spa_misc.c revision 297075
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa_impl.h>
32#include <sys/spa_boot.h>
33#include <sys/zio.h>
34#include <sys/zio_checksum.h>
35#include <sys/zio_compress.h>
36#include <sys/dmu.h>
37#include <sys/dmu_tx.h>
38#include <sys/zap.h>
39#include <sys/zil.h>
40#include <sys/vdev_impl.h>
41#include <sys/metaslab.h>
42#include <sys/uberblock_impl.h>
43#include <sys/txg.h>
44#include <sys/avl.h>
45#include <sys/unique.h>
46#include <sys/dsl_pool.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_scan.h>
50#include <sys/fs/zfs.h>
51#include <sys/metaslab_impl.h>
52#include <sys/arc.h>
53#include <sys/ddt.h>
54#include "zfs_prop.h"
55#include <sys/zfeature.h>
56
57/*
58 * SPA locking
59 *
60 * There are four basic locks for managing spa_t structures:
61 *
62 * spa_namespace_lock (global mutex)
63 *
64 *	This lock must be acquired to do any of the following:
65 *
66 *		- Lookup a spa_t by name
67 *		- Add or remove a spa_t from the namespace
68 *		- Increase spa_refcount from non-zero
69 *		- Check if spa_refcount is zero
70 *		- Rename a spa_t
71 *		- add/remove/attach/detach devices
72 *		- Held for the duration of create/destroy/import/export
73 *
74 *	It does not need to handle recursion.  A create or destroy may
75 *	reference objects (files or zvols) in other pools, but by
76 *	definition they must have an existing reference, and will never need
77 *	to lookup a spa_t by name.
78 *
79 * spa_refcount (per-spa refcount_t protected by mutex)
80 *
81 *	This reference count keep track of any active users of the spa_t.  The
82 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
83 *	the refcount is never really 'zero' - opening a pool implicitly keeps
84 *	some references in the DMU.  Internally we check against spa_minref, but
85 *	present the image of a zero/non-zero value to consumers.
86 *
87 * spa_config_lock[] (per-spa array of rwlocks)
88 *
89 *	This protects the spa_t from config changes, and must be held in
90 *	the following circumstances:
91 *
92 *		- RW_READER to perform I/O to the spa
93 *		- RW_WRITER to change the vdev config
94 *
95 * The locking order is fairly straightforward:
96 *
97 *		spa_namespace_lock	->	spa_refcount
98 *
99 *	The namespace lock must be acquired to increase the refcount from 0
100 *	or to check if it is zero.
101 *
102 *		spa_refcount		->	spa_config_lock[]
103 *
104 *	There must be at least one valid reference on the spa_t to acquire
105 *	the config lock.
106 *
107 *		spa_namespace_lock	->	spa_config_lock[]
108 *
109 *	The namespace lock must always be taken before the config lock.
110 *
111 *
112 * The spa_namespace_lock can be acquired directly and is globally visible.
113 *
114 * The namespace is manipulated using the following functions, all of which
115 * require the spa_namespace_lock to be held.
116 *
117 *	spa_lookup()		Lookup a spa_t by name.
118 *
119 *	spa_add()		Create a new spa_t in the namespace.
120 *
121 *	spa_remove()		Remove a spa_t from the namespace.  This also
122 *				frees up any memory associated with the spa_t.
123 *
124 *	spa_next()		Returns the next spa_t in the system, or the
125 *				first if NULL is passed.
126 *
127 *	spa_evict_all()		Shutdown and remove all spa_t structures in
128 *				the system.
129 *
130 *	spa_guid_exists()	Determine whether a pool/device guid exists.
131 *
132 * The spa_refcount is manipulated using the following functions:
133 *
134 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135 *				called with spa_namespace_lock held if the
136 *				refcount is currently zero.
137 *
138 *	spa_close()		Remove a reference from the spa_t.  This will
139 *				not free the spa_t or remove it from the
140 *				namespace.  No locking is required.
141 *
142 *	spa_refcount_zero()	Returns true if the refcount is currently
143 *				zero.  Must be called with spa_namespace_lock
144 *				held.
145 *
146 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149 *
150 * To read the configuration, it suffices to hold one of these locks as reader.
151 * To modify the configuration, you must hold all locks as writer.  To modify
152 * vdev state without altering the vdev tree's topology (e.g. online/offline),
153 * you must hold SCL_STATE and SCL_ZIO as writer.
154 *
155 * We use these distinct config locks to avoid recursive lock entry.
156 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157 * block allocations (SCL_ALLOC), which may require reading space maps
158 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159 *
160 * The spa config locks cannot be normal rwlocks because we need the
161 * ability to hand off ownership.  For example, SCL_ZIO is acquired
162 * by the issuing thread and later released by an interrupt thread.
163 * They do, however, obey the usual write-wanted semantics to prevent
164 * writer (i.e. system administrator) starvation.
165 *
166 * The lock acquisition rules are as follows:
167 *
168 * SCL_CONFIG
169 *	Protects changes to the vdev tree topology, such as vdev
170 *	add/remove/attach/detach.  Protects the dirty config list
171 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
172 *
173 * SCL_STATE
174 *	Protects changes to pool state and vdev state, such as vdev
175 *	online/offline/fault/degrade/clear.  Protects the dirty state list
176 *	(spa_state_dirty_list) and global pool state (spa_state).
177 *
178 * SCL_ALLOC
179 *	Protects changes to metaslab groups and classes.
180 *	Held as reader by metaslab_alloc() and metaslab_claim().
181 *
182 * SCL_ZIO
183 *	Held by bp-level zios (those which have no io_vd upon entry)
184 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
185 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
186 *
187 * SCL_FREE
188 *	Protects changes to metaslab groups and classes.
189 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
190 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191 *	blocks in zio_done() while another i/o that holds either
192 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193 *
194 * SCL_VDEV
195 *	Held as reader to prevent changes to the vdev tree during trivial
196 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
197 *	other locks, and lower than all of them, to ensure that it's safe
198 *	to acquire regardless of caller context.
199 *
200 * In addition, the following rules apply:
201 *
202 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
203 *	The lock ordering is SCL_CONFIG > spa_props_lock.
204 *
205 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
206 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207 *	or zio_write_phys() -- the caller must ensure that the config cannot
208 *	cannot change in the interim, and that the vdev cannot be reopened.
209 *	SCL_STATE as reader suffices for both.
210 *
211 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212 *
213 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
214 *				for writing.
215 *
216 *	spa_vdev_exit()		Release the config lock, wait for all I/O
217 *				to complete, sync the updated configs to the
218 *				cache, and release the namespace lock.
219 *
220 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223 *
224 * spa_rename() is also implemented within this file since it requires
225 * manipulation of the namespace.
226 */
227
228static avl_tree_t spa_namespace_avl;
229kmutex_t spa_namespace_lock;
230static kcondvar_t spa_namespace_cv;
231static int spa_active_count;
232int spa_max_replication_override = SPA_DVAS_PER_BP;
233
234static kmutex_t spa_spare_lock;
235static avl_tree_t spa_spare_avl;
236static kmutex_t spa_l2cache_lock;
237static avl_tree_t spa_l2cache_avl;
238
239kmem_cache_t *spa_buffer_pool;
240int spa_mode_global;
241
242#ifdef ZFS_DEBUG
243/* Everything except dprintf and spa is on by default in debug builds */
244int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245#else
246int zfs_flags = 0;
247#endif
248SYSCTL_DECL(_debug);
249TUNABLE_INT("debug.zfs_flags", &zfs_flags);
250SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
251    "ZFS debug flags.");
252
253/*
254 * zfs_recover can be set to nonzero to attempt to recover from
255 * otherwise-fatal errors, typically caused by on-disk corruption.  When
256 * set, calls to zfs_panic_recover() will turn into warning messages.
257 * This should only be used as a last resort, as it typically results
258 * in leaked space, or worse.
259 */
260boolean_t zfs_recover = B_FALSE;
261SYSCTL_DECL(_vfs_zfs);
262TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
263SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
264    "Try to recover from otherwise-fatal errors.");
265
266static int
267sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
268{
269	int err, val;
270
271	val = zfs_flags;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	/*
277	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
278	 * arc buffers in the system have the necessary additional
279	 * checksum data.  However, it is safe to disable at any
280	 * time.
281	 */
282	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
283		val &= ~ZFS_DEBUG_MODIFY;
284	zfs_flags = val;
285
286	return (0);
287}
288TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
289SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
290    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
291    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
292
293/*
294 * If destroy encounters an EIO while reading metadata (e.g. indirect
295 * blocks), space referenced by the missing metadata can not be freed.
296 * Normally this causes the background destroy to become "stalled", as
297 * it is unable to make forward progress.  While in this stalled state,
298 * all remaining space to free from the error-encountering filesystem is
299 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
300 * permanently leak the space from indirect blocks that can not be read,
301 * and continue to free everything else that it can.
302 *
303 * The default, "stalling" behavior is useful if the storage partially
304 * fails (i.e. some but not all i/os fail), and then later recovers.  In
305 * this case, we will be able to continue pool operations while it is
306 * partially failed, and when it recovers, we can continue to free the
307 * space, with no leaks.  However, note that this case is actually
308 * fairly rare.
309 *
310 * Typically pools either (a) fail completely (but perhaps temporarily,
311 * e.g. a top-level vdev going offline), or (b) have localized,
312 * permanent errors (e.g. disk returns the wrong data due to bit flip or
313 * firmware bug).  In case (a), this setting does not matter because the
314 * pool will be suspended and the sync thread will not be able to make
315 * forward progress regardless.  In case (b), because the error is
316 * permanent, the best we can do is leak the minimum amount of space,
317 * which is what setting this flag will do.  Therefore, it is reasonable
318 * for this flag to normally be set, but we chose the more conservative
319 * approach of not setting it, so that there is no possibility of
320 * leaking space in the "partial temporary" failure case.
321 */
322boolean_t zfs_free_leak_on_eio = B_FALSE;
323
324/*
325 * Expiration time in milliseconds. This value has two meanings. First it is
326 * used to determine when the spa_deadman() logic should fire. By default the
327 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
328 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
329 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
330 * in a system panic.
331 */
332uint64_t zfs_deadman_synctime_ms = 1000000ULL;
333TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
334SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
335    &zfs_deadman_synctime_ms, 0,
336    "Stalled ZFS I/O expiration time in milliseconds");
337
338/*
339 * Check time in milliseconds. This defines the frequency at which we check
340 * for hung I/O.
341 */
342uint64_t zfs_deadman_checktime_ms = 5000ULL;
343TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
344SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
345    &zfs_deadman_checktime_ms, 0,
346    "Period of checks for stalled ZFS I/O in milliseconds");
347
348/*
349 * Default value of -1 for zfs_deadman_enabled is resolved in
350 * zfs_deadman_init()
351 */
352int zfs_deadman_enabled = -1;
353TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
354SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
355    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
356
357/*
358 * The worst case is single-sector max-parity RAID-Z blocks, in which
359 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
360 * times the size; so just assume that.  Add to this the fact that
361 * we can have up to 3 DVAs per bp, and one more factor of 2 because
362 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
363 * the worst case is:
364 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
365 */
366int spa_asize_inflation = 24;
367TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
368SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
369    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
370
371#ifndef illumos
372#ifdef _KERNEL
373static void
374zfs_deadman_init()
375{
376	/*
377	 * If we are not i386 or amd64 or in a virtual machine,
378	 * disable ZFS deadman thread by default
379	 */
380	if (zfs_deadman_enabled == -1) {
381#if defined(__amd64__) || defined(__i386__)
382		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
383#else
384		zfs_deadman_enabled = 0;
385#endif
386	}
387}
388#endif	/* _KERNEL */
389#endif	/* !illumos */
390
391/*
392 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
393 * the pool to be consumed.  This ensures that we don't run the pool
394 * completely out of space, due to unaccounted changes (e.g. to the MOS).
395 * It also limits the worst-case time to allocate space.  If we have
396 * less than this amount of free space, most ZPL operations (e.g. write,
397 * create) will return ENOSPC.
398 *
399 * Certain operations (e.g. file removal, most administrative actions) can
400 * use half the slop space.  They will only return ENOSPC if less than half
401 * the slop space is free.  Typically, once the pool has less than the slop
402 * space free, the user will use these operations to free up space in the pool.
403 * These are the operations that call dsl_pool_adjustedsize() with the netfree
404 * argument set to TRUE.
405 *
406 * A very restricted set of operations are always permitted, regardless of
407 * the amount of free space.  These are the operations that call
408 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
409 * operations result in a net increase in the amount of space used,
410 * it is possible to run the pool completely out of space, causing it to
411 * be permanently read-only.
412 *
413 * See also the comments in zfs_space_check_t.
414 */
415int spa_slop_shift = 5;
416SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
417    &spa_slop_shift, 0,
418    "Shift value of reserved space (1/(2^spa_slop_shift)).");
419
420/*
421 * ==========================================================================
422 * SPA config locking
423 * ==========================================================================
424 */
425static void
426spa_config_lock_init(spa_t *spa)
427{
428	for (int i = 0; i < SCL_LOCKS; i++) {
429		spa_config_lock_t *scl = &spa->spa_config_lock[i];
430		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
431		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
432		refcount_create_untracked(&scl->scl_count);
433		scl->scl_writer = NULL;
434		scl->scl_write_wanted = 0;
435	}
436}
437
438static void
439spa_config_lock_destroy(spa_t *spa)
440{
441	for (int i = 0; i < SCL_LOCKS; i++) {
442		spa_config_lock_t *scl = &spa->spa_config_lock[i];
443		mutex_destroy(&scl->scl_lock);
444		cv_destroy(&scl->scl_cv);
445		refcount_destroy(&scl->scl_count);
446		ASSERT(scl->scl_writer == NULL);
447		ASSERT(scl->scl_write_wanted == 0);
448	}
449}
450
451int
452spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
453{
454	for (int i = 0; i < SCL_LOCKS; i++) {
455		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456		if (!(locks & (1 << i)))
457			continue;
458		mutex_enter(&scl->scl_lock);
459		if (rw == RW_READER) {
460			if (scl->scl_writer || scl->scl_write_wanted) {
461				mutex_exit(&scl->scl_lock);
462				spa_config_exit(spa, locks ^ (1 << i), tag);
463				return (0);
464			}
465		} else {
466			ASSERT(scl->scl_writer != curthread);
467			if (!refcount_is_zero(&scl->scl_count)) {
468				mutex_exit(&scl->scl_lock);
469				spa_config_exit(spa, locks ^ (1 << i), tag);
470				return (0);
471			}
472			scl->scl_writer = curthread;
473		}
474		(void) refcount_add(&scl->scl_count, tag);
475		mutex_exit(&scl->scl_lock);
476	}
477	return (1);
478}
479
480void
481spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
482{
483	int wlocks_held = 0;
484
485	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
486
487	for (int i = 0; i < SCL_LOCKS; i++) {
488		spa_config_lock_t *scl = &spa->spa_config_lock[i];
489		if (scl->scl_writer == curthread)
490			wlocks_held |= (1 << i);
491		if (!(locks & (1 << i)))
492			continue;
493		mutex_enter(&scl->scl_lock);
494		if (rw == RW_READER) {
495			while (scl->scl_writer || scl->scl_write_wanted) {
496				cv_wait(&scl->scl_cv, &scl->scl_lock);
497			}
498		} else {
499			ASSERT(scl->scl_writer != curthread);
500			while (!refcount_is_zero(&scl->scl_count)) {
501				scl->scl_write_wanted++;
502				cv_wait(&scl->scl_cv, &scl->scl_lock);
503				scl->scl_write_wanted--;
504			}
505			scl->scl_writer = curthread;
506		}
507		(void) refcount_add(&scl->scl_count, tag);
508		mutex_exit(&scl->scl_lock);
509	}
510	ASSERT(wlocks_held <= locks);
511}
512
513void
514spa_config_exit(spa_t *spa, int locks, void *tag)
515{
516	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
517		spa_config_lock_t *scl = &spa->spa_config_lock[i];
518		if (!(locks & (1 << i)))
519			continue;
520		mutex_enter(&scl->scl_lock);
521		ASSERT(!refcount_is_zero(&scl->scl_count));
522		if (refcount_remove(&scl->scl_count, tag) == 0) {
523			ASSERT(scl->scl_writer == NULL ||
524			    scl->scl_writer == curthread);
525			scl->scl_writer = NULL;	/* OK in either case */
526			cv_broadcast(&scl->scl_cv);
527		}
528		mutex_exit(&scl->scl_lock);
529	}
530}
531
532int
533spa_config_held(spa_t *spa, int locks, krw_t rw)
534{
535	int locks_held = 0;
536
537	for (int i = 0; i < SCL_LOCKS; i++) {
538		spa_config_lock_t *scl = &spa->spa_config_lock[i];
539		if (!(locks & (1 << i)))
540			continue;
541		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
542		    (rw == RW_WRITER && scl->scl_writer == curthread))
543			locks_held |= 1 << i;
544	}
545
546	return (locks_held);
547}
548
549/*
550 * ==========================================================================
551 * SPA namespace functions
552 * ==========================================================================
553 */
554
555/*
556 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
557 * Returns NULL if no matching spa_t is found.
558 */
559spa_t *
560spa_lookup(const char *name)
561{
562	static spa_t search;	/* spa_t is large; don't allocate on stack */
563	spa_t *spa;
564	avl_index_t where;
565	char *cp;
566
567	ASSERT(MUTEX_HELD(&spa_namespace_lock));
568
569	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
570
571	/*
572	 * If it's a full dataset name, figure out the pool name and
573	 * just use that.
574	 */
575	cp = strpbrk(search.spa_name, "/@#");
576	if (cp != NULL)
577		*cp = '\0';
578
579	spa = avl_find(&spa_namespace_avl, &search, &where);
580
581	return (spa);
582}
583
584/*
585 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
586 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
587 * looking for potentially hung I/Os.
588 */
589void
590spa_deadman(void *arg)
591{
592	spa_t *spa = arg;
593
594	/*
595	 * Disable the deadman timer if the pool is suspended.
596	 */
597	if (spa_suspended(spa)) {
598#ifdef illumos
599		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
600#else
601		/* Nothing.  just don't schedule any future callouts. */
602#endif
603		return;
604	}
605
606	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
607	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
608	    ++spa->spa_deadman_calls);
609	if (zfs_deadman_enabled)
610		vdev_deadman(spa->spa_root_vdev);
611#ifdef __FreeBSD__
612#ifdef _KERNEL
613	callout_schedule(&spa->spa_deadman_cycid,
614	    hz * zfs_deadman_checktime_ms / MILLISEC);
615#endif
616#endif
617}
618
619/*
620 * Create an uninitialized spa_t with the given name.  Requires
621 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
622 * exist by calling spa_lookup() first.
623 */
624spa_t *
625spa_add(const char *name, nvlist_t *config, const char *altroot)
626{
627	spa_t *spa;
628	spa_config_dirent_t *dp;
629#ifdef illumos
630	cyc_handler_t hdlr;
631	cyc_time_t when;
632#endif
633
634	ASSERT(MUTEX_HELD(&spa_namespace_lock));
635
636	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
637
638	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
639	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
640	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
641	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
642	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
643	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
644	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
645	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
646	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
647	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
648	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
649
650	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
651	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
652	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
653	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
654	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
655
656	for (int t = 0; t < TXG_SIZE; t++)
657		bplist_create(&spa->spa_free_bplist[t]);
658
659	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
660	spa->spa_state = POOL_STATE_UNINITIALIZED;
661	spa->spa_freeze_txg = UINT64_MAX;
662	spa->spa_final_txg = UINT64_MAX;
663	spa->spa_load_max_txg = UINT64_MAX;
664	spa->spa_proc = &p0;
665	spa->spa_proc_state = SPA_PROC_NONE;
666
667#ifdef illumos
668	hdlr.cyh_func = spa_deadman;
669	hdlr.cyh_arg = spa;
670	hdlr.cyh_level = CY_LOW_LEVEL;
671#endif
672
673	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
674
675#ifdef illumos
676	/*
677	 * This determines how often we need to check for hung I/Os after
678	 * the cyclic has already fired. Since checking for hung I/Os is
679	 * an expensive operation we don't want to check too frequently.
680	 * Instead wait for 5 seconds before checking again.
681	 */
682	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
683	when.cyt_when = CY_INFINITY;
684	mutex_enter(&cpu_lock);
685	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
686	mutex_exit(&cpu_lock);
687#else	/* !illumos */
688#ifdef _KERNEL
689	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
690#endif
691#endif
692	refcount_create(&spa->spa_refcount);
693	spa_config_lock_init(spa);
694
695	avl_add(&spa_namespace_avl, spa);
696
697	/*
698	 * Set the alternate root, if there is one.
699	 */
700	if (altroot) {
701		spa->spa_root = spa_strdup(altroot);
702		spa_active_count++;
703	}
704
705	/*
706	 * Every pool starts with the default cachefile
707	 */
708	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
709	    offsetof(spa_config_dirent_t, scd_link));
710
711	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
712	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
713	list_insert_head(&spa->spa_config_list, dp);
714
715	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
716	    KM_SLEEP) == 0);
717
718	if (config != NULL) {
719		nvlist_t *features;
720
721		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
722		    &features) == 0) {
723			VERIFY(nvlist_dup(features, &spa->spa_label_features,
724			    0) == 0);
725		}
726
727		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
728	}
729
730	if (spa->spa_label_features == NULL) {
731		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
732		    KM_SLEEP) == 0);
733	}
734
735	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
736
737	spa->spa_min_ashift = INT_MAX;
738	spa->spa_max_ashift = 0;
739
740	/*
741	 * As a pool is being created, treat all features as disabled by
742	 * setting SPA_FEATURE_DISABLED for all entries in the feature
743	 * refcount cache.
744	 */
745	for (int i = 0; i < SPA_FEATURES; i++) {
746		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
747	}
748
749	return (spa);
750}
751
752/*
753 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
754 * spa_namespace_lock.  This is called only after the spa_t has been closed and
755 * deactivated.
756 */
757void
758spa_remove(spa_t *spa)
759{
760	spa_config_dirent_t *dp;
761
762	ASSERT(MUTEX_HELD(&spa_namespace_lock));
763	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
764	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
765
766	nvlist_free(spa->spa_config_splitting);
767
768	avl_remove(&spa_namespace_avl, spa);
769	cv_broadcast(&spa_namespace_cv);
770
771	if (spa->spa_root) {
772		spa_strfree(spa->spa_root);
773		spa_active_count--;
774	}
775
776	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
777		list_remove(&spa->spa_config_list, dp);
778		if (dp->scd_path != NULL)
779			spa_strfree(dp->scd_path);
780		kmem_free(dp, sizeof (spa_config_dirent_t));
781	}
782
783	list_destroy(&spa->spa_config_list);
784
785	nvlist_free(spa->spa_label_features);
786	nvlist_free(spa->spa_load_info);
787	spa_config_set(spa, NULL);
788
789#ifdef illumos
790	mutex_enter(&cpu_lock);
791	if (spa->spa_deadman_cycid != CYCLIC_NONE)
792		cyclic_remove(spa->spa_deadman_cycid);
793	mutex_exit(&cpu_lock);
794	spa->spa_deadman_cycid = CYCLIC_NONE;
795#else	/* !illumos */
796#ifdef _KERNEL
797	callout_drain(&spa->spa_deadman_cycid);
798#endif
799#endif
800
801	refcount_destroy(&spa->spa_refcount);
802
803	spa_config_lock_destroy(spa);
804
805	for (int t = 0; t < TXG_SIZE; t++)
806		bplist_destroy(&spa->spa_free_bplist[t]);
807
808	zio_checksum_templates_free(spa);
809
810	cv_destroy(&spa->spa_async_cv);
811	cv_destroy(&spa->spa_evicting_os_cv);
812	cv_destroy(&spa->spa_proc_cv);
813	cv_destroy(&spa->spa_scrub_io_cv);
814	cv_destroy(&spa->spa_suspend_cv);
815
816	mutex_destroy(&spa->spa_async_lock);
817	mutex_destroy(&spa->spa_errlist_lock);
818	mutex_destroy(&spa->spa_errlog_lock);
819	mutex_destroy(&spa->spa_evicting_os_lock);
820	mutex_destroy(&spa->spa_history_lock);
821	mutex_destroy(&spa->spa_proc_lock);
822	mutex_destroy(&spa->spa_props_lock);
823	mutex_destroy(&spa->spa_cksum_tmpls_lock);
824	mutex_destroy(&spa->spa_scrub_lock);
825	mutex_destroy(&spa->spa_suspend_lock);
826	mutex_destroy(&spa->spa_vdev_top_lock);
827
828	kmem_free(spa, sizeof (spa_t));
829}
830
831/*
832 * Given a pool, return the next pool in the namespace, or NULL if there is
833 * none.  If 'prev' is NULL, return the first pool.
834 */
835spa_t *
836spa_next(spa_t *prev)
837{
838	ASSERT(MUTEX_HELD(&spa_namespace_lock));
839
840	if (prev)
841		return (AVL_NEXT(&spa_namespace_avl, prev));
842	else
843		return (avl_first(&spa_namespace_avl));
844}
845
846/*
847 * ==========================================================================
848 * SPA refcount functions
849 * ==========================================================================
850 */
851
852/*
853 * Add a reference to the given spa_t.  Must have at least one reference, or
854 * have the namespace lock held.
855 */
856void
857spa_open_ref(spa_t *spa, void *tag)
858{
859	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
860	    MUTEX_HELD(&spa_namespace_lock));
861	(void) refcount_add(&spa->spa_refcount, tag);
862}
863
864/*
865 * Remove a reference to the given spa_t.  Must have at least one reference, or
866 * have the namespace lock held.
867 */
868void
869spa_close(spa_t *spa, void *tag)
870{
871	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
872	    MUTEX_HELD(&spa_namespace_lock));
873	(void) refcount_remove(&spa->spa_refcount, tag);
874}
875
876/*
877 * Remove a reference to the given spa_t held by a dsl dir that is
878 * being asynchronously released.  Async releases occur from a taskq
879 * performing eviction of dsl datasets and dirs.  The namespace lock
880 * isn't held and the hold by the object being evicted may contribute to
881 * spa_minref (e.g. dataset or directory released during pool export),
882 * so the asserts in spa_close() do not apply.
883 */
884void
885spa_async_close(spa_t *spa, void *tag)
886{
887	(void) refcount_remove(&spa->spa_refcount, tag);
888}
889
890/*
891 * Check to see if the spa refcount is zero.  Must be called with
892 * spa_namespace_lock held.  We really compare against spa_minref, which is the
893 * number of references acquired when opening a pool
894 */
895boolean_t
896spa_refcount_zero(spa_t *spa)
897{
898	ASSERT(MUTEX_HELD(&spa_namespace_lock));
899
900	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
901}
902
903/*
904 * ==========================================================================
905 * SPA spare and l2cache tracking
906 * ==========================================================================
907 */
908
909/*
910 * Hot spares and cache devices are tracked using the same code below,
911 * for 'auxiliary' devices.
912 */
913
914typedef struct spa_aux {
915	uint64_t	aux_guid;
916	uint64_t	aux_pool;
917	avl_node_t	aux_avl;
918	int		aux_count;
919} spa_aux_t;
920
921static int
922spa_aux_compare(const void *a, const void *b)
923{
924	const spa_aux_t *sa = a;
925	const spa_aux_t *sb = b;
926
927	if (sa->aux_guid < sb->aux_guid)
928		return (-1);
929	else if (sa->aux_guid > sb->aux_guid)
930		return (1);
931	else
932		return (0);
933}
934
935void
936spa_aux_add(vdev_t *vd, avl_tree_t *avl)
937{
938	avl_index_t where;
939	spa_aux_t search;
940	spa_aux_t *aux;
941
942	search.aux_guid = vd->vdev_guid;
943	if ((aux = avl_find(avl, &search, &where)) != NULL) {
944		aux->aux_count++;
945	} else {
946		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
947		aux->aux_guid = vd->vdev_guid;
948		aux->aux_count = 1;
949		avl_insert(avl, aux, where);
950	}
951}
952
953void
954spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
955{
956	spa_aux_t search;
957	spa_aux_t *aux;
958	avl_index_t where;
959
960	search.aux_guid = vd->vdev_guid;
961	aux = avl_find(avl, &search, &where);
962
963	ASSERT(aux != NULL);
964
965	if (--aux->aux_count == 0) {
966		avl_remove(avl, aux);
967		kmem_free(aux, sizeof (spa_aux_t));
968	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
969		aux->aux_pool = 0ULL;
970	}
971}
972
973boolean_t
974spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
975{
976	spa_aux_t search, *found;
977
978	search.aux_guid = guid;
979	found = avl_find(avl, &search, NULL);
980
981	if (pool) {
982		if (found)
983			*pool = found->aux_pool;
984		else
985			*pool = 0ULL;
986	}
987
988	if (refcnt) {
989		if (found)
990			*refcnt = found->aux_count;
991		else
992			*refcnt = 0;
993	}
994
995	return (found != NULL);
996}
997
998void
999spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1000{
1001	spa_aux_t search, *found;
1002	avl_index_t where;
1003
1004	search.aux_guid = vd->vdev_guid;
1005	found = avl_find(avl, &search, &where);
1006	ASSERT(found != NULL);
1007	ASSERT(found->aux_pool == 0ULL);
1008
1009	found->aux_pool = spa_guid(vd->vdev_spa);
1010}
1011
1012/*
1013 * Spares are tracked globally due to the following constraints:
1014 *
1015 * 	- A spare may be part of multiple pools.
1016 * 	- A spare may be added to a pool even if it's actively in use within
1017 *	  another pool.
1018 * 	- A spare in use in any pool can only be the source of a replacement if
1019 *	  the target is a spare in the same pool.
1020 *
1021 * We keep track of all spares on the system through the use of a reference
1022 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1023 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1024 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1025 * inactive).  When a spare is made active (used to replace a device in the
1026 * pool), we also keep track of which pool its been made a part of.
1027 *
1028 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1029 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1030 * separate spare lock exists for the status query path, which does not need to
1031 * be completely consistent with respect to other vdev configuration changes.
1032 */
1033
1034static int
1035spa_spare_compare(const void *a, const void *b)
1036{
1037	return (spa_aux_compare(a, b));
1038}
1039
1040void
1041spa_spare_add(vdev_t *vd)
1042{
1043	mutex_enter(&spa_spare_lock);
1044	ASSERT(!vd->vdev_isspare);
1045	spa_aux_add(vd, &spa_spare_avl);
1046	vd->vdev_isspare = B_TRUE;
1047	mutex_exit(&spa_spare_lock);
1048}
1049
1050void
1051spa_spare_remove(vdev_t *vd)
1052{
1053	mutex_enter(&spa_spare_lock);
1054	ASSERT(vd->vdev_isspare);
1055	spa_aux_remove(vd, &spa_spare_avl);
1056	vd->vdev_isspare = B_FALSE;
1057	mutex_exit(&spa_spare_lock);
1058}
1059
1060boolean_t
1061spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1062{
1063	boolean_t found;
1064
1065	mutex_enter(&spa_spare_lock);
1066	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1067	mutex_exit(&spa_spare_lock);
1068
1069	return (found);
1070}
1071
1072void
1073spa_spare_activate(vdev_t *vd)
1074{
1075	mutex_enter(&spa_spare_lock);
1076	ASSERT(vd->vdev_isspare);
1077	spa_aux_activate(vd, &spa_spare_avl);
1078	mutex_exit(&spa_spare_lock);
1079}
1080
1081/*
1082 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1083 * Cache devices currently only support one pool per cache device, and so
1084 * for these devices the aux reference count is currently unused beyond 1.
1085 */
1086
1087static int
1088spa_l2cache_compare(const void *a, const void *b)
1089{
1090	return (spa_aux_compare(a, b));
1091}
1092
1093void
1094spa_l2cache_add(vdev_t *vd)
1095{
1096	mutex_enter(&spa_l2cache_lock);
1097	ASSERT(!vd->vdev_isl2cache);
1098	spa_aux_add(vd, &spa_l2cache_avl);
1099	vd->vdev_isl2cache = B_TRUE;
1100	mutex_exit(&spa_l2cache_lock);
1101}
1102
1103void
1104spa_l2cache_remove(vdev_t *vd)
1105{
1106	mutex_enter(&spa_l2cache_lock);
1107	ASSERT(vd->vdev_isl2cache);
1108	spa_aux_remove(vd, &spa_l2cache_avl);
1109	vd->vdev_isl2cache = B_FALSE;
1110	mutex_exit(&spa_l2cache_lock);
1111}
1112
1113boolean_t
1114spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1115{
1116	boolean_t found;
1117
1118	mutex_enter(&spa_l2cache_lock);
1119	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1120	mutex_exit(&spa_l2cache_lock);
1121
1122	return (found);
1123}
1124
1125void
1126spa_l2cache_activate(vdev_t *vd)
1127{
1128	mutex_enter(&spa_l2cache_lock);
1129	ASSERT(vd->vdev_isl2cache);
1130	spa_aux_activate(vd, &spa_l2cache_avl);
1131	mutex_exit(&spa_l2cache_lock);
1132}
1133
1134/*
1135 * ==========================================================================
1136 * SPA vdev locking
1137 * ==========================================================================
1138 */
1139
1140/*
1141 * Lock the given spa_t for the purpose of adding or removing a vdev.
1142 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1143 * It returns the next transaction group for the spa_t.
1144 */
1145uint64_t
1146spa_vdev_enter(spa_t *spa)
1147{
1148	mutex_enter(&spa->spa_vdev_top_lock);
1149	mutex_enter(&spa_namespace_lock);
1150	return (spa_vdev_config_enter(spa));
1151}
1152
1153/*
1154 * Internal implementation for spa_vdev_enter().  Used when a vdev
1155 * operation requires multiple syncs (i.e. removing a device) while
1156 * keeping the spa_namespace_lock held.
1157 */
1158uint64_t
1159spa_vdev_config_enter(spa_t *spa)
1160{
1161	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1162
1163	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1164
1165	return (spa_last_synced_txg(spa) + 1);
1166}
1167
1168/*
1169 * Used in combination with spa_vdev_config_enter() to allow the syncing
1170 * of multiple transactions without releasing the spa_namespace_lock.
1171 */
1172void
1173spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1174{
1175	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1176
1177	int config_changed = B_FALSE;
1178
1179	ASSERT(txg > spa_last_synced_txg(spa));
1180
1181	spa->spa_pending_vdev = NULL;
1182
1183	/*
1184	 * Reassess the DTLs.
1185	 */
1186	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1187
1188	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1189		config_changed = B_TRUE;
1190		spa->spa_config_generation++;
1191	}
1192
1193	/*
1194	 * Verify the metaslab classes.
1195	 */
1196	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1197	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1198
1199	spa_config_exit(spa, SCL_ALL, spa);
1200
1201	/*
1202	 * Panic the system if the specified tag requires it.  This
1203	 * is useful for ensuring that configurations are updated
1204	 * transactionally.
1205	 */
1206	if (zio_injection_enabled)
1207		zio_handle_panic_injection(spa, tag, 0);
1208
1209	/*
1210	 * Note: this txg_wait_synced() is important because it ensures
1211	 * that there won't be more than one config change per txg.
1212	 * This allows us to use the txg as the generation number.
1213	 */
1214	if (error == 0)
1215		txg_wait_synced(spa->spa_dsl_pool, txg);
1216
1217	if (vd != NULL) {
1218		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1219		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1220		vdev_free(vd);
1221		spa_config_exit(spa, SCL_ALL, spa);
1222	}
1223
1224	/*
1225	 * If the config changed, update the config cache.
1226	 */
1227	if (config_changed)
1228		spa_config_sync(spa, B_FALSE, B_TRUE);
1229}
1230
1231/*
1232 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1233 * locking of spa_vdev_enter(), we also want make sure the transactions have
1234 * synced to disk, and then update the global configuration cache with the new
1235 * information.
1236 */
1237int
1238spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1239{
1240	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1241	mutex_exit(&spa_namespace_lock);
1242	mutex_exit(&spa->spa_vdev_top_lock);
1243
1244	return (error);
1245}
1246
1247/*
1248 * Lock the given spa_t for the purpose of changing vdev state.
1249 */
1250void
1251spa_vdev_state_enter(spa_t *spa, int oplocks)
1252{
1253	int locks = SCL_STATE_ALL | oplocks;
1254
1255	/*
1256	 * Root pools may need to read of the underlying devfs filesystem
1257	 * when opening up a vdev.  Unfortunately if we're holding the
1258	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1259	 * the read from the root filesystem.  Instead we "prefetch"
1260	 * the associated vnodes that we need prior to opening the
1261	 * underlying devices and cache them so that we can prevent
1262	 * any I/O when we are doing the actual open.
1263	 */
1264	if (spa_is_root(spa)) {
1265		int low = locks & ~(SCL_ZIO - 1);
1266		int high = locks & ~low;
1267
1268		spa_config_enter(spa, high, spa, RW_WRITER);
1269		vdev_hold(spa->spa_root_vdev);
1270		spa_config_enter(spa, low, spa, RW_WRITER);
1271	} else {
1272		spa_config_enter(spa, locks, spa, RW_WRITER);
1273	}
1274	spa->spa_vdev_locks = locks;
1275}
1276
1277int
1278spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1279{
1280	boolean_t config_changed = B_FALSE;
1281
1282	if (vd != NULL || error == 0)
1283		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1284		    0, 0, B_FALSE);
1285
1286	if (vd != NULL) {
1287		vdev_state_dirty(vd->vdev_top);
1288		config_changed = B_TRUE;
1289		spa->spa_config_generation++;
1290	}
1291
1292	if (spa_is_root(spa))
1293		vdev_rele(spa->spa_root_vdev);
1294
1295	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1296	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1297
1298	/*
1299	 * If anything changed, wait for it to sync.  This ensures that,
1300	 * from the system administrator's perspective, zpool(1M) commands
1301	 * are synchronous.  This is important for things like zpool offline:
1302	 * when the command completes, you expect no further I/O from ZFS.
1303	 */
1304	if (vd != NULL)
1305		txg_wait_synced(spa->spa_dsl_pool, 0);
1306
1307	/*
1308	 * If the config changed, update the config cache.
1309	 */
1310	if (config_changed) {
1311		mutex_enter(&spa_namespace_lock);
1312		spa_config_sync(spa, B_FALSE, B_TRUE);
1313		mutex_exit(&spa_namespace_lock);
1314	}
1315
1316	return (error);
1317}
1318
1319/*
1320 * ==========================================================================
1321 * Miscellaneous functions
1322 * ==========================================================================
1323 */
1324
1325void
1326spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1327{
1328	if (!nvlist_exists(spa->spa_label_features, feature)) {
1329		fnvlist_add_boolean(spa->spa_label_features, feature);
1330		/*
1331		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1332		 * dirty the vdev config because lock SCL_CONFIG is not held.
1333		 * Thankfully, in this case we don't need to dirty the config
1334		 * because it will be written out anyway when we finish
1335		 * creating the pool.
1336		 */
1337		if (tx->tx_txg != TXG_INITIAL)
1338			vdev_config_dirty(spa->spa_root_vdev);
1339	}
1340}
1341
1342void
1343spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1344{
1345	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1346		vdev_config_dirty(spa->spa_root_vdev);
1347}
1348
1349/*
1350 * Rename a spa_t.
1351 */
1352int
1353spa_rename(const char *name, const char *newname)
1354{
1355	spa_t *spa;
1356	int err;
1357
1358	/*
1359	 * Lookup the spa_t and grab the config lock for writing.  We need to
1360	 * actually open the pool so that we can sync out the necessary labels.
1361	 * It's OK to call spa_open() with the namespace lock held because we
1362	 * allow recursive calls for other reasons.
1363	 */
1364	mutex_enter(&spa_namespace_lock);
1365	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1366		mutex_exit(&spa_namespace_lock);
1367		return (err);
1368	}
1369
1370	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1371
1372	avl_remove(&spa_namespace_avl, spa);
1373	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1374	avl_add(&spa_namespace_avl, spa);
1375
1376	/*
1377	 * Sync all labels to disk with the new names by marking the root vdev
1378	 * dirty and waiting for it to sync.  It will pick up the new pool name
1379	 * during the sync.
1380	 */
1381	vdev_config_dirty(spa->spa_root_vdev);
1382
1383	spa_config_exit(spa, SCL_ALL, FTAG);
1384
1385	txg_wait_synced(spa->spa_dsl_pool, 0);
1386
1387	/*
1388	 * Sync the updated config cache.
1389	 */
1390	spa_config_sync(spa, B_FALSE, B_TRUE);
1391
1392	spa_close(spa, FTAG);
1393
1394	mutex_exit(&spa_namespace_lock);
1395
1396	return (0);
1397}
1398
1399/*
1400 * Return the spa_t associated with given pool_guid, if it exists.  If
1401 * device_guid is non-zero, determine whether the pool exists *and* contains
1402 * a device with the specified device_guid.
1403 */
1404spa_t *
1405spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1406{
1407	spa_t *spa;
1408	avl_tree_t *t = &spa_namespace_avl;
1409
1410	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1411
1412	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1413		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1414			continue;
1415		if (spa->spa_root_vdev == NULL)
1416			continue;
1417		if (spa_guid(spa) == pool_guid) {
1418			if (device_guid == 0)
1419				break;
1420
1421			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1422			    device_guid) != NULL)
1423				break;
1424
1425			/*
1426			 * Check any devices we may be in the process of adding.
1427			 */
1428			if (spa->spa_pending_vdev) {
1429				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1430				    device_guid) != NULL)
1431					break;
1432			}
1433		}
1434	}
1435
1436	return (spa);
1437}
1438
1439/*
1440 * Determine whether a pool with the given pool_guid exists.
1441 */
1442boolean_t
1443spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1444{
1445	return (spa_by_guid(pool_guid, device_guid) != NULL);
1446}
1447
1448char *
1449spa_strdup(const char *s)
1450{
1451	size_t len;
1452	char *new;
1453
1454	len = strlen(s);
1455	new = kmem_alloc(len + 1, KM_SLEEP);
1456	bcopy(s, new, len);
1457	new[len] = '\0';
1458
1459	return (new);
1460}
1461
1462void
1463spa_strfree(char *s)
1464{
1465	kmem_free(s, strlen(s) + 1);
1466}
1467
1468uint64_t
1469spa_get_random(uint64_t range)
1470{
1471	uint64_t r;
1472
1473	ASSERT(range != 0);
1474
1475	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1476
1477	return (r % range);
1478}
1479
1480uint64_t
1481spa_generate_guid(spa_t *spa)
1482{
1483	uint64_t guid = spa_get_random(-1ULL);
1484
1485	if (spa != NULL) {
1486		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1487			guid = spa_get_random(-1ULL);
1488	} else {
1489		while (guid == 0 || spa_guid_exists(guid, 0))
1490			guid = spa_get_random(-1ULL);
1491	}
1492
1493	return (guid);
1494}
1495
1496void
1497snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1498{
1499	char type[256];
1500	char *checksum = NULL;
1501	char *compress = NULL;
1502
1503	if (bp != NULL) {
1504		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1505			dmu_object_byteswap_t bswap =
1506			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1507			(void) snprintf(type, sizeof (type), "bswap %s %s",
1508			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1509			    "metadata" : "data",
1510			    dmu_ot_byteswap[bswap].ob_name);
1511		} else {
1512			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1513			    sizeof (type));
1514		}
1515		if (!BP_IS_EMBEDDED(bp)) {
1516			checksum =
1517			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1518		}
1519		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1520	}
1521
1522	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1523	    compress);
1524}
1525
1526void
1527spa_freeze(spa_t *spa)
1528{
1529	uint64_t freeze_txg = 0;
1530
1531	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1532	if (spa->spa_freeze_txg == UINT64_MAX) {
1533		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1534		spa->spa_freeze_txg = freeze_txg;
1535	}
1536	spa_config_exit(spa, SCL_ALL, FTAG);
1537	if (freeze_txg != 0)
1538		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1539}
1540
1541void
1542zfs_panic_recover(const char *fmt, ...)
1543{
1544	va_list adx;
1545
1546	va_start(adx, fmt);
1547	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1548	va_end(adx);
1549}
1550
1551/*
1552 * This is a stripped-down version of strtoull, suitable only for converting
1553 * lowercase hexadecimal numbers that don't overflow.
1554 */
1555uint64_t
1556zfs_strtonum(const char *str, char **nptr)
1557{
1558	uint64_t val = 0;
1559	char c;
1560	int digit;
1561
1562	while ((c = *str) != '\0') {
1563		if (c >= '0' && c <= '9')
1564			digit = c - '0';
1565		else if (c >= 'a' && c <= 'f')
1566			digit = 10 + c - 'a';
1567		else
1568			break;
1569
1570		val *= 16;
1571		val += digit;
1572
1573		str++;
1574	}
1575
1576	if (nptr)
1577		*nptr = (char *)str;
1578
1579	return (val);
1580}
1581
1582/*
1583 * ==========================================================================
1584 * Accessor functions
1585 * ==========================================================================
1586 */
1587
1588boolean_t
1589spa_shutting_down(spa_t *spa)
1590{
1591	return (spa->spa_async_suspended);
1592}
1593
1594dsl_pool_t *
1595spa_get_dsl(spa_t *spa)
1596{
1597	return (spa->spa_dsl_pool);
1598}
1599
1600boolean_t
1601spa_is_initializing(spa_t *spa)
1602{
1603	return (spa->spa_is_initializing);
1604}
1605
1606blkptr_t *
1607spa_get_rootblkptr(spa_t *spa)
1608{
1609	return (&spa->spa_ubsync.ub_rootbp);
1610}
1611
1612void
1613spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1614{
1615	spa->spa_uberblock.ub_rootbp = *bp;
1616}
1617
1618void
1619spa_altroot(spa_t *spa, char *buf, size_t buflen)
1620{
1621	if (spa->spa_root == NULL)
1622		buf[0] = '\0';
1623	else
1624		(void) strncpy(buf, spa->spa_root, buflen);
1625}
1626
1627int
1628spa_sync_pass(spa_t *spa)
1629{
1630	return (spa->spa_sync_pass);
1631}
1632
1633char *
1634spa_name(spa_t *spa)
1635{
1636	return (spa->spa_name);
1637}
1638
1639uint64_t
1640spa_guid(spa_t *spa)
1641{
1642	dsl_pool_t *dp = spa_get_dsl(spa);
1643	uint64_t guid;
1644
1645	/*
1646	 * If we fail to parse the config during spa_load(), we can go through
1647	 * the error path (which posts an ereport) and end up here with no root
1648	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1649	 * this case.
1650	 */
1651	if (spa->spa_root_vdev == NULL)
1652		return (spa->spa_config_guid);
1653
1654	guid = spa->spa_last_synced_guid != 0 ?
1655	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1656
1657	/*
1658	 * Return the most recently synced out guid unless we're
1659	 * in syncing context.
1660	 */
1661	if (dp && dsl_pool_sync_context(dp))
1662		return (spa->spa_root_vdev->vdev_guid);
1663	else
1664		return (guid);
1665}
1666
1667uint64_t
1668spa_load_guid(spa_t *spa)
1669{
1670	/*
1671	 * This is a GUID that exists solely as a reference for the
1672	 * purposes of the arc.  It is generated at load time, and
1673	 * is never written to persistent storage.
1674	 */
1675	return (spa->spa_load_guid);
1676}
1677
1678uint64_t
1679spa_last_synced_txg(spa_t *spa)
1680{
1681	return (spa->spa_ubsync.ub_txg);
1682}
1683
1684uint64_t
1685spa_first_txg(spa_t *spa)
1686{
1687	return (spa->spa_first_txg);
1688}
1689
1690uint64_t
1691spa_syncing_txg(spa_t *spa)
1692{
1693	return (spa->spa_syncing_txg);
1694}
1695
1696pool_state_t
1697spa_state(spa_t *spa)
1698{
1699	return (spa->spa_state);
1700}
1701
1702spa_load_state_t
1703spa_load_state(spa_t *spa)
1704{
1705	return (spa->spa_load_state);
1706}
1707
1708uint64_t
1709spa_freeze_txg(spa_t *spa)
1710{
1711	return (spa->spa_freeze_txg);
1712}
1713
1714/* ARGSUSED */
1715uint64_t
1716spa_get_asize(spa_t *spa, uint64_t lsize)
1717{
1718	return (lsize * spa_asize_inflation);
1719}
1720
1721/*
1722 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1723 * or at least 32MB.
1724 *
1725 * See the comment above spa_slop_shift for details.
1726 */
1727uint64_t
1728spa_get_slop_space(spa_t *spa) {
1729	uint64_t space = spa_get_dspace(spa);
1730	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1731}
1732
1733uint64_t
1734spa_get_dspace(spa_t *spa)
1735{
1736	return (spa->spa_dspace);
1737}
1738
1739void
1740spa_update_dspace(spa_t *spa)
1741{
1742	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1743	    ddt_get_dedup_dspace(spa);
1744}
1745
1746/*
1747 * Return the failure mode that has been set to this pool. The default
1748 * behavior will be to block all I/Os when a complete failure occurs.
1749 */
1750uint8_t
1751spa_get_failmode(spa_t *spa)
1752{
1753	return (spa->spa_failmode);
1754}
1755
1756boolean_t
1757spa_suspended(spa_t *spa)
1758{
1759	return (spa->spa_suspended);
1760}
1761
1762uint64_t
1763spa_version(spa_t *spa)
1764{
1765	return (spa->spa_ubsync.ub_version);
1766}
1767
1768boolean_t
1769spa_deflate(spa_t *spa)
1770{
1771	return (spa->spa_deflate);
1772}
1773
1774metaslab_class_t *
1775spa_normal_class(spa_t *spa)
1776{
1777	return (spa->spa_normal_class);
1778}
1779
1780metaslab_class_t *
1781spa_log_class(spa_t *spa)
1782{
1783	return (spa->spa_log_class);
1784}
1785
1786void
1787spa_evicting_os_register(spa_t *spa, objset_t *os)
1788{
1789	mutex_enter(&spa->spa_evicting_os_lock);
1790	list_insert_head(&spa->spa_evicting_os_list, os);
1791	mutex_exit(&spa->spa_evicting_os_lock);
1792}
1793
1794void
1795spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1796{
1797	mutex_enter(&spa->spa_evicting_os_lock);
1798	list_remove(&spa->spa_evicting_os_list, os);
1799	cv_broadcast(&spa->spa_evicting_os_cv);
1800	mutex_exit(&spa->spa_evicting_os_lock);
1801}
1802
1803void
1804spa_evicting_os_wait(spa_t *spa)
1805{
1806	mutex_enter(&spa->spa_evicting_os_lock);
1807	while (!list_is_empty(&spa->spa_evicting_os_list))
1808		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1809	mutex_exit(&spa->spa_evicting_os_lock);
1810
1811	dmu_buf_user_evict_wait();
1812}
1813
1814int
1815spa_max_replication(spa_t *spa)
1816{
1817	/*
1818	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1819	 * handle BPs with more than one DVA allocated.  Set our max
1820	 * replication level accordingly.
1821	 */
1822	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1823		return (1);
1824	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1825}
1826
1827int
1828spa_prev_software_version(spa_t *spa)
1829{
1830	return (spa->spa_prev_software_version);
1831}
1832
1833uint64_t
1834spa_deadman_synctime(spa_t *spa)
1835{
1836	return (spa->spa_deadman_synctime);
1837}
1838
1839uint64_t
1840dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1841{
1842	uint64_t asize = DVA_GET_ASIZE(dva);
1843	uint64_t dsize = asize;
1844
1845	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1846
1847	if (asize != 0 && spa->spa_deflate) {
1848		uint64_t vdev = DVA_GET_VDEV(dva);
1849		vdev_t *vd = vdev_lookup_top(spa, vdev);
1850		if (vd == NULL) {
1851			panic(
1852			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1853			    (u_longlong_t)vdev, (u_longlong_t)asize);
1854		}
1855		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1856	}
1857
1858	return (dsize);
1859}
1860
1861uint64_t
1862bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1863{
1864	uint64_t dsize = 0;
1865
1866	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1867		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1868
1869	return (dsize);
1870}
1871
1872uint64_t
1873bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1874{
1875	uint64_t dsize = 0;
1876
1877	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1878
1879	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1880		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1881
1882	spa_config_exit(spa, SCL_VDEV, FTAG);
1883
1884	return (dsize);
1885}
1886
1887/*
1888 * ==========================================================================
1889 * Initialization and Termination
1890 * ==========================================================================
1891 */
1892
1893static int
1894spa_name_compare(const void *a1, const void *a2)
1895{
1896	const spa_t *s1 = a1;
1897	const spa_t *s2 = a2;
1898	int s;
1899
1900	s = strcmp(s1->spa_name, s2->spa_name);
1901	if (s > 0)
1902		return (1);
1903	if (s < 0)
1904		return (-1);
1905	return (0);
1906}
1907
1908int
1909spa_busy(void)
1910{
1911	return (spa_active_count);
1912}
1913
1914void
1915spa_boot_init()
1916{
1917	spa_config_load();
1918}
1919
1920#ifdef _KERNEL
1921EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1922#endif
1923
1924void
1925spa_init(int mode)
1926{
1927	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1928	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1929	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1930	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1931
1932	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1933	    offsetof(spa_t, spa_avl));
1934
1935	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1936	    offsetof(spa_aux_t, aux_avl));
1937
1938	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1939	    offsetof(spa_aux_t, aux_avl));
1940
1941	spa_mode_global = mode;
1942
1943#ifdef illumos
1944#ifdef _KERNEL
1945	spa_arch_init();
1946#else
1947	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1948		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1949		if (arc_procfd == -1) {
1950			perror("could not enable watchpoints: "
1951			    "opening /proc/self/ctl failed: ");
1952		} else {
1953			arc_watch = B_TRUE;
1954		}
1955	}
1956#endif
1957#endif /* illumos */
1958	refcount_sysinit();
1959	unique_init();
1960	range_tree_init();
1961	zio_init();
1962	lz4_init();
1963	dmu_init();
1964	zil_init();
1965	vdev_cache_stat_init();
1966	zfs_prop_init();
1967	zpool_prop_init();
1968	zpool_feature_init();
1969	spa_config_load();
1970	l2arc_start();
1971#ifndef illumos
1972#ifdef _KERNEL
1973	zfs_deadman_init();
1974#endif
1975#endif	/* !illumos */
1976}
1977
1978void
1979spa_fini(void)
1980{
1981	l2arc_stop();
1982
1983	spa_evict_all();
1984
1985	vdev_cache_stat_fini();
1986	zil_fini();
1987	dmu_fini();
1988	lz4_fini();
1989	zio_fini();
1990	range_tree_fini();
1991	unique_fini();
1992	refcount_fini();
1993
1994	avl_destroy(&spa_namespace_avl);
1995	avl_destroy(&spa_spare_avl);
1996	avl_destroy(&spa_l2cache_avl);
1997
1998	cv_destroy(&spa_namespace_cv);
1999	mutex_destroy(&spa_namespace_lock);
2000	mutex_destroy(&spa_spare_lock);
2001	mutex_destroy(&spa_l2cache_lock);
2002}
2003
2004/*
2005 * Return whether this pool has slogs. No locking needed.
2006 * It's not a problem if the wrong answer is returned as it's only for
2007 * performance and not correctness
2008 */
2009boolean_t
2010spa_has_slogs(spa_t *spa)
2011{
2012	return (spa->spa_log_class->mc_rotor != NULL);
2013}
2014
2015spa_log_state_t
2016spa_get_log_state(spa_t *spa)
2017{
2018	return (spa->spa_log_state);
2019}
2020
2021void
2022spa_set_log_state(spa_t *spa, spa_log_state_t state)
2023{
2024	spa->spa_log_state = state;
2025}
2026
2027boolean_t
2028spa_is_root(spa_t *spa)
2029{
2030	return (spa->spa_is_root);
2031}
2032
2033boolean_t
2034spa_writeable(spa_t *spa)
2035{
2036	return (!!(spa->spa_mode & FWRITE));
2037}
2038
2039/*
2040 * Returns true if there is a pending sync task in any of the current
2041 * syncing txg, the current quiescing txg, or the current open txg.
2042 */
2043boolean_t
2044spa_has_pending_synctask(spa_t *spa)
2045{
2046	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2047}
2048
2049int
2050spa_mode(spa_t *spa)
2051{
2052	return (spa->spa_mode);
2053}
2054
2055uint64_t
2056spa_bootfs(spa_t *spa)
2057{
2058	return (spa->spa_bootfs);
2059}
2060
2061uint64_t
2062spa_delegation(spa_t *spa)
2063{
2064	return (spa->spa_delegation);
2065}
2066
2067objset_t *
2068spa_meta_objset(spa_t *spa)
2069{
2070	return (spa->spa_meta_objset);
2071}
2072
2073enum zio_checksum
2074spa_dedup_checksum(spa_t *spa)
2075{
2076	return (spa->spa_dedup_checksum);
2077}
2078
2079/*
2080 * Reset pool scan stat per scan pass (or reboot).
2081 */
2082void
2083spa_scan_stat_init(spa_t *spa)
2084{
2085	/* data not stored on disk */
2086	spa->spa_scan_pass_start = gethrestime_sec();
2087	spa->spa_scan_pass_exam = 0;
2088	vdev_scan_stat_init(spa->spa_root_vdev);
2089}
2090
2091/*
2092 * Get scan stats for zpool status reports
2093 */
2094int
2095spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2096{
2097	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2098
2099	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2100		return (SET_ERROR(ENOENT));
2101	bzero(ps, sizeof (pool_scan_stat_t));
2102
2103	/* data stored on disk */
2104	ps->pss_func = scn->scn_phys.scn_func;
2105	ps->pss_start_time = scn->scn_phys.scn_start_time;
2106	ps->pss_end_time = scn->scn_phys.scn_end_time;
2107	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2108	ps->pss_examined = scn->scn_phys.scn_examined;
2109	ps->pss_to_process = scn->scn_phys.scn_to_process;
2110	ps->pss_processed = scn->scn_phys.scn_processed;
2111	ps->pss_errors = scn->scn_phys.scn_errors;
2112	ps->pss_state = scn->scn_phys.scn_state;
2113
2114	/* data not stored on disk */
2115	ps->pss_pass_start = spa->spa_scan_pass_start;
2116	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2117
2118	return (0);
2119}
2120
2121boolean_t
2122spa_debug_enabled(spa_t *spa)
2123{
2124	return (spa->spa_debug);
2125}
2126
2127int
2128spa_maxblocksize(spa_t *spa)
2129{
2130	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2131		return (SPA_MAXBLOCKSIZE);
2132	else
2133		return (SPA_OLD_MAXBLOCKSIZE);
2134}
2135