spa_misc.c revision 297092
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa_impl.h>
32#include <sys/spa_boot.h>
33#include <sys/zio.h>
34#include <sys/zio_checksum.h>
35#include <sys/zio_compress.h>
36#include <sys/dmu.h>
37#include <sys/dmu_tx.h>
38#include <sys/zap.h>
39#include <sys/zil.h>
40#include <sys/vdev_impl.h>
41#include <sys/metaslab.h>
42#include <sys/uberblock_impl.h>
43#include <sys/txg.h>
44#include <sys/avl.h>
45#include <sys/unique.h>
46#include <sys/dsl_pool.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_scan.h>
50#include <sys/fs/zfs.h>
51#include <sys/metaslab_impl.h>
52#include <sys/arc.h>
53#include <sys/ddt.h>
54#include "zfs_prop.h"
55#include <sys/zfeature.h>
56
57/*
58 * SPA locking
59 *
60 * There are four basic locks for managing spa_t structures:
61 *
62 * spa_namespace_lock (global mutex)
63 *
64 *	This lock must be acquired to do any of the following:
65 *
66 *		- Lookup a spa_t by name
67 *		- Add or remove a spa_t from the namespace
68 *		- Increase spa_refcount from non-zero
69 *		- Check if spa_refcount is zero
70 *		- Rename a spa_t
71 *		- add/remove/attach/detach devices
72 *		- Held for the duration of create/destroy/import/export
73 *
74 *	It does not need to handle recursion.  A create or destroy may
75 *	reference objects (files or zvols) in other pools, but by
76 *	definition they must have an existing reference, and will never need
77 *	to lookup a spa_t by name.
78 *
79 * spa_refcount (per-spa refcount_t protected by mutex)
80 *
81 *	This reference count keep track of any active users of the spa_t.  The
82 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
83 *	the refcount is never really 'zero' - opening a pool implicitly keeps
84 *	some references in the DMU.  Internally we check against spa_minref, but
85 *	present the image of a zero/non-zero value to consumers.
86 *
87 * spa_config_lock[] (per-spa array of rwlocks)
88 *
89 *	This protects the spa_t from config changes, and must be held in
90 *	the following circumstances:
91 *
92 *		- RW_READER to perform I/O to the spa
93 *		- RW_WRITER to change the vdev config
94 *
95 * The locking order is fairly straightforward:
96 *
97 *		spa_namespace_lock	->	spa_refcount
98 *
99 *	The namespace lock must be acquired to increase the refcount from 0
100 *	or to check if it is zero.
101 *
102 *		spa_refcount		->	spa_config_lock[]
103 *
104 *	There must be at least one valid reference on the spa_t to acquire
105 *	the config lock.
106 *
107 *		spa_namespace_lock	->	spa_config_lock[]
108 *
109 *	The namespace lock must always be taken before the config lock.
110 *
111 *
112 * The spa_namespace_lock can be acquired directly and is globally visible.
113 *
114 * The namespace is manipulated using the following functions, all of which
115 * require the spa_namespace_lock to be held.
116 *
117 *	spa_lookup()		Lookup a spa_t by name.
118 *
119 *	spa_add()		Create a new spa_t in the namespace.
120 *
121 *	spa_remove()		Remove a spa_t from the namespace.  This also
122 *				frees up any memory associated with the spa_t.
123 *
124 *	spa_next()		Returns the next spa_t in the system, or the
125 *				first if NULL is passed.
126 *
127 *	spa_evict_all()		Shutdown and remove all spa_t structures in
128 *				the system.
129 *
130 *	spa_guid_exists()	Determine whether a pool/device guid exists.
131 *
132 * The spa_refcount is manipulated using the following functions:
133 *
134 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135 *				called with spa_namespace_lock held if the
136 *				refcount is currently zero.
137 *
138 *	spa_close()		Remove a reference from the spa_t.  This will
139 *				not free the spa_t or remove it from the
140 *				namespace.  No locking is required.
141 *
142 *	spa_refcount_zero()	Returns true if the refcount is currently
143 *				zero.  Must be called with spa_namespace_lock
144 *				held.
145 *
146 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149 *
150 * To read the configuration, it suffices to hold one of these locks as reader.
151 * To modify the configuration, you must hold all locks as writer.  To modify
152 * vdev state without altering the vdev tree's topology (e.g. online/offline),
153 * you must hold SCL_STATE and SCL_ZIO as writer.
154 *
155 * We use these distinct config locks to avoid recursive lock entry.
156 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157 * block allocations (SCL_ALLOC), which may require reading space maps
158 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159 *
160 * The spa config locks cannot be normal rwlocks because we need the
161 * ability to hand off ownership.  For example, SCL_ZIO is acquired
162 * by the issuing thread and later released by an interrupt thread.
163 * They do, however, obey the usual write-wanted semantics to prevent
164 * writer (i.e. system administrator) starvation.
165 *
166 * The lock acquisition rules are as follows:
167 *
168 * SCL_CONFIG
169 *	Protects changes to the vdev tree topology, such as vdev
170 *	add/remove/attach/detach.  Protects the dirty config list
171 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
172 *
173 * SCL_STATE
174 *	Protects changes to pool state and vdev state, such as vdev
175 *	online/offline/fault/degrade/clear.  Protects the dirty state list
176 *	(spa_state_dirty_list) and global pool state (spa_state).
177 *
178 * SCL_ALLOC
179 *	Protects changes to metaslab groups and classes.
180 *	Held as reader by metaslab_alloc() and metaslab_claim().
181 *
182 * SCL_ZIO
183 *	Held by bp-level zios (those which have no io_vd upon entry)
184 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
185 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
186 *
187 * SCL_FREE
188 *	Protects changes to metaslab groups and classes.
189 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
190 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191 *	blocks in zio_done() while another i/o that holds either
192 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193 *
194 * SCL_VDEV
195 *	Held as reader to prevent changes to the vdev tree during trivial
196 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
197 *	other locks, and lower than all of them, to ensure that it's safe
198 *	to acquire regardless of caller context.
199 *
200 * In addition, the following rules apply:
201 *
202 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
203 *	The lock ordering is SCL_CONFIG > spa_props_lock.
204 *
205 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
206 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207 *	or zio_write_phys() -- the caller must ensure that the config cannot
208 *	cannot change in the interim, and that the vdev cannot be reopened.
209 *	SCL_STATE as reader suffices for both.
210 *
211 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212 *
213 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
214 *				for writing.
215 *
216 *	spa_vdev_exit()		Release the config lock, wait for all I/O
217 *				to complete, sync the updated configs to the
218 *				cache, and release the namespace lock.
219 *
220 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223 *
224 * spa_rename() is also implemented within this file since it requires
225 * manipulation of the namespace.
226 */
227
228static avl_tree_t spa_namespace_avl;
229kmutex_t spa_namespace_lock;
230static kcondvar_t spa_namespace_cv;
231static int spa_active_count;
232int spa_max_replication_override = SPA_DVAS_PER_BP;
233
234static kmutex_t spa_spare_lock;
235static avl_tree_t spa_spare_avl;
236static kmutex_t spa_l2cache_lock;
237static avl_tree_t spa_l2cache_avl;
238
239kmem_cache_t *spa_buffer_pool;
240int spa_mode_global;
241
242#ifdef ZFS_DEBUG
243/* Everything except dprintf and spa is on by default in debug builds */
244int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245#else
246int zfs_flags = 0;
247#endif
248SYSCTL_DECL(_debug);
249TUNABLE_INT("debug.zfs_flags", &zfs_flags);
250SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
251    "ZFS debug flags.");
252
253/*
254 * zfs_recover can be set to nonzero to attempt to recover from
255 * otherwise-fatal errors, typically caused by on-disk corruption.  When
256 * set, calls to zfs_panic_recover() will turn into warning messages.
257 * This should only be used as a last resort, as it typically results
258 * in leaked space, or worse.
259 */
260boolean_t zfs_recover = B_FALSE;
261SYSCTL_DECL(_vfs_zfs);
262TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
263SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
264    "Try to recover from otherwise-fatal errors.");
265
266static int
267sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
268{
269	int err, val;
270
271	val = zfs_flags;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	/*
277	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
278	 * arc buffers in the system have the necessary additional
279	 * checksum data.  However, it is safe to disable at any
280	 * time.
281	 */
282	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
283		val &= ~ZFS_DEBUG_MODIFY;
284	zfs_flags = val;
285
286	return (0);
287}
288TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
289SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
290    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
291    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
292
293/*
294 * If destroy encounters an EIO while reading metadata (e.g. indirect
295 * blocks), space referenced by the missing metadata can not be freed.
296 * Normally this causes the background destroy to become "stalled", as
297 * it is unable to make forward progress.  While in this stalled state,
298 * all remaining space to free from the error-encountering filesystem is
299 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
300 * permanently leak the space from indirect blocks that can not be read,
301 * and continue to free everything else that it can.
302 *
303 * The default, "stalling" behavior is useful if the storage partially
304 * fails (i.e. some but not all i/os fail), and then later recovers.  In
305 * this case, we will be able to continue pool operations while it is
306 * partially failed, and when it recovers, we can continue to free the
307 * space, with no leaks.  However, note that this case is actually
308 * fairly rare.
309 *
310 * Typically pools either (a) fail completely (but perhaps temporarily,
311 * e.g. a top-level vdev going offline), or (b) have localized,
312 * permanent errors (e.g. disk returns the wrong data due to bit flip or
313 * firmware bug).  In case (a), this setting does not matter because the
314 * pool will be suspended and the sync thread will not be able to make
315 * forward progress regardless.  In case (b), because the error is
316 * permanent, the best we can do is leak the minimum amount of space,
317 * which is what setting this flag will do.  Therefore, it is reasonable
318 * for this flag to normally be set, but we chose the more conservative
319 * approach of not setting it, so that there is no possibility of
320 * leaking space in the "partial temporary" failure case.
321 */
322boolean_t zfs_free_leak_on_eio = B_FALSE;
323
324/*
325 * Expiration time in milliseconds. This value has two meanings. First it is
326 * used to determine when the spa_deadman() logic should fire. By default the
327 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
328 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
329 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
330 * in a system panic.
331 */
332uint64_t zfs_deadman_synctime_ms = 1000000ULL;
333TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
334SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
335    &zfs_deadman_synctime_ms, 0,
336    "Stalled ZFS I/O expiration time in milliseconds");
337
338/*
339 * Check time in milliseconds. This defines the frequency at which we check
340 * for hung I/O.
341 */
342uint64_t zfs_deadman_checktime_ms = 5000ULL;
343TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
344SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
345    &zfs_deadman_checktime_ms, 0,
346    "Period of checks for stalled ZFS I/O in milliseconds");
347
348/*
349 * Default value of -1 for zfs_deadman_enabled is resolved in
350 * zfs_deadman_init()
351 */
352int zfs_deadman_enabled = -1;
353TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
354SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
355    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
356
357/*
358 * The worst case is single-sector max-parity RAID-Z blocks, in which
359 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
360 * times the size; so just assume that.  Add to this the fact that
361 * we can have up to 3 DVAs per bp, and one more factor of 2 because
362 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
363 * the worst case is:
364 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
365 */
366int spa_asize_inflation = 24;
367TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
368SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
369    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
370
371#ifndef illumos
372#ifdef _KERNEL
373static void
374zfs_deadman_init()
375{
376	/*
377	 * If we are not i386 or amd64 or in a virtual machine,
378	 * disable ZFS deadman thread by default
379	 */
380	if (zfs_deadman_enabled == -1) {
381#if defined(__amd64__) || defined(__i386__)
382		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
383#else
384		zfs_deadman_enabled = 0;
385#endif
386	}
387}
388#endif	/* _KERNEL */
389#endif	/* !illumos */
390
391/*
392 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
393 * the pool to be consumed.  This ensures that we don't run the pool
394 * completely out of space, due to unaccounted changes (e.g. to the MOS).
395 * It also limits the worst-case time to allocate space.  If we have
396 * less than this amount of free space, most ZPL operations (e.g. write,
397 * create) will return ENOSPC.
398 *
399 * Certain operations (e.g. file removal, most administrative actions) can
400 * use half the slop space.  They will only return ENOSPC if less than half
401 * the slop space is free.  Typically, once the pool has less than the slop
402 * space free, the user will use these operations to free up space in the pool.
403 * These are the operations that call dsl_pool_adjustedsize() with the netfree
404 * argument set to TRUE.
405 *
406 * A very restricted set of operations are always permitted, regardless of
407 * the amount of free space.  These are the operations that call
408 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
409 * operations result in a net increase in the amount of space used,
410 * it is possible to run the pool completely out of space, causing it to
411 * be permanently read-only.
412 *
413 * See also the comments in zfs_space_check_t.
414 */
415int spa_slop_shift = 5;
416SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
417    &spa_slop_shift, 0,
418    "Shift value of reserved space (1/(2^spa_slop_shift)).");
419
420/*
421 * ==========================================================================
422 * SPA config locking
423 * ==========================================================================
424 */
425static void
426spa_config_lock_init(spa_t *spa)
427{
428	for (int i = 0; i < SCL_LOCKS; i++) {
429		spa_config_lock_t *scl = &spa->spa_config_lock[i];
430		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
431		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
432		refcount_create_untracked(&scl->scl_count);
433		scl->scl_writer = NULL;
434		scl->scl_write_wanted = 0;
435	}
436}
437
438static void
439spa_config_lock_destroy(spa_t *spa)
440{
441	for (int i = 0; i < SCL_LOCKS; i++) {
442		spa_config_lock_t *scl = &spa->spa_config_lock[i];
443		mutex_destroy(&scl->scl_lock);
444		cv_destroy(&scl->scl_cv);
445		refcount_destroy(&scl->scl_count);
446		ASSERT(scl->scl_writer == NULL);
447		ASSERT(scl->scl_write_wanted == 0);
448	}
449}
450
451int
452spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
453{
454	for (int i = 0; i < SCL_LOCKS; i++) {
455		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456		if (!(locks & (1 << i)))
457			continue;
458		mutex_enter(&scl->scl_lock);
459		if (rw == RW_READER) {
460			if (scl->scl_writer || scl->scl_write_wanted) {
461				mutex_exit(&scl->scl_lock);
462				spa_config_exit(spa, locks & ((1 << i) - 1),
463				    tag);
464				return (0);
465			}
466		} else {
467			ASSERT(scl->scl_writer != curthread);
468			if (!refcount_is_zero(&scl->scl_count)) {
469				mutex_exit(&scl->scl_lock);
470				spa_config_exit(spa, locks & ((1 << i) - 1),
471				    tag);
472				return (0);
473			}
474			scl->scl_writer = curthread;
475		}
476		(void) refcount_add(&scl->scl_count, tag);
477		mutex_exit(&scl->scl_lock);
478	}
479	return (1);
480}
481
482void
483spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
484{
485	int wlocks_held = 0;
486
487	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
488
489	for (int i = 0; i < SCL_LOCKS; i++) {
490		spa_config_lock_t *scl = &spa->spa_config_lock[i];
491		if (scl->scl_writer == curthread)
492			wlocks_held |= (1 << i);
493		if (!(locks & (1 << i)))
494			continue;
495		mutex_enter(&scl->scl_lock);
496		if (rw == RW_READER) {
497			while (scl->scl_writer || scl->scl_write_wanted) {
498				cv_wait(&scl->scl_cv, &scl->scl_lock);
499			}
500		} else {
501			ASSERT(scl->scl_writer != curthread);
502			while (!refcount_is_zero(&scl->scl_count)) {
503				scl->scl_write_wanted++;
504				cv_wait(&scl->scl_cv, &scl->scl_lock);
505				scl->scl_write_wanted--;
506			}
507			scl->scl_writer = curthread;
508		}
509		(void) refcount_add(&scl->scl_count, tag);
510		mutex_exit(&scl->scl_lock);
511	}
512	ASSERT(wlocks_held <= locks);
513}
514
515void
516spa_config_exit(spa_t *spa, int locks, void *tag)
517{
518	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
519		spa_config_lock_t *scl = &spa->spa_config_lock[i];
520		if (!(locks & (1 << i)))
521			continue;
522		mutex_enter(&scl->scl_lock);
523		ASSERT(!refcount_is_zero(&scl->scl_count));
524		if (refcount_remove(&scl->scl_count, tag) == 0) {
525			ASSERT(scl->scl_writer == NULL ||
526			    scl->scl_writer == curthread);
527			scl->scl_writer = NULL;	/* OK in either case */
528			cv_broadcast(&scl->scl_cv);
529		}
530		mutex_exit(&scl->scl_lock);
531	}
532}
533
534int
535spa_config_held(spa_t *spa, int locks, krw_t rw)
536{
537	int locks_held = 0;
538
539	for (int i = 0; i < SCL_LOCKS; i++) {
540		spa_config_lock_t *scl = &spa->spa_config_lock[i];
541		if (!(locks & (1 << i)))
542			continue;
543		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
544		    (rw == RW_WRITER && scl->scl_writer == curthread))
545			locks_held |= 1 << i;
546	}
547
548	return (locks_held);
549}
550
551/*
552 * ==========================================================================
553 * SPA namespace functions
554 * ==========================================================================
555 */
556
557/*
558 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
559 * Returns NULL if no matching spa_t is found.
560 */
561spa_t *
562spa_lookup(const char *name)
563{
564	static spa_t search;	/* spa_t is large; don't allocate on stack */
565	spa_t *spa;
566	avl_index_t where;
567	char *cp;
568
569	ASSERT(MUTEX_HELD(&spa_namespace_lock));
570
571	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
572
573	/*
574	 * If it's a full dataset name, figure out the pool name and
575	 * just use that.
576	 */
577	cp = strpbrk(search.spa_name, "/@#");
578	if (cp != NULL)
579		*cp = '\0';
580
581	spa = avl_find(&spa_namespace_avl, &search, &where);
582
583	return (spa);
584}
585
586/*
587 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
588 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
589 * looking for potentially hung I/Os.
590 */
591void
592spa_deadman(void *arg)
593{
594	spa_t *spa = arg;
595
596	/*
597	 * Disable the deadman timer if the pool is suspended.
598	 */
599	if (spa_suspended(spa)) {
600#ifdef illumos
601		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
602#else
603		/* Nothing.  just don't schedule any future callouts. */
604#endif
605		return;
606	}
607
608	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
609	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
610	    ++spa->spa_deadman_calls);
611	if (zfs_deadman_enabled)
612		vdev_deadman(spa->spa_root_vdev);
613#ifdef __FreeBSD__
614#ifdef _KERNEL
615	callout_schedule(&spa->spa_deadman_cycid,
616	    hz * zfs_deadman_checktime_ms / MILLISEC);
617#endif
618#endif
619}
620
621/*
622 * Create an uninitialized spa_t with the given name.  Requires
623 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
624 * exist by calling spa_lookup() first.
625 */
626spa_t *
627spa_add(const char *name, nvlist_t *config, const char *altroot)
628{
629	spa_t *spa;
630	spa_config_dirent_t *dp;
631#ifdef illumos
632	cyc_handler_t hdlr;
633	cyc_time_t when;
634#endif
635
636	ASSERT(MUTEX_HELD(&spa_namespace_lock));
637
638	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
639
640	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
641	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
642	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
643	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
644	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
645	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
646	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
647	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
648	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
649	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
650	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
651
652	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
653	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
654	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
655	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
656	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
657
658	for (int t = 0; t < TXG_SIZE; t++)
659		bplist_create(&spa->spa_free_bplist[t]);
660
661	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
662	spa->spa_state = POOL_STATE_UNINITIALIZED;
663	spa->spa_freeze_txg = UINT64_MAX;
664	spa->spa_final_txg = UINT64_MAX;
665	spa->spa_load_max_txg = UINT64_MAX;
666	spa->spa_proc = &p0;
667	spa->spa_proc_state = SPA_PROC_NONE;
668
669#ifdef illumos
670	hdlr.cyh_func = spa_deadman;
671	hdlr.cyh_arg = spa;
672	hdlr.cyh_level = CY_LOW_LEVEL;
673#endif
674
675	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
676
677#ifdef illumos
678	/*
679	 * This determines how often we need to check for hung I/Os after
680	 * the cyclic has already fired. Since checking for hung I/Os is
681	 * an expensive operation we don't want to check too frequently.
682	 * Instead wait for 5 seconds before checking again.
683	 */
684	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
685	when.cyt_when = CY_INFINITY;
686	mutex_enter(&cpu_lock);
687	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
688	mutex_exit(&cpu_lock);
689#else	/* !illumos */
690#ifdef _KERNEL
691	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
692#endif
693#endif
694	refcount_create(&spa->spa_refcount);
695	spa_config_lock_init(spa);
696
697	avl_add(&spa_namespace_avl, spa);
698
699	/*
700	 * Set the alternate root, if there is one.
701	 */
702	if (altroot) {
703		spa->spa_root = spa_strdup(altroot);
704		spa_active_count++;
705	}
706
707	/*
708	 * Every pool starts with the default cachefile
709	 */
710	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
711	    offsetof(spa_config_dirent_t, scd_link));
712
713	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
714	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
715	list_insert_head(&spa->spa_config_list, dp);
716
717	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
718	    KM_SLEEP) == 0);
719
720	if (config != NULL) {
721		nvlist_t *features;
722
723		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
724		    &features) == 0) {
725			VERIFY(nvlist_dup(features, &spa->spa_label_features,
726			    0) == 0);
727		}
728
729		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
730	}
731
732	if (spa->spa_label_features == NULL) {
733		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
734		    KM_SLEEP) == 0);
735	}
736
737	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
738
739	spa->spa_min_ashift = INT_MAX;
740	spa->spa_max_ashift = 0;
741
742	/*
743	 * As a pool is being created, treat all features as disabled by
744	 * setting SPA_FEATURE_DISABLED for all entries in the feature
745	 * refcount cache.
746	 */
747	for (int i = 0; i < SPA_FEATURES; i++) {
748		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
749	}
750
751	return (spa);
752}
753
754/*
755 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
756 * spa_namespace_lock.  This is called only after the spa_t has been closed and
757 * deactivated.
758 */
759void
760spa_remove(spa_t *spa)
761{
762	spa_config_dirent_t *dp;
763
764	ASSERT(MUTEX_HELD(&spa_namespace_lock));
765	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
766	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
767
768	nvlist_free(spa->spa_config_splitting);
769
770	avl_remove(&spa_namespace_avl, spa);
771	cv_broadcast(&spa_namespace_cv);
772
773	if (spa->spa_root) {
774		spa_strfree(spa->spa_root);
775		spa_active_count--;
776	}
777
778	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
779		list_remove(&spa->spa_config_list, dp);
780		if (dp->scd_path != NULL)
781			spa_strfree(dp->scd_path);
782		kmem_free(dp, sizeof (spa_config_dirent_t));
783	}
784
785	list_destroy(&spa->spa_config_list);
786
787	nvlist_free(spa->spa_label_features);
788	nvlist_free(spa->spa_load_info);
789	spa_config_set(spa, NULL);
790
791#ifdef illumos
792	mutex_enter(&cpu_lock);
793	if (spa->spa_deadman_cycid != CYCLIC_NONE)
794		cyclic_remove(spa->spa_deadman_cycid);
795	mutex_exit(&cpu_lock);
796	spa->spa_deadman_cycid = CYCLIC_NONE;
797#else	/* !illumos */
798#ifdef _KERNEL
799	callout_drain(&spa->spa_deadman_cycid);
800#endif
801#endif
802
803	refcount_destroy(&spa->spa_refcount);
804
805	spa_config_lock_destroy(spa);
806
807	for (int t = 0; t < TXG_SIZE; t++)
808		bplist_destroy(&spa->spa_free_bplist[t]);
809
810	zio_checksum_templates_free(spa);
811
812	cv_destroy(&spa->spa_async_cv);
813	cv_destroy(&spa->spa_evicting_os_cv);
814	cv_destroy(&spa->spa_proc_cv);
815	cv_destroy(&spa->spa_scrub_io_cv);
816	cv_destroy(&spa->spa_suspend_cv);
817
818	mutex_destroy(&spa->spa_async_lock);
819	mutex_destroy(&spa->spa_errlist_lock);
820	mutex_destroy(&spa->spa_errlog_lock);
821	mutex_destroy(&spa->spa_evicting_os_lock);
822	mutex_destroy(&spa->spa_history_lock);
823	mutex_destroy(&spa->spa_proc_lock);
824	mutex_destroy(&spa->spa_props_lock);
825	mutex_destroy(&spa->spa_cksum_tmpls_lock);
826	mutex_destroy(&spa->spa_scrub_lock);
827	mutex_destroy(&spa->spa_suspend_lock);
828	mutex_destroy(&spa->spa_vdev_top_lock);
829
830	kmem_free(spa, sizeof (spa_t));
831}
832
833/*
834 * Given a pool, return the next pool in the namespace, or NULL if there is
835 * none.  If 'prev' is NULL, return the first pool.
836 */
837spa_t *
838spa_next(spa_t *prev)
839{
840	ASSERT(MUTEX_HELD(&spa_namespace_lock));
841
842	if (prev)
843		return (AVL_NEXT(&spa_namespace_avl, prev));
844	else
845		return (avl_first(&spa_namespace_avl));
846}
847
848/*
849 * ==========================================================================
850 * SPA refcount functions
851 * ==========================================================================
852 */
853
854/*
855 * Add a reference to the given spa_t.  Must have at least one reference, or
856 * have the namespace lock held.
857 */
858void
859spa_open_ref(spa_t *spa, void *tag)
860{
861	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
862	    MUTEX_HELD(&spa_namespace_lock));
863	(void) refcount_add(&spa->spa_refcount, tag);
864}
865
866/*
867 * Remove a reference to the given spa_t.  Must have at least one reference, or
868 * have the namespace lock held.
869 */
870void
871spa_close(spa_t *spa, void *tag)
872{
873	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
874	    MUTEX_HELD(&spa_namespace_lock));
875	(void) refcount_remove(&spa->spa_refcount, tag);
876}
877
878/*
879 * Remove a reference to the given spa_t held by a dsl dir that is
880 * being asynchronously released.  Async releases occur from a taskq
881 * performing eviction of dsl datasets and dirs.  The namespace lock
882 * isn't held and the hold by the object being evicted may contribute to
883 * spa_minref (e.g. dataset or directory released during pool export),
884 * so the asserts in spa_close() do not apply.
885 */
886void
887spa_async_close(spa_t *spa, void *tag)
888{
889	(void) refcount_remove(&spa->spa_refcount, tag);
890}
891
892/*
893 * Check to see if the spa refcount is zero.  Must be called with
894 * spa_namespace_lock held.  We really compare against spa_minref, which is the
895 * number of references acquired when opening a pool
896 */
897boolean_t
898spa_refcount_zero(spa_t *spa)
899{
900	ASSERT(MUTEX_HELD(&spa_namespace_lock));
901
902	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
903}
904
905/*
906 * ==========================================================================
907 * SPA spare and l2cache tracking
908 * ==========================================================================
909 */
910
911/*
912 * Hot spares and cache devices are tracked using the same code below,
913 * for 'auxiliary' devices.
914 */
915
916typedef struct spa_aux {
917	uint64_t	aux_guid;
918	uint64_t	aux_pool;
919	avl_node_t	aux_avl;
920	int		aux_count;
921} spa_aux_t;
922
923static int
924spa_aux_compare(const void *a, const void *b)
925{
926	const spa_aux_t *sa = a;
927	const spa_aux_t *sb = b;
928
929	if (sa->aux_guid < sb->aux_guid)
930		return (-1);
931	else if (sa->aux_guid > sb->aux_guid)
932		return (1);
933	else
934		return (0);
935}
936
937void
938spa_aux_add(vdev_t *vd, avl_tree_t *avl)
939{
940	avl_index_t where;
941	spa_aux_t search;
942	spa_aux_t *aux;
943
944	search.aux_guid = vd->vdev_guid;
945	if ((aux = avl_find(avl, &search, &where)) != NULL) {
946		aux->aux_count++;
947	} else {
948		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
949		aux->aux_guid = vd->vdev_guid;
950		aux->aux_count = 1;
951		avl_insert(avl, aux, where);
952	}
953}
954
955void
956spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
957{
958	spa_aux_t search;
959	spa_aux_t *aux;
960	avl_index_t where;
961
962	search.aux_guid = vd->vdev_guid;
963	aux = avl_find(avl, &search, &where);
964
965	ASSERT(aux != NULL);
966
967	if (--aux->aux_count == 0) {
968		avl_remove(avl, aux);
969		kmem_free(aux, sizeof (spa_aux_t));
970	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
971		aux->aux_pool = 0ULL;
972	}
973}
974
975boolean_t
976spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
977{
978	spa_aux_t search, *found;
979
980	search.aux_guid = guid;
981	found = avl_find(avl, &search, NULL);
982
983	if (pool) {
984		if (found)
985			*pool = found->aux_pool;
986		else
987			*pool = 0ULL;
988	}
989
990	if (refcnt) {
991		if (found)
992			*refcnt = found->aux_count;
993		else
994			*refcnt = 0;
995	}
996
997	return (found != NULL);
998}
999
1000void
1001spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1002{
1003	spa_aux_t search, *found;
1004	avl_index_t where;
1005
1006	search.aux_guid = vd->vdev_guid;
1007	found = avl_find(avl, &search, &where);
1008	ASSERT(found != NULL);
1009	ASSERT(found->aux_pool == 0ULL);
1010
1011	found->aux_pool = spa_guid(vd->vdev_spa);
1012}
1013
1014/*
1015 * Spares are tracked globally due to the following constraints:
1016 *
1017 * 	- A spare may be part of multiple pools.
1018 * 	- A spare may be added to a pool even if it's actively in use within
1019 *	  another pool.
1020 * 	- A spare in use in any pool can only be the source of a replacement if
1021 *	  the target is a spare in the same pool.
1022 *
1023 * We keep track of all spares on the system through the use of a reference
1024 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1025 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1026 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1027 * inactive).  When a spare is made active (used to replace a device in the
1028 * pool), we also keep track of which pool its been made a part of.
1029 *
1030 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1031 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1032 * separate spare lock exists for the status query path, which does not need to
1033 * be completely consistent with respect to other vdev configuration changes.
1034 */
1035
1036static int
1037spa_spare_compare(const void *a, const void *b)
1038{
1039	return (spa_aux_compare(a, b));
1040}
1041
1042void
1043spa_spare_add(vdev_t *vd)
1044{
1045	mutex_enter(&spa_spare_lock);
1046	ASSERT(!vd->vdev_isspare);
1047	spa_aux_add(vd, &spa_spare_avl);
1048	vd->vdev_isspare = B_TRUE;
1049	mutex_exit(&spa_spare_lock);
1050}
1051
1052void
1053spa_spare_remove(vdev_t *vd)
1054{
1055	mutex_enter(&spa_spare_lock);
1056	ASSERT(vd->vdev_isspare);
1057	spa_aux_remove(vd, &spa_spare_avl);
1058	vd->vdev_isspare = B_FALSE;
1059	mutex_exit(&spa_spare_lock);
1060}
1061
1062boolean_t
1063spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1064{
1065	boolean_t found;
1066
1067	mutex_enter(&spa_spare_lock);
1068	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1069	mutex_exit(&spa_spare_lock);
1070
1071	return (found);
1072}
1073
1074void
1075spa_spare_activate(vdev_t *vd)
1076{
1077	mutex_enter(&spa_spare_lock);
1078	ASSERT(vd->vdev_isspare);
1079	spa_aux_activate(vd, &spa_spare_avl);
1080	mutex_exit(&spa_spare_lock);
1081}
1082
1083/*
1084 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1085 * Cache devices currently only support one pool per cache device, and so
1086 * for these devices the aux reference count is currently unused beyond 1.
1087 */
1088
1089static int
1090spa_l2cache_compare(const void *a, const void *b)
1091{
1092	return (spa_aux_compare(a, b));
1093}
1094
1095void
1096spa_l2cache_add(vdev_t *vd)
1097{
1098	mutex_enter(&spa_l2cache_lock);
1099	ASSERT(!vd->vdev_isl2cache);
1100	spa_aux_add(vd, &spa_l2cache_avl);
1101	vd->vdev_isl2cache = B_TRUE;
1102	mutex_exit(&spa_l2cache_lock);
1103}
1104
1105void
1106spa_l2cache_remove(vdev_t *vd)
1107{
1108	mutex_enter(&spa_l2cache_lock);
1109	ASSERT(vd->vdev_isl2cache);
1110	spa_aux_remove(vd, &spa_l2cache_avl);
1111	vd->vdev_isl2cache = B_FALSE;
1112	mutex_exit(&spa_l2cache_lock);
1113}
1114
1115boolean_t
1116spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1117{
1118	boolean_t found;
1119
1120	mutex_enter(&spa_l2cache_lock);
1121	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1122	mutex_exit(&spa_l2cache_lock);
1123
1124	return (found);
1125}
1126
1127void
1128spa_l2cache_activate(vdev_t *vd)
1129{
1130	mutex_enter(&spa_l2cache_lock);
1131	ASSERT(vd->vdev_isl2cache);
1132	spa_aux_activate(vd, &spa_l2cache_avl);
1133	mutex_exit(&spa_l2cache_lock);
1134}
1135
1136/*
1137 * ==========================================================================
1138 * SPA vdev locking
1139 * ==========================================================================
1140 */
1141
1142/*
1143 * Lock the given spa_t for the purpose of adding or removing a vdev.
1144 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1145 * It returns the next transaction group for the spa_t.
1146 */
1147uint64_t
1148spa_vdev_enter(spa_t *spa)
1149{
1150	mutex_enter(&spa->spa_vdev_top_lock);
1151	mutex_enter(&spa_namespace_lock);
1152	return (spa_vdev_config_enter(spa));
1153}
1154
1155/*
1156 * Internal implementation for spa_vdev_enter().  Used when a vdev
1157 * operation requires multiple syncs (i.e. removing a device) while
1158 * keeping the spa_namespace_lock held.
1159 */
1160uint64_t
1161spa_vdev_config_enter(spa_t *spa)
1162{
1163	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1164
1165	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1166
1167	return (spa_last_synced_txg(spa) + 1);
1168}
1169
1170/*
1171 * Used in combination with spa_vdev_config_enter() to allow the syncing
1172 * of multiple transactions without releasing the spa_namespace_lock.
1173 */
1174void
1175spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1176{
1177	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1178
1179	int config_changed = B_FALSE;
1180
1181	ASSERT(txg > spa_last_synced_txg(spa));
1182
1183	spa->spa_pending_vdev = NULL;
1184
1185	/*
1186	 * Reassess the DTLs.
1187	 */
1188	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1189
1190	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1191		config_changed = B_TRUE;
1192		spa->spa_config_generation++;
1193	}
1194
1195	/*
1196	 * Verify the metaslab classes.
1197	 */
1198	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1199	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1200
1201	spa_config_exit(spa, SCL_ALL, spa);
1202
1203	/*
1204	 * Panic the system if the specified tag requires it.  This
1205	 * is useful for ensuring that configurations are updated
1206	 * transactionally.
1207	 */
1208	if (zio_injection_enabled)
1209		zio_handle_panic_injection(spa, tag, 0);
1210
1211	/*
1212	 * Note: this txg_wait_synced() is important because it ensures
1213	 * that there won't be more than one config change per txg.
1214	 * This allows us to use the txg as the generation number.
1215	 */
1216	if (error == 0)
1217		txg_wait_synced(spa->spa_dsl_pool, txg);
1218
1219	if (vd != NULL) {
1220		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1221		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1222		vdev_free(vd);
1223		spa_config_exit(spa, SCL_ALL, spa);
1224	}
1225
1226	/*
1227	 * If the config changed, update the config cache.
1228	 */
1229	if (config_changed)
1230		spa_config_sync(spa, B_FALSE, B_TRUE);
1231}
1232
1233/*
1234 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1235 * locking of spa_vdev_enter(), we also want make sure the transactions have
1236 * synced to disk, and then update the global configuration cache with the new
1237 * information.
1238 */
1239int
1240spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1241{
1242	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1243	mutex_exit(&spa_namespace_lock);
1244	mutex_exit(&spa->spa_vdev_top_lock);
1245
1246	return (error);
1247}
1248
1249/*
1250 * Lock the given spa_t for the purpose of changing vdev state.
1251 */
1252void
1253spa_vdev_state_enter(spa_t *spa, int oplocks)
1254{
1255	int locks = SCL_STATE_ALL | oplocks;
1256
1257	/*
1258	 * Root pools may need to read of the underlying devfs filesystem
1259	 * when opening up a vdev.  Unfortunately if we're holding the
1260	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1261	 * the read from the root filesystem.  Instead we "prefetch"
1262	 * the associated vnodes that we need prior to opening the
1263	 * underlying devices and cache them so that we can prevent
1264	 * any I/O when we are doing the actual open.
1265	 */
1266	if (spa_is_root(spa)) {
1267		int low = locks & ~(SCL_ZIO - 1);
1268		int high = locks & ~low;
1269
1270		spa_config_enter(spa, high, spa, RW_WRITER);
1271		vdev_hold(spa->spa_root_vdev);
1272		spa_config_enter(spa, low, spa, RW_WRITER);
1273	} else {
1274		spa_config_enter(spa, locks, spa, RW_WRITER);
1275	}
1276	spa->spa_vdev_locks = locks;
1277}
1278
1279int
1280spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1281{
1282	boolean_t config_changed = B_FALSE;
1283
1284	if (vd != NULL || error == 0)
1285		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1286		    0, 0, B_FALSE);
1287
1288	if (vd != NULL) {
1289		vdev_state_dirty(vd->vdev_top);
1290		config_changed = B_TRUE;
1291		spa->spa_config_generation++;
1292	}
1293
1294	if (spa_is_root(spa))
1295		vdev_rele(spa->spa_root_vdev);
1296
1297	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1298	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1299
1300	/*
1301	 * If anything changed, wait for it to sync.  This ensures that,
1302	 * from the system administrator's perspective, zpool(1M) commands
1303	 * are synchronous.  This is important for things like zpool offline:
1304	 * when the command completes, you expect no further I/O from ZFS.
1305	 */
1306	if (vd != NULL)
1307		txg_wait_synced(spa->spa_dsl_pool, 0);
1308
1309	/*
1310	 * If the config changed, update the config cache.
1311	 */
1312	if (config_changed) {
1313		mutex_enter(&spa_namespace_lock);
1314		spa_config_sync(spa, B_FALSE, B_TRUE);
1315		mutex_exit(&spa_namespace_lock);
1316	}
1317
1318	return (error);
1319}
1320
1321/*
1322 * ==========================================================================
1323 * Miscellaneous functions
1324 * ==========================================================================
1325 */
1326
1327void
1328spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1329{
1330	if (!nvlist_exists(spa->spa_label_features, feature)) {
1331		fnvlist_add_boolean(spa->spa_label_features, feature);
1332		/*
1333		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1334		 * dirty the vdev config because lock SCL_CONFIG is not held.
1335		 * Thankfully, in this case we don't need to dirty the config
1336		 * because it will be written out anyway when we finish
1337		 * creating the pool.
1338		 */
1339		if (tx->tx_txg != TXG_INITIAL)
1340			vdev_config_dirty(spa->spa_root_vdev);
1341	}
1342}
1343
1344void
1345spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1346{
1347	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1348		vdev_config_dirty(spa->spa_root_vdev);
1349}
1350
1351/*
1352 * Rename a spa_t.
1353 */
1354int
1355spa_rename(const char *name, const char *newname)
1356{
1357	spa_t *spa;
1358	int err;
1359
1360	/*
1361	 * Lookup the spa_t and grab the config lock for writing.  We need to
1362	 * actually open the pool so that we can sync out the necessary labels.
1363	 * It's OK to call spa_open() with the namespace lock held because we
1364	 * allow recursive calls for other reasons.
1365	 */
1366	mutex_enter(&spa_namespace_lock);
1367	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1368		mutex_exit(&spa_namespace_lock);
1369		return (err);
1370	}
1371
1372	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1373
1374	avl_remove(&spa_namespace_avl, spa);
1375	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1376	avl_add(&spa_namespace_avl, spa);
1377
1378	/*
1379	 * Sync all labels to disk with the new names by marking the root vdev
1380	 * dirty and waiting for it to sync.  It will pick up the new pool name
1381	 * during the sync.
1382	 */
1383	vdev_config_dirty(spa->spa_root_vdev);
1384
1385	spa_config_exit(spa, SCL_ALL, FTAG);
1386
1387	txg_wait_synced(spa->spa_dsl_pool, 0);
1388
1389	/*
1390	 * Sync the updated config cache.
1391	 */
1392	spa_config_sync(spa, B_FALSE, B_TRUE);
1393
1394	spa_close(spa, FTAG);
1395
1396	mutex_exit(&spa_namespace_lock);
1397
1398	return (0);
1399}
1400
1401/*
1402 * Return the spa_t associated with given pool_guid, if it exists.  If
1403 * device_guid is non-zero, determine whether the pool exists *and* contains
1404 * a device with the specified device_guid.
1405 */
1406spa_t *
1407spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1408{
1409	spa_t *spa;
1410	avl_tree_t *t = &spa_namespace_avl;
1411
1412	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1413
1414	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1415		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1416			continue;
1417		if (spa->spa_root_vdev == NULL)
1418			continue;
1419		if (spa_guid(spa) == pool_guid) {
1420			if (device_guid == 0)
1421				break;
1422
1423			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1424			    device_guid) != NULL)
1425				break;
1426
1427			/*
1428			 * Check any devices we may be in the process of adding.
1429			 */
1430			if (spa->spa_pending_vdev) {
1431				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1432				    device_guid) != NULL)
1433					break;
1434			}
1435		}
1436	}
1437
1438	return (spa);
1439}
1440
1441/*
1442 * Determine whether a pool with the given pool_guid exists.
1443 */
1444boolean_t
1445spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1446{
1447	return (spa_by_guid(pool_guid, device_guid) != NULL);
1448}
1449
1450char *
1451spa_strdup(const char *s)
1452{
1453	size_t len;
1454	char *new;
1455
1456	len = strlen(s);
1457	new = kmem_alloc(len + 1, KM_SLEEP);
1458	bcopy(s, new, len);
1459	new[len] = '\0';
1460
1461	return (new);
1462}
1463
1464void
1465spa_strfree(char *s)
1466{
1467	kmem_free(s, strlen(s) + 1);
1468}
1469
1470uint64_t
1471spa_get_random(uint64_t range)
1472{
1473	uint64_t r;
1474
1475	ASSERT(range != 0);
1476
1477	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1478
1479	return (r % range);
1480}
1481
1482uint64_t
1483spa_generate_guid(spa_t *spa)
1484{
1485	uint64_t guid = spa_get_random(-1ULL);
1486
1487	if (spa != NULL) {
1488		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1489			guid = spa_get_random(-1ULL);
1490	} else {
1491		while (guid == 0 || spa_guid_exists(guid, 0))
1492			guid = spa_get_random(-1ULL);
1493	}
1494
1495	return (guid);
1496}
1497
1498void
1499snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1500{
1501	char type[256];
1502	char *checksum = NULL;
1503	char *compress = NULL;
1504
1505	if (bp != NULL) {
1506		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1507			dmu_object_byteswap_t bswap =
1508			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1509			(void) snprintf(type, sizeof (type), "bswap %s %s",
1510			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1511			    "metadata" : "data",
1512			    dmu_ot_byteswap[bswap].ob_name);
1513		} else {
1514			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1515			    sizeof (type));
1516		}
1517		if (!BP_IS_EMBEDDED(bp)) {
1518			checksum =
1519			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1520		}
1521		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1522	}
1523
1524	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1525	    compress);
1526}
1527
1528void
1529spa_freeze(spa_t *spa)
1530{
1531	uint64_t freeze_txg = 0;
1532
1533	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1534	if (spa->spa_freeze_txg == UINT64_MAX) {
1535		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1536		spa->spa_freeze_txg = freeze_txg;
1537	}
1538	spa_config_exit(spa, SCL_ALL, FTAG);
1539	if (freeze_txg != 0)
1540		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1541}
1542
1543void
1544zfs_panic_recover(const char *fmt, ...)
1545{
1546	va_list adx;
1547
1548	va_start(adx, fmt);
1549	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1550	va_end(adx);
1551}
1552
1553/*
1554 * This is a stripped-down version of strtoull, suitable only for converting
1555 * lowercase hexadecimal numbers that don't overflow.
1556 */
1557uint64_t
1558zfs_strtonum(const char *str, char **nptr)
1559{
1560	uint64_t val = 0;
1561	char c;
1562	int digit;
1563
1564	while ((c = *str) != '\0') {
1565		if (c >= '0' && c <= '9')
1566			digit = c - '0';
1567		else if (c >= 'a' && c <= 'f')
1568			digit = 10 + c - 'a';
1569		else
1570			break;
1571
1572		val *= 16;
1573		val += digit;
1574
1575		str++;
1576	}
1577
1578	if (nptr)
1579		*nptr = (char *)str;
1580
1581	return (val);
1582}
1583
1584/*
1585 * ==========================================================================
1586 * Accessor functions
1587 * ==========================================================================
1588 */
1589
1590boolean_t
1591spa_shutting_down(spa_t *spa)
1592{
1593	return (spa->spa_async_suspended);
1594}
1595
1596dsl_pool_t *
1597spa_get_dsl(spa_t *spa)
1598{
1599	return (spa->spa_dsl_pool);
1600}
1601
1602boolean_t
1603spa_is_initializing(spa_t *spa)
1604{
1605	return (spa->spa_is_initializing);
1606}
1607
1608blkptr_t *
1609spa_get_rootblkptr(spa_t *spa)
1610{
1611	return (&spa->spa_ubsync.ub_rootbp);
1612}
1613
1614void
1615spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1616{
1617	spa->spa_uberblock.ub_rootbp = *bp;
1618}
1619
1620void
1621spa_altroot(spa_t *spa, char *buf, size_t buflen)
1622{
1623	if (spa->spa_root == NULL)
1624		buf[0] = '\0';
1625	else
1626		(void) strncpy(buf, spa->spa_root, buflen);
1627}
1628
1629int
1630spa_sync_pass(spa_t *spa)
1631{
1632	return (spa->spa_sync_pass);
1633}
1634
1635char *
1636spa_name(spa_t *spa)
1637{
1638	return (spa->spa_name);
1639}
1640
1641uint64_t
1642spa_guid(spa_t *spa)
1643{
1644	dsl_pool_t *dp = spa_get_dsl(spa);
1645	uint64_t guid;
1646
1647	/*
1648	 * If we fail to parse the config during spa_load(), we can go through
1649	 * the error path (which posts an ereport) and end up here with no root
1650	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1651	 * this case.
1652	 */
1653	if (spa->spa_root_vdev == NULL)
1654		return (spa->spa_config_guid);
1655
1656	guid = spa->spa_last_synced_guid != 0 ?
1657	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1658
1659	/*
1660	 * Return the most recently synced out guid unless we're
1661	 * in syncing context.
1662	 */
1663	if (dp && dsl_pool_sync_context(dp))
1664		return (spa->spa_root_vdev->vdev_guid);
1665	else
1666		return (guid);
1667}
1668
1669uint64_t
1670spa_load_guid(spa_t *spa)
1671{
1672	/*
1673	 * This is a GUID that exists solely as a reference for the
1674	 * purposes of the arc.  It is generated at load time, and
1675	 * is never written to persistent storage.
1676	 */
1677	return (spa->spa_load_guid);
1678}
1679
1680uint64_t
1681spa_last_synced_txg(spa_t *spa)
1682{
1683	return (spa->spa_ubsync.ub_txg);
1684}
1685
1686uint64_t
1687spa_first_txg(spa_t *spa)
1688{
1689	return (spa->spa_first_txg);
1690}
1691
1692uint64_t
1693spa_syncing_txg(spa_t *spa)
1694{
1695	return (spa->spa_syncing_txg);
1696}
1697
1698pool_state_t
1699spa_state(spa_t *spa)
1700{
1701	return (spa->spa_state);
1702}
1703
1704spa_load_state_t
1705spa_load_state(spa_t *spa)
1706{
1707	return (spa->spa_load_state);
1708}
1709
1710uint64_t
1711spa_freeze_txg(spa_t *spa)
1712{
1713	return (spa->spa_freeze_txg);
1714}
1715
1716/* ARGSUSED */
1717uint64_t
1718spa_get_asize(spa_t *spa, uint64_t lsize)
1719{
1720	return (lsize * spa_asize_inflation);
1721}
1722
1723/*
1724 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1725 * or at least 32MB.
1726 *
1727 * See the comment above spa_slop_shift for details.
1728 */
1729uint64_t
1730spa_get_slop_space(spa_t *spa) {
1731	uint64_t space = spa_get_dspace(spa);
1732	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1733}
1734
1735uint64_t
1736spa_get_dspace(spa_t *spa)
1737{
1738	return (spa->spa_dspace);
1739}
1740
1741void
1742spa_update_dspace(spa_t *spa)
1743{
1744	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1745	    ddt_get_dedup_dspace(spa);
1746}
1747
1748/*
1749 * Return the failure mode that has been set to this pool. The default
1750 * behavior will be to block all I/Os when a complete failure occurs.
1751 */
1752uint8_t
1753spa_get_failmode(spa_t *spa)
1754{
1755	return (spa->spa_failmode);
1756}
1757
1758boolean_t
1759spa_suspended(spa_t *spa)
1760{
1761	return (spa->spa_suspended);
1762}
1763
1764uint64_t
1765spa_version(spa_t *spa)
1766{
1767	return (spa->spa_ubsync.ub_version);
1768}
1769
1770boolean_t
1771spa_deflate(spa_t *spa)
1772{
1773	return (spa->spa_deflate);
1774}
1775
1776metaslab_class_t *
1777spa_normal_class(spa_t *spa)
1778{
1779	return (spa->spa_normal_class);
1780}
1781
1782metaslab_class_t *
1783spa_log_class(spa_t *spa)
1784{
1785	return (spa->spa_log_class);
1786}
1787
1788void
1789spa_evicting_os_register(spa_t *spa, objset_t *os)
1790{
1791	mutex_enter(&spa->spa_evicting_os_lock);
1792	list_insert_head(&spa->spa_evicting_os_list, os);
1793	mutex_exit(&spa->spa_evicting_os_lock);
1794}
1795
1796void
1797spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1798{
1799	mutex_enter(&spa->spa_evicting_os_lock);
1800	list_remove(&spa->spa_evicting_os_list, os);
1801	cv_broadcast(&spa->spa_evicting_os_cv);
1802	mutex_exit(&spa->spa_evicting_os_lock);
1803}
1804
1805void
1806spa_evicting_os_wait(spa_t *spa)
1807{
1808	mutex_enter(&spa->spa_evicting_os_lock);
1809	while (!list_is_empty(&spa->spa_evicting_os_list))
1810		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1811	mutex_exit(&spa->spa_evicting_os_lock);
1812
1813	dmu_buf_user_evict_wait();
1814}
1815
1816int
1817spa_max_replication(spa_t *spa)
1818{
1819	/*
1820	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1821	 * handle BPs with more than one DVA allocated.  Set our max
1822	 * replication level accordingly.
1823	 */
1824	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1825		return (1);
1826	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1827}
1828
1829int
1830spa_prev_software_version(spa_t *spa)
1831{
1832	return (spa->spa_prev_software_version);
1833}
1834
1835uint64_t
1836spa_deadman_synctime(spa_t *spa)
1837{
1838	return (spa->spa_deadman_synctime);
1839}
1840
1841uint64_t
1842dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1843{
1844	uint64_t asize = DVA_GET_ASIZE(dva);
1845	uint64_t dsize = asize;
1846
1847	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1848
1849	if (asize != 0 && spa->spa_deflate) {
1850		uint64_t vdev = DVA_GET_VDEV(dva);
1851		vdev_t *vd = vdev_lookup_top(spa, vdev);
1852		if (vd == NULL) {
1853			panic(
1854			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1855			    (u_longlong_t)vdev, (u_longlong_t)asize);
1856		}
1857		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1858	}
1859
1860	return (dsize);
1861}
1862
1863uint64_t
1864bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1865{
1866	uint64_t dsize = 0;
1867
1868	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1869		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1870
1871	return (dsize);
1872}
1873
1874uint64_t
1875bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1876{
1877	uint64_t dsize = 0;
1878
1879	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1880
1881	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1882		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1883
1884	spa_config_exit(spa, SCL_VDEV, FTAG);
1885
1886	return (dsize);
1887}
1888
1889/*
1890 * ==========================================================================
1891 * Initialization and Termination
1892 * ==========================================================================
1893 */
1894
1895static int
1896spa_name_compare(const void *a1, const void *a2)
1897{
1898	const spa_t *s1 = a1;
1899	const spa_t *s2 = a2;
1900	int s;
1901
1902	s = strcmp(s1->spa_name, s2->spa_name);
1903	if (s > 0)
1904		return (1);
1905	if (s < 0)
1906		return (-1);
1907	return (0);
1908}
1909
1910int
1911spa_busy(void)
1912{
1913	return (spa_active_count);
1914}
1915
1916void
1917spa_boot_init()
1918{
1919	spa_config_load();
1920}
1921
1922#ifdef _KERNEL
1923EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1924#endif
1925
1926void
1927spa_init(int mode)
1928{
1929	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1930	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1931	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1932	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1933
1934	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1935	    offsetof(spa_t, spa_avl));
1936
1937	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1938	    offsetof(spa_aux_t, aux_avl));
1939
1940	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1941	    offsetof(spa_aux_t, aux_avl));
1942
1943	spa_mode_global = mode;
1944
1945#ifdef illumos
1946#ifdef _KERNEL
1947	spa_arch_init();
1948#else
1949	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1950		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1951		if (arc_procfd == -1) {
1952			perror("could not enable watchpoints: "
1953			    "opening /proc/self/ctl failed: ");
1954		} else {
1955			arc_watch = B_TRUE;
1956		}
1957	}
1958#endif
1959#endif /* illumos */
1960	refcount_sysinit();
1961	unique_init();
1962	range_tree_init();
1963	zio_init();
1964	lz4_init();
1965	dmu_init();
1966	zil_init();
1967	vdev_cache_stat_init();
1968	zfs_prop_init();
1969	zpool_prop_init();
1970	zpool_feature_init();
1971	spa_config_load();
1972	l2arc_start();
1973#ifndef illumos
1974#ifdef _KERNEL
1975	zfs_deadman_init();
1976#endif
1977#endif	/* !illumos */
1978}
1979
1980void
1981spa_fini(void)
1982{
1983	l2arc_stop();
1984
1985	spa_evict_all();
1986
1987	vdev_cache_stat_fini();
1988	zil_fini();
1989	dmu_fini();
1990	lz4_fini();
1991	zio_fini();
1992	range_tree_fini();
1993	unique_fini();
1994	refcount_fini();
1995
1996	avl_destroy(&spa_namespace_avl);
1997	avl_destroy(&spa_spare_avl);
1998	avl_destroy(&spa_l2cache_avl);
1999
2000	cv_destroy(&spa_namespace_cv);
2001	mutex_destroy(&spa_namespace_lock);
2002	mutex_destroy(&spa_spare_lock);
2003	mutex_destroy(&spa_l2cache_lock);
2004}
2005
2006/*
2007 * Return whether this pool has slogs. No locking needed.
2008 * It's not a problem if the wrong answer is returned as it's only for
2009 * performance and not correctness
2010 */
2011boolean_t
2012spa_has_slogs(spa_t *spa)
2013{
2014	return (spa->spa_log_class->mc_rotor != NULL);
2015}
2016
2017spa_log_state_t
2018spa_get_log_state(spa_t *spa)
2019{
2020	return (spa->spa_log_state);
2021}
2022
2023void
2024spa_set_log_state(spa_t *spa, spa_log_state_t state)
2025{
2026	spa->spa_log_state = state;
2027}
2028
2029boolean_t
2030spa_is_root(spa_t *spa)
2031{
2032	return (spa->spa_is_root);
2033}
2034
2035boolean_t
2036spa_writeable(spa_t *spa)
2037{
2038	return (!!(spa->spa_mode & FWRITE));
2039}
2040
2041/*
2042 * Returns true if there is a pending sync task in any of the current
2043 * syncing txg, the current quiescing txg, or the current open txg.
2044 */
2045boolean_t
2046spa_has_pending_synctask(spa_t *spa)
2047{
2048	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2049}
2050
2051int
2052spa_mode(spa_t *spa)
2053{
2054	return (spa->spa_mode);
2055}
2056
2057uint64_t
2058spa_bootfs(spa_t *spa)
2059{
2060	return (spa->spa_bootfs);
2061}
2062
2063uint64_t
2064spa_delegation(spa_t *spa)
2065{
2066	return (spa->spa_delegation);
2067}
2068
2069objset_t *
2070spa_meta_objset(spa_t *spa)
2071{
2072	return (spa->spa_meta_objset);
2073}
2074
2075enum zio_checksum
2076spa_dedup_checksum(spa_t *spa)
2077{
2078	return (spa->spa_dedup_checksum);
2079}
2080
2081/*
2082 * Reset pool scan stat per scan pass (or reboot).
2083 */
2084void
2085spa_scan_stat_init(spa_t *spa)
2086{
2087	/* data not stored on disk */
2088	spa->spa_scan_pass_start = gethrestime_sec();
2089	spa->spa_scan_pass_exam = 0;
2090	vdev_scan_stat_init(spa->spa_root_vdev);
2091}
2092
2093/*
2094 * Get scan stats for zpool status reports
2095 */
2096int
2097spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2098{
2099	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2100
2101	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2102		return (SET_ERROR(ENOENT));
2103	bzero(ps, sizeof (pool_scan_stat_t));
2104
2105	/* data stored on disk */
2106	ps->pss_func = scn->scn_phys.scn_func;
2107	ps->pss_start_time = scn->scn_phys.scn_start_time;
2108	ps->pss_end_time = scn->scn_phys.scn_end_time;
2109	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2110	ps->pss_examined = scn->scn_phys.scn_examined;
2111	ps->pss_to_process = scn->scn_phys.scn_to_process;
2112	ps->pss_processed = scn->scn_phys.scn_processed;
2113	ps->pss_errors = scn->scn_phys.scn_errors;
2114	ps->pss_state = scn->scn_phys.scn_state;
2115
2116	/* data not stored on disk */
2117	ps->pss_pass_start = spa->spa_scan_pass_start;
2118	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2119
2120	return (0);
2121}
2122
2123boolean_t
2124spa_debug_enabled(spa_t *spa)
2125{
2126	return (spa->spa_debug);
2127}
2128
2129int
2130spa_maxblocksize(spa_t *spa)
2131{
2132	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2133		return (SPA_MAXBLOCKSIZE);
2134	else
2135		return (SPA_OLD_MAXBLOCKSIZE);
2136}
2137