spa_misc.c revision 297112
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/spa_impl.h>
33#include <sys/spa_boot.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
42#include <sys/metaslab.h>
43#include <sys/uberblock_impl.h>
44#include <sys/txg.h>
45#include <sys/avl.h>
46#include <sys/unique.h>
47#include <sys/dsl_pool.h>
48#include <sys/dsl_dir.h>
49#include <sys/dsl_prop.h>
50#include <sys/dsl_scan.h>
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
53#include <sys/arc.h>
54#include <sys/ddt.h>
55#include "zfs_prop.h"
56#include <sys/zfeature.h>
57
58/*
59 * SPA locking
60 *
61 * There are four basic locks for managing spa_t structures:
62 *
63 * spa_namespace_lock (global mutex)
64 *
65 *	This lock must be acquired to do any of the following:
66 *
67 *		- Lookup a spa_t by name
68 *		- Add or remove a spa_t from the namespace
69 *		- Increase spa_refcount from non-zero
70 *		- Check if spa_refcount is zero
71 *		- Rename a spa_t
72 *		- add/remove/attach/detach devices
73 *		- Held for the duration of create/destroy/import/export
74 *
75 *	It does not need to handle recursion.  A create or destroy may
76 *	reference objects (files or zvols) in other pools, but by
77 *	definition they must have an existing reference, and will never need
78 *	to lookup a spa_t by name.
79 *
80 * spa_refcount (per-spa refcount_t protected by mutex)
81 *
82 *	This reference count keep track of any active users of the spa_t.  The
83 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
84 *	the refcount is never really 'zero' - opening a pool implicitly keeps
85 *	some references in the DMU.  Internally we check against spa_minref, but
86 *	present the image of a zero/non-zero value to consumers.
87 *
88 * spa_config_lock[] (per-spa array of rwlocks)
89 *
90 *	This protects the spa_t from config changes, and must be held in
91 *	the following circumstances:
92 *
93 *		- RW_READER to perform I/O to the spa
94 *		- RW_WRITER to change the vdev config
95 *
96 * The locking order is fairly straightforward:
97 *
98 *		spa_namespace_lock	->	spa_refcount
99 *
100 *	The namespace lock must be acquired to increase the refcount from 0
101 *	or to check if it is zero.
102 *
103 *		spa_refcount		->	spa_config_lock[]
104 *
105 *	There must be at least one valid reference on the spa_t to acquire
106 *	the config lock.
107 *
108 *		spa_namespace_lock	->	spa_config_lock[]
109 *
110 *	The namespace lock must always be taken before the config lock.
111 *
112 *
113 * The spa_namespace_lock can be acquired directly and is globally visible.
114 *
115 * The namespace is manipulated using the following functions, all of which
116 * require the spa_namespace_lock to be held.
117 *
118 *	spa_lookup()		Lookup a spa_t by name.
119 *
120 *	spa_add()		Create a new spa_t in the namespace.
121 *
122 *	spa_remove()		Remove a spa_t from the namespace.  This also
123 *				frees up any memory associated with the spa_t.
124 *
125 *	spa_next()		Returns the next spa_t in the system, or the
126 *				first if NULL is passed.
127 *
128 *	spa_evict_all()		Shutdown and remove all spa_t structures in
129 *				the system.
130 *
131 *	spa_guid_exists()	Determine whether a pool/device guid exists.
132 *
133 * The spa_refcount is manipulated using the following functions:
134 *
135 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136 *				called with spa_namespace_lock held if the
137 *				refcount is currently zero.
138 *
139 *	spa_close()		Remove a reference from the spa_t.  This will
140 *				not free the spa_t or remove it from the
141 *				namespace.  No locking is required.
142 *
143 *	spa_refcount_zero()	Returns true if the refcount is currently
144 *				zero.  Must be called with spa_namespace_lock
145 *				held.
146 *
147 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
148 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
149 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 *
151 * To read the configuration, it suffices to hold one of these locks as reader.
152 * To modify the configuration, you must hold all locks as writer.  To modify
153 * vdev state without altering the vdev tree's topology (e.g. online/offline),
154 * you must hold SCL_STATE and SCL_ZIO as writer.
155 *
156 * We use these distinct config locks to avoid recursive lock entry.
157 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
158 * block allocations (SCL_ALLOC), which may require reading space maps
159 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 *
161 * The spa config locks cannot be normal rwlocks because we need the
162 * ability to hand off ownership.  For example, SCL_ZIO is acquired
163 * by the issuing thread and later released by an interrupt thread.
164 * They do, however, obey the usual write-wanted semantics to prevent
165 * writer (i.e. system administrator) starvation.
166 *
167 * The lock acquisition rules are as follows:
168 *
169 * SCL_CONFIG
170 *	Protects changes to the vdev tree topology, such as vdev
171 *	add/remove/attach/detach.  Protects the dirty config list
172 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
173 *
174 * SCL_STATE
175 *	Protects changes to pool state and vdev state, such as vdev
176 *	online/offline/fault/degrade/clear.  Protects the dirty state list
177 *	(spa_state_dirty_list) and global pool state (spa_state).
178 *
179 * SCL_ALLOC
180 *	Protects changes to metaslab groups and classes.
181 *	Held as reader by metaslab_alloc() and metaslab_claim().
182 *
183 * SCL_ZIO
184 *	Held by bp-level zios (those which have no io_vd upon entry)
185 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
186 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
187 *
188 * SCL_FREE
189 *	Protects changes to metaslab groups and classes.
190 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
191 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
192 *	blocks in zio_done() while another i/o that holds either
193 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 *
195 * SCL_VDEV
196 *	Held as reader to prevent changes to the vdev tree during trivial
197 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
198 *	other locks, and lower than all of them, to ensure that it's safe
199 *	to acquire regardless of caller context.
200 *
201 * In addition, the following rules apply:
202 *
203 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
204 *	The lock ordering is SCL_CONFIG > spa_props_lock.
205 *
206 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
207 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
208 *	or zio_write_phys() -- the caller must ensure that the config cannot
209 *	cannot change in the interim, and that the vdev cannot be reopened.
210 *	SCL_STATE as reader suffices for both.
211 *
212 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 *
214 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
215 *				for writing.
216 *
217 *	spa_vdev_exit()		Release the config lock, wait for all I/O
218 *				to complete, sync the updated configs to the
219 *				cache, and release the namespace lock.
220 *
221 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
222 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
223 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 *
225 * spa_rename() is also implemented within this file since it requires
226 * manipulation of the namespace.
227 */
228
229static avl_tree_t spa_namespace_avl;
230kmutex_t spa_namespace_lock;
231static kcondvar_t spa_namespace_cv;
232static int spa_active_count;
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
241int spa_mode_global;
242
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249SYSCTL_DECL(_debug);
250TUNABLE_INT("debug.zfs_flags", &zfs_flags);
251SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
252    "ZFS debug flags.");
253
254/*
255 * zfs_recover can be set to nonzero to attempt to recover from
256 * otherwise-fatal errors, typically caused by on-disk corruption.  When
257 * set, calls to zfs_panic_recover() will turn into warning messages.
258 * This should only be used as a last resort, as it typically results
259 * in leaked space, or worse.
260 */
261boolean_t zfs_recover = B_FALSE;
262SYSCTL_DECL(_vfs_zfs);
263TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
264SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
265    "Try to recover from otherwise-fatal errors.");
266
267static int
268sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
269{
270	int err, val;
271
272	val = zfs_flags;
273	err = sysctl_handle_int(oidp, &val, 0, req);
274	if (err != 0 || req->newptr == NULL)
275		return (err);
276
277	/*
278	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
279	 * arc buffers in the system have the necessary additional
280	 * checksum data.  However, it is safe to disable at any
281	 * time.
282	 */
283	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
284		val &= ~ZFS_DEBUG_MODIFY;
285	zfs_flags = val;
286
287	return (0);
288}
289TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
290SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
291    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
292    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
293
294/*
295 * If destroy encounters an EIO while reading metadata (e.g. indirect
296 * blocks), space referenced by the missing metadata can not be freed.
297 * Normally this causes the background destroy to become "stalled", as
298 * it is unable to make forward progress.  While in this stalled state,
299 * all remaining space to free from the error-encountering filesystem is
300 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
301 * permanently leak the space from indirect blocks that can not be read,
302 * and continue to free everything else that it can.
303 *
304 * The default, "stalling" behavior is useful if the storage partially
305 * fails (i.e. some but not all i/os fail), and then later recovers.  In
306 * this case, we will be able to continue pool operations while it is
307 * partially failed, and when it recovers, we can continue to free the
308 * space, with no leaks.  However, note that this case is actually
309 * fairly rare.
310 *
311 * Typically pools either (a) fail completely (but perhaps temporarily,
312 * e.g. a top-level vdev going offline), or (b) have localized,
313 * permanent errors (e.g. disk returns the wrong data due to bit flip or
314 * firmware bug).  In case (a), this setting does not matter because the
315 * pool will be suspended and the sync thread will not be able to make
316 * forward progress regardless.  In case (b), because the error is
317 * permanent, the best we can do is leak the minimum amount of space,
318 * which is what setting this flag will do.  Therefore, it is reasonable
319 * for this flag to normally be set, but we chose the more conservative
320 * approach of not setting it, so that there is no possibility of
321 * leaking space in the "partial temporary" failure case.
322 */
323boolean_t zfs_free_leak_on_eio = B_FALSE;
324
325/*
326 * Expiration time in milliseconds. This value has two meanings. First it is
327 * used to determine when the spa_deadman() logic should fire. By default the
328 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
329 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
330 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
331 * in a system panic.
332 */
333uint64_t zfs_deadman_synctime_ms = 1000000ULL;
334TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
335SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
336    &zfs_deadman_synctime_ms, 0,
337    "Stalled ZFS I/O expiration time in milliseconds");
338
339/*
340 * Check time in milliseconds. This defines the frequency at which we check
341 * for hung I/O.
342 */
343uint64_t zfs_deadman_checktime_ms = 5000ULL;
344TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
346    &zfs_deadman_checktime_ms, 0,
347    "Period of checks for stalled ZFS I/O in milliseconds");
348
349/*
350 * Default value of -1 for zfs_deadman_enabled is resolved in
351 * zfs_deadman_init()
352 */
353int zfs_deadman_enabled = -1;
354TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
355SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
356    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
357
358/*
359 * The worst case is single-sector max-parity RAID-Z blocks, in which
360 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
361 * times the size; so just assume that.  Add to this the fact that
362 * we can have up to 3 DVAs per bp, and one more factor of 2 because
363 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
364 * the worst case is:
365 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
366 */
367int spa_asize_inflation = 24;
368TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
369SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
370    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
371
372#ifndef illumos
373#ifdef _KERNEL
374static void
375zfs_deadman_init()
376{
377	/*
378	 * If we are not i386 or amd64 or in a virtual machine,
379	 * disable ZFS deadman thread by default
380	 */
381	if (zfs_deadman_enabled == -1) {
382#if defined(__amd64__) || defined(__i386__)
383		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
384#else
385		zfs_deadman_enabled = 0;
386#endif
387	}
388}
389#endif	/* _KERNEL */
390#endif	/* !illumos */
391
392/*
393 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
394 * the pool to be consumed.  This ensures that we don't run the pool
395 * completely out of space, due to unaccounted changes (e.g. to the MOS).
396 * It also limits the worst-case time to allocate space.  If we have
397 * less than this amount of free space, most ZPL operations (e.g. write,
398 * create) will return ENOSPC.
399 *
400 * Certain operations (e.g. file removal, most administrative actions) can
401 * use half the slop space.  They will only return ENOSPC if less than half
402 * the slop space is free.  Typically, once the pool has less than the slop
403 * space free, the user will use these operations to free up space in the pool.
404 * These are the operations that call dsl_pool_adjustedsize() with the netfree
405 * argument set to TRUE.
406 *
407 * A very restricted set of operations are always permitted, regardless of
408 * the amount of free space.  These are the operations that call
409 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
410 * operations result in a net increase in the amount of space used,
411 * it is possible to run the pool completely out of space, causing it to
412 * be permanently read-only.
413 *
414 * See also the comments in zfs_space_check_t.
415 */
416int spa_slop_shift = 5;
417SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
418    &spa_slop_shift, 0,
419    "Shift value of reserved space (1/(2^spa_slop_shift)).");
420
421/*
422 * ==========================================================================
423 * SPA config locking
424 * ==========================================================================
425 */
426static void
427spa_config_lock_init(spa_t *spa)
428{
429	for (int i = 0; i < SCL_LOCKS; i++) {
430		spa_config_lock_t *scl = &spa->spa_config_lock[i];
431		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
432		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
433		refcount_create_untracked(&scl->scl_count);
434		scl->scl_writer = NULL;
435		scl->scl_write_wanted = 0;
436	}
437}
438
439static void
440spa_config_lock_destroy(spa_t *spa)
441{
442	for (int i = 0; i < SCL_LOCKS; i++) {
443		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444		mutex_destroy(&scl->scl_lock);
445		cv_destroy(&scl->scl_cv);
446		refcount_destroy(&scl->scl_count);
447		ASSERT(scl->scl_writer == NULL);
448		ASSERT(scl->scl_write_wanted == 0);
449	}
450}
451
452int
453spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
454{
455	for (int i = 0; i < SCL_LOCKS; i++) {
456		spa_config_lock_t *scl = &spa->spa_config_lock[i];
457		if (!(locks & (1 << i)))
458			continue;
459		mutex_enter(&scl->scl_lock);
460		if (rw == RW_READER) {
461			if (scl->scl_writer || scl->scl_write_wanted) {
462				mutex_exit(&scl->scl_lock);
463				spa_config_exit(spa, locks & ((1 << i) - 1),
464				    tag);
465				return (0);
466			}
467		} else {
468			ASSERT(scl->scl_writer != curthread);
469			if (!refcount_is_zero(&scl->scl_count)) {
470				mutex_exit(&scl->scl_lock);
471				spa_config_exit(spa, locks & ((1 << i) - 1),
472				    tag);
473				return (0);
474			}
475			scl->scl_writer = curthread;
476		}
477		(void) refcount_add(&scl->scl_count, tag);
478		mutex_exit(&scl->scl_lock);
479	}
480	return (1);
481}
482
483void
484spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
485{
486	int wlocks_held = 0;
487
488	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
489
490	for (int i = 0; i < SCL_LOCKS; i++) {
491		spa_config_lock_t *scl = &spa->spa_config_lock[i];
492		if (scl->scl_writer == curthread)
493			wlocks_held |= (1 << i);
494		if (!(locks & (1 << i)))
495			continue;
496		mutex_enter(&scl->scl_lock);
497		if (rw == RW_READER) {
498			while (scl->scl_writer || scl->scl_write_wanted) {
499				cv_wait(&scl->scl_cv, &scl->scl_lock);
500			}
501		} else {
502			ASSERT(scl->scl_writer != curthread);
503			while (!refcount_is_zero(&scl->scl_count)) {
504				scl->scl_write_wanted++;
505				cv_wait(&scl->scl_cv, &scl->scl_lock);
506				scl->scl_write_wanted--;
507			}
508			scl->scl_writer = curthread;
509		}
510		(void) refcount_add(&scl->scl_count, tag);
511		mutex_exit(&scl->scl_lock);
512	}
513	ASSERT(wlocks_held <= locks);
514}
515
516void
517spa_config_exit(spa_t *spa, int locks, void *tag)
518{
519	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
520		spa_config_lock_t *scl = &spa->spa_config_lock[i];
521		if (!(locks & (1 << i)))
522			continue;
523		mutex_enter(&scl->scl_lock);
524		ASSERT(!refcount_is_zero(&scl->scl_count));
525		if (refcount_remove(&scl->scl_count, tag) == 0) {
526			ASSERT(scl->scl_writer == NULL ||
527			    scl->scl_writer == curthread);
528			scl->scl_writer = NULL;	/* OK in either case */
529			cv_broadcast(&scl->scl_cv);
530		}
531		mutex_exit(&scl->scl_lock);
532	}
533}
534
535int
536spa_config_held(spa_t *spa, int locks, krw_t rw)
537{
538	int locks_held = 0;
539
540	for (int i = 0; i < SCL_LOCKS; i++) {
541		spa_config_lock_t *scl = &spa->spa_config_lock[i];
542		if (!(locks & (1 << i)))
543			continue;
544		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
545		    (rw == RW_WRITER && scl->scl_writer == curthread))
546			locks_held |= 1 << i;
547	}
548
549	return (locks_held);
550}
551
552/*
553 * ==========================================================================
554 * SPA namespace functions
555 * ==========================================================================
556 */
557
558/*
559 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
560 * Returns NULL if no matching spa_t is found.
561 */
562spa_t *
563spa_lookup(const char *name)
564{
565	static spa_t search;	/* spa_t is large; don't allocate on stack */
566	spa_t *spa;
567	avl_index_t where;
568	char *cp;
569
570	ASSERT(MUTEX_HELD(&spa_namespace_lock));
571
572	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
573
574	/*
575	 * If it's a full dataset name, figure out the pool name and
576	 * just use that.
577	 */
578	cp = strpbrk(search.spa_name, "/@#");
579	if (cp != NULL)
580		*cp = '\0';
581
582	spa = avl_find(&spa_namespace_avl, &search, &where);
583
584	return (spa);
585}
586
587/*
588 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
589 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
590 * looking for potentially hung I/Os.
591 */
592void
593spa_deadman(void *arg)
594{
595	spa_t *spa = arg;
596
597	/*
598	 * Disable the deadman timer if the pool is suspended.
599	 */
600	if (spa_suspended(spa)) {
601#ifdef illumos
602		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
603#else
604		/* Nothing.  just don't schedule any future callouts. */
605#endif
606		return;
607	}
608
609	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
610	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
611	    ++spa->spa_deadman_calls);
612	if (zfs_deadman_enabled)
613		vdev_deadman(spa->spa_root_vdev);
614#ifdef __FreeBSD__
615#ifdef _KERNEL
616	callout_schedule(&spa->spa_deadman_cycid,
617	    hz * zfs_deadman_checktime_ms / MILLISEC);
618#endif
619#endif
620}
621
622/*
623 * Create an uninitialized spa_t with the given name.  Requires
624 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
625 * exist by calling spa_lookup() first.
626 */
627spa_t *
628spa_add(const char *name, nvlist_t *config, const char *altroot)
629{
630	spa_t *spa;
631	spa_config_dirent_t *dp;
632#ifdef illumos
633	cyc_handler_t hdlr;
634	cyc_time_t when;
635#endif
636
637	ASSERT(MUTEX_HELD(&spa_namespace_lock));
638
639	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
640
641	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
642	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
643	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
644	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
645	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
646	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
647	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
648	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
649	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
650	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
651	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
652
653	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
654	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
655	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
656	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
657	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
658
659	for (int t = 0; t < TXG_SIZE; t++)
660		bplist_create(&spa->spa_free_bplist[t]);
661
662	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
663	spa->spa_state = POOL_STATE_UNINITIALIZED;
664	spa->spa_freeze_txg = UINT64_MAX;
665	spa->spa_final_txg = UINT64_MAX;
666	spa->spa_load_max_txg = UINT64_MAX;
667	spa->spa_proc = &p0;
668	spa->spa_proc_state = SPA_PROC_NONE;
669
670#ifdef illumos
671	hdlr.cyh_func = spa_deadman;
672	hdlr.cyh_arg = spa;
673	hdlr.cyh_level = CY_LOW_LEVEL;
674#endif
675
676	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
677
678#ifdef illumos
679	/*
680	 * This determines how often we need to check for hung I/Os after
681	 * the cyclic has already fired. Since checking for hung I/Os is
682	 * an expensive operation we don't want to check too frequently.
683	 * Instead wait for 5 seconds before checking again.
684	 */
685	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
686	when.cyt_when = CY_INFINITY;
687	mutex_enter(&cpu_lock);
688	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
689	mutex_exit(&cpu_lock);
690#else	/* !illumos */
691#ifdef _KERNEL
692	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
693#endif
694#endif
695	refcount_create(&spa->spa_refcount);
696	spa_config_lock_init(spa);
697
698	avl_add(&spa_namespace_avl, spa);
699
700	/*
701	 * Set the alternate root, if there is one.
702	 */
703	if (altroot) {
704		spa->spa_root = spa_strdup(altroot);
705		spa_active_count++;
706	}
707
708	/*
709	 * Every pool starts with the default cachefile
710	 */
711	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
712	    offsetof(spa_config_dirent_t, scd_link));
713
714	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
715	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
716	list_insert_head(&spa->spa_config_list, dp);
717
718	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
719	    KM_SLEEP) == 0);
720
721	if (config != NULL) {
722		nvlist_t *features;
723
724		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
725		    &features) == 0) {
726			VERIFY(nvlist_dup(features, &spa->spa_label_features,
727			    0) == 0);
728		}
729
730		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
731	}
732
733	if (spa->spa_label_features == NULL) {
734		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
735		    KM_SLEEP) == 0);
736	}
737
738	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
739
740	spa->spa_min_ashift = INT_MAX;
741	spa->spa_max_ashift = 0;
742
743	/*
744	 * As a pool is being created, treat all features as disabled by
745	 * setting SPA_FEATURE_DISABLED for all entries in the feature
746	 * refcount cache.
747	 */
748	for (int i = 0; i < SPA_FEATURES; i++) {
749		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
750	}
751
752	return (spa);
753}
754
755/*
756 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
757 * spa_namespace_lock.  This is called only after the spa_t has been closed and
758 * deactivated.
759 */
760void
761spa_remove(spa_t *spa)
762{
763	spa_config_dirent_t *dp;
764
765	ASSERT(MUTEX_HELD(&spa_namespace_lock));
766	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
767	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
768
769	nvlist_free(spa->spa_config_splitting);
770
771	avl_remove(&spa_namespace_avl, spa);
772	cv_broadcast(&spa_namespace_cv);
773
774	if (spa->spa_root) {
775		spa_strfree(spa->spa_root);
776		spa_active_count--;
777	}
778
779	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
780		list_remove(&spa->spa_config_list, dp);
781		if (dp->scd_path != NULL)
782			spa_strfree(dp->scd_path);
783		kmem_free(dp, sizeof (spa_config_dirent_t));
784	}
785
786	list_destroy(&spa->spa_config_list);
787
788	nvlist_free(spa->spa_label_features);
789	nvlist_free(spa->spa_load_info);
790	spa_config_set(spa, NULL);
791
792#ifdef illumos
793	mutex_enter(&cpu_lock);
794	if (spa->spa_deadman_cycid != CYCLIC_NONE)
795		cyclic_remove(spa->spa_deadman_cycid);
796	mutex_exit(&cpu_lock);
797	spa->spa_deadman_cycid = CYCLIC_NONE;
798#else	/* !illumos */
799#ifdef _KERNEL
800	callout_drain(&spa->spa_deadman_cycid);
801#endif
802#endif
803
804	refcount_destroy(&spa->spa_refcount);
805
806	spa_config_lock_destroy(spa);
807
808	for (int t = 0; t < TXG_SIZE; t++)
809		bplist_destroy(&spa->spa_free_bplist[t]);
810
811	zio_checksum_templates_free(spa);
812
813	cv_destroy(&spa->spa_async_cv);
814	cv_destroy(&spa->spa_evicting_os_cv);
815	cv_destroy(&spa->spa_proc_cv);
816	cv_destroy(&spa->spa_scrub_io_cv);
817	cv_destroy(&spa->spa_suspend_cv);
818
819	mutex_destroy(&spa->spa_async_lock);
820	mutex_destroy(&spa->spa_errlist_lock);
821	mutex_destroy(&spa->spa_errlog_lock);
822	mutex_destroy(&spa->spa_evicting_os_lock);
823	mutex_destroy(&spa->spa_history_lock);
824	mutex_destroy(&spa->spa_proc_lock);
825	mutex_destroy(&spa->spa_props_lock);
826	mutex_destroy(&spa->spa_cksum_tmpls_lock);
827	mutex_destroy(&spa->spa_scrub_lock);
828	mutex_destroy(&spa->spa_suspend_lock);
829	mutex_destroy(&spa->spa_vdev_top_lock);
830
831	kmem_free(spa, sizeof (spa_t));
832}
833
834/*
835 * Given a pool, return the next pool in the namespace, or NULL if there is
836 * none.  If 'prev' is NULL, return the first pool.
837 */
838spa_t *
839spa_next(spa_t *prev)
840{
841	ASSERT(MUTEX_HELD(&spa_namespace_lock));
842
843	if (prev)
844		return (AVL_NEXT(&spa_namespace_avl, prev));
845	else
846		return (avl_first(&spa_namespace_avl));
847}
848
849/*
850 * ==========================================================================
851 * SPA refcount functions
852 * ==========================================================================
853 */
854
855/*
856 * Add a reference to the given spa_t.  Must have at least one reference, or
857 * have the namespace lock held.
858 */
859void
860spa_open_ref(spa_t *spa, void *tag)
861{
862	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
863	    MUTEX_HELD(&spa_namespace_lock));
864	(void) refcount_add(&spa->spa_refcount, tag);
865}
866
867/*
868 * Remove a reference to the given spa_t.  Must have at least one reference, or
869 * have the namespace lock held.
870 */
871void
872spa_close(spa_t *spa, void *tag)
873{
874	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
875	    MUTEX_HELD(&spa_namespace_lock));
876	(void) refcount_remove(&spa->spa_refcount, tag);
877}
878
879/*
880 * Remove a reference to the given spa_t held by a dsl dir that is
881 * being asynchronously released.  Async releases occur from a taskq
882 * performing eviction of dsl datasets and dirs.  The namespace lock
883 * isn't held and the hold by the object being evicted may contribute to
884 * spa_minref (e.g. dataset or directory released during pool export),
885 * so the asserts in spa_close() do not apply.
886 */
887void
888spa_async_close(spa_t *spa, void *tag)
889{
890	(void) refcount_remove(&spa->spa_refcount, tag);
891}
892
893/*
894 * Check to see if the spa refcount is zero.  Must be called with
895 * spa_namespace_lock held.  We really compare against spa_minref, which is the
896 * number of references acquired when opening a pool
897 */
898boolean_t
899spa_refcount_zero(spa_t *spa)
900{
901	ASSERT(MUTEX_HELD(&spa_namespace_lock));
902
903	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
904}
905
906/*
907 * ==========================================================================
908 * SPA spare and l2cache tracking
909 * ==========================================================================
910 */
911
912/*
913 * Hot spares and cache devices are tracked using the same code below,
914 * for 'auxiliary' devices.
915 */
916
917typedef struct spa_aux {
918	uint64_t	aux_guid;
919	uint64_t	aux_pool;
920	avl_node_t	aux_avl;
921	int		aux_count;
922} spa_aux_t;
923
924static int
925spa_aux_compare(const void *a, const void *b)
926{
927	const spa_aux_t *sa = a;
928	const spa_aux_t *sb = b;
929
930	if (sa->aux_guid < sb->aux_guid)
931		return (-1);
932	else if (sa->aux_guid > sb->aux_guid)
933		return (1);
934	else
935		return (0);
936}
937
938void
939spa_aux_add(vdev_t *vd, avl_tree_t *avl)
940{
941	avl_index_t where;
942	spa_aux_t search;
943	spa_aux_t *aux;
944
945	search.aux_guid = vd->vdev_guid;
946	if ((aux = avl_find(avl, &search, &where)) != NULL) {
947		aux->aux_count++;
948	} else {
949		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
950		aux->aux_guid = vd->vdev_guid;
951		aux->aux_count = 1;
952		avl_insert(avl, aux, where);
953	}
954}
955
956void
957spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
958{
959	spa_aux_t search;
960	spa_aux_t *aux;
961	avl_index_t where;
962
963	search.aux_guid = vd->vdev_guid;
964	aux = avl_find(avl, &search, &where);
965
966	ASSERT(aux != NULL);
967
968	if (--aux->aux_count == 0) {
969		avl_remove(avl, aux);
970		kmem_free(aux, sizeof (spa_aux_t));
971	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
972		aux->aux_pool = 0ULL;
973	}
974}
975
976boolean_t
977spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
978{
979	spa_aux_t search, *found;
980
981	search.aux_guid = guid;
982	found = avl_find(avl, &search, NULL);
983
984	if (pool) {
985		if (found)
986			*pool = found->aux_pool;
987		else
988			*pool = 0ULL;
989	}
990
991	if (refcnt) {
992		if (found)
993			*refcnt = found->aux_count;
994		else
995			*refcnt = 0;
996	}
997
998	return (found != NULL);
999}
1000
1001void
1002spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1003{
1004	spa_aux_t search, *found;
1005	avl_index_t where;
1006
1007	search.aux_guid = vd->vdev_guid;
1008	found = avl_find(avl, &search, &where);
1009	ASSERT(found != NULL);
1010	ASSERT(found->aux_pool == 0ULL);
1011
1012	found->aux_pool = spa_guid(vd->vdev_spa);
1013}
1014
1015/*
1016 * Spares are tracked globally due to the following constraints:
1017 *
1018 * 	- A spare may be part of multiple pools.
1019 * 	- A spare may be added to a pool even if it's actively in use within
1020 *	  another pool.
1021 * 	- A spare in use in any pool can only be the source of a replacement if
1022 *	  the target is a spare in the same pool.
1023 *
1024 * We keep track of all spares on the system through the use of a reference
1025 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1026 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1027 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1028 * inactive).  When a spare is made active (used to replace a device in the
1029 * pool), we also keep track of which pool its been made a part of.
1030 *
1031 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1032 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1033 * separate spare lock exists for the status query path, which does not need to
1034 * be completely consistent with respect to other vdev configuration changes.
1035 */
1036
1037static int
1038spa_spare_compare(const void *a, const void *b)
1039{
1040	return (spa_aux_compare(a, b));
1041}
1042
1043void
1044spa_spare_add(vdev_t *vd)
1045{
1046	mutex_enter(&spa_spare_lock);
1047	ASSERT(!vd->vdev_isspare);
1048	spa_aux_add(vd, &spa_spare_avl);
1049	vd->vdev_isspare = B_TRUE;
1050	mutex_exit(&spa_spare_lock);
1051}
1052
1053void
1054spa_spare_remove(vdev_t *vd)
1055{
1056	mutex_enter(&spa_spare_lock);
1057	ASSERT(vd->vdev_isspare);
1058	spa_aux_remove(vd, &spa_spare_avl);
1059	vd->vdev_isspare = B_FALSE;
1060	mutex_exit(&spa_spare_lock);
1061}
1062
1063boolean_t
1064spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1065{
1066	boolean_t found;
1067
1068	mutex_enter(&spa_spare_lock);
1069	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1070	mutex_exit(&spa_spare_lock);
1071
1072	return (found);
1073}
1074
1075void
1076spa_spare_activate(vdev_t *vd)
1077{
1078	mutex_enter(&spa_spare_lock);
1079	ASSERT(vd->vdev_isspare);
1080	spa_aux_activate(vd, &spa_spare_avl);
1081	mutex_exit(&spa_spare_lock);
1082}
1083
1084/*
1085 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1086 * Cache devices currently only support one pool per cache device, and so
1087 * for these devices the aux reference count is currently unused beyond 1.
1088 */
1089
1090static int
1091spa_l2cache_compare(const void *a, const void *b)
1092{
1093	return (spa_aux_compare(a, b));
1094}
1095
1096void
1097spa_l2cache_add(vdev_t *vd)
1098{
1099	mutex_enter(&spa_l2cache_lock);
1100	ASSERT(!vd->vdev_isl2cache);
1101	spa_aux_add(vd, &spa_l2cache_avl);
1102	vd->vdev_isl2cache = B_TRUE;
1103	mutex_exit(&spa_l2cache_lock);
1104}
1105
1106void
1107spa_l2cache_remove(vdev_t *vd)
1108{
1109	mutex_enter(&spa_l2cache_lock);
1110	ASSERT(vd->vdev_isl2cache);
1111	spa_aux_remove(vd, &spa_l2cache_avl);
1112	vd->vdev_isl2cache = B_FALSE;
1113	mutex_exit(&spa_l2cache_lock);
1114}
1115
1116boolean_t
1117spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1118{
1119	boolean_t found;
1120
1121	mutex_enter(&spa_l2cache_lock);
1122	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1123	mutex_exit(&spa_l2cache_lock);
1124
1125	return (found);
1126}
1127
1128void
1129spa_l2cache_activate(vdev_t *vd)
1130{
1131	mutex_enter(&spa_l2cache_lock);
1132	ASSERT(vd->vdev_isl2cache);
1133	spa_aux_activate(vd, &spa_l2cache_avl);
1134	mutex_exit(&spa_l2cache_lock);
1135}
1136
1137/*
1138 * ==========================================================================
1139 * SPA vdev locking
1140 * ==========================================================================
1141 */
1142
1143/*
1144 * Lock the given spa_t for the purpose of adding or removing a vdev.
1145 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1146 * It returns the next transaction group for the spa_t.
1147 */
1148uint64_t
1149spa_vdev_enter(spa_t *spa)
1150{
1151	mutex_enter(&spa->spa_vdev_top_lock);
1152	mutex_enter(&spa_namespace_lock);
1153	return (spa_vdev_config_enter(spa));
1154}
1155
1156/*
1157 * Internal implementation for spa_vdev_enter().  Used when a vdev
1158 * operation requires multiple syncs (i.e. removing a device) while
1159 * keeping the spa_namespace_lock held.
1160 */
1161uint64_t
1162spa_vdev_config_enter(spa_t *spa)
1163{
1164	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1165
1166	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1167
1168	return (spa_last_synced_txg(spa) + 1);
1169}
1170
1171/*
1172 * Used in combination with spa_vdev_config_enter() to allow the syncing
1173 * of multiple transactions without releasing the spa_namespace_lock.
1174 */
1175void
1176spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1177{
1178	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1179
1180	int config_changed = B_FALSE;
1181
1182	ASSERT(txg > spa_last_synced_txg(spa));
1183
1184	spa->spa_pending_vdev = NULL;
1185
1186	/*
1187	 * Reassess the DTLs.
1188	 */
1189	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1190
1191	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1192		config_changed = B_TRUE;
1193		spa->spa_config_generation++;
1194	}
1195
1196	/*
1197	 * Verify the metaslab classes.
1198	 */
1199	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1200	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1201
1202	spa_config_exit(spa, SCL_ALL, spa);
1203
1204	/*
1205	 * Panic the system if the specified tag requires it.  This
1206	 * is useful for ensuring that configurations are updated
1207	 * transactionally.
1208	 */
1209	if (zio_injection_enabled)
1210		zio_handle_panic_injection(spa, tag, 0);
1211
1212	/*
1213	 * Note: this txg_wait_synced() is important because it ensures
1214	 * that there won't be more than one config change per txg.
1215	 * This allows us to use the txg as the generation number.
1216	 */
1217	if (error == 0)
1218		txg_wait_synced(spa->spa_dsl_pool, txg);
1219
1220	if (vd != NULL) {
1221		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1222		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1223		vdev_free(vd);
1224		spa_config_exit(spa, SCL_ALL, spa);
1225	}
1226
1227	/*
1228	 * If the config changed, update the config cache.
1229	 */
1230	if (config_changed)
1231		spa_config_sync(spa, B_FALSE, B_TRUE);
1232}
1233
1234/*
1235 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1236 * locking of spa_vdev_enter(), we also want make sure the transactions have
1237 * synced to disk, and then update the global configuration cache with the new
1238 * information.
1239 */
1240int
1241spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1242{
1243	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1244	mutex_exit(&spa_namespace_lock);
1245	mutex_exit(&spa->spa_vdev_top_lock);
1246
1247	return (error);
1248}
1249
1250/*
1251 * Lock the given spa_t for the purpose of changing vdev state.
1252 */
1253void
1254spa_vdev_state_enter(spa_t *spa, int oplocks)
1255{
1256	int locks = SCL_STATE_ALL | oplocks;
1257
1258	/*
1259	 * Root pools may need to read of the underlying devfs filesystem
1260	 * when opening up a vdev.  Unfortunately if we're holding the
1261	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1262	 * the read from the root filesystem.  Instead we "prefetch"
1263	 * the associated vnodes that we need prior to opening the
1264	 * underlying devices and cache them so that we can prevent
1265	 * any I/O when we are doing the actual open.
1266	 */
1267	if (spa_is_root(spa)) {
1268		int low = locks & ~(SCL_ZIO - 1);
1269		int high = locks & ~low;
1270
1271		spa_config_enter(spa, high, spa, RW_WRITER);
1272		vdev_hold(spa->spa_root_vdev);
1273		spa_config_enter(spa, low, spa, RW_WRITER);
1274	} else {
1275		spa_config_enter(spa, locks, spa, RW_WRITER);
1276	}
1277	spa->spa_vdev_locks = locks;
1278}
1279
1280int
1281spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1282{
1283	boolean_t config_changed = B_FALSE;
1284
1285	if (vd != NULL || error == 0)
1286		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1287		    0, 0, B_FALSE);
1288
1289	if (vd != NULL) {
1290		vdev_state_dirty(vd->vdev_top);
1291		config_changed = B_TRUE;
1292		spa->spa_config_generation++;
1293	}
1294
1295	if (spa_is_root(spa))
1296		vdev_rele(spa->spa_root_vdev);
1297
1298	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1299	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1300
1301	/*
1302	 * If anything changed, wait for it to sync.  This ensures that,
1303	 * from the system administrator's perspective, zpool(1M) commands
1304	 * are synchronous.  This is important for things like zpool offline:
1305	 * when the command completes, you expect no further I/O from ZFS.
1306	 */
1307	if (vd != NULL)
1308		txg_wait_synced(spa->spa_dsl_pool, 0);
1309
1310	/*
1311	 * If the config changed, update the config cache.
1312	 */
1313	if (config_changed) {
1314		mutex_enter(&spa_namespace_lock);
1315		spa_config_sync(spa, B_FALSE, B_TRUE);
1316		mutex_exit(&spa_namespace_lock);
1317	}
1318
1319	return (error);
1320}
1321
1322/*
1323 * ==========================================================================
1324 * Miscellaneous functions
1325 * ==========================================================================
1326 */
1327
1328void
1329spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1330{
1331	if (!nvlist_exists(spa->spa_label_features, feature)) {
1332		fnvlist_add_boolean(spa->spa_label_features, feature);
1333		/*
1334		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1335		 * dirty the vdev config because lock SCL_CONFIG is not held.
1336		 * Thankfully, in this case we don't need to dirty the config
1337		 * because it will be written out anyway when we finish
1338		 * creating the pool.
1339		 */
1340		if (tx->tx_txg != TXG_INITIAL)
1341			vdev_config_dirty(spa->spa_root_vdev);
1342	}
1343}
1344
1345void
1346spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1347{
1348	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1349		vdev_config_dirty(spa->spa_root_vdev);
1350}
1351
1352/*
1353 * Rename a spa_t.
1354 */
1355int
1356spa_rename(const char *name, const char *newname)
1357{
1358	spa_t *spa;
1359	int err;
1360
1361	/*
1362	 * Lookup the spa_t and grab the config lock for writing.  We need to
1363	 * actually open the pool so that we can sync out the necessary labels.
1364	 * It's OK to call spa_open() with the namespace lock held because we
1365	 * allow recursive calls for other reasons.
1366	 */
1367	mutex_enter(&spa_namespace_lock);
1368	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1369		mutex_exit(&spa_namespace_lock);
1370		return (err);
1371	}
1372
1373	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1374
1375	avl_remove(&spa_namespace_avl, spa);
1376	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1377	avl_add(&spa_namespace_avl, spa);
1378
1379	/*
1380	 * Sync all labels to disk with the new names by marking the root vdev
1381	 * dirty and waiting for it to sync.  It will pick up the new pool name
1382	 * during the sync.
1383	 */
1384	vdev_config_dirty(spa->spa_root_vdev);
1385
1386	spa_config_exit(spa, SCL_ALL, FTAG);
1387
1388	txg_wait_synced(spa->spa_dsl_pool, 0);
1389
1390	/*
1391	 * Sync the updated config cache.
1392	 */
1393	spa_config_sync(spa, B_FALSE, B_TRUE);
1394
1395	spa_close(spa, FTAG);
1396
1397	mutex_exit(&spa_namespace_lock);
1398
1399	return (0);
1400}
1401
1402/*
1403 * Return the spa_t associated with given pool_guid, if it exists.  If
1404 * device_guid is non-zero, determine whether the pool exists *and* contains
1405 * a device with the specified device_guid.
1406 */
1407spa_t *
1408spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1409{
1410	spa_t *spa;
1411	avl_tree_t *t = &spa_namespace_avl;
1412
1413	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1414
1415	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1416		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1417			continue;
1418		if (spa->spa_root_vdev == NULL)
1419			continue;
1420		if (spa_guid(spa) == pool_guid) {
1421			if (device_guid == 0)
1422				break;
1423
1424			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1425			    device_guid) != NULL)
1426				break;
1427
1428			/*
1429			 * Check any devices we may be in the process of adding.
1430			 */
1431			if (spa->spa_pending_vdev) {
1432				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1433				    device_guid) != NULL)
1434					break;
1435			}
1436		}
1437	}
1438
1439	return (spa);
1440}
1441
1442/*
1443 * Determine whether a pool with the given pool_guid exists.
1444 */
1445boolean_t
1446spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1447{
1448	return (spa_by_guid(pool_guid, device_guid) != NULL);
1449}
1450
1451char *
1452spa_strdup(const char *s)
1453{
1454	size_t len;
1455	char *new;
1456
1457	len = strlen(s);
1458	new = kmem_alloc(len + 1, KM_SLEEP);
1459	bcopy(s, new, len);
1460	new[len] = '\0';
1461
1462	return (new);
1463}
1464
1465void
1466spa_strfree(char *s)
1467{
1468	kmem_free(s, strlen(s) + 1);
1469}
1470
1471uint64_t
1472spa_get_random(uint64_t range)
1473{
1474	uint64_t r;
1475
1476	ASSERT(range != 0);
1477
1478	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1479
1480	return (r % range);
1481}
1482
1483uint64_t
1484spa_generate_guid(spa_t *spa)
1485{
1486	uint64_t guid = spa_get_random(-1ULL);
1487
1488	if (spa != NULL) {
1489		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1490			guid = spa_get_random(-1ULL);
1491	} else {
1492		while (guid == 0 || spa_guid_exists(guid, 0))
1493			guid = spa_get_random(-1ULL);
1494	}
1495
1496	return (guid);
1497}
1498
1499void
1500snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1501{
1502	char type[256];
1503	char *checksum = NULL;
1504	char *compress = NULL;
1505
1506	if (bp != NULL) {
1507		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1508			dmu_object_byteswap_t bswap =
1509			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1510			(void) snprintf(type, sizeof (type), "bswap %s %s",
1511			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1512			    "metadata" : "data",
1513			    dmu_ot_byteswap[bswap].ob_name);
1514		} else {
1515			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1516			    sizeof (type));
1517		}
1518		if (!BP_IS_EMBEDDED(bp)) {
1519			checksum =
1520			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1521		}
1522		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1523	}
1524
1525	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1526	    compress);
1527}
1528
1529void
1530spa_freeze(spa_t *spa)
1531{
1532	uint64_t freeze_txg = 0;
1533
1534	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1535	if (spa->spa_freeze_txg == UINT64_MAX) {
1536		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1537		spa->spa_freeze_txg = freeze_txg;
1538	}
1539	spa_config_exit(spa, SCL_ALL, FTAG);
1540	if (freeze_txg != 0)
1541		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1542}
1543
1544void
1545zfs_panic_recover(const char *fmt, ...)
1546{
1547	va_list adx;
1548
1549	va_start(adx, fmt);
1550	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1551	va_end(adx);
1552}
1553
1554/*
1555 * This is a stripped-down version of strtoull, suitable only for converting
1556 * lowercase hexadecimal numbers that don't overflow.
1557 */
1558uint64_t
1559zfs_strtonum(const char *str, char **nptr)
1560{
1561	uint64_t val = 0;
1562	char c;
1563	int digit;
1564
1565	while ((c = *str) != '\0') {
1566		if (c >= '0' && c <= '9')
1567			digit = c - '0';
1568		else if (c >= 'a' && c <= 'f')
1569			digit = 10 + c - 'a';
1570		else
1571			break;
1572
1573		val *= 16;
1574		val += digit;
1575
1576		str++;
1577	}
1578
1579	if (nptr)
1580		*nptr = (char *)str;
1581
1582	return (val);
1583}
1584
1585/*
1586 * ==========================================================================
1587 * Accessor functions
1588 * ==========================================================================
1589 */
1590
1591boolean_t
1592spa_shutting_down(spa_t *spa)
1593{
1594	return (spa->spa_async_suspended);
1595}
1596
1597dsl_pool_t *
1598spa_get_dsl(spa_t *spa)
1599{
1600	return (spa->spa_dsl_pool);
1601}
1602
1603boolean_t
1604spa_is_initializing(spa_t *spa)
1605{
1606	return (spa->spa_is_initializing);
1607}
1608
1609blkptr_t *
1610spa_get_rootblkptr(spa_t *spa)
1611{
1612	return (&spa->spa_ubsync.ub_rootbp);
1613}
1614
1615void
1616spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1617{
1618	spa->spa_uberblock.ub_rootbp = *bp;
1619}
1620
1621void
1622spa_altroot(spa_t *spa, char *buf, size_t buflen)
1623{
1624	if (spa->spa_root == NULL)
1625		buf[0] = '\0';
1626	else
1627		(void) strncpy(buf, spa->spa_root, buflen);
1628}
1629
1630int
1631spa_sync_pass(spa_t *spa)
1632{
1633	return (spa->spa_sync_pass);
1634}
1635
1636char *
1637spa_name(spa_t *spa)
1638{
1639	return (spa->spa_name);
1640}
1641
1642uint64_t
1643spa_guid(spa_t *spa)
1644{
1645	dsl_pool_t *dp = spa_get_dsl(spa);
1646	uint64_t guid;
1647
1648	/*
1649	 * If we fail to parse the config during spa_load(), we can go through
1650	 * the error path (which posts an ereport) and end up here with no root
1651	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1652	 * this case.
1653	 */
1654	if (spa->spa_root_vdev == NULL)
1655		return (spa->spa_config_guid);
1656
1657	guid = spa->spa_last_synced_guid != 0 ?
1658	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1659
1660	/*
1661	 * Return the most recently synced out guid unless we're
1662	 * in syncing context.
1663	 */
1664	if (dp && dsl_pool_sync_context(dp))
1665		return (spa->spa_root_vdev->vdev_guid);
1666	else
1667		return (guid);
1668}
1669
1670uint64_t
1671spa_load_guid(spa_t *spa)
1672{
1673	/*
1674	 * This is a GUID that exists solely as a reference for the
1675	 * purposes of the arc.  It is generated at load time, and
1676	 * is never written to persistent storage.
1677	 */
1678	return (spa->spa_load_guid);
1679}
1680
1681uint64_t
1682spa_last_synced_txg(spa_t *spa)
1683{
1684	return (spa->spa_ubsync.ub_txg);
1685}
1686
1687uint64_t
1688spa_first_txg(spa_t *spa)
1689{
1690	return (spa->spa_first_txg);
1691}
1692
1693uint64_t
1694spa_syncing_txg(spa_t *spa)
1695{
1696	return (spa->spa_syncing_txg);
1697}
1698
1699pool_state_t
1700spa_state(spa_t *spa)
1701{
1702	return (spa->spa_state);
1703}
1704
1705spa_load_state_t
1706spa_load_state(spa_t *spa)
1707{
1708	return (spa->spa_load_state);
1709}
1710
1711uint64_t
1712spa_freeze_txg(spa_t *spa)
1713{
1714	return (spa->spa_freeze_txg);
1715}
1716
1717/* ARGSUSED */
1718uint64_t
1719spa_get_asize(spa_t *spa, uint64_t lsize)
1720{
1721	return (lsize * spa_asize_inflation);
1722}
1723
1724/*
1725 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1726 * or at least 32MB.
1727 *
1728 * See the comment above spa_slop_shift for details.
1729 */
1730uint64_t
1731spa_get_slop_space(spa_t *spa) {
1732	uint64_t space = spa_get_dspace(spa);
1733	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1734}
1735
1736uint64_t
1737spa_get_dspace(spa_t *spa)
1738{
1739	return (spa->spa_dspace);
1740}
1741
1742void
1743spa_update_dspace(spa_t *spa)
1744{
1745	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1746	    ddt_get_dedup_dspace(spa);
1747}
1748
1749/*
1750 * Return the failure mode that has been set to this pool. The default
1751 * behavior will be to block all I/Os when a complete failure occurs.
1752 */
1753uint8_t
1754spa_get_failmode(spa_t *spa)
1755{
1756	return (spa->spa_failmode);
1757}
1758
1759boolean_t
1760spa_suspended(spa_t *spa)
1761{
1762	return (spa->spa_suspended);
1763}
1764
1765uint64_t
1766spa_version(spa_t *spa)
1767{
1768	return (spa->spa_ubsync.ub_version);
1769}
1770
1771boolean_t
1772spa_deflate(spa_t *spa)
1773{
1774	return (spa->spa_deflate);
1775}
1776
1777metaslab_class_t *
1778spa_normal_class(spa_t *spa)
1779{
1780	return (spa->spa_normal_class);
1781}
1782
1783metaslab_class_t *
1784spa_log_class(spa_t *spa)
1785{
1786	return (spa->spa_log_class);
1787}
1788
1789void
1790spa_evicting_os_register(spa_t *spa, objset_t *os)
1791{
1792	mutex_enter(&spa->spa_evicting_os_lock);
1793	list_insert_head(&spa->spa_evicting_os_list, os);
1794	mutex_exit(&spa->spa_evicting_os_lock);
1795}
1796
1797void
1798spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1799{
1800	mutex_enter(&spa->spa_evicting_os_lock);
1801	list_remove(&spa->spa_evicting_os_list, os);
1802	cv_broadcast(&spa->spa_evicting_os_cv);
1803	mutex_exit(&spa->spa_evicting_os_lock);
1804}
1805
1806void
1807spa_evicting_os_wait(spa_t *spa)
1808{
1809	mutex_enter(&spa->spa_evicting_os_lock);
1810	while (!list_is_empty(&spa->spa_evicting_os_list))
1811		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1812	mutex_exit(&spa->spa_evicting_os_lock);
1813
1814	dmu_buf_user_evict_wait();
1815}
1816
1817int
1818spa_max_replication(spa_t *spa)
1819{
1820	/*
1821	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1822	 * handle BPs with more than one DVA allocated.  Set our max
1823	 * replication level accordingly.
1824	 */
1825	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1826		return (1);
1827	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1828}
1829
1830int
1831spa_prev_software_version(spa_t *spa)
1832{
1833	return (spa->spa_prev_software_version);
1834}
1835
1836uint64_t
1837spa_deadman_synctime(spa_t *spa)
1838{
1839	return (spa->spa_deadman_synctime);
1840}
1841
1842uint64_t
1843dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1844{
1845	uint64_t asize = DVA_GET_ASIZE(dva);
1846	uint64_t dsize = asize;
1847
1848	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1849
1850	if (asize != 0 && spa->spa_deflate) {
1851		uint64_t vdev = DVA_GET_VDEV(dva);
1852		vdev_t *vd = vdev_lookup_top(spa, vdev);
1853		if (vd == NULL) {
1854			panic(
1855			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1856			    (u_longlong_t)vdev, (u_longlong_t)asize);
1857		}
1858		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1859	}
1860
1861	return (dsize);
1862}
1863
1864uint64_t
1865bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1866{
1867	uint64_t dsize = 0;
1868
1869	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1870		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1871
1872	return (dsize);
1873}
1874
1875uint64_t
1876bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1877{
1878	uint64_t dsize = 0;
1879
1880	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1881
1882	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1883		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1884
1885	spa_config_exit(spa, SCL_VDEV, FTAG);
1886
1887	return (dsize);
1888}
1889
1890/*
1891 * ==========================================================================
1892 * Initialization and Termination
1893 * ==========================================================================
1894 */
1895
1896static int
1897spa_name_compare(const void *a1, const void *a2)
1898{
1899	const spa_t *s1 = a1;
1900	const spa_t *s2 = a2;
1901	int s;
1902
1903	s = strcmp(s1->spa_name, s2->spa_name);
1904	if (s > 0)
1905		return (1);
1906	if (s < 0)
1907		return (-1);
1908	return (0);
1909}
1910
1911int
1912spa_busy(void)
1913{
1914	return (spa_active_count);
1915}
1916
1917void
1918spa_boot_init()
1919{
1920	spa_config_load();
1921}
1922
1923#ifdef _KERNEL
1924EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1925#endif
1926
1927void
1928spa_init(int mode)
1929{
1930	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1931	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1932	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1933	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1934
1935	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1936	    offsetof(spa_t, spa_avl));
1937
1938	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1939	    offsetof(spa_aux_t, aux_avl));
1940
1941	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1942	    offsetof(spa_aux_t, aux_avl));
1943
1944	spa_mode_global = mode;
1945
1946#ifdef illumos
1947#ifdef _KERNEL
1948	spa_arch_init();
1949#else
1950	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1951		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1952		if (arc_procfd == -1) {
1953			perror("could not enable watchpoints: "
1954			    "opening /proc/self/ctl failed: ");
1955		} else {
1956			arc_watch = B_TRUE;
1957		}
1958	}
1959#endif
1960#endif /* illumos */
1961	refcount_sysinit();
1962	unique_init();
1963	range_tree_init();
1964	zio_init();
1965	lz4_init();
1966	dmu_init();
1967	zil_init();
1968	vdev_cache_stat_init();
1969	zfs_prop_init();
1970	zpool_prop_init();
1971	zpool_feature_init();
1972	spa_config_load();
1973	l2arc_start();
1974#ifndef illumos
1975#ifdef _KERNEL
1976	zfs_deadman_init();
1977#endif
1978#endif	/* !illumos */
1979}
1980
1981void
1982spa_fini(void)
1983{
1984	l2arc_stop();
1985
1986	spa_evict_all();
1987
1988	vdev_cache_stat_fini();
1989	zil_fini();
1990	dmu_fini();
1991	lz4_fini();
1992	zio_fini();
1993	range_tree_fini();
1994	unique_fini();
1995	refcount_fini();
1996
1997	avl_destroy(&spa_namespace_avl);
1998	avl_destroy(&spa_spare_avl);
1999	avl_destroy(&spa_l2cache_avl);
2000
2001	cv_destroy(&spa_namespace_cv);
2002	mutex_destroy(&spa_namespace_lock);
2003	mutex_destroy(&spa_spare_lock);
2004	mutex_destroy(&spa_l2cache_lock);
2005}
2006
2007/*
2008 * Return whether this pool has slogs. No locking needed.
2009 * It's not a problem if the wrong answer is returned as it's only for
2010 * performance and not correctness
2011 */
2012boolean_t
2013spa_has_slogs(spa_t *spa)
2014{
2015	return (spa->spa_log_class->mc_rotor != NULL);
2016}
2017
2018spa_log_state_t
2019spa_get_log_state(spa_t *spa)
2020{
2021	return (spa->spa_log_state);
2022}
2023
2024void
2025spa_set_log_state(spa_t *spa, spa_log_state_t state)
2026{
2027	spa->spa_log_state = state;
2028}
2029
2030boolean_t
2031spa_is_root(spa_t *spa)
2032{
2033	return (spa->spa_is_root);
2034}
2035
2036boolean_t
2037spa_writeable(spa_t *spa)
2038{
2039	return (!!(spa->spa_mode & FWRITE));
2040}
2041
2042/*
2043 * Returns true if there is a pending sync task in any of the current
2044 * syncing txg, the current quiescing txg, or the current open txg.
2045 */
2046boolean_t
2047spa_has_pending_synctask(spa_t *spa)
2048{
2049	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2050}
2051
2052int
2053spa_mode(spa_t *spa)
2054{
2055	return (spa->spa_mode);
2056}
2057
2058uint64_t
2059spa_bootfs(spa_t *spa)
2060{
2061	return (spa->spa_bootfs);
2062}
2063
2064uint64_t
2065spa_delegation(spa_t *spa)
2066{
2067	return (spa->spa_delegation);
2068}
2069
2070objset_t *
2071spa_meta_objset(spa_t *spa)
2072{
2073	return (spa->spa_meta_objset);
2074}
2075
2076enum zio_checksum
2077spa_dedup_checksum(spa_t *spa)
2078{
2079	return (spa->spa_dedup_checksum);
2080}
2081
2082/*
2083 * Reset pool scan stat per scan pass (or reboot).
2084 */
2085void
2086spa_scan_stat_init(spa_t *spa)
2087{
2088	/* data not stored on disk */
2089	spa->spa_scan_pass_start = gethrestime_sec();
2090	spa->spa_scan_pass_exam = 0;
2091	vdev_scan_stat_init(spa->spa_root_vdev);
2092}
2093
2094/*
2095 * Get scan stats for zpool status reports
2096 */
2097int
2098spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2099{
2100	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2101
2102	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2103		return (SET_ERROR(ENOENT));
2104	bzero(ps, sizeof (pool_scan_stat_t));
2105
2106	/* data stored on disk */
2107	ps->pss_func = scn->scn_phys.scn_func;
2108	ps->pss_start_time = scn->scn_phys.scn_start_time;
2109	ps->pss_end_time = scn->scn_phys.scn_end_time;
2110	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2111	ps->pss_examined = scn->scn_phys.scn_examined;
2112	ps->pss_to_process = scn->scn_phys.scn_to_process;
2113	ps->pss_processed = scn->scn_phys.scn_processed;
2114	ps->pss_errors = scn->scn_phys.scn_errors;
2115	ps->pss_state = scn->scn_phys.scn_state;
2116
2117	/* data not stored on disk */
2118	ps->pss_pass_start = spa->spa_scan_pass_start;
2119	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2120
2121	return (0);
2122}
2123
2124boolean_t
2125spa_debug_enabled(spa_t *spa)
2126{
2127	return (spa->spa_debug);
2128}
2129
2130int
2131spa_maxblocksize(spa_t *spa)
2132{
2133	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2134		return (SPA_MAXBLOCKSIZE);
2135	else
2136		return (SPA_OLD_MAXBLOCKSIZE);
2137}
2138