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1200		config_changed = B_TRUE;
1201		spa->spa_config_generation++;
1202	}
1203
1204	/*
1205	 * Verify the metaslab classes.
1206	 */
1207	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1208	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1209
1210	spa_config_exit(spa, SCL_ALL, spa);
1211
1212	/*
1213	 * Panic the system if the specified tag requires it.  This
1214	 * is useful for ensuring that configurations are updated
1215	 * transactionally.
1216	 */
1217	if (zio_injection_enabled)
1218		zio_handle_panic_injection(spa, tag, 0);
1219
1220	/*
1221	 * Note: this txg_wait_synced() is important because it ensures
1222	 * that there won't be more than one config change per txg.
1223	 * This allows us to use the txg as the generation number.
1224	 */
1225	if (error == 0)
1226		txg_wait_synced(spa->spa_dsl_pool, txg);
1227
1228	if (vd != NULL) {
1229		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1230		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1231		vdev_free(vd);
1232		spa_config_exit(spa, SCL_ALL, spa);
1233	}
1234
1235	/*
1236	 * If the config changed, update the config cache.
1237	 */
1238	if (config_changed)
1239		spa_config_sync(spa, B_FALSE, B_TRUE);
1240}
1241
1242/*
1243 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1244 * locking of spa_vdev_enter(), we also want make sure the transactions have
1245 * synced to disk, and then update the global configuration cache with the new
1246 * information.
1247 */
1248int
1249spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1250{
1251	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1252	mutex_exit(&spa_namespace_lock);
1253	mutex_exit(&spa->spa_vdev_top_lock);
1254
1255	return (error);
1256}
1257
1258/*
1259 * Lock the given spa_t for the purpose of changing vdev state.
1260 */
1261void
1262spa_vdev_state_enter(spa_t *spa, int oplocks)
1263{
1264	int locks = SCL_STATE_ALL | oplocks;
1265
1266	/*
1267	 * Root pools may need to read of the underlying devfs filesystem
1268	 * when opening up a vdev.  Unfortunately if we're holding the
1269	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1270	 * the read from the root filesystem.  Instead we "prefetch"
1271	 * the associated vnodes that we need prior to opening the
1272	 * underlying devices and cache them so that we can prevent
1273	 * any I/O when we are doing the actual open.
1274	 */
1275	if (spa_is_root(spa)) {
1276		int low = locks & ~(SCL_ZIO - 1);
1277		int high = locks & ~low;
1278
1279		spa_config_enter(spa, high, spa, RW_WRITER);
1280		vdev_hold(spa->spa_root_vdev);
1281		spa_config_enter(spa, low, spa, RW_WRITER);
1282	} else {
1283		spa_config_enter(spa, locks, spa, RW_WRITER);
1284	}
1285	spa->spa_vdev_locks = locks;
1286}
1287
1288int
1289spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1290{
1291	boolean_t config_changed = B_FALSE;
1292
1293	if (vd != NULL || error == 0)
1294		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1295		    0, 0, B_FALSE);
1296
1297	if (vd != NULL) {
1298		vdev_state_dirty(vd->vdev_top);
1299		config_changed = B_TRUE;
1300		spa->spa_config_generation++;
1301	}
1302
1303	if (spa_is_root(spa))
1304		vdev_rele(spa->spa_root_vdev);
1305
1306	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1307	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1308
1309	/*
1310	 * If anything changed, wait for it to sync.  This ensures that,
1311	 * from the system administrator's perspective, zpool(1M) commands
1312	 * are synchronous.  This is important for things like zpool offline:
1313	 * when the command completes, you expect no further I/O from ZFS.
1314	 */
1315	if (vd != NULL)
1316		txg_wait_synced(spa->spa_dsl_pool, 0);
1317
1318	/*
1319	 * If the config changed, update the config cache.
1320	 */
1321	if (config_changed) {
1322		mutex_enter(&spa_namespace_lock);
1323		spa_config_sync(spa, B_FALSE, B_TRUE);
1324		mutex_exit(&spa_namespace_lock);
1325	}
1326
1327	return (error);
1328}
1329
1330/*
1331 * ==========================================================================
1332 * Miscellaneous functions
1333 * ==========================================================================
1334 */
1335
1336void
1337spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1338{
1339	if (!nvlist_exists(spa->spa_label_features, feature)) {
1340		fnvlist_add_boolean(spa->spa_label_features, feature);
1341		/*
1342		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1343		 * dirty the vdev config because lock SCL_CONFIG is not held.
1344		 * Thankfully, in this case we don't need to dirty the config
1345		 * because it will be written out anyway when we finish
1346		 * creating the pool.
1347		 */
1348		if (tx->tx_txg != TXG_INITIAL)
1349			vdev_config_dirty(spa->spa_root_vdev);
1350	}
1351}
1352
1353void
1354spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1355{
1356	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1357		vdev_config_dirty(spa->spa_root_vdev);
1358}
1359
1360/*
1361 * Rename a spa_t.
1362 */
1363int
1364spa_rename(const char *name, const char *newname)
1365{
1366	spa_t *spa;
1367	int err;
1368
1369	/*
1370	 * Lookup the spa_t and grab the config lock for writing.  We need to
1371	 * actually open the pool so that we can sync out the necessary labels.
1372	 * It's OK to call spa_open() with the namespace lock held because we
1373	 * allow recursive calls for other reasons.
1374	 */
1375	mutex_enter(&spa_namespace_lock);
1376	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1377		mutex_exit(&spa_namespace_lock);
1378		return (err);
1379	}
1380
1381	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1382
1383	avl_remove(&spa_namespace_avl, spa);
1384	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1385	avl_add(&spa_namespace_avl, spa);
1386
1387	/*
1388	 * Sync all labels to disk with the new names by marking the root vdev
1389	 * dirty and waiting for it to sync.  It will pick up the new pool name
1390	 * during the sync.
1391	 */
1392	vdev_config_dirty(spa->spa_root_vdev);
1393
1394	spa_config_exit(spa, SCL_ALL, FTAG);
1395
1396	txg_wait_synced(spa->spa_dsl_pool, 0);
1397
1398	/*
1399	 * Sync the updated config cache.
1400	 */
1401	spa_config_sync(spa, B_FALSE, B_TRUE);
1402
1403	spa_close(spa, FTAG);
1404
1405	mutex_exit(&spa_namespace_lock);
1406
1407	return (0);
1408}
1409
1410/*
1411 * Return the spa_t associated with given pool_guid, if it exists.  If
1412 * device_guid is non-zero, determine whether the pool exists *and* contains
1413 * a device with the specified device_guid.
1414 */
1415spa_t *
1416spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1417{
1418	spa_t *spa;
1419	avl_tree_t *t = &spa_namespace_avl;
1420
1421	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1422
1423	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1424		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1425			continue;
1426		if (spa->spa_root_vdev == NULL)
1427			continue;
1428		if (spa_guid(spa) == pool_guid) {
1429			if (device_guid == 0)
1430				break;
1431
1432			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1433			    device_guid) != NULL)
1434				break;
1435
1436			/*
1437			 * Check any devices we may be in the process of adding.
1438			 */
1439			if (spa->spa_pending_vdev) {
1440				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1441				    device_guid) != NULL)
1442					break;
1443			}
1444		}
1445	}
1446
1447	return (spa);
1448}
1449
1450/*
1451 * Determine whether a pool with the given pool_guid exists.
1452 */
1453boolean_t
1454spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1455{
1456	return (spa_by_guid(pool_guid, device_guid) != NULL);
1457}
1458
1459char *
1460spa_strdup(const char *s)
1461{
1462	size_t len;
1463	char *new;
1464
1465	len = strlen(s);
1466	new = kmem_alloc(len + 1, KM_SLEEP);
1467	bcopy(s, new, len);
1468	new[len] = '\0';
1469
1470	return (new);
1471}
1472
1473void
1474spa_strfree(char *s)
1475{
1476	kmem_free(s, strlen(s) + 1);
1477}
1478
1479uint64_t
1480spa_get_random(uint64_t range)
1481{
1482	uint64_t r;
1483
1484	ASSERT(range != 0);
1485
1486	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1487
1488	return (r % range);
1489}
1490
1491uint64_t
1492spa_generate_guid(spa_t *spa)
1493{
1494	uint64_t guid = spa_get_random(-1ULL);
1495
1496	if (spa != NULL) {
1497		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1498			guid = spa_get_random(-1ULL);
1499	} else {
1500		while (guid == 0 || spa_guid_exists(guid, 0))
1501			guid = spa_get_random(-1ULL);
1502	}
1503
1504	return (guid);
1505}
1506
1507void
1508snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1509{
1510	char type[256];
1511	char *checksum = NULL;
1512	char *compress = NULL;
1513
1514	if (bp != NULL) {
1515		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1516			dmu_object_byteswap_t bswap =
1517			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1518			(void) snprintf(type, sizeof (type), "bswap %s %s",
1519			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1520			    "metadata" : "data",
1521			    dmu_ot_byteswap[bswap].ob_name);
1522		} else {
1523			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1524			    sizeof (type));
1525		}
1526		if (!BP_IS_EMBEDDED(bp)) {
1527			checksum =
1528			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1529		}
1530		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1531	}
1532
1533	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1534	    compress);
1535}
1536
1537void
1538spa_freeze(spa_t *spa)
1539{
1540	uint64_t freeze_txg = 0;
1541
1542	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1543	if (spa->spa_freeze_txg == UINT64_MAX) {
1544		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1545		spa->spa_freeze_txg = freeze_txg;
1546	}
1547	spa_config_exit(spa, SCL_ALL, FTAG);
1548	if (freeze_txg != 0)
1549		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1550}
1551
1552void
1553zfs_panic_recover(const char *fmt, ...)
1554{
1555	va_list adx;
1556
1557	va_start(adx, fmt);
1558	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1559	va_end(adx);
1560}
1561
1562/*
1563 * This is a stripped-down version of strtoull, suitable only for converting
1564 * lowercase hexadecimal numbers that don't overflow.
1565 */
1566uint64_t
1567zfs_strtonum(const char *str, char **nptr)
1568{
1569	uint64_t val = 0;
1570	char c;
1571	int digit;
1572
1573	while ((c = *str) != '\0') {
1574		if (c >= '0' && c <= '9')
1575			digit = c - '0';
1576		else if (c >= 'a' && c <= 'f')
1577			digit = 10 + c - 'a';
1578		else
1579			break;
1580
1581		val *= 16;
1582		val += digit;
1583
1584		str++;
1585	}
1586
1587	if (nptr)
1588		*nptr = (char *)str;
1589
1590	return (val);
1591}
1592
1593/*
1594 * ==========================================================================
1595 * Accessor functions
1596 * ==========================================================================
1597 */
1598
1599boolean_t
1600spa_shutting_down(spa_t *spa)
1601{
1602	return (spa->spa_async_suspended);
1603}
1604
1605dsl_pool_t *
1606spa_get_dsl(spa_t *spa)
1607{
1608	return (spa->spa_dsl_pool);
1609}
1610
1611boolean_t
1612spa_is_initializing(spa_t *spa)
1613{
1614	return (spa->spa_is_initializing);
1615}
1616
1617blkptr_t *
1618spa_get_rootblkptr(spa_t *spa)
1619{
1620	return (&spa->spa_ubsync.ub_rootbp);
1621}
1622
1623void
1624spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1625{
1626	spa->spa_uberblock.ub_rootbp = *bp;
1627}
1628
1629void
1630spa_altroot(spa_t *spa, char *buf, size_t buflen)
1631{
1632	if (spa->spa_root == NULL)
1633		buf[0] = '\0';
1634	else
1635		(void) strncpy(buf, spa->spa_root, buflen);
1636}
1637
1638int
1639spa_sync_pass(spa_t *spa)
1640{
1641	return (spa->spa_sync_pass);
1642}
1643
1644char *
1645spa_name(spa_t *spa)
1646{
1647	return (spa->spa_name);
1648}
1649
1650uint64_t
1651spa_guid(spa_t *spa)
1652{
1653	dsl_pool_t *dp = spa_get_dsl(spa);
1654	uint64_t guid;
1655
1656	/*
1657	 * If we fail to parse the config during spa_load(), we can go through
1658	 * the error path (which posts an ereport) and end up here with no root
1659	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1660	 * this case.
1661	 */
1662	if (spa->spa_root_vdev == NULL)
1663		return (spa->spa_config_guid);
1664
1665	guid = spa->spa_last_synced_guid != 0 ?
1666	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1667
1668	/*
1669	 * Return the most recently synced out guid unless we're
1670	 * in syncing context.
1671	 */
1672	if (dp && dsl_pool_sync_context(dp))
1673		return (spa->spa_root_vdev->vdev_guid);
1674	else
1675		return (guid);
1676}
1677
1678uint64_t
1679spa_load_guid(spa_t *spa)
1680{
1681	/*
1682	 * This is a GUID that exists solely as a reference for the
1683	 * purposes of the arc.  It is generated at load time, and
1684	 * is never written to persistent storage.
1685	 */
1686	return (spa->spa_load_guid);
1687}
1688
1689uint64_t
1690spa_last_synced_txg(spa_t *spa)
1691{
1692	return (spa->spa_ubsync.ub_txg);
1693}
1694
1695uint64_t
1696spa_first_txg(spa_t *spa)
1697{
1698	return (spa->spa_first_txg);
1699}
1700
1701uint64_t
1702spa_syncing_txg(spa_t *spa)
1703{
1704	return (spa->spa_syncing_txg);
1705}
1706
1707pool_state_t
1708spa_state(spa_t *spa)
1709{
1710	return (spa->spa_state);
1711}
1712
1713spa_load_state_t
1714spa_load_state(spa_t *spa)
1715{
1716	return (spa->spa_load_state);
1717}
1718
1719uint64_t
1720spa_freeze_txg(spa_t *spa)
1721{
1722	return (spa->spa_freeze_txg);
1723}
1724
1725/* ARGSUSED */
1726uint64_t
1727spa_get_asize(spa_t *spa, uint64_t lsize)
1728{
1729	return (lsize * spa_asize_inflation);
1730}
1731
1732/*
1733 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1734 * or at least 128MB, unless that would cause it to be more than half the
1735 * pool size.
1736 *
1737 * See the comment above spa_slop_shift for details.
1738 */
1739uint64_t
1740spa_get_slop_space(spa_t *spa)
1741{
1742	uint64_t space = spa_get_dspace(spa);
1743	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1744}
1745
1746uint64_t
1747spa_get_dspace(spa_t *spa)
1748{
1749	return (spa->spa_dspace);
1750}
1751
1752void
1753spa_update_dspace(spa_t *spa)
1754{
1755	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1756	    ddt_get_dedup_dspace(spa);
1757}
1758
1759/*
1760 * Return the failure mode that has been set to this pool. The default
1761 * behavior will be to block all I/Os when a complete failure occurs.
1762 */
1763uint8_t
1764spa_get_failmode(spa_t *spa)
1765{
1766	return (spa->spa_failmode);
1767}
1768
1769boolean_t
1770spa_suspended(spa_t *spa)
1771{
1772	return (spa->spa_suspended);
1773}
1774
1775uint64_t
1776spa_version(spa_t *spa)
1777{
1778	return (spa->spa_ubsync.ub_version);
1779}
1780
1781boolean_t
1782spa_deflate(spa_t *spa)
1783{
1784	return (spa->spa_deflate);
1785}
1786
1787metaslab_class_t *
1788spa_normal_class(spa_t *spa)
1789{
1790	return (spa->spa_normal_class);
1791}
1792
1793metaslab_class_t *
1794spa_log_class(spa_t *spa)
1795{
1796	return (spa->spa_log_class);
1797}
1798
1799void
1800spa_evicting_os_register(spa_t *spa, objset_t *os)
1801{
1802	mutex_enter(&spa->spa_evicting_os_lock);
1803	list_insert_head(&spa->spa_evicting_os_list, os);
1804	mutex_exit(&spa->spa_evicting_os_lock);
1805}
1806
1807void
1808spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1809{
1810	mutex_enter(&spa->spa_evicting_os_lock);
1811	list_remove(&spa->spa_evicting_os_list, os);
1812	cv_broadcast(&spa->spa_evicting_os_cv);
1813	mutex_exit(&spa->spa_evicting_os_lock);
1814}
1815
1816void
1817spa_evicting_os_wait(spa_t *spa)
1818{
1819	mutex_enter(&spa->spa_evicting_os_lock);
1820	while (!list_is_empty(&spa->spa_evicting_os_list))
1821		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1822	mutex_exit(&spa->spa_evicting_os_lock);
1823
1824	dmu_buf_user_evict_wait();
1825}
1826
1827int
1828spa_max_replication(spa_t *spa)
1829{
1830	/*
1831	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1832	 * handle BPs with more than one DVA allocated.  Set our max
1833	 * replication level accordingly.
1834	 */
1835	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1836		return (1);
1837	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1838}
1839
1840int
1841spa_prev_software_version(spa_t *spa)
1842{
1843	return (spa->spa_prev_software_version);
1844}
1845
1846uint64_t
1847spa_deadman_synctime(spa_t *spa)
1848{
1849	return (spa->spa_deadman_synctime);
1850}
1851
1852uint64_t
1853dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1854{
1855	uint64_t asize = DVA_GET_ASIZE(dva);
1856	uint64_t dsize = asize;
1857
1858	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1859
1860	if (asize != 0 && spa->spa_deflate) {
1861		uint64_t vdev = DVA_GET_VDEV(dva);
1862		vdev_t *vd = vdev_lookup_top(spa, vdev);
1863		if (vd == NULL) {
1864			panic(
1865			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1866			    (u_longlong_t)vdev, (u_longlong_t)asize);
1867		}
1868		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1869	}
1870
1871	return (dsize);
1872}
1873
1874uint64_t
1875bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1876{
1877	uint64_t dsize = 0;
1878
1879	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1880		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1881
1882	return (dsize);
1883}
1884
1885uint64_t
1886bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1887{
1888	uint64_t dsize = 0;
1889
1890	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1891
1892	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1893		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1894
1895	spa_config_exit(spa, SCL_VDEV, FTAG);
1896
1897	return (dsize);
1898}
1899
1900/*
1901 * ==========================================================================
1902 * Initialization and Termination
1903 * ==========================================================================
1904 */
1905
1906static int
1907spa_name_compare(const void *a1, const void *a2)
1908{
1909	const spa_t *s1 = a1;
1910	const spa_t *s2 = a2;
1911	int s;
1912
1913	s = strcmp(s1->spa_name, s2->spa_name);
1914	if (s > 0)
1915		return (1);
1916	if (s < 0)
1917		return (-1);
1918	return (0);
1919}
1920
1921int
1922spa_busy(void)
1923{
1924	return (spa_active_count);
1925}
1926
1927void
1928spa_boot_init()
1929{
1930	spa_config_load();
1931}
1932
1933#ifdef _KERNEL
1934EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1935#endif
1936
1937void
1938spa_init(int mode)
1939{
1940	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1941	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1942	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1943	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1944
1945	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1946	    offsetof(spa_t, spa_avl));
1947
1948	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1949	    offsetof(spa_aux_t, aux_avl));
1950
1951	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1952	    offsetof(spa_aux_t, aux_avl));
1953
1954	spa_mode_global = mode;
1955
1956#ifdef illumos
1957#ifdef _KERNEL
1958	spa_arch_init();
1959#else
1960	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1961		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1962		if (arc_procfd == -1) {
1963			perror("could not enable watchpoints: "
1964			    "opening /proc/self/ctl failed: ");
1965		} else {
1966			arc_watch = B_TRUE;
1967		}
1968	}
1969#endif
1970#endif /* illumos */
1971	refcount_sysinit();
1972	unique_init();
1973	range_tree_init();
1974	zio_init();
1975	lz4_init();
1976	dmu_init();
1977	zil_init();
1978	vdev_cache_stat_init();
1979	zfs_prop_init();
1980	zpool_prop_init();
1981	zpool_feature_init();
1982	spa_config_load();
1983	l2arc_start();
1984#ifndef illumos
1985#ifdef _KERNEL
1986	zfs_deadman_init();
1987#endif
1988#endif	/* !illumos */
1989}
1990
1991void
1992spa_fini(void)
1993{
1994	l2arc_stop();
1995
1996	spa_evict_all();
1997
1998	vdev_cache_stat_fini();
1999	zil_fini();
2000	dmu_fini();
2001	lz4_fini();
2002	zio_fini();
2003	range_tree_fini();
2004	unique_fini();
2005	refcount_fini();
2006
2007	avl_destroy(&spa_namespace_avl);
2008	avl_destroy(&spa_spare_avl);
2009	avl_destroy(&spa_l2cache_avl);
2010
2011	cv_destroy(&spa_namespace_cv);
2012	mutex_destroy(&spa_namespace_lock);
2013	mutex_destroy(&spa_spare_lock);
2014	mutex_destroy(&spa_l2cache_lock);
2015}
2016
2017/*
2018 * Return whether this pool has slogs. No locking needed.
2019 * It's not a problem if the wrong answer is returned as it's only for
2020 * performance and not correctness
2021 */
2022boolean_t
2023spa_has_slogs(spa_t *spa)
2024{
2025	return (spa->spa_log_class->mc_rotor != NULL);
2026}
2027
2028spa_log_state_t
2029spa_get_log_state(spa_t *spa)
2030{
2031	return (spa->spa_log_state);
2032}
2033
2034void
2035spa_set_log_state(spa_t *spa, spa_log_state_t state)
2036{
2037	spa->spa_log_state = state;
2038}
2039
2040boolean_t
2041spa_is_root(spa_t *spa)
2042{
2043	return (spa->spa_is_root);
2044}
2045
2046boolean_t
2047spa_writeable(spa_t *spa)
2048{
2049	return (!!(spa->spa_mode & FWRITE));
2050}
2051
2052/*
2053 * Returns true if there is a pending sync task in any of the current
2054 * syncing txg, the current quiescing txg, or the current open txg.
2055 */
2056boolean_t
2057spa_has_pending_synctask(spa_t *spa)
2058{
2059	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2060}
2061
2062int
2063spa_mode(spa_t *spa)
2064{
2065	return (spa->spa_mode);
2066}
2067
2068uint64_t
2069spa_bootfs(spa_t *spa)
2070{
2071	return (spa->spa_bootfs);
2072}
2073
2074uint64_t
2075spa_delegation(spa_t *spa)
2076{
2077	return (spa->spa_delegation);
2078}
2079
2080objset_t *
2081spa_meta_objset(spa_t *spa)
2082{
2083	return (spa->spa_meta_objset);
2084}
2085
2086enum zio_checksum
2087spa_dedup_checksum(spa_t *spa)
2088{
2089	return (spa->spa_dedup_checksum);
2090}
2091
2092/*
2093 * Reset pool scan stat per scan pass (or reboot).
2094 */
2095void
2096spa_scan_stat_init(spa_t *spa)
2097{
2098	/* data not stored on disk */
2099	spa->spa_scan_pass_start = gethrestime_sec();
2100	spa->spa_scan_pass_exam = 0;
2101	vdev_scan_stat_init(spa->spa_root_vdev);
2102}
2103
2104/*
2105 * Get scan stats for zpool status reports
2106 */
2107int
2108spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2109{
2110	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2111
2112	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2113		return (SET_ERROR(ENOENT));
2114	bzero(ps, sizeof (pool_scan_stat_t));
2115
2116	/* data stored on disk */
2117	ps->pss_func = scn->scn_phys.scn_func;
2118	ps->pss_start_time = scn->scn_phys.scn_start_time;
2119	ps->pss_end_time = scn->scn_phys.scn_end_time;
2120	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2121	ps->pss_examined = scn->scn_phys.scn_examined;
2122	ps->pss_to_process = scn->scn_phys.scn_to_process;
2123	ps->pss_processed = scn->scn_phys.scn_processed;
2124	ps->pss_errors = scn->scn_phys.scn_errors;
2125	ps->pss_state = scn->scn_phys.scn_state;
2126
2127	/* data not stored on disk */
2128	ps->pss_pass_start = spa->spa_scan_pass_start;
2129	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2130
2131	return (0);
2132}
2133
2134boolean_t
2135spa_debug_enabled(spa_t *spa)
2136{
2137	return (spa->spa_debug);
2138}
2139
2140int
2141spa_maxblocksize(spa_t *spa)
2142{
2143	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2144		return (SPA_MAXBLOCKSIZE);
2145	else
2146		return (SPA_OLD_MAXBLOCKSIZE);
2147}
2148