spa_misc.c revision 297074
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/spa_impl.h>
32#include <sys/spa_boot.h>
33#include <sys/zio.h>
34#include <sys/zio_checksum.h>
35#include <sys/zio_compress.h>
36#include <sys/dmu.h>
37#include <sys/dmu_tx.h>
38#include <sys/zap.h>
39#include <sys/zil.h>
40#include <sys/vdev_impl.h>
41#include <sys/metaslab.h>
42#include <sys/uberblock_impl.h>
43#include <sys/txg.h>
44#include <sys/avl.h>
45#include <sys/unique.h>
46#include <sys/dsl_pool.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
49#include <sys/dsl_scan.h>
50#include <sys/fs/zfs.h>
51#include <sys/metaslab_impl.h>
52#include <sys/arc.h>
53#include <sys/ddt.h>
54#include "zfs_prop.h"
55#include <sys/zfeature.h>
56
57/*
58 * SPA locking
59 *
60 * There are four basic locks for managing spa_t structures:
61 *
62 * spa_namespace_lock (global mutex)
63 *
64 *	This lock must be acquired to do any of the following:
65 *
66 *		- Lookup a spa_t by name
67 *		- Add or remove a spa_t from the namespace
68 *		- Increase spa_refcount from non-zero
69 *		- Check if spa_refcount is zero
70 *		- Rename a spa_t
71 *		- add/remove/attach/detach devices
72 *		- Held for the duration of create/destroy/import/export
73 *
74 *	It does not need to handle recursion.  A create or destroy may
75 *	reference objects (files or zvols) in other pools, but by
76 *	definition they must have an existing reference, and will never need
77 *	to lookup a spa_t by name.
78 *
79 * spa_refcount (per-spa refcount_t protected by mutex)
80 *
81 *	This reference count keep track of any active users of the spa_t.  The
82 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
83 *	the refcount is never really 'zero' - opening a pool implicitly keeps
84 *	some references in the DMU.  Internally we check against spa_minref, but
85 *	present the image of a zero/non-zero value to consumers.
86 *
87 * spa_config_lock[] (per-spa array of rwlocks)
88 *
89 *	This protects the spa_t from config changes, and must be held in
90 *	the following circumstances:
91 *
92 *		- RW_READER to perform I/O to the spa
93 *		- RW_WRITER to change the vdev config
94 *
95 * The locking order is fairly straightforward:
96 *
97 *		spa_namespace_lock	->	spa_refcount
98 *
99 *	The namespace lock must be acquired to increase the refcount from 0
100 *	or to check if it is zero.
101 *
102 *		spa_refcount		->	spa_config_lock[]
103 *
104 *	There must be at least one valid reference on the spa_t to acquire
105 *	the config lock.
106 *
107 *		spa_namespace_lock	->	spa_config_lock[]
108 *
109 *	The namespace lock must always be taken before the config lock.
110 *
111 *
112 * The spa_namespace_lock can be acquired directly and is globally visible.
113 *
114 * The namespace is manipulated using the following functions, all of which
115 * require the spa_namespace_lock to be held.
116 *
117 *	spa_lookup()		Lookup a spa_t by name.
118 *
119 *	spa_add()		Create a new spa_t in the namespace.
120 *
121 *	spa_remove()		Remove a spa_t from the namespace.  This also
122 *				frees up any memory associated with the spa_t.
123 *
124 *	spa_next()		Returns the next spa_t in the system, or the
125 *				first if NULL is passed.
126 *
127 *	spa_evict_all()		Shutdown and remove all spa_t structures in
128 *				the system.
129 *
130 *	spa_guid_exists()	Determine whether a pool/device guid exists.
131 *
132 * The spa_refcount is manipulated using the following functions:
133 *
134 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135 *				called with spa_namespace_lock held if the
136 *				refcount is currently zero.
137 *
138 *	spa_close()		Remove a reference from the spa_t.  This will
139 *				not free the spa_t or remove it from the
140 *				namespace.  No locking is required.
141 *
142 *	spa_refcount_zero()	Returns true if the refcount is currently
143 *				zero.  Must be called with spa_namespace_lock
144 *				held.
145 *
146 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
149 *
150 * To read the configuration, it suffices to hold one of these locks as reader.
151 * To modify the configuration, you must hold all locks as writer.  To modify
152 * vdev state without altering the vdev tree's topology (e.g. online/offline),
153 * you must hold SCL_STATE and SCL_ZIO as writer.
154 *
155 * We use these distinct config locks to avoid recursive lock entry.
156 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157 * block allocations (SCL_ALLOC), which may require reading space maps
158 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
159 *
160 * The spa config locks cannot be normal rwlocks because we need the
161 * ability to hand off ownership.  For example, SCL_ZIO is acquired
162 * by the issuing thread and later released by an interrupt thread.
163 * They do, however, obey the usual write-wanted semantics to prevent
164 * writer (i.e. system administrator) starvation.
165 *
166 * The lock acquisition rules are as follows:
167 *
168 * SCL_CONFIG
169 *	Protects changes to the vdev tree topology, such as vdev
170 *	add/remove/attach/detach.  Protects the dirty config list
171 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
172 *
173 * SCL_STATE
174 *	Protects changes to pool state and vdev state, such as vdev
175 *	online/offline/fault/degrade/clear.  Protects the dirty state list
176 *	(spa_state_dirty_list) and global pool state (spa_state).
177 *
178 * SCL_ALLOC
179 *	Protects changes to metaslab groups and classes.
180 *	Held as reader by metaslab_alloc() and metaslab_claim().
181 *
182 * SCL_ZIO
183 *	Held by bp-level zios (those which have no io_vd upon entry)
184 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
185 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
186 *
187 * SCL_FREE
188 *	Protects changes to metaslab groups and classes.
189 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
190 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191 *	blocks in zio_done() while another i/o that holds either
192 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
193 *
194 * SCL_VDEV
195 *	Held as reader to prevent changes to the vdev tree during trivial
196 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
197 *	other locks, and lower than all of them, to ensure that it's safe
198 *	to acquire regardless of caller context.
199 *
200 * In addition, the following rules apply:
201 *
202 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
203 *	The lock ordering is SCL_CONFIG > spa_props_lock.
204 *
205 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
206 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207 *	or zio_write_phys() -- the caller must ensure that the config cannot
208 *	cannot change in the interim, and that the vdev cannot be reopened.
209 *	SCL_STATE as reader suffices for both.
210 *
211 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
212 *
213 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
214 *				for writing.
215 *
216 *	spa_vdev_exit()		Release the config lock, wait for all I/O
217 *				to complete, sync the updated configs to the
218 *				cache, and release the namespace lock.
219 *
220 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
223 *
224 * spa_rename() is also implemented within this file since it requires
225 * manipulation of the namespace.
226 */
227
228static avl_tree_t spa_namespace_avl;
229kmutex_t spa_namespace_lock;
230static kcondvar_t spa_namespace_cv;
231static int spa_active_count;
232int spa_max_replication_override = SPA_DVAS_PER_BP;
233
234static kmutex_t spa_spare_lock;
235static avl_tree_t spa_spare_avl;
236static kmutex_t spa_l2cache_lock;
237static avl_tree_t spa_l2cache_avl;
238
239kmem_cache_t *spa_buffer_pool;
240int spa_mode_global;
241
242#ifdef ZFS_DEBUG
243/* Everything except dprintf and spa is on by default in debug builds */
244int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245#else
246int zfs_flags = 0;
247#endif
248SYSCTL_DECL(_debug);
249TUNABLE_INT("debug.zfs_flags", &zfs_flags);
250SYSCTL_INT(_debug, OID_AUTO, zfs_flags, CTLFLAG_RWTUN, &zfs_flags, 0,
251    "ZFS debug flags.");
252
253/*
254 * zfs_recover can be set to nonzero to attempt to recover from
255 * otherwise-fatal errors, typically caused by on-disk corruption.  When
256 * set, calls to zfs_panic_recover() will turn into warning messages.
257 * This should only be used as a last resort, as it typically results
258 * in leaked space, or worse.
259 */
260boolean_t zfs_recover = B_FALSE;
261SYSCTL_DECL(_vfs_zfs);
262TUNABLE_INT("vfs.zfs.recover", &zfs_recover);
263SYSCTL_INT(_vfs_zfs, OID_AUTO, recover, CTLFLAG_RWTUN, &zfs_recover, 0,
264    "Try to recover from otherwise-fatal errors.");
265
266static int
267sysctl_vfs_zfs_debug_flags(SYSCTL_HANDLER_ARGS)
268{
269	int err, val;
270
271	val = zfs_flags;
272	err = sysctl_handle_int(oidp, &val, 0, req);
273	if (err != 0 || req->newptr == NULL)
274		return (err);
275
276	/*
277	 * ZFS_DEBUG_MODIFY must be enabled prior to boot so all
278	 * arc buffers in the system have the necessary additional
279	 * checksum data.  However, it is safe to disable at any
280	 * time.
281	 */
282	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
283		val &= ~ZFS_DEBUG_MODIFY;
284	zfs_flags = val;
285
286	return (0);
287}
288TUNABLE_INT("vfs.zfs.debug_flags", &zfs_flags);
289SYSCTL_PROC(_vfs_zfs, OID_AUTO, debug_flags,
290    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(int),
291    sysctl_vfs_zfs_debug_flags, "IU", "Debug flags for ZFS testing.");
292
293/*
294 * If destroy encounters an EIO while reading metadata (e.g. indirect
295 * blocks), space referenced by the missing metadata can not be freed.
296 * Normally this causes the background destroy to become "stalled", as
297 * it is unable to make forward progress.  While in this stalled state,
298 * all remaining space to free from the error-encountering filesystem is
299 * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
300 * permanently leak the space from indirect blocks that can not be read,
301 * and continue to free everything else that it can.
302 *
303 * The default, "stalling" behavior is useful if the storage partially
304 * fails (i.e. some but not all i/os fail), and then later recovers.  In
305 * this case, we will be able to continue pool operations while it is
306 * partially failed, and when it recovers, we can continue to free the
307 * space, with no leaks.  However, note that this case is actually
308 * fairly rare.
309 *
310 * Typically pools either (a) fail completely (but perhaps temporarily,
311 * e.g. a top-level vdev going offline), or (b) have localized,
312 * permanent errors (e.g. disk returns the wrong data due to bit flip or
313 * firmware bug).  In case (a), this setting does not matter because the
314 * pool will be suspended and the sync thread will not be able to make
315 * forward progress regardless.  In case (b), because the error is
316 * permanent, the best we can do is leak the minimum amount of space,
317 * which is what setting this flag will do.  Therefore, it is reasonable
318 * for this flag to normally be set, but we chose the more conservative
319 * approach of not setting it, so that there is no possibility of
320 * leaking space in the "partial temporary" failure case.
321 */
322boolean_t zfs_free_leak_on_eio = B_FALSE;
323
324/*
325 * Expiration time in milliseconds. This value has two meanings. First it is
326 * used to determine when the spa_deadman() logic should fire. By default the
327 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
328 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
329 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
330 * in a system panic.
331 */
332uint64_t zfs_deadman_synctime_ms = 1000000ULL;
333TUNABLE_QUAD("vfs.zfs.deadman_synctime_ms", &zfs_deadman_synctime_ms);
334SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_synctime_ms, CTLFLAG_RDTUN,
335    &zfs_deadman_synctime_ms, 0,
336    "Stalled ZFS I/O expiration time in milliseconds");
337
338/*
339 * Check time in milliseconds. This defines the frequency at which we check
340 * for hung I/O.
341 */
342uint64_t zfs_deadman_checktime_ms = 5000ULL;
343TUNABLE_QUAD("vfs.zfs.deadman_checktime_ms", &zfs_deadman_checktime_ms);
344SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, deadman_checktime_ms, CTLFLAG_RDTUN,
345    &zfs_deadman_checktime_ms, 0,
346    "Period of checks for stalled ZFS I/O in milliseconds");
347
348/*
349 * Default value of -1 for zfs_deadman_enabled is resolved in
350 * zfs_deadman_init()
351 */
352int zfs_deadman_enabled = -1;
353TUNABLE_INT("vfs.zfs.deadman_enabled", &zfs_deadman_enabled);
354SYSCTL_INT(_vfs_zfs, OID_AUTO, deadman_enabled, CTLFLAG_RDTUN,
355    &zfs_deadman_enabled, 0, "Kernel panic on stalled ZFS I/O");
356
357/*
358 * The worst case is single-sector max-parity RAID-Z blocks, in which
359 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
360 * times the size; so just assume that.  Add to this the fact that
361 * we can have up to 3 DVAs per bp, and one more factor of 2 because
362 * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
363 * the worst case is:
364 *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
365 */
366int spa_asize_inflation = 24;
367TUNABLE_INT("vfs.zfs.spa_asize_inflation", &spa_asize_inflation);
368SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_asize_inflation, CTLFLAG_RWTUN,
369    &spa_asize_inflation, 0, "Worst case inflation factor for single sector writes");
370
371#ifndef illumos
372#ifdef _KERNEL
373static void
374zfs_deadman_init()
375{
376	/*
377	 * If we are not i386 or amd64 or in a virtual machine,
378	 * disable ZFS deadman thread by default
379	 */
380	if (zfs_deadman_enabled == -1) {
381#if defined(__amd64__) || defined(__i386__)
382		zfs_deadman_enabled = (vm_guest == VM_GUEST_NO) ? 1 : 0;
383#else
384		zfs_deadman_enabled = 0;
385#endif
386	}
387}
388#endif	/* _KERNEL */
389#endif	/* !illumos */
390
391/*
392 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
393 * the pool to be consumed.  This ensures that we don't run the pool
394 * completely out of space, due to unaccounted changes (e.g. to the MOS).
395 * It also limits the worst-case time to allocate space.  If we have
396 * less than this amount of free space, most ZPL operations (e.g. write,
397 * create) will return ENOSPC.
398 *
399 * Certain operations (e.g. file removal, most administrative actions) can
400 * use half the slop space.  They will only return ENOSPC if less than half
401 * the slop space is free.  Typically, once the pool has less than the slop
402 * space free, the user will use these operations to free up space in the pool.
403 * These are the operations that call dsl_pool_adjustedsize() with the netfree
404 * argument set to TRUE.
405 *
406 * A very restricted set of operations are always permitted, regardless of
407 * the amount of free space.  These are the operations that call
408 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
409 * operations result in a net increase in the amount of space used,
410 * it is possible to run the pool completely out of space, causing it to
411 * be permanently read-only.
412 *
413 * See also the comments in zfs_space_check_t.
414 */
415int spa_slop_shift = 5;
416SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_slop_shift, CTLFLAG_RWTUN,
417    &spa_slop_shift, 0,
418    "Shift value of reserved space (1/(2^spa_slop_shift)).");
419
420/*
421 * ==========================================================================
422 * SPA config locking
423 * ==========================================================================
424 */
425static void
426spa_config_lock_init(spa_t *spa)
427{
428	for (int i = 0; i < SCL_LOCKS; i++) {
429		spa_config_lock_t *scl = &spa->spa_config_lock[i];
430		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
431		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
432		refcount_create_untracked(&scl->scl_count);
433		scl->scl_writer = NULL;
434		scl->scl_write_wanted = 0;
435	}
436}
437
438static void
439spa_config_lock_destroy(spa_t *spa)
440{
441	for (int i = 0; i < SCL_LOCKS; i++) {
442		spa_config_lock_t *scl = &spa->spa_config_lock[i];
443		mutex_destroy(&scl->scl_lock);
444		cv_destroy(&scl->scl_cv);
445		refcount_destroy(&scl->scl_count);
446		ASSERT(scl->scl_writer == NULL);
447		ASSERT(scl->scl_write_wanted == 0);
448	}
449}
450
451int
452spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
453{
454	for (int i = 0; i < SCL_LOCKS; i++) {
455		spa_config_lock_t *scl = &spa->spa_config_lock[i];
456		if (!(locks & (1 << i)))
457			continue;
458		mutex_enter(&scl->scl_lock);
459		if (rw == RW_READER) {
460			if (scl->scl_writer || scl->scl_write_wanted) {
461				mutex_exit(&scl->scl_lock);
462				spa_config_exit(spa, locks ^ (1 << i), tag);
463				return (0);
464			}
465		} else {
466			ASSERT(scl->scl_writer != curthread);
467			if (!refcount_is_zero(&scl->scl_count)) {
468				mutex_exit(&scl->scl_lock);
469				spa_config_exit(spa, locks ^ (1 << i), tag);
470				return (0);
471			}
472			scl->scl_writer = curthread;
473		}
474		(void) refcount_add(&scl->scl_count, tag);
475		mutex_exit(&scl->scl_lock);
476	}
477	return (1);
478}
479
480void
481spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
482{
483	int wlocks_held = 0;
484
485	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
486
487	for (int i = 0; i < SCL_LOCKS; i++) {
488		spa_config_lock_t *scl = &spa->spa_config_lock[i];
489		if (scl->scl_writer == curthread)
490			wlocks_held |= (1 << i);
491		if (!(locks & (1 << i)))
492			continue;
493		mutex_enter(&scl->scl_lock);
494		if (rw == RW_READER) {
495			while (scl->scl_writer || scl->scl_write_wanted) {
496				cv_wait(&scl->scl_cv, &scl->scl_lock);
497			}
498		} else {
499			ASSERT(scl->scl_writer != curthread);
500			while (!refcount_is_zero(&scl->scl_count)) {
501				scl->scl_write_wanted++;
502				cv_wait(&scl->scl_cv, &scl->scl_lock);
503				scl->scl_write_wanted--;
504			}
505			scl->scl_writer = curthread;
506		}
507		(void) refcount_add(&scl->scl_count, tag);
508		mutex_exit(&scl->scl_lock);
509	}
510	ASSERT(wlocks_held <= locks);
511}
512
513void
514spa_config_exit(spa_t *spa, int locks, void *tag)
515{
516	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
517		spa_config_lock_t *scl = &spa->spa_config_lock[i];
518		if (!(locks & (1 << i)))
519			continue;
520		mutex_enter(&scl->scl_lock);
521		ASSERT(!refcount_is_zero(&scl->scl_count));
522		if (refcount_remove(&scl->scl_count, tag) == 0) {
523			ASSERT(scl->scl_writer == NULL ||
524			    scl->scl_writer == curthread);
525			scl->scl_writer = NULL;	/* OK in either case */
526			cv_broadcast(&scl->scl_cv);
527		}
528		mutex_exit(&scl->scl_lock);
529	}
530}
531
532int
533spa_config_held(spa_t *spa, int locks, krw_t rw)
534{
535	int locks_held = 0;
536
537	for (int i = 0; i < SCL_LOCKS; i++) {
538		spa_config_lock_t *scl = &spa->spa_config_lock[i];
539		if (!(locks & (1 << i)))
540			continue;
541		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
542		    (rw == RW_WRITER && scl->scl_writer == curthread))
543			locks_held |= 1 << i;
544	}
545
546	return (locks_held);
547}
548
549/*
550 * ==========================================================================
551 * SPA namespace functions
552 * ==========================================================================
553 */
554
555/*
556 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
557 * Returns NULL if no matching spa_t is found.
558 */
559spa_t *
560spa_lookup(const char *name)
561{
562	static spa_t search;	/* spa_t is large; don't allocate on stack */
563	spa_t *spa;
564	avl_index_t where;
565	char *cp;
566
567	ASSERT(MUTEX_HELD(&spa_namespace_lock));
568
569	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
570
571	/*
572	 * If it's a full dataset name, figure out the pool name and
573	 * just use that.
574	 */
575	cp = strpbrk(search.spa_name, "/@#");
576	if (cp != NULL)
577		*cp = '\0';
578
579	spa = avl_find(&spa_namespace_avl, &search, &where);
580
581	return (spa);
582}
583
584/*
585 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
586 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
587 * looking for potentially hung I/Os.
588 */
589void
590spa_deadman(void *arg)
591{
592	spa_t *spa = arg;
593
594	/*
595	 * Disable the deadman timer if the pool is suspended.
596	 */
597	if (spa_suspended(spa)) {
598#ifdef illumos
599		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
600#else
601		/* Nothing.  just don't schedule any future callouts. */
602#endif
603		return;
604	}
605
606	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
607	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
608	    ++spa->spa_deadman_calls);
609	if (zfs_deadman_enabled)
610		vdev_deadman(spa->spa_root_vdev);
611}
612
613/*
614 * Create an uninitialized spa_t with the given name.  Requires
615 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
616 * exist by calling spa_lookup() first.
617 */
618spa_t *
619spa_add(const char *name, nvlist_t *config, const char *altroot)
620{
621	spa_t *spa;
622	spa_config_dirent_t *dp;
623#ifdef illumos
624	cyc_handler_t hdlr;
625	cyc_time_t when;
626#endif
627
628	ASSERT(MUTEX_HELD(&spa_namespace_lock));
629
630	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
631
632	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
633	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
634	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
635	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
636	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
637	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
638	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
639	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
640	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
641	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
642	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
643
644	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
645	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
646	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
647	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
648	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
649
650	for (int t = 0; t < TXG_SIZE; t++)
651		bplist_create(&spa->spa_free_bplist[t]);
652
653	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
654	spa->spa_state = POOL_STATE_UNINITIALIZED;
655	spa->spa_freeze_txg = UINT64_MAX;
656	spa->spa_final_txg = UINT64_MAX;
657	spa->spa_load_max_txg = UINT64_MAX;
658	spa->spa_proc = &p0;
659	spa->spa_proc_state = SPA_PROC_NONE;
660
661#ifdef illumos
662	hdlr.cyh_func = spa_deadman;
663	hdlr.cyh_arg = spa;
664	hdlr.cyh_level = CY_LOW_LEVEL;
665#endif
666
667	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
668
669#ifdef illumos
670	/*
671	 * This determines how often we need to check for hung I/Os after
672	 * the cyclic has already fired. Since checking for hung I/Os is
673	 * an expensive operation we don't want to check too frequently.
674	 * Instead wait for 5 seconds before checking again.
675	 */
676	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
677	when.cyt_when = CY_INFINITY;
678	mutex_enter(&cpu_lock);
679	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
680	mutex_exit(&cpu_lock);
681#else	/* !illumos */
682#ifdef _KERNEL
683	callout_init(&spa->spa_deadman_cycid, CALLOUT_MPSAFE);
684#endif
685#endif
686	refcount_create(&spa->spa_refcount);
687	spa_config_lock_init(spa);
688
689	avl_add(&spa_namespace_avl, spa);
690
691	/*
692	 * Set the alternate root, if there is one.
693	 */
694	if (altroot) {
695		spa->spa_root = spa_strdup(altroot);
696		spa_active_count++;
697	}
698
699	/*
700	 * Every pool starts with the default cachefile
701	 */
702	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
703	    offsetof(spa_config_dirent_t, scd_link));
704
705	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
706	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
707	list_insert_head(&spa->spa_config_list, dp);
708
709	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
710	    KM_SLEEP) == 0);
711
712	if (config != NULL) {
713		nvlist_t *features;
714
715		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
716		    &features) == 0) {
717			VERIFY(nvlist_dup(features, &spa->spa_label_features,
718			    0) == 0);
719		}
720
721		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
722	}
723
724	if (spa->spa_label_features == NULL) {
725		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
726		    KM_SLEEP) == 0);
727	}
728
729	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
730
731	spa->spa_min_ashift = INT_MAX;
732	spa->spa_max_ashift = 0;
733
734	/*
735	 * As a pool is being created, treat all features as disabled by
736	 * setting SPA_FEATURE_DISABLED for all entries in the feature
737	 * refcount cache.
738	 */
739	for (int i = 0; i < SPA_FEATURES; i++) {
740		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
741	}
742
743	return (spa);
744}
745
746/*
747 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
748 * spa_namespace_lock.  This is called only after the spa_t has been closed and
749 * deactivated.
750 */
751void
752spa_remove(spa_t *spa)
753{
754	spa_config_dirent_t *dp;
755
756	ASSERT(MUTEX_HELD(&spa_namespace_lock));
757	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
758	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
759
760	nvlist_free(spa->spa_config_splitting);
761
762	avl_remove(&spa_namespace_avl, spa);
763	cv_broadcast(&spa_namespace_cv);
764
765	if (spa->spa_root) {
766		spa_strfree(spa->spa_root);
767		spa_active_count--;
768	}
769
770	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
771		list_remove(&spa->spa_config_list, dp);
772		if (dp->scd_path != NULL)
773			spa_strfree(dp->scd_path);
774		kmem_free(dp, sizeof (spa_config_dirent_t));
775	}
776
777	list_destroy(&spa->spa_config_list);
778
779	nvlist_free(spa->spa_label_features);
780	nvlist_free(spa->spa_load_info);
781	spa_config_set(spa, NULL);
782
783#ifdef illumos
784	mutex_enter(&cpu_lock);
785	if (spa->spa_deadman_cycid != CYCLIC_NONE)
786		cyclic_remove(spa->spa_deadman_cycid);
787	mutex_exit(&cpu_lock);
788	spa->spa_deadman_cycid = CYCLIC_NONE;
789#else	/* !illumos */
790#ifdef _KERNEL
791	callout_drain(&spa->spa_deadman_cycid);
792#endif
793#endif
794
795	refcount_destroy(&spa->spa_refcount);
796
797	spa_config_lock_destroy(spa);
798
799	for (int t = 0; t < TXG_SIZE; t++)
800		bplist_destroy(&spa->spa_free_bplist[t]);
801
802	zio_checksum_templates_free(spa);
803
804	cv_destroy(&spa->spa_async_cv);
805	cv_destroy(&spa->spa_evicting_os_cv);
806	cv_destroy(&spa->spa_proc_cv);
807	cv_destroy(&spa->spa_scrub_io_cv);
808	cv_destroy(&spa->spa_suspend_cv);
809
810	mutex_destroy(&spa->spa_async_lock);
811	mutex_destroy(&spa->spa_errlist_lock);
812	mutex_destroy(&spa->spa_errlog_lock);
813	mutex_destroy(&spa->spa_evicting_os_lock);
814	mutex_destroy(&spa->spa_history_lock);
815	mutex_destroy(&spa->spa_proc_lock);
816	mutex_destroy(&spa->spa_props_lock);
817	mutex_destroy(&spa->spa_cksum_tmpls_lock);
818	mutex_destroy(&spa->spa_scrub_lock);
819	mutex_destroy(&spa->spa_suspend_lock);
820	mutex_destroy(&spa->spa_vdev_top_lock);
821
822	kmem_free(spa, sizeof (spa_t));
823}
824
825/*
826 * Given a pool, return the next pool in the namespace, or NULL if there is
827 * none.  If 'prev' is NULL, return the first pool.
828 */
829spa_t *
830spa_next(spa_t *prev)
831{
832	ASSERT(MUTEX_HELD(&spa_namespace_lock));
833
834	if (prev)
835		return (AVL_NEXT(&spa_namespace_avl, prev));
836	else
837		return (avl_first(&spa_namespace_avl));
838}
839
840/*
841 * ==========================================================================
842 * SPA refcount functions
843 * ==========================================================================
844 */
845
846/*
847 * Add a reference to the given spa_t.  Must have at least one reference, or
848 * have the namespace lock held.
849 */
850void
851spa_open_ref(spa_t *spa, void *tag)
852{
853	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
854	    MUTEX_HELD(&spa_namespace_lock));
855	(void) refcount_add(&spa->spa_refcount, tag);
856}
857
858/*
859 * Remove a reference to the given spa_t.  Must have at least one reference, or
860 * have the namespace lock held.
861 */
862void
863spa_close(spa_t *spa, void *tag)
864{
865	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
866	    MUTEX_HELD(&spa_namespace_lock));
867	(void) refcount_remove(&spa->spa_refcount, tag);
868}
869
870/*
871 * Remove a reference to the given spa_t held by a dsl dir that is
872 * being asynchronously released.  Async releases occur from a taskq
873 * performing eviction of dsl datasets and dirs.  The namespace lock
874 * isn't held and the hold by the object being evicted may contribute to
875 * spa_minref (e.g. dataset or directory released during pool export),
876 * so the asserts in spa_close() do not apply.
877 */
878void
879spa_async_close(spa_t *spa, void *tag)
880{
881	(void) refcount_remove(&spa->spa_refcount, tag);
882}
883
884/*
885 * Check to see if the spa refcount is zero.  Must be called with
886 * spa_namespace_lock held.  We really compare against spa_minref, which is the
887 * number of references acquired when opening a pool
888 */
889boolean_t
890spa_refcount_zero(spa_t *spa)
891{
892	ASSERT(MUTEX_HELD(&spa_namespace_lock));
893
894	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
895}
896
897/*
898 * ==========================================================================
899 * SPA spare and l2cache tracking
900 * ==========================================================================
901 */
902
903/*
904 * Hot spares and cache devices are tracked using the same code below,
905 * for 'auxiliary' devices.
906 */
907
908typedef struct spa_aux {
909	uint64_t	aux_guid;
910	uint64_t	aux_pool;
911	avl_node_t	aux_avl;
912	int		aux_count;
913} spa_aux_t;
914
915static int
916spa_aux_compare(const void *a, const void *b)
917{
918	const spa_aux_t *sa = a;
919	const spa_aux_t *sb = b;
920
921	if (sa->aux_guid < sb->aux_guid)
922		return (-1);
923	else if (sa->aux_guid > sb->aux_guid)
924		return (1);
925	else
926		return (0);
927}
928
929void
930spa_aux_add(vdev_t *vd, avl_tree_t *avl)
931{
932	avl_index_t where;
933	spa_aux_t search;
934	spa_aux_t *aux;
935
936	search.aux_guid = vd->vdev_guid;
937	if ((aux = avl_find(avl, &search, &where)) != NULL) {
938		aux->aux_count++;
939	} else {
940		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
941		aux->aux_guid = vd->vdev_guid;
942		aux->aux_count = 1;
943		avl_insert(avl, aux, where);
944	}
945}
946
947void
948spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
949{
950	spa_aux_t search;
951	spa_aux_t *aux;
952	avl_index_t where;
953
954	search.aux_guid = vd->vdev_guid;
955	aux = avl_find(avl, &search, &where);
956
957	ASSERT(aux != NULL);
958
959	if (--aux->aux_count == 0) {
960		avl_remove(avl, aux);
961		kmem_free(aux, sizeof (spa_aux_t));
962	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
963		aux->aux_pool = 0ULL;
964	}
965}
966
967boolean_t
968spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
969{
970	spa_aux_t search, *found;
971
972	search.aux_guid = guid;
973	found = avl_find(avl, &search, NULL);
974
975	if (pool) {
976		if (found)
977			*pool = found->aux_pool;
978		else
979			*pool = 0ULL;
980	}
981
982	if (refcnt) {
983		if (found)
984			*refcnt = found->aux_count;
985		else
986			*refcnt = 0;
987	}
988
989	return (found != NULL);
990}
991
992void
993spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
994{
995	spa_aux_t search, *found;
996	avl_index_t where;
997
998	search.aux_guid = vd->vdev_guid;
999	found = avl_find(avl, &search, &where);
1000	ASSERT(found != NULL);
1001	ASSERT(found->aux_pool == 0ULL);
1002
1003	found->aux_pool = spa_guid(vd->vdev_spa);
1004}
1005
1006/*
1007 * Spares are tracked globally due to the following constraints:
1008 *
1009 * 	- A spare may be part of multiple pools.
1010 * 	- A spare may be added to a pool even if it's actively in use within
1011 *	  another pool.
1012 * 	- A spare in use in any pool can only be the source of a replacement if
1013 *	  the target is a spare in the same pool.
1014 *
1015 * We keep track of all spares on the system through the use of a reference
1016 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1017 * spare, then we bump the reference count in the AVL tree.  In addition, we set
1018 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1019 * inactive).  When a spare is made active (used to replace a device in the
1020 * pool), we also keep track of which pool its been made a part of.
1021 *
1022 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1023 * called under the spa_namespace lock as part of vdev reconfiguration.  The
1024 * separate spare lock exists for the status query path, which does not need to
1025 * be completely consistent with respect to other vdev configuration changes.
1026 */
1027
1028static int
1029spa_spare_compare(const void *a, const void *b)
1030{
1031	return (spa_aux_compare(a, b));
1032}
1033
1034void
1035spa_spare_add(vdev_t *vd)
1036{
1037	mutex_enter(&spa_spare_lock);
1038	ASSERT(!vd->vdev_isspare);
1039	spa_aux_add(vd, &spa_spare_avl);
1040	vd->vdev_isspare = B_TRUE;
1041	mutex_exit(&spa_spare_lock);
1042}
1043
1044void
1045spa_spare_remove(vdev_t *vd)
1046{
1047	mutex_enter(&spa_spare_lock);
1048	ASSERT(vd->vdev_isspare);
1049	spa_aux_remove(vd, &spa_spare_avl);
1050	vd->vdev_isspare = B_FALSE;
1051	mutex_exit(&spa_spare_lock);
1052}
1053
1054boolean_t
1055spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1056{
1057	boolean_t found;
1058
1059	mutex_enter(&spa_spare_lock);
1060	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1061	mutex_exit(&spa_spare_lock);
1062
1063	return (found);
1064}
1065
1066void
1067spa_spare_activate(vdev_t *vd)
1068{
1069	mutex_enter(&spa_spare_lock);
1070	ASSERT(vd->vdev_isspare);
1071	spa_aux_activate(vd, &spa_spare_avl);
1072	mutex_exit(&spa_spare_lock);
1073}
1074
1075/*
1076 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1077 * Cache devices currently only support one pool per cache device, and so
1078 * for these devices the aux reference count is currently unused beyond 1.
1079 */
1080
1081static int
1082spa_l2cache_compare(const void *a, const void *b)
1083{
1084	return (spa_aux_compare(a, b));
1085}
1086
1087void
1088spa_l2cache_add(vdev_t *vd)
1089{
1090	mutex_enter(&spa_l2cache_lock);
1091	ASSERT(!vd->vdev_isl2cache);
1092	spa_aux_add(vd, &spa_l2cache_avl);
1093	vd->vdev_isl2cache = B_TRUE;
1094	mutex_exit(&spa_l2cache_lock);
1095}
1096
1097void
1098spa_l2cache_remove(vdev_t *vd)
1099{
1100	mutex_enter(&spa_l2cache_lock);
1101	ASSERT(vd->vdev_isl2cache);
1102	spa_aux_remove(vd, &spa_l2cache_avl);
1103	vd->vdev_isl2cache = B_FALSE;
1104	mutex_exit(&spa_l2cache_lock);
1105}
1106
1107boolean_t
1108spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1109{
1110	boolean_t found;
1111
1112	mutex_enter(&spa_l2cache_lock);
1113	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1114	mutex_exit(&spa_l2cache_lock);
1115
1116	return (found);
1117}
1118
1119void
1120spa_l2cache_activate(vdev_t *vd)
1121{
1122	mutex_enter(&spa_l2cache_lock);
1123	ASSERT(vd->vdev_isl2cache);
1124	spa_aux_activate(vd, &spa_l2cache_avl);
1125	mutex_exit(&spa_l2cache_lock);
1126}
1127
1128/*
1129 * ==========================================================================
1130 * SPA vdev locking
1131 * ==========================================================================
1132 */
1133
1134/*
1135 * Lock the given spa_t for the purpose of adding or removing a vdev.
1136 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1137 * It returns the next transaction group for the spa_t.
1138 */
1139uint64_t
1140spa_vdev_enter(spa_t *spa)
1141{
1142	mutex_enter(&spa->spa_vdev_top_lock);
1143	mutex_enter(&spa_namespace_lock);
1144	return (spa_vdev_config_enter(spa));
1145}
1146
1147/*
1148 * Internal implementation for spa_vdev_enter().  Used when a vdev
1149 * operation requires multiple syncs (i.e. removing a device) while
1150 * keeping the spa_namespace_lock held.
1151 */
1152uint64_t
1153spa_vdev_config_enter(spa_t *spa)
1154{
1155	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1156
1157	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1158
1159	return (spa_last_synced_txg(spa) + 1);
1160}
1161
1162/*
1163 * Used in combination with spa_vdev_config_enter() to allow the syncing
1164 * of multiple transactions without releasing the spa_namespace_lock.
1165 */
1166void
1167spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1168{
1169	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170
1171	int config_changed = B_FALSE;
1172
1173	ASSERT(txg > spa_last_synced_txg(spa));
1174
1175	spa->spa_pending_vdev = NULL;
1176
1177	/*
1178	 * Reassess the DTLs.
1179	 */
1180	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1181
1182	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1183		config_changed = B_TRUE;
1184		spa->spa_config_generation++;
1185	}
1186
1187	/*
1188	 * Verify the metaslab classes.
1189	 */
1190	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1191	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1192
1193	spa_config_exit(spa, SCL_ALL, spa);
1194
1195	/*
1196	 * Panic the system if the specified tag requires it.  This
1197	 * is useful for ensuring that configurations are updated
1198	 * transactionally.
1199	 */
1200	if (zio_injection_enabled)
1201		zio_handle_panic_injection(spa, tag, 0);
1202
1203	/*
1204	 * Note: this txg_wait_synced() is important because it ensures
1205	 * that there won't be more than one config change per txg.
1206	 * This allows us to use the txg as the generation number.
1207	 */
1208	if (error == 0)
1209		txg_wait_synced(spa->spa_dsl_pool, txg);
1210
1211	if (vd != NULL) {
1212		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1213		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1214		vdev_free(vd);
1215		spa_config_exit(spa, SCL_ALL, spa);
1216	}
1217
1218	/*
1219	 * If the config changed, update the config cache.
1220	 */
1221	if (config_changed)
1222		spa_config_sync(spa, B_FALSE, B_TRUE);
1223}
1224
1225/*
1226 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1227 * locking of spa_vdev_enter(), we also want make sure the transactions have
1228 * synced to disk, and then update the global configuration cache with the new
1229 * information.
1230 */
1231int
1232spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1233{
1234	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1235	mutex_exit(&spa_namespace_lock);
1236	mutex_exit(&spa->spa_vdev_top_lock);
1237
1238	return (error);
1239}
1240
1241/*
1242 * Lock the given spa_t for the purpose of changing vdev state.
1243 */
1244void
1245spa_vdev_state_enter(spa_t *spa, int oplocks)
1246{
1247	int locks = SCL_STATE_ALL | oplocks;
1248
1249	/*
1250	 * Root pools may need to read of the underlying devfs filesystem
1251	 * when opening up a vdev.  Unfortunately if we're holding the
1252	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1253	 * the read from the root filesystem.  Instead we "prefetch"
1254	 * the associated vnodes that we need prior to opening the
1255	 * underlying devices and cache them so that we can prevent
1256	 * any I/O when we are doing the actual open.
1257	 */
1258	if (spa_is_root(spa)) {
1259		int low = locks & ~(SCL_ZIO - 1);
1260		int high = locks & ~low;
1261
1262		spa_config_enter(spa, high, spa, RW_WRITER);
1263		vdev_hold(spa->spa_root_vdev);
1264		spa_config_enter(spa, low, spa, RW_WRITER);
1265	} else {
1266		spa_config_enter(spa, locks, spa, RW_WRITER);
1267	}
1268	spa->spa_vdev_locks = locks;
1269}
1270
1271int
1272spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1273{
1274	boolean_t config_changed = B_FALSE;
1275
1276	if (vd != NULL || error == 0)
1277		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1278		    0, 0, B_FALSE);
1279
1280	if (vd != NULL) {
1281		vdev_state_dirty(vd->vdev_top);
1282		config_changed = B_TRUE;
1283		spa->spa_config_generation++;
1284	}
1285
1286	if (spa_is_root(spa))
1287		vdev_rele(spa->spa_root_vdev);
1288
1289	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1290	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1291
1292	/*
1293	 * If anything changed, wait for it to sync.  This ensures that,
1294	 * from the system administrator's perspective, zpool(1M) commands
1295	 * are synchronous.  This is important for things like zpool offline:
1296	 * when the command completes, you expect no further I/O from ZFS.
1297	 */
1298	if (vd != NULL)
1299		txg_wait_synced(spa->spa_dsl_pool, 0);
1300
1301	/*
1302	 * If the config changed, update the config cache.
1303	 */
1304	if (config_changed) {
1305		mutex_enter(&spa_namespace_lock);
1306		spa_config_sync(spa, B_FALSE, B_TRUE);
1307		mutex_exit(&spa_namespace_lock);
1308	}
1309
1310	return (error);
1311}
1312
1313/*
1314 * ==========================================================================
1315 * Miscellaneous functions
1316 * ==========================================================================
1317 */
1318
1319void
1320spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1321{
1322	if (!nvlist_exists(spa->spa_label_features, feature)) {
1323		fnvlist_add_boolean(spa->spa_label_features, feature);
1324		/*
1325		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1326		 * dirty the vdev config because lock SCL_CONFIG is not held.
1327		 * Thankfully, in this case we don't need to dirty the config
1328		 * because it will be written out anyway when we finish
1329		 * creating the pool.
1330		 */
1331		if (tx->tx_txg != TXG_INITIAL)
1332			vdev_config_dirty(spa->spa_root_vdev);
1333	}
1334}
1335
1336void
1337spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1338{
1339	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1340		vdev_config_dirty(spa->spa_root_vdev);
1341}
1342
1343/*
1344 * Rename a spa_t.
1345 */
1346int
1347spa_rename(const char *name, const char *newname)
1348{
1349	spa_t *spa;
1350	int err;
1351
1352	/*
1353	 * Lookup the spa_t and grab the config lock for writing.  We need to
1354	 * actually open the pool so that we can sync out the necessary labels.
1355	 * It's OK to call spa_open() with the namespace lock held because we
1356	 * allow recursive calls for other reasons.
1357	 */
1358	mutex_enter(&spa_namespace_lock);
1359	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1360		mutex_exit(&spa_namespace_lock);
1361		return (err);
1362	}
1363
1364	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1365
1366	avl_remove(&spa_namespace_avl, spa);
1367	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1368	avl_add(&spa_namespace_avl, spa);
1369
1370	/*
1371	 * Sync all labels to disk with the new names by marking the root vdev
1372	 * dirty and waiting for it to sync.  It will pick up the new pool name
1373	 * during the sync.
1374	 */
1375	vdev_config_dirty(spa->spa_root_vdev);
1376
1377	spa_config_exit(spa, SCL_ALL, FTAG);
1378
1379	txg_wait_synced(spa->spa_dsl_pool, 0);
1380
1381	/*
1382	 * Sync the updated config cache.
1383	 */
1384	spa_config_sync(spa, B_FALSE, B_TRUE);
1385
1386	spa_close(spa, FTAG);
1387
1388	mutex_exit(&spa_namespace_lock);
1389
1390	return (0);
1391}
1392
1393/*
1394 * Return the spa_t associated with given pool_guid, if it exists.  If
1395 * device_guid is non-zero, determine whether the pool exists *and* contains
1396 * a device with the specified device_guid.
1397 */
1398spa_t *
1399spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1400{
1401	spa_t *spa;
1402	avl_tree_t *t = &spa_namespace_avl;
1403
1404	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1405
1406	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1407		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1408			continue;
1409		if (spa->spa_root_vdev == NULL)
1410			continue;
1411		if (spa_guid(spa) == pool_guid) {
1412			if (device_guid == 0)
1413				break;
1414
1415			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1416			    device_guid) != NULL)
1417				break;
1418
1419			/*
1420			 * Check any devices we may be in the process of adding.
1421			 */
1422			if (spa->spa_pending_vdev) {
1423				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1424				    device_guid) != NULL)
1425					break;
1426			}
1427		}
1428	}
1429
1430	return (spa);
1431}
1432
1433/*
1434 * Determine whether a pool with the given pool_guid exists.
1435 */
1436boolean_t
1437spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1438{
1439	return (spa_by_guid(pool_guid, device_guid) != NULL);
1440}
1441
1442char *
1443spa_strdup(const char *s)
1444{
1445	size_t len;
1446	char *new;
1447
1448	len = strlen(s);
1449	new = kmem_alloc(len + 1, KM_SLEEP);
1450	bcopy(s, new, len);
1451	new[len] = '\0';
1452
1453	return (new);
1454}
1455
1456void
1457spa_strfree(char *s)
1458{
1459	kmem_free(s, strlen(s) + 1);
1460}
1461
1462uint64_t
1463spa_get_random(uint64_t range)
1464{
1465	uint64_t r;
1466
1467	ASSERT(range != 0);
1468
1469	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1470
1471	return (r % range);
1472}
1473
1474uint64_t
1475spa_generate_guid(spa_t *spa)
1476{
1477	uint64_t guid = spa_get_random(-1ULL);
1478
1479	if (spa != NULL) {
1480		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1481			guid = spa_get_random(-1ULL);
1482	} else {
1483		while (guid == 0 || spa_guid_exists(guid, 0))
1484			guid = spa_get_random(-1ULL);
1485	}
1486
1487	return (guid);
1488}
1489
1490void
1491snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1492{
1493	char type[256];
1494	char *checksum = NULL;
1495	char *compress = NULL;
1496
1497	if (bp != NULL) {
1498		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1499			dmu_object_byteswap_t bswap =
1500			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1501			(void) snprintf(type, sizeof (type), "bswap %s %s",
1502			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1503			    "metadata" : "data",
1504			    dmu_ot_byteswap[bswap].ob_name);
1505		} else {
1506			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1507			    sizeof (type));
1508		}
1509		if (!BP_IS_EMBEDDED(bp)) {
1510			checksum =
1511			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1512		}
1513		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1514	}
1515
1516	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1517	    compress);
1518}
1519
1520void
1521spa_freeze(spa_t *spa)
1522{
1523	uint64_t freeze_txg = 0;
1524
1525	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1526	if (spa->spa_freeze_txg == UINT64_MAX) {
1527		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1528		spa->spa_freeze_txg = freeze_txg;
1529	}
1530	spa_config_exit(spa, SCL_ALL, FTAG);
1531	if (freeze_txg != 0)
1532		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1533}
1534
1535void
1536zfs_panic_recover(const char *fmt, ...)
1537{
1538	va_list adx;
1539
1540	va_start(adx, fmt);
1541	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1542	va_end(adx);
1543}
1544
1545/*
1546 * This is a stripped-down version of strtoull, suitable only for converting
1547 * lowercase hexadecimal numbers that don't overflow.
1548 */
1549uint64_t
1550zfs_strtonum(const char *str, char **nptr)
1551{
1552	uint64_t val = 0;
1553	char c;
1554	int digit;
1555
1556	while ((c = *str) != '\0') {
1557		if (c >= '0' && c <= '9')
1558			digit = c - '0';
1559		else if (c >= 'a' && c <= 'f')
1560			digit = 10 + c - 'a';
1561		else
1562			break;
1563
1564		val *= 16;
1565		val += digit;
1566
1567		str++;
1568	}
1569
1570	if (nptr)
1571		*nptr = (char *)str;
1572
1573	return (val);
1574}
1575
1576/*
1577 * ==========================================================================
1578 * Accessor functions
1579 * ==========================================================================
1580 */
1581
1582boolean_t
1583spa_shutting_down(spa_t *spa)
1584{
1585	return (spa->spa_async_suspended);
1586}
1587
1588dsl_pool_t *
1589spa_get_dsl(spa_t *spa)
1590{
1591	return (spa->spa_dsl_pool);
1592}
1593
1594boolean_t
1595spa_is_initializing(spa_t *spa)
1596{
1597	return (spa->spa_is_initializing);
1598}
1599
1600blkptr_t *
1601spa_get_rootblkptr(spa_t *spa)
1602{
1603	return (&spa->spa_ubsync.ub_rootbp);
1604}
1605
1606void
1607spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1608{
1609	spa->spa_uberblock.ub_rootbp = *bp;
1610}
1611
1612void
1613spa_altroot(spa_t *spa, char *buf, size_t buflen)
1614{
1615	if (spa->spa_root == NULL)
1616		buf[0] = '\0';
1617	else
1618		(void) strncpy(buf, spa->spa_root, buflen);
1619}
1620
1621int
1622spa_sync_pass(spa_t *spa)
1623{
1624	return (spa->spa_sync_pass);
1625}
1626
1627char *
1628spa_name(spa_t *spa)
1629{
1630	return (spa->spa_name);
1631}
1632
1633uint64_t
1634spa_guid(spa_t *spa)
1635{
1636	dsl_pool_t *dp = spa_get_dsl(spa);
1637	uint64_t guid;
1638
1639	/*
1640	 * If we fail to parse the config during spa_load(), we can go through
1641	 * the error path (which posts an ereport) and end up here with no root
1642	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1643	 * this case.
1644	 */
1645	if (spa->spa_root_vdev == NULL)
1646		return (spa->spa_config_guid);
1647
1648	guid = spa->spa_last_synced_guid != 0 ?
1649	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1650
1651	/*
1652	 * Return the most recently synced out guid unless we're
1653	 * in syncing context.
1654	 */
1655	if (dp && dsl_pool_sync_context(dp))
1656		return (spa->spa_root_vdev->vdev_guid);
1657	else
1658		return (guid);
1659}
1660
1661uint64_t
1662spa_load_guid(spa_t *spa)
1663{
1664	/*
1665	 * This is a GUID that exists solely as a reference for the
1666	 * purposes of the arc.  It is generated at load time, and
1667	 * is never written to persistent storage.
1668	 */
1669	return (spa->spa_load_guid);
1670}
1671
1672uint64_t
1673spa_last_synced_txg(spa_t *spa)
1674{
1675	return (spa->spa_ubsync.ub_txg);
1676}
1677
1678uint64_t
1679spa_first_txg(spa_t *spa)
1680{
1681	return (spa->spa_first_txg);
1682}
1683
1684uint64_t
1685spa_syncing_txg(spa_t *spa)
1686{
1687	return (spa->spa_syncing_txg);
1688}
1689
1690pool_state_t
1691spa_state(spa_t *spa)
1692{
1693	return (spa->spa_state);
1694}
1695
1696spa_load_state_t
1697spa_load_state(spa_t *spa)
1698{
1699	return (spa->spa_load_state);
1700}
1701
1702uint64_t
1703spa_freeze_txg(spa_t *spa)
1704{
1705	return (spa->spa_freeze_txg);
1706}
1707
1708/* ARGSUSED */
1709uint64_t
1710spa_get_asize(spa_t *spa, uint64_t lsize)
1711{
1712	return (lsize * spa_asize_inflation);
1713}
1714
1715/*
1716 * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1717 * or at least 32MB.
1718 *
1719 * See the comment above spa_slop_shift for details.
1720 */
1721uint64_t
1722spa_get_slop_space(spa_t *spa) {
1723	uint64_t space = spa_get_dspace(spa);
1724	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1725}
1726
1727uint64_t
1728spa_get_dspace(spa_t *spa)
1729{
1730	return (spa->spa_dspace);
1731}
1732
1733void
1734spa_update_dspace(spa_t *spa)
1735{
1736	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1737	    ddt_get_dedup_dspace(spa);
1738}
1739
1740/*
1741 * Return the failure mode that has been set to this pool. The default
1742 * behavior will be to block all I/Os when a complete failure occurs.
1743 */
1744uint8_t
1745spa_get_failmode(spa_t *spa)
1746{
1747	return (spa->spa_failmode);
1748}
1749
1750boolean_t
1751spa_suspended(spa_t *spa)
1752{
1753	return (spa->spa_suspended);
1754}
1755
1756uint64_t
1757spa_version(spa_t *spa)
1758{
1759	return (spa->spa_ubsync.ub_version);
1760}
1761
1762boolean_t
1763spa_deflate(spa_t *spa)
1764{
1765	return (spa->spa_deflate);
1766}
1767
1768metaslab_class_t *
1769spa_normal_class(spa_t *spa)
1770{
1771	return (spa->spa_normal_class);
1772}
1773
1774metaslab_class_t *
1775spa_log_class(spa_t *spa)
1776{
1777	return (spa->spa_log_class);
1778}
1779
1780void
1781spa_evicting_os_register(spa_t *spa, objset_t *os)
1782{
1783	mutex_enter(&spa->spa_evicting_os_lock);
1784	list_insert_head(&spa->spa_evicting_os_list, os);
1785	mutex_exit(&spa->spa_evicting_os_lock);
1786}
1787
1788void
1789spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1790{
1791	mutex_enter(&spa->spa_evicting_os_lock);
1792	list_remove(&spa->spa_evicting_os_list, os);
1793	cv_broadcast(&spa->spa_evicting_os_cv);
1794	mutex_exit(&spa->spa_evicting_os_lock);
1795}
1796
1797void
1798spa_evicting_os_wait(spa_t *spa)
1799{
1800	mutex_enter(&spa->spa_evicting_os_lock);
1801	while (!list_is_empty(&spa->spa_evicting_os_list))
1802		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1803	mutex_exit(&spa->spa_evicting_os_lock);
1804
1805	dmu_buf_user_evict_wait();
1806}
1807
1808int
1809spa_max_replication(spa_t *spa)
1810{
1811	/*
1812	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1813	 * handle BPs with more than one DVA allocated.  Set our max
1814	 * replication level accordingly.
1815	 */
1816	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1817		return (1);
1818	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1819}
1820
1821int
1822spa_prev_software_version(spa_t *spa)
1823{
1824	return (spa->spa_prev_software_version);
1825}
1826
1827uint64_t
1828spa_deadman_synctime(spa_t *spa)
1829{
1830	return (spa->spa_deadman_synctime);
1831}
1832
1833uint64_t
1834dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1835{
1836	uint64_t asize = DVA_GET_ASIZE(dva);
1837	uint64_t dsize = asize;
1838
1839	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1840
1841	if (asize != 0 && spa->spa_deflate) {
1842		uint64_t vdev = DVA_GET_VDEV(dva);
1843		vdev_t *vd = vdev_lookup_top(spa, vdev);
1844		if (vd == NULL) {
1845			panic(
1846			    "dva_get_dsize_sync(): bad DVA %llu:%llu",
1847			    (u_longlong_t)vdev, (u_longlong_t)asize);
1848		}
1849		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1850	}
1851
1852	return (dsize);
1853}
1854
1855uint64_t
1856bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1857{
1858	uint64_t dsize = 0;
1859
1860	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1861		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1862
1863	return (dsize);
1864}
1865
1866uint64_t
1867bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1868{
1869	uint64_t dsize = 0;
1870
1871	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1872
1873	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1874		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1875
1876	spa_config_exit(spa, SCL_VDEV, FTAG);
1877
1878	return (dsize);
1879}
1880
1881/*
1882 * ==========================================================================
1883 * Initialization and Termination
1884 * ==========================================================================
1885 */
1886
1887static int
1888spa_name_compare(const void *a1, const void *a2)
1889{
1890	const spa_t *s1 = a1;
1891	const spa_t *s2 = a2;
1892	int s;
1893
1894	s = strcmp(s1->spa_name, s2->spa_name);
1895	if (s > 0)
1896		return (1);
1897	if (s < 0)
1898		return (-1);
1899	return (0);
1900}
1901
1902int
1903spa_busy(void)
1904{
1905	return (spa_active_count);
1906}
1907
1908void
1909spa_boot_init()
1910{
1911	spa_config_load();
1912}
1913
1914#ifdef _KERNEL
1915EVENTHANDLER_DEFINE(mountroot, spa_boot_init, NULL, 0);
1916#endif
1917
1918void
1919spa_init(int mode)
1920{
1921	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1922	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1923	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1924	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1925
1926	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1927	    offsetof(spa_t, spa_avl));
1928
1929	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1930	    offsetof(spa_aux_t, aux_avl));
1931
1932	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1933	    offsetof(spa_aux_t, aux_avl));
1934
1935	spa_mode_global = mode;
1936
1937#ifdef illumos
1938#ifdef _KERNEL
1939	spa_arch_init();
1940#else
1941	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1942		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1943		if (arc_procfd == -1) {
1944			perror("could not enable watchpoints: "
1945			    "opening /proc/self/ctl failed: ");
1946		} else {
1947			arc_watch = B_TRUE;
1948		}
1949	}
1950#endif
1951#endif /* illumos */
1952	refcount_sysinit();
1953	unique_init();
1954	range_tree_init();
1955	zio_init();
1956	lz4_init();
1957	dmu_init();
1958	zil_init();
1959	vdev_cache_stat_init();
1960	zfs_prop_init();
1961	zpool_prop_init();
1962	zpool_feature_init();
1963	spa_config_load();
1964	l2arc_start();
1965#ifndef illumos
1966#ifdef _KERNEL
1967	zfs_deadman_init();
1968#endif
1969#endif	/* !illumos */
1970}
1971
1972void
1973spa_fini(void)
1974{
1975	l2arc_stop();
1976
1977	spa_evict_all();
1978
1979	vdev_cache_stat_fini();
1980	zil_fini();
1981	dmu_fini();
1982	lz4_fini();
1983	zio_fini();
1984	range_tree_fini();
1985	unique_fini();
1986	refcount_fini();
1987
1988	avl_destroy(&spa_namespace_avl);
1989	avl_destroy(&spa_spare_avl);
1990	avl_destroy(&spa_l2cache_avl);
1991
1992	cv_destroy(&spa_namespace_cv);
1993	mutex_destroy(&spa_namespace_lock);
1994	mutex_destroy(&spa_spare_lock);
1995	mutex_destroy(&spa_l2cache_lock);
1996}
1997
1998/*
1999 * Return whether this pool has slogs. No locking needed.
2000 * It's not a problem if the wrong answer is returned as it's only for
2001 * performance and not correctness
2002 */
2003boolean_t
2004spa_has_slogs(spa_t *spa)
2005{
2006	return (spa->spa_log_class->mc_rotor != NULL);
2007}
2008
2009spa_log_state_t
2010spa_get_log_state(spa_t *spa)
2011{
2012	return (spa->spa_log_state);
2013}
2014
2015void
2016spa_set_log_state(spa_t *spa, spa_log_state_t state)
2017{
2018	spa->spa_log_state = state;
2019}
2020
2021boolean_t
2022spa_is_root(spa_t *spa)
2023{
2024	return (spa->spa_is_root);
2025}
2026
2027boolean_t
2028spa_writeable(spa_t *spa)
2029{
2030	return (!!(spa->spa_mode & FWRITE));
2031}
2032
2033/*
2034 * Returns true if there is a pending sync task in any of the current
2035 * syncing txg, the current quiescing txg, or the current open txg.
2036 */
2037boolean_t
2038spa_has_pending_synctask(spa_t *spa)
2039{
2040	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2041}
2042
2043int
2044spa_mode(spa_t *spa)
2045{
2046	return (spa->spa_mode);
2047}
2048
2049uint64_t
2050spa_bootfs(spa_t *spa)
2051{
2052	return (spa->spa_bootfs);
2053}
2054
2055uint64_t
2056spa_delegation(spa_t *spa)
2057{
2058	return (spa->spa_delegation);
2059}
2060
2061objset_t *
2062spa_meta_objset(spa_t *spa)
2063{
2064	return (spa->spa_meta_objset);
2065}
2066
2067enum zio_checksum
2068spa_dedup_checksum(spa_t *spa)
2069{
2070	return (spa->spa_dedup_checksum);
2071}
2072
2073/*
2074 * Reset pool scan stat per scan pass (or reboot).
2075 */
2076void
2077spa_scan_stat_init(spa_t *spa)
2078{
2079	/* data not stored on disk */
2080	spa->spa_scan_pass_start = gethrestime_sec();
2081	spa->spa_scan_pass_exam = 0;
2082	vdev_scan_stat_init(spa->spa_root_vdev);
2083}
2084
2085/*
2086 * Get scan stats for zpool status reports
2087 */
2088int
2089spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2090{
2091	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2092
2093	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2094		return (SET_ERROR(ENOENT));
2095	bzero(ps, sizeof (pool_scan_stat_t));
2096
2097	/* data stored on disk */
2098	ps->pss_func = scn->scn_phys.scn_func;
2099	ps->pss_start_time = scn->scn_phys.scn_start_time;
2100	ps->pss_end_time = scn->scn_phys.scn_end_time;
2101	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2102	ps->pss_examined = scn->scn_phys.scn_examined;
2103	ps->pss_to_process = scn->scn_phys.scn_to_process;
2104	ps->pss_processed = scn->scn_phys.scn_processed;
2105	ps->pss_errors = scn->scn_phys.scn_errors;
2106	ps->pss_state = scn->scn_phys.scn_state;
2107
2108	/* data not stored on disk */
2109	ps->pss_pass_start = spa->spa_scan_pass_start;
2110	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2111
2112	return (0);
2113}
2114
2115boolean_t
2116spa_debug_enabled(spa_t *spa)
2117{
2118	return (spa->spa_debug);
2119}
2120
2121int
2122spa_maxblocksize(spa_t *spa)
2123{
2124	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2125		return (SPA_MAXBLOCKSIZE);
2126	else
2127		return (SPA_OLD_MAXBLOCKSIZE);
2128}
2129